










Preface

This book is a collection of the lectures I have given on algebraic graph theory. These
lectures were designed for mathematics students in a Master’s program, but they may
also be of interest to undergraduates in the final year of a Bachelor’s curriculum.

The lectures cover topics which can be used as starting points for a Master’s or
Bachelor’s thesis. Some questions raised in the text could even be suitable as sub-
jects of doctoral dissertations. The advantage afforded by the field of algebraic graph
theory is that it allows many questions to be understood from a general mathematical
background and tackled almost immediately.

In fact, my lectures have also been attended by graduate students in informatics with
a minor in mathematics. In computer science and informatics, many of the concepts
associated with graphs play an important role as structuring tools – they enable us to
model a wide variety of different systems, such as the structure of physical networks
(of roads, computers, telephones etc.) as well as abstract data structures (e.g. lists,
stacks, trees); functional and object oriented programming are also based on graphs
as a means of describing discrete entities. In addition, category theory is gaining more
and more importance in informatics; therefore, these lectures also include a basic and
concrete introduction to categories, with numerous examples and applications.

I gave the lectures first at the University of Bielefeld and then, in various incar-
nations, at the Carl von Ossietzky Universität Oldenburg. They were sometimes pre-
sented in English and in several other countries, including Thailand and New Zealand.

Selection of topics

The choice of topics is in part standard, but it also reflects my personal preferences.
Many students seem to have found the chosen topics engaging, as well as helpful and
useful in getting started on thesis research at various levels.

To mark the possibilities for further research, I have inserted many “Questions”, as
well as “Exercises” that lead to illuminating examples. Theorems for which I do not
give proofs are sometimes titled “Exerceorem”, to stress their role in the development
of the subject. I have also inserted some “Projects”, which are designed as exercises
to guide the reader in beginning their own research on the topic. I have not, however,
lost any sleep over whether to call each result a theorem, proposition, exerceorem,
or something else, so readers should neither deduce too much from the title given
to a result nor be unduly disturbed by any inconsistencies they may discover – this
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beautiful English sentence I have adopted from the introduction of John Howie’s An
Introduction to Semigroup Theory, published by Academic Press in 1976.

Homomorphisms, especially endomorphisms, form a common thread throughout
the book; you will meet this concept in almost all the chapters. Another focal point is
the standard part of algebraic graph theory dealing with matrices and eigenvalues. In
some parts of the book the presentation will be rather formal; my experience is that
this can be very helpful to students in a field where concepts are often presented in an
informal verbal manner and with varying terminology.

Content of the chapters

We begin, in Chapter 1, with basic definitions, concepts and results. This chapter is
very important, as standard terminology is far from being established in graph theory.
One reason for this is that graph models are so extremely useful in a great number of
applications in diverse fields. Many of the modelers are not mathematicians and have
developed their own terminology and results, without necessarily caring much about
existing theory. Chapter 1 contains some new variants of results on graph homomor-
phisms and the relations among them, connecting them, in turn, to the combinatorial
structure of the graph.

Chapter 2 makes connections to linear algebra by discussing the different matrices
associated to graphs. We then proceed to the characteristic polynomial and eigenval-
ues, topics that will be encountered again in Chapters 5 and 8. There is no intention
to be complete, and the content of this chapter is presented at a relatively elementary
level.

In Chapter 3 we introduce some basic concepts from category theory, focusing on
what will be helpful for a better understanding of graph concepts.

In Chapter 4 we look at graphs and their homomorphisms, in particular binary
operations such as unions, amalgams, products and tensor products; for the latter two
operations I use the illustrative names cross product and box product. It turns out
that, except for the lexicographic products and the corona, all of these operations
have a category-theoretical meaning. Moreover, adjointness leads to so-called Mor
constructions; some of the ones presented in this chapter are new, as far as I know,
and I call them diamond and power products.

In Chapter 5 we focus on unary operations such as the total graph, the tree graph
and, principally, line graphs. Line graphs are dealt with in some detail; in particular,
their spectra are discussed. Possible functorial properties are left for further investi-
gation.

In Chapter 6, the fruitful notion of duality, known from and used in linear algebra,
is illustrated with the so-called cycle and cocycle spaces. We then apply the concepts
to derive Kirchhoff’s laws and to “square the rectangle”. The chapter finishes with a
short survey of applications to transportation networks.
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Chapter 7 discusses several connections between graphs and groups and, more gen-
erally, semigroups or monoids. We start with Cayley graphs and Frucht-type results,
which are also generalized to monoids. We give results relating the groups to combi-
natorial properties of the graph as well as to algebraic aspects of the graph.

In Chapter 8 we continue the investigation of eigenvalues and the characteristic
polynomial begun in Chapters 2 and 5. Here we present more of the standard results.
Many of the proofs in this chapter are omitted, and sometimes we mention only the
idea of the proof.

In Chapter 9 we present some results on endomorphism monoids of graphs. We
study von Neumann regularity of endomorphisms of bipartite graphs, locally strong
endomorphisms of paths, and strong monoids of arbitrary graphs. The chapter in-
cludes a fairly complete analysis of the strong monoid, with the help of lexicographic
products on the graph side and wreath products on the monoid side.

In Chapter 10 we discuss unretractivities, i.e. under what conditions on the graph
do its different endomorphism sets coincide? We also investigate questions such as
how the monoids of composed graphs (e.g. product graphs) relate to algebraic com-
positions (e.g. products) of the monoids of the components. This type of question can
be interpreted as follows: when is the formation of the monoid product-preserving?

In Chapter 11 we come back to the formation of Cayley graphs of a group or semi-
group. This procedure can be considered as a functor. As a side line, we investigate
(in Section 11.2) preservation and reflection properties of the Cayley functor. This
is applied to Cayley graphs of right and left groups and is used to characterize Cay-
ley graphs of certain completely regular semigroups and strong semilattices of semi-
groups.

In Chapter 12 we resume the investigation of transitivity questions from Chapter 8
for Cayley graphs of strong semilattices of semigroups, which may be groups or right
or left groups. We start with Aut- and ColAut-vertex transitivities and finish with
endomorphism vertex transitivity. Detailed examples are used to illustrate the results
and open problems.

Chapter 13 considers a more topological question: what are planar semigroups?
This concerns extending the notion of planarity from groups to semigroups. We
choose semigroups that are close to groups, i.e. which are unions of groups with some
additional properties. So we investigate right groups and Clifford semigroups, which
were introduced in Chapter 9. We note that the more topological questions about
planarity, embeddings on surfaces of higher genus or colorings are touched on only
briefly in this book. We use some of the results in certain places where they relate
to algebraic analysis of graphs – the main instances are planarity in Section 6.4 and
Chapter 13, and the chromatic number in Chapter 7 and some other places.

Each chapter ends with a “Comments” section, which mentions open problems and
some ideas for further investigation at various levels of difficulty. I hope they will
stimulate the reader’s interest.
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How to use this book

The text is meant to provide a solid foundation for courses on algebraic graph theory.
It is highly self-contained, and includes a brief introduction to categories and functors
and even some aspects of semigroup theory.

Different courses can be taught based on this book. Some examples are listed be-
low. In each case, the prerequisites are some basic knowledge of linear algebra.

� Chapters 1 through 8 – a course covering mainly the matrix aspects of algebraic
graph theory.

� Chapters 1, 3, 4, 7 and 9 through 13 – a course focusing on the semigroup and
monoid aspects.

� A course skipping everything on categories, namely Chapter 3, the theorems in
Sections 4.1, 4.2, 4.3 and 4.6 (although the definitions and examples should be
retained) and Sections 11.1 through 11.2.

� Complementary to the preceding option, it is also possible to use this text as a
short and concrete introduction to categories and functors, with many (some-
what unusual) examples from graph theory, by selecting exactly those parts
skipped above.

About the literature

The literature on graphs is enormous. In the bibliography at the end of the book, I
give a list of reference books and monographs, almost all on graphs, ordered chrono-
logically starting from 1936; it is by no means complete. As can be seen from the
list, a growing number of books on graph theory are published each year. Works from
this list are cited in the text by author name(s) and publication year enclosed in square
brackets.

Here I list some books, not all on graphs, which are particularly relevant to this
text; some of them are quite similar in content and are cited frequently.

� N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge
1996.

� M. Behzad, G. Chartrand, L. Lesniak-Forster, Graphs and Digraphs, Prindle,
Weber & Schmidt, Boston 1979. New (fifth) edition: G. Chartrand, L. Lesniak,
P. Zhang, Graphs and Digraphs, Chapman and Hall, London 2010.

� D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New
York 1979.

� C. Godsil, G. Royle, Algebraic Graph Theory, Springer, New York 2001.

� G. Hahn, G. Sabidussi (eds.), Graph Symmetry, Kluwer, Dordrecht 1997.
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� P. Hell, J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Ox-
ford 2004.

� H. Herrlich, G. Strecker, Category Theory, Allyn and Bacon, Boston 1973.
� W. Imrich, S. Klavžar, Product Graphs, Wiley, New York 2000.
� R. Kaschek, U. Knauer (eds.), Graph Asymmetries, Discrete Mathematics 309

(special issue) (2009) 5349–5424.
� M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Acts and Categories, De Gruyter,

Berlin 2000.
� M. Petrich, N. Reilly, Completely Regular Semigroups, Wiley, New York 1999.
� D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River,

NJ 2001.

Papers, theses, book chapters and other references are given in the text where they are
used.
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Chapter 1

Directed and undirected graphs

In this chapter we collect some important basic concepts. These concepts are essential
for all mathematical modeling based on graphs. The language and visual representa-
tions of graphs are such powerful tools that graph models can be encountered almost
everywhere in mathematics and informatics, as well as in many other fields.

The most obvious phenomena that can be modeled by graphs are binary relations.
Moreover, graphs and relations between objects in a formal sense can be considered
the same. The concepts of graph theory also play a key role in the language of category
theory, where we consider objects and morphisms.

It is not necessary to read this chapter first. A reader who is already familiar with
the basic notions may just refer back to this chapter as needed for a review of the
notation and concepts.

1.1 Formal description of graphs

We shall use the word “graph” to refer to both directed and undirected graphs. Only
when discussing concepts or results that are specific to one of the two types of graph
we will use the corresponding adjective explicitly. An edge of a graph will be denoted
by .x; y/; this notation will also be used for directed graphs, whereas an edge in the
particular case of undirected graphs will be written as ¹x; yº.
Definition 1.1.1. A directed graph or digraph is a tripleG D .V;E; p/ where V and
E are sets and

p W E ! V 2

is a mapping. We call V the set of vertices or points and E the set of edges or arcs of
the graph, and we will sometimes write these sets as V.G/ and E.G/. The mapping
p is called the incidence mapping.

The mapping p defines two more mappings o; t W E ! V by .o.e/; t.e// WD p.e/;
these are also called incidence mappings. We call o.e/ the origin or source and t .e/
the tail or end of e.

As p defines the mappings o and t , these in turn define p by p.e/ WD .o.e/; t.e//.
We will mostly be using the first of the two alternatives

G D .V;E; p/ or G D .V;E; o; t/:
We say that the vertex v and the edge e are incident if v is the source or the tail

of e. The edges e and e0 are said to be incident if they have a common vertex.
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An undirected graph is a triple G D .V;E; p/ such that

p W E ! ¹V � V j 1 � jV j � 2º:

An edge e with o.e/ D t .e/ is called a loop. A graph G is said to be loopless if it
has no loops.

Let G D .V;E; o; t/ be a directed graph, let e be an edge, and let u D o.e/ and
v D t .e/; then we also write e W u ! v. The vertices of graphs are drawn as points
or circles; directed edges are arrows from one point to another, and undirected edges
are lines, or sometimes two-sided arrows, joining two points. The name of the vertex
or edge may be written in the circle or close to the point or edge.

Definition 1.1.2. Let G D .V;E; p/ be a graph. If p is injective, we call G a sim-
ple graph (or a graph without multiple edges). If p is not injective, we call G a
multigraph or multiple graph; sometimes the term pseudograph is used.

If G D .V;E; p/ is a simple graph, we can consider E as a subset of V 2, identify-
ing p.E/ with E. We then write G D .V;E/ or G D .VG ; EG/, and for the edge e
with p.e/ D .x; y/ we write .x; y/.

Simple graphs can now be defined as follows: a simple directed graph is a pair
G D .V;E/ with E � V 2 D V � V . Then we again call V the set of vertices and E
the set of edges.

A simple undirected graph is a simple directed graph G D .V;E/ such that

.x; y/ 2 E , .y; x/ 2 E:

The edge .x; y/ may also be written as ¹x; yº or xy.
Mappings w W E ! W or w W V ! W are called weight functions. Here W is

any set, called the set of weights, and w.x/ is called the weight of the edge x or of the
vertex x.

Definition 1.1.3. A path a from x to y or an x; y path in a graph G is a sequence
a D .e1; e2; : : : ; en/ of edges with o.e1/ D x, t .en/ D y and t .ei�1/ D o.ei / for
i D 2; : : : ; n. We write a W x ! y and call x the start (origin, source) and y the
end (tail, sink) of the path a. The sequence x0; : : : ; xn is called the trace of the path
a. The set ¹x0; : : : ; xnº of all vertices of the trace is called the support of the path a,
denoted by supp a.

A path is said to be simple if every vertex appears at most once on the path. A
path is said to be closed, or is called a cycle, if the start and end of the path coincide.
A simple closed path, i.e. a simple cycle, is called a circuit. The words (simple)
semipath, semicycle or semicircuit will be used if, in the sequence of edges, the tail
or origin of each edge equals the origin or tail of the next edge. This means that at
least two consecutive edges have opposite directions. The notions of trace and support
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remain unchanged. In a simple graph, every (semi)path is uniquely determined by its
trace. We can describe a path also by its vertices x0; : : : ; xn where .x0; x1/, : : : ,
.xn�1; xn/ are edges of the path. For undirected graphs, the notions of path and
semipath are identical.

For the sake of completeness we also mention the following definition: the trivial
x; x path is the path consisting only of the vertex x. It is also called a lazy path.

The reader should be aware that, in the literature, the words “cycle” and “circuit”
are often used in different ways by different authors.

Lemma 1.1.4. For x; y 2 G, every x; y path contains a simple x; y path. Every
cycle in G is the union of circuits.

Proof. Take x; y 2 G. Start on an x; y path from x and proceed until one vertex z
is met for the second time. If this does not happen, we already have a simple path;
otherwise, we have also traversed a circuit. Remove this circuit, together with all its
vertices but z, from the path. Continuing this procedure yields a simple x; y path. If
we start with a cycle, we remove one edge e D .y; x/, and this gives an x; y path.
Now collect the circuits as before. At the end we have a simple x; y path, which
together with e gives the last circuit.

Definition 1.1.5. Let G D .V;E/, and let a D .e1; : : : ; er/ be a path with ei 2 E.
Then `.a/ WD r is called the length of a.

We denote by F.x; y/ the set of all x; y paths in G. Then d.x; y/ WD min¹`.a/ j
a 2 F.x; y/º is called the distance from x to y.

We call diam.G/ WD maxx;y2G d.x; y/ the diameter ofG. The length of a shortest
cycle of G is called the girth of G. In German the figurative word Taillenweite,
meaning circumference of the waist, is used.

Remark 1.1.6. In connected, symmetric graphs the distance d W V � V ! RC
0 is

a metric, if we set d.x; x/ D 0 for all x 2 V . In this way, .V; d/ becomes a metric
space. If ¹`.a/ j a 2 F.x; y/º D ;, then d.x; y/ is not defined. Often one sets
d.x; y/ D1 in this case.

Definition 1.1.7. For a vertex x of a graph G, the outset of x is the set

out.x/ WD outG.x/ WD ¹e 2 E j o.e/ D xº:
The elements of

NC.x/ WD NC
G .x/ WD ¹t .e/ j e 2 outG.x/º

are called the successors of x in G. The outdegree of a vertex x is the number of
successors of x; that is,

 �
d .x/ D outdeg.x/ WD jout.x/j:
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Definition 1.1.8. The graph Gop WD .V;E; t; o/ is called the opposite graph to G.
The inset of a vertex x is the outset of x in the opposite graph Gop, so

in.x/ D inG.x/ WD outGop.x/ D ¹e 2 E j t .e/ D xº:

The elements of

N�.x/ WD N�
G .x/ WD NC

Gop.x/ WD ¹o.e/ j e 2 inG.x/º

are called predecessors of x in G. The indegree of a vertex x is the number of
predecessors of x; that is,

�!
d .x/ D indeg.x/ WD jin.x/j:

A vertex which is a successor or a predecessor of the vertex x is said to be adjacent
to x.

Definition 1.1.9. In an undirected graph G, a predecessor of a vertex x is at the
same time a successor of x. Therefore, in this case, in.x/ D out.x/ and N.x/ WD
NC.x/ D N�.x/. We call the elements of N.x/ the neighbors of x. Similarly,
indeg.x/ D outdeg.x/. The common value dG.x/ D d.x/ D deg.x/ is called the
degree of x in G.

An undirected graph is said to be regular or d -regular if all of its vertices have
degree d .

1.2 Connectedness and equivalence relations

Here we make precise some very natural concepts, in particular, how to reach certain
points from other points.

Definition 1.2.1. A directed graph G is said to be:

� weakly connected if for all x; y 2 V there exists a semipath from x to y;

� one-sided connected if for all x; y 2 V there exists a path from x to y or from
y to x;

� strongly connected if for all x; y 2 V there exists a path from x to y and from
y to x.

For undirected graphs, all of the above three concepts coincide. We then simply say
that the graph is connected; we shall also use this word as a common name for all
three concepts.

If G satisfies none of the above three conditions, it is said to be unconnected or
disconnected.
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Example 1.2.2. The following three graphs illustrate the three properties above, in
the order given.

�
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Definition 1.2.3. A connected graph is said to be n-vertex connected if at least n
vertices must be removed to obtain an unconnected graph. Analogously, one can
define n-edge connected graphs.

Remark 1.2.4. A binary relation on a set X is usually defined as a subset of the
Cartesian product X � X . This often bothers beginners, since it seems too simple a
definition to cover all the complicated relations in the real world that one might wish
to model. It is immediately clear, however, that every binary relation is a directed
graph and vice versa. This is one reason that much of the literature on binary relations
is actually about graphs. Arbitrary relations on a set can similarly be described by
multigraphs.

An equivalence relation on a setX , i.e. a reflexive, symmetric and transitive binary
relation in this setting, corresponds to a disjoint union of various graphs with loops
at every vertex (reflexivity) which are undirected (symmetry), and such that any two
vertices in each of the disjoint graphs are adjacent (transitivity). Note that the above-
mentioned disjoint union is due to the fact that an equivalence relation on a set X
provides a partition of the set X into disjoint subsets and vice versa.

1.3 Some special graphs

We now define some standard graphs. These come up everywhere, in virtually any
discussion about graphs, so will serve as useful examples and counterexamples.

Definition 1.3.1. In the complete graph K.l/
n with n vertices and l loops, where 0 �

l � n, any two vertices are adjacent and l of the vertices have a loop.

The totally disconnected or discrete graph K
.l/

n with n vertices and l loops has no
edges between distinct vertices and has loops at l vertices. If l D 0, we write Kn or
Kn.

A simple, undirected path with n edges is denoted by Pn.
An undirected circuit with n edges is denoted by Cn.
An r-partite graph admits a partition of the vertex set V into r disjoint subsets

V1; : : : ; Vr such that no two vertices in one subset are adjacent.
An r-partite graph is said to be complete r-partite if all pairs of vertices from

different subsets are adjacent. The complete bipartite graph with jV1j D m and jV2j D
n is denoted by Km;n; similarly for complete r-partite graphs.
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Example 1.3.2 (Some special graphs).

K1: K2: K3: K4:�
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�
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K2;3:

� �

� �
�

�
�
�K

.2/
4 :

�
�
�	
	
	� �

� �

�

�

K4:

� �

� �
K

.2/

4 :

� �

� �

�

�

P2: � � � C3 D K3, C4 D K2;2:

� �

� �

Definition 1.3.3. A graph without (semi)circuits is called a forest. A connected forest
is called a tree of G. A connected graph G0 with the same vertex set as G is called a
spanning tree if it is a tree. If G is not connected, the union of spanning trees for the
components of G is called a spanning forest.

Theorem 1.3.4. Let G be a graph with n vertices. The following statements are
equivalent:

(i) G is a tree.

(ii) G contains no semicircuits and has n � 1 edges.

(iii) G is weakly connected and has n � 1 edges.

(iv) Any two vertices of G are connected by a semipath.

(v) Adding any one edge produces exactly one semicircuit.

Proof. We describe briefly the idea of the proof. Starting from some tree, i.e. state-
ment (i), we verify (ii); then show the converse, that if (ii) does not hold then we
cannot have a tree, and so on.

Theorem 1.3.5. A graph is bipartite if and only if it has no semicircuits with an odd
number of edges.
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Proof. For “)”, let V D V1

S

V2. Since edges exist only between V1 and V2, all
circuits must have an even number of edges.

For “(”, let G be connected and take x 2 V . Take V1 to be the set of all vertices
which can be reached from x along paths using an odd number of edges. Set V2 WD
V n V1. If G is not connected, proceed in the same way with its connected parts.
Isolated vertices can be assigned arbitrarily.

We recall the following definition: a pair .P;�/, where P is a set with a reflexive,
antisymmetric, transitive binary relation �, is called a partially ordered set or a poset.
We write x < y if x � y and x ¤ y. We say that y covers x, written x � y, if x < y
and if x � z < y implies x D z. See also Remark 1.2.4.

Proposition 1.3.6. Every finite partially ordered set .P;�/ defines a simple directed
graph HP without cycles with vertex set P and edge set ¹.x; y/ j x � yº, the so-
called Hasse diagram of .P;�/, and conversely. Defining the edge set by ¹.y; x/ j
x � yº gives a Hasse diagram where arcs are directed “down”.

Proof. A simple, directed graphH without cycles describes P completely, since x �
y if and only if either x D y or there exists an x; y path inH whose edges .xi ; xiC1/

are interpreted as xi � xiC1.
For the converse we use analogous arguments.

Definition 1.3.7. A rooted tree is a triple .T;�; r/ such that:

� .T;�/ is a partially ordered set;

� HT is a tree; and

� r 2 T is an element, the root of the tree, where x � r for all x 2 T .

A marked rooted tree is a quadruple .T;�; r; �/ such that .T;�; r/ is a rooted tree
and � W T ! M , with M being a set, is a mapping (weight function), which in this
context is called the marking function. We call �.x/ a marking of x.

1.4 Homomorphisms

In mathematics, as in the real world, mappings produce images. In such images,
certain aspects of the original may be suppressed, so that the image is in general
simpler than the original. But some of the structures of the original, those which
we want to study, should be preserved. Structure-preserving mappings are usually
called homomorphisms. For graphs it turns out that preservation of different levels of
structure or different intensities of preservation quite naturally lead to different types
of homomorphism.

First, we give a very general definition of homomorphisms. We will then intro-
duce the so-called covering, which has some importance in the field of informatics.
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The general definition will then be specialized in various ways, and later we will use
almost exclusively these variants. A reader who is not especially interested in the
general aspects of homomorphisms may wish to start with Definition 1.4.3.

Definition 1.4.1. Let G1 D .V1; E1; o1; t1/ and G2 D .V2; E2; o2; t2/ be two di-
rected graphs. A graph homomorphism � W G1 ! G2 is a pair � D .�V ; �E / of
mappings

�V W V1 ! V2

�E W E1 ! E2

such that o2.�E .e// D �V .o1.e// and t2.�E .e// D �V .t1.e// for all e 2 E1.

If � W G1 ! G2 is a graph homomorphism and v is a vertex of G1, then

�E .outG1
.v// � outG2

.�V .v// and �E .inG1
.v// � inG2

.�V .v//:

Definition 1.4.2. If �E joutG1
.v/ is bijective for all v 2 V , we call � a covering of G2.

If �E joutG1
.v/ is only injective for all v 2 V , then it is called a precovering.

For simple directed or undirected graphs, we will mostly be working with the fol-
lowing formulations and concepts rather than the preceding two definitions.

The main idea is that homomorphisms have to preserve edges. If, in the following,
we replace “homo” by “ega”, we have the possibility of identifying adjacent vertices
as well. This could also be be achieved with usual homomorphisms if we consider
graphs that have a loop at every vertex.

Definition 1.4.3. Let G D .V;E/ and G0 D .V 0; E 0/ be two graphs. A mapping
f W V ! V 0 is called a:

� graph homomorphism if .x; y/ 2 E ) .f .x/; f .y// 2 E 0;
� graph egamorphism (weak homomorphism) if .x; y/2E and f .x/¤f .y/)
.f .x/; f .y// 2 E 0;

� graph comorphism (continuous graph mapping) if .f .x/; f .y// 2 E 0 )
.x; y/ 2 E;

� strong graph homomorphism if .x; y/ 2 E , .f .x/; f .y// 2 E 0;
� strong graph egamorphism if .x; y/2E and f .x/¤f .y/,.f .x/; f .y//2E 0;
� graph isomorphism if f is a strong graph homomorphism and bijective or,

equivalently, if f and f �1 are graph homomorphisms.

When G D G0, we use the prefixes “endo”, “auto” instead of “homo”, “iso” etc.
We note that the term “continuous graph mapping” is borrowed from topology; there
continuous mappings reflect open sets, whereas here they reflect edges.
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Remark 1.4.4. Note that, in contrast to algebraic structures, bijective graph homo-
morphisms are not necessarily graph isomorphisms. This can be seen from Exam-
ple 1.4.9; there the non-strong subgraph can be mapped bijectively onto the graph G
without being isomorphic to it.

Remark 1.4.5. Note that for f0 2 EHom.G;G0/, which identifies exactly two adja-
cent vertices, the graph f0.G/ is also called an elementary contraction of G. The re-
sult of a series of elementary contractions fn.fn�1.: : : .f0.G// : : : // is usually called
a contraction ofG. This terminology is used mainly for the characterization of planar
graphs (see Chapter 13).

Remark 1.4.6. Denote by Hom.G;G0/, Com.G;G0/, EHom.G;G0/, SHom.G;G0/,
SEHom.G;G0/ and Iso.G;G0/ the homomorphism sets.

Analogously, let End.G/, EEnd.G/, Cnd.G/, SEnd.G/, SEEnd.G/ and Aut.G/
denote the respective sets when G D G0. These form monoids.

Indeed, End.G/ and SEnd.G/, as well as EEnd.G/ and SEEnd.G/, are monoids,
i.e. sets with an associative multiplication (the composition of mappings) and an iden-
tity element (the identical mapping). Clearly, End.G/ is closed. Also, SEnd.G/ is
closed, since for f; g 2 SEnd.G/ we get

.fg.x/; fg.y// 2 E f strong(HHH) .g.x/; g.y// 2 E g strong(HH) .x; y/ 2 E:

The rest is clear.

Proposition 1.4.7. Let G and G0 be graphs and f W G ! G0 a graph isomorphism.
For x 2 G, we have indeg.x/ D indeg.f .x// and outdeg.x/ D outdeg.f .x//.

Proof. We prove the statement for undirected graphs.
As f is injective, we get jNG.x/j D jf .NG.x//j.
As f is a homomorphism, we get f .NG.x// � NG0.f .x//, i.e. jf .NG.x//j �
jNG0.f .x//j.

As f is surjective, we have NG0.f .x// � f .G/; and, since f is strong, we get
jNG0.f .x//j � jNG.x/j.

Putting the above together, using the statements consecutively, we obtain jNG.x/jD
jNG0.f .x//j.

Now we use deg.x/ D jNG.x/j and deg.f .x// D jNG0.f .x//j to get the result.

Subgraphs

The different sorts of homomorphisms lead to different sorts of subgraphs. First, let
us explicitly define subgraphs and strong subgraphs.
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Definition 1.4.8. Let G D .V;E/. A graph G0 D .V 0; E 0/ is called a subgraph (or
partial subgraph) ofG if there exists an injective graph homomorphism f W V 0 ! V .

A graph G0 is called a strong subgraph (or induced subgraph or vertex induced
subgraph) if there exists an injective strong graph homomorphism f W V 0 ! V .

Example 1.4.9 (Subgraphs).

�
�
�
	

	
	�� � �� �

�

is a not strong subgraph while

�
�
�


�� �

�

is a strong subgraph of G: �
�
�
	

	
	�� �� �

�

�


Remark 1.4.10. A strong subgraph in general has fewer vertices than the original
graph, but all edges of the original graph between these vertices are contained in the
strong subgraph.

A subgraph in general contains fewer vertices and fewer edges than the original
graph.

(Semi)paths, (semi)cycles and (semi)circuits are all subgraphs.

Definition 1.4.11. A strong, one-sided or weak component of a graph is, respec-
tively, a maximal strongly, one-sided or weakly connected subgraph.

A (strong) component is also called a clique of G. The number of vertices !.G/ of
the largest clique of G is called the clique number of G.

See Example 1.2.2 for comparison.
The “edge dual” concept to a clique is a maximal independent subset of V .

Definition 1.4.12. Two vertices x; y 2 V are called independent vertices if .x; y/ …
E and .y; x/ … E. The vertex independence number is defined as

ˇ0.G/ WD max¹jU j W U � V; independentº:

Analogously, two non-incident edges are called independent edges, and we can
define the edge independence number ˇ1.G/.

The elements of an independent edge set of G are also called 1-factors of G; a
maximal independent edge set of G is called a matching of G.
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1.5 Half-, locally, quasi-strong and metric homomorphisms

In addition to the usual homomorphisms, we introduce the following four sorts of
homomorphisms. As always, homomorphisms are used to investigate the structure of
objects. The large number of different homomorphisms of graphs shows how rich and
variable the structure of a graph can be. In Section 1.8 we summarize which of these
homomorphisms have appeared where and under which names; we also suggest how
they might be used in modeling.

The motivation for these other homomorphisms comes from the concept of strong
homomorphisms or, more precisely, the notion of comorphism, i.e. the continuous
mapping. A continuous mapping “reflects” edges of graphs. The following types
of homomorphism reduce the intensity of reflection. In other words, an ordinary
homomorphism f W G ! G0 does not reflect edges at all. This means it could happen
that .f .x/; f .y// is an edge in G0 even though .x; y/ is not an edge in G, and there
may not even exist any preimage of f .x/ which is adjacent to any preimage of f .y/
in G. The following three concepts “improve” this situation step by step.

From the definitions it will become clear that there exist intermediate steps that
would refine the degree of reflection.

Definition 1.5.1. Let G D .V;E/ and G0 D .V 0; E 0/ be graphs, and let f 2
Hom.G;G0/. For x; y 2 V , set

X WD f �1.f .x//;

Y WD f �1.f .y//:

Let .f .x/; f .y// 2 E 0. Then f is said to be:

� half-strong if there exists Qx 2 X and Qy 2 Y such that . Qx; Qy/ 2 E;

� locally strong if

² 8 x 2 X; 9yx 2 Y such that .x; yx/ 2 E and
8y 2 Y; 9 xy 2 X such that .xy ; y/ 2 EI

� quasi-strong if

² 9 Qx0 2 X such that 8 Qy 2 Y; . Qx0; Qy/ 2 E and
9 Qy0 2 Y such that 8 Qx 2 X; . Qx; Qy0/ 2 E:

We call Qx0 and Qy0 central vertices or, in the directed case, the central source
and central sink in X and in Y with respect to .f .x/; f .y//.

Remark 1.5.2. With the obvious notation, one has

Hom.G;G0/ � HHom.G;G0/ � LHom.G;G0/ � QHom.G;G0/
� SHom.G;G0/ � Iso.G;G0/;

End.G/ � HEnd.G/ � LEnd.G/ � QEnd.G/

� SEnd.G/ � Aut.G/ � ¹idGº:
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Note that apart from SEnd.G/, Aut.G/ and ¹idGº, the other subsets of End.G/ are,
in general, not submonoids of End.G/. We will talk about the group and the strong
monoid of a graph, and about the quasi-strong monoid, locally strong monoid and
half-strong monoid of a graph if these really are monoids.

Example 1.5.3 (Different homomorphisms). We give three of the four examples for
undirected graphs. The example for the half-strong homomorphism in the directed
case shows that the other concepts can also be transferred to directed graphs.

f

f

f .y/

f .x/

Qy

Qx

Y

X

G half-strong

f

f

f .y/

f .x/

Y

X

G locally strong

Qx0

Qy0

f

f

f .y/

f .x/

Y

X

G quasi-strong

f

f

f .y/

f .x/

Y

X

Gstrong

From the definitions we immediately obtain the following theorem. To get an idea
of the proof, one can refer to the graphs in Example 1.5.3.

Theorem 1.5.4. Let G ¤ K1 be a bipartite graph with V D V1

S

V2. Let .x1; x2/

be an edge with x1 2 V1 and x2 2 V2. We define an endomorphism r of G by
r.V1/ D ¹x1º and r.V2/ D ¹x2º. Obviously, r 2 HEnd.G/. Moreover, the following
hold:

� r 2 LEnd.G/ if and only if G has no isolated vertices;

� r 2 QEnd.G/ if and only if V1 has a central vertex ex0 with N.ex0/ D V2 and
correspondingly for V2;

� r 2 SEnd.G/ if and only if G is complete bipartite.
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Proposition 1.5.5. A non-injective endomorphism f of G is strong if and only if for
all x 2 V with f .x/ D f .x0/ one has NG.x/ D NG.x

0/.

Note that for adjacent vertices x and x0, this is possible only if both have loops.

Proof. Necessity is clear from the definition. Now suppose that NG.x/ D NG.x
0/

for x; x0 2 V.G/. Construct f by setting f .x/ D x0 and f .y/ D y for all y ¤ x; x0.
It is clear that f 2 SEnd.G/.

Corollary 1.5.6. If Aut.G/ ¤ SEnd.G/, then jSEnd.G/ n Aut.G/j contains at least
two idempotents.

Definition 1.5.7. A homomorphism f from G to G0 is said to be metric if for any
vertices x; y 2 V.G/ there exist x0 2 f �1f .x/ and y0 2 f �1f .y/ such that
d.f .x/; f .y// D d.x0; y0/. Denote by MEnd.G/ the set of metric endomorphisms
of G and by Idpt.G/ the set of idempotent endomorphisms, i.e. f 2 End.G/ with
f 2 D f , of G.

As usual we make the following definition.

Definition 1.5.8. A homomorphism f from G to f .G/ � H is called a retraction if
there exists an injective homomorphism g from f .G/f to G such that fg D idf .G/.
In this case f .G/ is called a retract of G, and then G is called a coretract of f .G/
while g is called a coretraction.

IfH is an unretractive retract ofG, i.e. if End.H/ D Aut.H/, thenH is also called
a core of G.

Remark 1.5.9. One has

Idpt.G/;LEnd.G/ � MEnd.G/ � HEnd.G/:

Example 1.5.10 (HEnd, LEnd, QEnd are not monoids). The sets HEnd, LEnd, QEnd
are not closed with respect to composition of mappings. To see this, consider the
following graph G

together with the mappings f D �

1 2 3 4 5
3 4 5 4 5

�

and g D �

1 2 3 4 5
1 2 3 2 5

�

. Now f 2
QEnd.G/ and g 2 HEnd.G/ but f 2 2 HEnd.G/ n LEnd.G/ and g ı f 2 End.G/ n
HEnd.G/. These properties are not changed if we add another vertex 0 to the graph
which we make adjacent to every other vertex. The graph is then connected but no
longer bipartite.

Question. Do Idpt and MEnd always form monoids? Can you describe graphs where
this is the case?
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1.6 The factor graph, congruences, and the
Homomorphism Theorem

The study of factor graphs by graph congruences turns out to be fundamental for
the general investigation of homomorphisms. The connection to arbitrary homomor-
phisms is established through the canonical epimorphisms, and this leads to the Ho-
momorphism Theorem for graphs. We formulate the theorem only for ordinary graph
homomorphisms.

Factor graphs

Definition 1.6.1. Let % � V � V be an equivalence relation on the vertex set V of
a graph G D .V;E/, and denote by x% the equivalence class of x 2 E with respect
to %. Then G% D .V%; E%/ is called the factor graph of G with respect to %, where
V% D V

ı

% and .x%; y%/ 2 E% if there exist x0 2 x% and y0 2 y% with .x0; y0/ 2 E,
where % is called a graph congruence.

Example 1.6.2 (Congruence classes, factor graphs). We exhibit some graphs together
with congruence classes (encircled vertices) and the corresponding factor graphs:

G G%
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Remark 1.6.3. By the definition of G%, the canonical epimorphism

�% W G ! G%

x 7! x%

(which is always surjective) is a half-strong graph homomorphism.
Note that, in general, a graph congruence % is just an equivalence relation. If we

have a graph G D .V;E/ and a congruence % � V �V such that there exist x; y 2 V
with .x; y/ 2 E and x % y, then .x%; x%/ 2 E%, i.e. G% has loops.

If we want to use only loopless graphs, then �% W G ! G% is a graph homomor-
phism only if

x % y ) .x; y/ … E:
Therefore we make the following definition.

Definition 1.6.4. A (loop-free) graph congruence % is an equivalence relation with
the additional property that x % y ) .x; y/ … E.

Definition 1.6.5. Let G% be the factor graph of G with respect to %. If the canonical
mapping �% W G ! G% is a strong (respectively quasi-strong, locally strong or metric)
graph homomorphism, then the graph congruence % is called a strong (respectively
quasi-strong, locally strong or metric) graph congruence.

Example 1.6.6 (Connectedness relations). On G D .V;E/, with x; y 2 V , consider
the following relations:

x %1 y , there exists an x; y path and a y; x path or x D y;

x %2 y , there exists an x; y semipath or x D y.

x %3 y , there exists an x; y path or a y; x path.

The relation %1 is an equivalence relation; the factor graph G%1
is called a conden-

sation of G.
The relation %2 is an equivalence relation; the factor graph G%2

consists only of
isolated vertices with loops.

The relation %3 is not transitive and therefore not an equivalence relation.

The Homomorphism Theorem

For convenience we start with the so-called Mapping Theorem, i.e. the Homomor-
phism Theorem for sets, preceded by the usual result on mapping-induced congruence
relations. Then, as for sets, we formulate the Homomorphism Theorem for graphs.
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Proposition 1.6.7. Let G and H be sets, and let f W G ! H be a mapping. Using
f we obtain an equivalence relation on G, the so-called induced congruence, if we
define, for x; y 2 G,

x %f y , f .x/ D f .y/:
Moreover, by setting �%f

.x/ D x%f
for x 2 G, we get a surjective mapping onto the

factor set G%f
D G=%f . Here x%f

denotes the equivalence class of x with respect to
%f and G=%f the set of all these equivalence classes.

Proof. It is straightforward to check that %f is reflexive, symmetric and transitive, i.e.
it is an equivalence relation on G. Surjectivity of �%f

follows from the definition of
the factor set.

Proposition 1.6.8. Let G and H be graphs, and let f W G ! H be a graph homo-
morphism. Using f we obtain a graph congruence by defining, for x; y 2 V.G/,

x %f y , f .x/ D f .y/:

Moreover, by setting �%f
.x/ D x%f

for x 2 G, we get a surjective graph homomor-
phism onto the factor graph G%f

D G=%f . Here x%f
denotes the congruence class of

x with respect to %f and G%f
the factor graph formed by these congruence classes.

Proof. As for sets we know that %f is an equivalence relation and �%f
is a surjective

mapping by Proposition 1.6.7. Now use Remark 1.6.3.

Proposition 1.6.9 (The Homomorphism Theorem for sets). For every mapping f W
G ! H from a set G to a set H , there exists exactly one injective mapping f W
G%f

! H , with f .x%f
/ D f .x/ for x 2 G, such that the following diagram is

commutative, i.e. f D f ı �%f
:

G%f

G H

�
�
�
�
�
�


�

�

�%f

f

f

Moreover, the following statements hold:

(a) If f is surjective, then f is surjective.

(b) If we replace %f by an equivalence relation % � %f , then f W G% ! H is
defined in the same way, but is injective only if % D %f .
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Proof. Define f as indicated. We shall show that f is well defined. Suppose that
x%f
D x0

%f
in G%f

; then x%f x0 and thus f .x%f
/ D f .x/ D f .x0/ D f .x0

%f
/.

It is clear that f makes the diagram commutative and is the uniquely determined
mapping with these properties. Indeed, if a mapping f 0 has the same properties, then
f 0.x%f

/ D f 0�%f
.x/ D f .x/ D f �%f

.x/ D f .x%f
/ for all x%f

2 G%f
.

It is also clear that the two additional properties are valid. In particular, the inclusion
% � %f ensures that f is well defined also in this case.

Theorem 1.6.10 (The Homomorphism Theorem for graphs). For every graph ho-
momorphism f W G ! H , there exists exactly one injective graph homomorphism
f W G%f

! H , with f .x%f
/ D f .x/ for x 2 G, such that the following diagram is

commutative, i.e. f D f ı �%f
:

G%f

G H

�
�
�
�
�
�


�

�

�%f

f

f

Moreover, the following statements hold:

(a) If f is surjective, then f is surjective.

(b) If we replace %f by a graph congruence % � %f , then f W G% ! H is defined
in the same way, but is injective only if % D %f .

Proof. Define f as indicated, just as we did for sets in Proposition 1.6.9. Then f is
well defined, is unique and makes the diagram commutative.

We only have to show that �%f
and f are graph homomorphisms. For

�%f
this comes from Proposition 1.6.8. Take .x%f

; y%f
/ 2 E.G%f

/ and consider

.f .x%f
/; f .y%f

// D .f .x/; f .y//. Now there exists a preimage .x0; y0/ 2 E.G/ of
.x%f

; y%f
/ 2 E.G%f

/, which implies .f .x/; f .y// 2 E.H/.
The two additional properties are the same as for sets, so nothing further needs to

be proved.

Remark 1.6.11. In category-theoretical language, the essence of the Homomorphism
Theorem is that every homomorphism has an epi-mono factorization in the given
category. Note that in the graph categories considered, epimorphisms (epis) are sur-
jective and monomorphism (monos) are injective. The monomorphism is called an
embedding of the factor graph into the image graph.



18 Chapter 1 Directed and undirected graphs

Corollary 1.6.12. Surjective endomorphisms and injective endomorphisms of a finite
graph (set) are already automorphisms.

Example 1.6.13. We consider again the homomorphism f from Example 1.5.10.
Here the congruence classes are ¹1º; ¹2; 4º and ¹3; 5º, so �%f

maps every vertex to

its congruence class, and f is the embedding which takes 1%f
to 3, 2%f

to 4 and 3%f

to 5. The result of this procedure can be visualized in a diagram as follows:

Application 1.6.14. As an application, we observe that the Homomorphism Theorem
can be used to determine all homomorphisms from G to H as follows. We first
determine all congruences on G, giving all possible natural surjections � . Then, for
each congruence relation % which is given by its congruence classes, i.e. for every
�%, we determine all possible embeddings of G�%

into H . Each of these embeddings
corresponds to some f , all of which different but induce the same congruence.

In the example considered, we have G D H and obtain all embeddings as follows.
The class ¹1º can be mapped onto any vertex ofG, and after that the classes ¹2; 4º and
¹3; 5º forming an edge in G�%

can be mapped onto every edge of G which does not
contain the image of ¹1º in the actual embedding. In particular, if we map ¹1º onto
1 we have six possible embeddings, and they all give quasi-strong endomorphisms.
If we map ¹1º onto 3 or 4, we have four possible embeddings in each case, two of
which give quasi-strong and the other two ordinary endomorphisms. If we map ¹1º
onto 2 or 5 ,we have two possible embeddings, which in each case give ordinary
endomorphisms. So, overall, this congruence relation gives ten quasi-strong and eight
ordinary endomorphisms.

The same method for groups is formulated in Project 9.1.8.

1.7 The endomorphism type of a graph

For a more systematic treatment of different endomorphisms we define the endomor-
phism spectrum and the endomorphism type of a graph.

Definition 1.7.1. For the graphX consider the following sequence from Remark 1.5.2
(brackets around G are omitted for simplicity):

EndG � HEndG � LEndG � QEndG � SEndG � AutG:

With this sequence we associate the sequence of respective cardinalities,

EndospecG D .jEndGj; jHEndGj; jLEndGj; jQEndGj; jSEndGj; jAutGj/;
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and we call this 6-tuple the endospectrum or endomorphism spectrum of G. Next,
associate with the above sequence a 5-tuple .s1; s2; s3; s4; s5/ with

si 2 ¹0; 1º for i D 1; : : : ; 5;
where si D 1 stands for ¤ and si D 0 stands for D;

such that s1 D 1 means that jEndGj ¤ jHEndGj, s2 D 0 means that jHEndGj D
jLEndGj, etc. We use decadic coding and call the integer

P5
iD1 si2

i�1 the endotype
or endomorphism type of G and denote it by endotype G.

If EndG D AutG, we call the graph G unretractive or E-A unretractive; if
EndG D 1, we call the graph rigid; and if AutG D 1, we call the graph asym-
metric. More generally, if XG D X 0G for X;X 0 2 ¹End;HEnd;LEnd;QEnd;Autº,
we call the graph X -X 0 unretractive.

In principle there are 32 possibilities, i.e. endotype 0 up to endotype 31.
We will now prove that graphs of endotypes 1 and 17 do not exist.

Proposition 1.7.2. Let G be a finite graph such that EndG ¤ HEndG. Then
HEndG ¤ SEndG.

Proof. Take f 2 EndG n HEndG. Then there exists .f .x/; f .x0// 2 E.G/ but
for all x; x0 with f .x/ D f .x/ and f .x0/ D f .x0/ one has .x; x0/ … E.G/. From
finiteness of EndG we get an idempotent power f i of f , i.e. .f i /2 D f i , and thus
f i 2 HEndG; see Remark 1.5.9. In particular, since .f i .x/; f i .x0// 2 E.G/, we
have that f i .x/ and f i .x0/ are fixed under f i , and thus they are adjacent preimages.
Moreover, f i … SEndG since not all preimages are adjacent, in particular .x; x0/ …
E.G/.

Before analyzing the endotypes of graphs in more detail, we consider all endotypes
with regard to whether or not AutG D 1.

Proposition 1.7.3. jAutGj D 1 implies jSEndGj D 1.

Proof. Take f 2 SEndG n AutG. Then there exist x; x0 2 V.G/, x ¤ x0, with
f .x/ D f .x0/ and N.x/ D N.x0/ by Proposition 1.5.5. Then the mapping which
permutes exactly x and x0 is a non-trivial automorphism of G.

The preceding result shows that for endotypes 16 up to 31 we always have
AutG ¤ 1, since SEndG ¤ AutG in these cases. So we add for endotypes 0 to
15 an additional a denoting asymmetry, if AutG D 1.

We can say that endotype 0 describes unretractive graphs and endotype 0a describes
rigid graphs. Endotypes 0 up to 15 describe S-A unretractive graphs, and endotypes
0a; 2a; : : : ; 15a describe asymmetric graphs. Endotype 16 describes E-S unretractive
graphs which are not unretractive. Endotype 31 describes graphs for which all six sets
are different.
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Theorem 1.7.4. There exist simple graphs without loops of endotype 0; 0a; 2; 2a; 3;
3a; : : : ; 15; 15a; 16; 18; 19; : : : ; 31.

Proof. See M. Böttcher and U. Knauer, Endomorphism spectra of graphs, Discrete
Math. 109 (1992) 45–57, and Postscript “Endomorphism spectra of graphs”, Discrete
Math. 270 (2003) 329–331.

The following result is an approach to the question of to what extent trees are de-
termined by their endospectrum. It also shows that the endospectrum in general does
not determine graphs up to isomorphism.

Theorem 1.7.5. Let G be a tree, with G ¤ K2. The following table characterizes G
with respect to endotypes, which are given by their decadic coding in the first column
and explicitly in the second column. Classes of endomorphisms are abbreviated by
their first letters, and �G ¤ � indicates the existence of two different vertices in
G which have exactly the same neighbors; cf. Definitions 9:5:1 and 10:2:2. For the
notation in the last column, see the generalized lexicographic product in Section 4:4.

Examples or
N 0 Endotype �G diam complete descriptions
6 E D H ¤ L ¤ Q D S D A D � � 4 P4 is the smallest

10 E D H ¤ L D Q ¤ S D A D � D 3 P3 is the only one

16 E D H D L D Q D S ¤ A ¤ � D 2 Exactly the stars, i.e. K1;n for
n � 2

22 E D H ¤ L ¤ Q D S ¤ A ¤ � � 4 P4 with one end-vertex
doubled,
i.e. P4ŒK2; K1; K1; K1; K1�,
is the smallest

26 E D H ¤ L D Q ¤ S ¤ A ¤ � D 3 Exactly the “double stars”,
namely P3 with at least one
end-vertex at least doubled,
i.e. P3ŒKn; K1; K1; Km� with
n � 2 or m � 2

Asymmetric trees G, i.e. G such that jAutGj D 1, are possible only with endotype 6;
in other words, they have endotype 6a. The smallest is the path of length 5, with one
pending vertex at the third vertex, i.e. a vertex of degree 1.

A proof follows after Proposition 1.7.15.
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Lemma 1.7.6. A tree G with diam.G/ D 3 is a double star.

Proof. Let ¹x0
0; x0; x1; x

0
1º be a longest simple path in G. The only possibility for

adding edges in G without changing the diameter or destroying the tree property is
that x0 or x1 have additional neighbors of degree 1.

Lemma 1.7.7. Let G be a graph such that N.x/ ¤ N.x0/ for some x; x0 2 G with
.x; x0/ … E.G/. Then HEndG ¤ LEndG.

Proof. Define f .x/ D f .x0/ D x0 and f .y/ D y for all y ¤ x 2 G. Then
obviously f 2 HEndG. But f … LEndG, because for x00 2 N.x0/ n N.x/ one
has .f .x00/; f .x// D .x00; x0/ 2 E.G/, f �1.x00/ D ¹x00º, f �1.x0/ D ¹x; x0º but
.x; x00/ … E.G/, i.e. not every preimage of x0 is adjacent to some preimage of x00.

The following two lemmas are clear.

Lemma 1.7.8. Suppose G is a tree with x; x0 2 G such that N.x/ ¤ N.x0/. Then
diam.G/ � 3.

Lemma 1.7.9. Let G be a tree with diam.G/ � 3. Take x; x0; x00 2 G with ¹x0º D
N.x/ ¤ N.x0/ � ¹x; x00º. Then, by defining f .x/ D x00 and f .y/ D y for y ¤ x,
we get f 2 HEndG n LEndG.

Lemma 1.7.10. LetG be a double star as in Lemma 1:7:6. Then QEndG ¤ SEndG.

Proof. Take ¹x0
0; x0; x1; x

0
1º from Lemma 1.7.6, a longest simple path in G. Define

f .N.x0// D ¹x1º and f .N.x1// D ¹x0º. Then f 2 QEndG, since x1 2 f �1.x1/ is
adjacent to every vertex in N.x1/ D f �1.x0/ and x0 2 f �1.x0/ is adjacent to every
vertex in N.x0/ D f �1.x1/. But f … SEndG as .x0

0; x
0
1/ … E.G/.

Proposition 1.7.11. Let G be a tree with diam.G/ � 4. Then QEndG D SEndG.

Proof. Take f 2QEndG. Then there exists .x; x0/2E.G/ such that .f .x/; f .x0//2
E.G/, and we may assume that x and x0 are central with respect to .f .x/; f .x0//.
Then U WD f �1.f .x// � N.x0/ and U 0 WD f �1.f .x0// � N.x/. As diam.G/ �
4, there exists y 2 N.U 0/ such that .y; x0/ 2 E.G/ for some x0 2 U 0. Then
.f .y/; f .x0// D .f .y/; f .x0// 2 E.G/, and since f 2 QEndG we get that y,
say, is adjacent to all vertices in U 0, and hence to x0 in particular. But then jU 0j D 1,
because otherwise there would be a cycle ¹y; x0; x; x0; y/ in G, which is impossible
sinceG is a tree. Moreover, every vertex inU has degree 1 with the common neighbor
x0. Together with Proposition 1.5.5, this implies that f 2 SEndG.

Proposition 1.7.12. If G is a tree with diam.G/ � 4, then LEndG ¤ QEndG.
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Proof. As diam.G/ � 4, the tree contains P4 D ¹x0; x1; x2; x3; x4º. Define f W
G ! G as follows: all vertices with even distance from x2 are mapped onto x2; all
other vertices are mapped onto x1.

Then f 2 LEndG, since every preimage of x2 is adjacent to some preimage of
x1 and vice versa. But f … QEndG because no vertex exists in the preimage of x1

which is adjacent to x0 and to x4, as G has no cycles.

Lemma 1.7.13. For stars G D K1;n one has EndG D SEndG.

Proof. We may assume that n > 1. If jf .G/j > 2 for an endomorphism f , the central
vertex of the star is fixed and therefore f is strong. If jf .G/j D 2, i.e. f .G/ D K2,
then f is also strong.

Proposition 1.7.14. Let G ¤ K2 be a tree with diam.G/ � 3. Then LEndG D
QEndG.

Proof. If G ¤ K2 is a tree with diam.G/ � 3, then G is a star or a double star.
In the first case, the statement is contained in Lemma 1.7.13. So let G be a double
star, i.e. suppose that there exist x0; x1 2 G with V.G/ D N.x0/

S

N.x1/ and
.x0; x1/ 2 E.G/. Take f 2 LEndG. Then it is impossible to have f .y/ D x1 and
f .y0/ ¤ x1 for y; y0 2 N.x0/n¹x1º. So f identifies only vertices insideN.x0/n¹x1º
or inside N.x1/ n ¹x0º, possibly followed by an automorphism of the resulting graph,
and we have f 2 SEndG.

Proposition 1.7.15. For any graph G one has SEndG D AutG if and only if RG D
�, i.e. N.x/ ¤ N.x0/ for all x ¤ x0 2 G.

Proof. If the vertices x ¤ x0 have the same neighbors, then f .x/ D x0 is a non-
bijective strong endomorphism, provided all other vertices are fixed.

Proof of Theorem 1:7:5. It is clear that the third column of the table covers all possible
trees.

The first column of equalities E D H is obvious for all trees.
In the second column, the inequalities H ¤ L are furnished by Lemmas 1.7.9 and

1.7.7. The equality H D L for type 16 is taken care of by Lemma 1.7.13.
The inequalities L ¤ Q are provided by Proposition 1.7.12, and the equalities

L D Q are given by Proposition 1.7.14.
The equalitiesQ D S are taken care of by Proposition 1.7.11 and for type 16 again

by Lemma 1.7.13. The inequalities are given by Lemma 1.7.10, noting that P3 is also
a double star.

The relations between S and A come from Proposition 1.7.15.
Now consider the “examples” and “complete descriptions” in the last column of

Theorem 1.7.5. The statements about endotypes 6, 10 and 22 follow, by inspection,
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from what was said about �G and diam. The statement about endotype 16 follows
from Lemma 1.7.13 together with the fact that �G ¤ � and diam.G/ D 2. The
statement about endotype 26 is Lemma 1.7.6.

The last assertion about asymmetric trees is also implied by 4.13 in R. Novakovski
and I. Rival, Retract rigid Cartesian products of graphs, Discrete Math. 70 (1988)
169–184. Indeed, jAutGj D 1 is possible only if SEndG D AutG (see Proposi-
tion 1.7.3), i.e. only for endotypes smaller than 16; so in our situation only endotype
6 remains.

The statement concerning the smallest examples follows by inspection.

In the following table we use the union and the multiple union of graphs in a naive
way. A formal definition (as coproduct) will follow in Chapter 3.

Theorem 1.7.16. Bipartite graphs are exactly of the following endotypes, where the
graphs or their common structures are given where possible.

Endotype Graph Endotype Graph

0 K2 16 Kn; K1;n, n � 2
2 K1

S

K2 18 Kn

S

K2, n � 2
4

S

n�2K2 19 Kn

S

.
S

n�2Kn/, Km

S

K1;n, n � 2, m � 1
6 22

7 23

10 P3 26 “double stars”

11 27

15 31

Proof. See U. Knauer, Endomorphism types of bipartite graphs, in M. Ito, H. Jür-
gensen (eds.), Words, Languages and Combinatorics II, pp. 234–251, World Scien-
tific, Singapore 1994.

Note that adding an isolated vertex to a connected graph which is not of endotype 0
or 16 adds 1 to the value of the endotype. This gives examples of graphs of endotypes
7, 11, 23 and 27 when starting with suitable trees from Theorem 1.7.5. The procedure
yields graphs with endotype 2 or 18 when starting with graphs of endotype 0 or 16.

Question. For which of the trees in Theorem 1.7.5 do the sets which are not monoids
in general form monoids? The question makes sense for LEnd and endotypes 6,10,22
and 26.

It seems possible that trees are determined by their endomorphism spectrum up
to isomorphism. Obviously this is not the case for the endotype. Would this be a



24 Chapter 1 Directed and undirected graphs

worthwhile question to investigate? Some more information about this can be found
in U. Knauer, Endomorphism types of trees, in M. Ito (ed.), Words, Languages and
Combinatorics, pp. 273–287, World Scientific, Singapore 1992.

1.8 Comments

Ordinary homomorphisms are widely used. Half-strong homomorphisms were called
“full” in P. Hell, Subdirect products of bipartite graphs (Coll. Math. Janos Bolyai 10,
Infinite and finite sets, 1973, Vol II), pp. 875–866, North Holland, Amsterdam 1975,
and in G. Sabidussi, Subdirect representations of graphs (Coll. Math. Janos Bolyai
10, Infinite and finite sets, 1973, Vol III), pp. 1199–1226, North-Holland, Amsterdam
1975; and they were called “partially adjacent” by S. Antohe and E. Olaru in On
homomorphisms and congruences of graphs, Bull. Univ. Galat 11 (1978) 15–23 (in
German).

Surjective locally strong homomorphisms appeared in the book by A. Pultr and
V. Trnkova, Combinatorial, Algebraic and Topological Representations of Groups,
Semigroups and Categories, North-Holland, Amsterdam 1980. As far as I know, the
term “quasi-strong” has not been used yet. Strong homomorphisms were first intro-
duced by K. Culik in On the theory of graphs, Casopis Pest. Mat. 83 (1958) (in
German), under the name homomorphism. Metric homomorphisms can be found in
the aforementioned paper by P. Hell. Egamorphisms are also called weak homomor-
phisms, for example in [Imrich/Klavzar 2000].

I would like to point out a more general phenomenon. Homomorphisms generate
an image of a given object. This is the basis of the main principle of model building:
we can view homomorphisms as the modeling tool and the homomorphic image as
the model. When we use isomorphisms, all the information is retained. Since a model
is usually thought of as a simplification, an isomorphic image is not really the kind of
model one usually needs. So, in modeling, we want to suppress certain information
about the original object, because in order to analyze the system it is helpful to first
simplify the structure. To investigate different questions we may wish to suppress dif-
ferent parts of the structure. Specializing this idea to graphs, strong homomorphisms
reduce the number of points but maintain the structure in the sense that they reflect
edges. Quasi-strong, locally strong and half-strong homomorphisms reflect edges to a
lesser and lesser extent in each step down to ordinary homomorphisms, which do not
reflect edges at all.

Now let us also look back on the Homomorphism Theorem. One important aspect
is that it produces an epi-mono factorization for every homomorphism. This is ex-
ploited in the following way. We start with one endomorphism f of G, which by the
induced congruence %f defines the epi- part of the epi-mono factorization, the natural
surjection G ! G=%f . If we now consider all possible embeddings of this factor
graph intoG, we obtain all possible endomorphisms with the induced congruence %f .
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This principle can be used to find all endomorphisms of an object G. This is done,
for example, when we prove that the set LEndPn for a path of length n is a monoid if
and only if n D 3 or nC 1 is prime; see Section 9.3.

Recall that the Homomorphism Theorem gives especially nice approaches to group
and ring homomorphisms. In these two cases (categories), induced congruences are
uniquely described by subobjects, namely normal subgroups in groups, also called
normal divisors, and ideals in rings. These objects are much easier to handle than
congruence relations; thus the investigation of homomorphisms in these categories
is – to some extent – easier. For example, every endomorphism of a group A is
determined by the factor group A=N , where N is a normal subgroup of A, and all
possible embeddings of A=N into A. See also Project 9.1.8. Nothing similar can be
done for semigroups or in any of the graph categories (which will be introduced later).
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Graphs and matrices

Matrices are very useful for describing and analyzing graphs. In this chapter we
shall present most of the common matrices for graphs and apply them to investigate
various aspects of graph structures, such as isomorphic graphs, number of paths or
connectedness, and even endomorphisms and eigenvalues. All of this analysis is based
on the so-called adjacency matrix.

We also define another important matrix, the so-called incidence matrix, which we
will use later when discussing cycle and cocycle spaces.

2.1 Adjacency matrix

The definition of the adjacency matrix is the same for directed and undirected graphs,
which may have loops and multiple edges.

Definition 2.1.1. Let G D .V;E; p/ where V D ¹x1; : : : ; xnº is a graph. The n � n
matrix A.G/ D .aij /i;j D1;:::;n defined by

aij WD
ˇ

ˇ¹e 2 E j p.e/ D .xi ; xj /º
ˇ

ˇ

is called the adjacency matrix of G.

Example 2.1.2 (Adjacency matrices). We show the “divisor graph” of 6 and a multi-
ple graph, along with their adjacency matrices.

3

A.G/ D

0

B

B

@

0 1 1 1

0 0 0 1

0 0 0 1

0 0 0 0

1

C

C

A

1

2

3

6
1

6

2
�
�
�


� �
	
	
	�

3

A.G/ D
0

@

0 2 0

1 0 0

0 1 1

1

A

2

1

�



�

�

Remark 2.1.3. There exists a bijective correspondence between the set of all graphs
with finitely many edges and n vertices and the set of all n � n matrices over N0.
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It is clear that if the matrix A.G/ is symmetric, then the graph G is symmetric (i.e.
undirected) and vice versa.

If G is simple, i.e. if it does not have multiple edges, then we can define A.G/ by

aij WD
²

1 if .xi ; xj / 2 E;
0 otherwise.

Proposition 2.1.4. For all xi 2 V with A.G/ D .aij /i;j 2 jV jDn we have

indeg.xi / D
n
X

j D1

aj i ; column sum of column i ;

outdeg.xi / D
n
X

j D1

aij ; row sum of row i .

In the symmetric case one has

deg.xi / D
n
X

j D1

aij D
n
X

j D1

aj i :

Example 2.1.5 (Adjacency matrix and vertex degrees). This example shows that the
row sums of A.G/ are the outdegrees of the vertices and the column sums are the
indegrees.

�

�

�

�

�

���
�
�
�
��

�

	
	
	
	
		�

v3 v4

v2 v1

v5

x1 x2 x3 x4 x5 row sum

v1 0 0 0 0 0 0
v2 1 0 1 1 0 3
v3 1 0 0 0 0 1
v4 0 0 1 0 0 1
v5 0 0 0 0 0 0

column sum 2 0 2 1 0
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Isomorphic graphs and the adjacency matrix

The next theorem gives a simple formal description of isomorphic graphs. It does
not contribute in an essential way to a solution of the so-called isomorphism problem,
which describes the problem of testing two graphs for being isomorphic. This turns
out to be a real problem if one wants to construct, for example, all (non-isomorphic)
graphs of a given order.

Theorem 2.1.6. Let G D .V;E/ and G0 D .V 0; E 0/ be two simple graphs with
n D jV j. The homomorphism

f W G D .V;E/! G0

is an isomorphism if and only if there exists a matrix P such that

A.G0/ D P A.G/ P�1;

where P is an n� n row permutation matrix which comes from the identity matrix In

upon performing row permutations corresponding to f .

Proof. For “)”, suppose G Š G0, i.e. that G0 comes from G by permutation of
the vertices. Then, in A.G/, rows and columns are permuted correspondingly. Thus
A.G0/ D P A.G/ P�1, where P is the corresponding row permutation matrix. Left
multiplication by P then permutes the rows and right multiplication by P�1 permutes
the columns.

For “(”, suppose A.G0/ D P A.G/ P�1 where P is a permutation matrix. Then
there exists a mapping f W V ! V 0 with

.xi ; xj / 2 E; i.e. aij D 1 , af .i/;f .j / D 1; i.e. .xf .i/; xf .j // 2 E 0:

Example 2.1.7 (Isomorphisms and adjacency matrices). It is apparent that the graphs
G and G0 are isomorphic. The matrix P describes the permutation of vertex numbers
which leads from A.G/ to A.G0/, i.e. A.G0/ D P A.G/ P�1.

G G 0
1 3

2

1 3

2f
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P D
0

@

0 1 0

0 0 1

1 0 0

1

A ; P�1 D tP;

A.G/ D
0

@

0 1 0

0 0 1

1 1 0

1

A ; A.G0/ D
0

@

0 1 0

1 0 1

1 0 0

1

A:

Components and the adjacency matrix

Simple matrix techniques enable restructuring of the adjacency matrix of a graph
according to its geometric structure.

Theorem 2.1.8. The graph G has s (weak) components G1; : : : ; Gs if and only if
there exists a permutation matrix P with

P A.G/ P�1 D

0

B

B

B

@

A.G1/ 0

A.G2/
: : :

0 A.Gs/

1

C

C

C

A

(block diagonal form).

Proof. Weak connectedness defines an equivalence relation on V , so we get a de-
composition of V into V1; : : : ; Vs . These vertex sets induce subgraphs G1; : : : ; Gs .
Renumber G so that we first get all vertices in G1, then all vertices in G2, and so on.
Note that there are no edges between different components.

Theorem 2.1.9. The directed graph G has the strong components G1; : : : ; Gs if and
only if there exists a permutation matrix P with

P A.G/ P�1 D

0

B

B

B

@

A.Gi1
/ 	
A.Gi2

/
: : :

0 A.Gis
/

1

C

C

C

A

(Frobenius form, block triangular form).

Proof. If we have the strong components, select Gi1
so that no arrows end in Gi1

.
Then select Gi2

so that except for arrows starting from Gi1
, no arrows end in Gi2

.
Note that there may be no arrows ending in Gi2

. Next, select Gi3
so that except for

arrows starting from Gi1
or from Gi2

, no arrows end in Gi3
. Continue in this fashion.

Observe that the numbering inside the diagonal blocks is arbitrary. The vertices of G
have to be renumbered correspondingly.
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Example 2.1.10 (Frobenius form).

� 3 � 2

� 1

�
�
�
��
 	

	
		�

� 5

� 4


�

�

Gi1
Gi2

0

B

B

B

B

@

0 1 0 1 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

1

C

C

C

C

A

Adjacency list

The adjacency list is a tool that is often used when graphs have to be represented in a
computer, especially if the adjacency matrix has many zeros.

Definition 2.1.11. The adjacency list A.x/ of the vertex x 2 G in the directed case
consists of all successors of x, i.e. the elements of out.x/ in arbitrary order. In the
undirected case it consists of all neighbors of x in arbitrary order.

The adjacency list of the graph G is A.x1/IA.x2/I : : : for xi 2 G.

Example 2.1.12. The adjacency list of the graph from Example 2.1.10 is

A.1/ D 2; 4I A.2/ D 3I A.3/ D 1I A.4/ D 5I A.5/ D 4:

If the graph G has multiple edges, then the outsets in its adjacency list may contain
certain elements several times; in this case we get so-called multisets.

2.2 Incidence matrix

The incidence matrix relates vertices with edges, so multiple edges are possible but
loops have to be excluded completely. It will turn out to be useful later when we
consider cycle and cocycle spaces. Its close relation to linear algebra becomes clear
in Theorem 2.2.3. We give its definition now, although most of this section relates to
the adjacency matrix.
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Definition 2.2.1. TakeG D .V;E; p/, with V D ¹x1; : : : ; xnº andE D ¹e1; : : : ; emº.
The n �m matrix B.G/ over ¹�1; 0; 1º where

bij WD
8

<

:

1 if xi D o.ej /
�1 if xi D t .ej /
0 otherwise

or, in the undirected case,

bij WD
²

1 if xi 2 ej
0 otherwise

is called the (vertex–edge) incidence matrix of G.

Example 2.2.2 (Incidence matrix). Here we present the incidence matrix of the divi-
sor graph of 6; see Example 2.1.2. The matrix is the inner part of the table.

2

6

1 3
� �



�
�
�


	
	
	�

a
b

d e

c

a b c d e

1 0 1 0 1 1
2 1 0 0 �1 0
3 0 0 1 0 �1
6 �1 �1 �1 0 0

Theorem 2.2.3. Let G be a graph with n vertices and s (weak) components, and
without loops. Then B.G/ has rank n� s (over Z2 in the undirected case), and when
s D 1 any n � 1 rows of B.G/ are linearly independent.

Proof. We number the vertices according to Theorem 2.1.8 (block diagonal form),
and get B.G/ also in block diagonal form. Its rank is the sum of the ranks of the
blocks. So we consider s D 1. Addition of the row vectors gives the zero vector;
therefore the rows are linearly dependent, i.e. we have rank.B.G// � n � 1. If we
delete one row, i.e. one vertex, then the sum of the remaining row vectors is obviously
not zero.

2.3 Distances in graphs

We now consider reachability and distances in graphs. For each graph, these can again
be represented by matrices.
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Definition 2.3.1. Take G D .V;E/ with V D ¹x1; : : : ; xnº. The n � n matrix R.G/
with

rij WD
²

1 if there exists a non-trivial xi ; xj path
0 otherwise

is called the reachability matrix of G.

The reachability matrix also shows the strong components of a graph.
Note that there may be a problem with the diagonal. In the definition we have

ri i D 1 if and only if xi lies on a cycle. It is also possible to set all diagonal elements
to 0 or 1. This choice can be made when the graph models a problem that allows us
to decide whether a vertex can be reached from itself if it lies on a cycle.

Definition 2.3.2. Take G D .V;E/ and use the notation from Definition 1.1.5. The
matrix D.G/ with

dij WD
8

<

:

1 if F.xi ; xj / D ; and i ¤ j
0 if i D j

d.xi ; xj / otherwise

is called the distance matrix of G. The .i; j /th element of the distance matrix is the
distance from vertex xi to vertex xj , and is infinity if no path exists.

The adjacency matrix and paths

A simple but surprising observation is that the powers of the adjacency matrix count
the number of paths from one vertex to another. We start with an example.

Example 2.3.3 (Powers of the adjacency matrix).

3

1

4

2


�

��

	
		�	
		�G W

0

B

B

@

0 1 0 1

1 0 0 1

1 0 0 0

1 0 0 0

1

C

C

A

2

D

0

B

B

@

2 0 0 1

1 1 0 1

0 1 0 1

0 1 0 1

1

C

C

A

D A.G/2

H with A.H/ D .A.G//2:

3

1

4

2
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Theorem 2.3.4. Take G D .V;E; p/ and let a.r/
ij be an entry of .A.G//r . Then a.r/

ij

is the number of xi ; xj paths of length r in G.

Proof. The result follows from the formula for the second power,

a
.2/
ij D

n
X

kD1

aik akj ;

together with induction. This is the formula for the entries in the product of matrices.

Remark 2.3.5. Note that forming the second power of an adjacency matrix can be
generalized to taking the product of two adjacency matrices of the same size. The
result can be interpreted as a graph containing as its edges the corresponding paths of
length two. A similar method works for products of more than two matrices. In all
cases, the resulting graph depends on the numbering.

If, conversely, we start from a given graphG and construct the graphG2 of paths of
length two, and then perform the corresponding steps withA.G/, we automatically get
the matrix product A.G/2 without having to know its definition from linear algebra.

The adjacency matrix, the distance matrix and circuits

The following remark and two theorems are obvious.

Remark 2.3.6. If jV j D n, then the length of a simple path in G is at most n. If the
length equals n, then the path is a circuit.

Theorem 2.3.7. LetG be a graph with n vertices. The elements of the distance matrix
D.G/ can be obtained from the powers of A.G/ as follows:

(a) di i D 0 for all i ;

(b) dij is the smallest r 2 N with a.r/
ij > 0 and r < n, if such an r exists;

(c) dij D1 otherwise.

For the elements of the reachability matrix R.G/ we have:

(a) ri i D 0 for all i ;

(b) rij D 1 if and only if there exists r < n with a.r/
ij > 0;

(c) rij D 0 otherwise.

Theorem 2.3.8. The graph G contains no circuits if and only if a.r/
i i D 0 in .A.G//r

for r � n and for all i .
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2.4 Endomorphisms and commuting graphs

We briefly discuss two aspects of the adjacency matrix which have not gained much
attention so far.

Definition 2.4.1. Let f be a transformation of the finite set ¹1; : : : ; nº, i.e. a mapping
of the set into itself. Define the transformation matrix T .f / D .tij /i;j 2¹1;:::;nº of f
by setting its i th row ti to be 0CPf .j /Di ej , where ej is the j th row of the identity

matrix In and 0 is the row of zeros with n elements.

This means that the i th row of T consists of the sum of rows ej such that j is
mapped onto i by f .

For the following, start by verifying some small examples.

Exerceorem 2.4.2.

(1) The transformation f is an endomorphism of the graph G with vertex set
¹x1; : : : ; xnº and adjacency matrix A.G/ if and only if the .i; j /th entry of
T .f /A.G/tT .f / being non-zero implies that the .i; j /th entry of A.G/ is non-
zero.

(2) The transformation f is an endomorphism of the graph G with vertex set
¹x1; : : : ; xnº and incidence matrix B.G/ if and only if the j th column of
T .f /B.G/ having non-zero entries implies that there exists a column of B.G/
which has the same non-zero entries in the same places.

Definition 2.4.3. We say that G and H (with the same number of vertices) are com-
muting graphs if there exist labelings of the graphs such that their adjacency matrices
commute, i.e. A.G/A.H/ D A.H/A.G/.

Theorem 2.4.4. The graph G commutes with Kn if and only if G is a regular graph;
it commutes with Kn;n if G is a regular subgraph of Kn;n.

Proof. See A. Heinze, Construction of commuting graphs, in: K. Denecke and
H.-J. Vogel (eds.), General Algebra and Discrete Mathematics: Proceedings of the
Conference on General Algebra and Discrete Mathematics in Potsdam 1998. Shaker
Verlag, 1999, pp. 113–120. In addition, there we have a construction of new commut-
ing graphs starting with two pairs of commuting graphs.

Question. Can you find a counterexample for the open “only if” part of the theorem?
Construct some positive examples and some negative ones.



Section 2.5 The characteristic polynomial and eigenvalues 35

2.5 The characteristic polynomial and eigenvalues

The possibility of representing graphs by their adjacency matrices naturally leads to
the idea of applying the theory of eigenvalues to graphs. As the eigenvalues of a
matrix are invariant with respect to permutation of columns and rows, we can expect
that they are suitable for describing properties of graphs which are invariant under
renaming of the vertices, i.e. invariant under automorphisms.

In this section, we investigate how the eigenvalues of the adjacency matrix reflect
the geometric and combinatorial properties of a graph. The definitions are valid for
both directed and undirected graphs, but our results are focused mainly on undirected
graphs and, correspondingly, symmetric matrices. Here the theory is relatively sim-
ple and many interesting results have been obtained. For directed graphs and non-
symmetric matrices, things become much more complicated. The interested reader
can consult monographs on this topic, such as [Cvetković et al. 1979].

We will return to this topic in Chapter 5 and in Chapter 8.
Now let F be a field, let G be an undirected graph and let jV.G/j D n.
The following definition is for both directed and undirected graphs. Note that the

coefficients can be determined by the entries of the matrix A.G/ by using the deter-
minant. This principle from linear algebra is adapted for graphs in Theorem 2.5.8 and
thereafter.

Definition 2.5.1. Let A.G/ be the adjacency matrix of G. The polynomial of degree
n in the indeterminate t over the field F given by

chapo.G/ D chapo.GI t / WD det.tIn � A.G// D tn C an�1t
n�1 C 
 
 
 C a1t C a0;

where det denotes the determinant and In denotes the n-row identity matrix, is called
the characteristic polynomial of G. The zeros � 2 F of chapo.G/ are called the
eigenvalues of G. We denote by m.�/ the multiplicity of the zero �.

Remark 2.5.2. An element � 2 F is an eigenvalue of G if and only if there exists a
vector v 2 F n, v ¤ 0, with A.G/v D �v. In this case v is called an eigenvector of
A.G/ or an eigenvector of G for �.

The characteristic polynomial chapo.G/ is independent of the numbering of the
vertices of G. The characteristic polynomial of a matrix is invariant even under arbi-
trary basis transformations.

We now define the spectrum of a graph to be the sequence of its eigenvalues to-
gether with their multiplicities. It is quite surprising that for graphs that represent
chemical CH-molecules there exists a correspondence between the spectrum of the
graph and the chemical spectrum of the molecule; see, e.g., [Cvetković et al. 1979].



36 Chapter 2 Graphs and matrices

Definition 2.5.3. Let �i , i D 1; : : : ; n, be the zeros of chapo.G/ in natural order. We
set �.G/ WD �1 < 
 
 
 < �p DW ƒ.G/. The spectrum of a graph G is the set of
eigenvalues of A.G/ together with their multiplicities:

Spec.G/ D
�

� 
 
 
 �i 
 
 
 ƒ

m.�/ 
 
 
 m.�i / 
 
 
 m.ƒ/
�

:

The largest eigenvalue ƒ is called the spectral radius of G.

The next theorem follows immediately from Theorem 2.1.8 and the properties of
the characteristic polynomial.

Theorem 2.5.4. If G has the components G1; : : : ; Gr , then

chapo.G/ D chapo.G1/ 
 
 
 chapo.Gr /:

The set of all eigenvectors of an eigenvalue � of a graph G together with the zero-
vector is called the eigenspace of �, denoted by Eig.G; �i /.

The following two theorems are not true for directed graphs, i.e. for non-symmetric
matrices. For the proofs we need several results from linear algebra.

Theorem 2.5.5. Over F D R, the characteristic polynomial chapo.G/ has only real
zeros �1; : : : ; �n, which are irrational or integers. Moreover, A.G/ is diagonalizable,
i.e. dim.Eig.G; �i // D m.�i /:

Proof. Symmetric matrices are self-adjoint (here with respect to the standard scalar
product over R); that is,

h v ; Av i D hAv ; v i for all v;w 2 Rn:

This implies that all eigenvalues of A are real and that there exists an orthonormal
basis of eigenvectors.

We now prove that �i 2 Q implies �i 2 Z. Suppose that chapo.GI r
s
/ D 0 for

r; s 2 Z with greatest common divisor .r; s/ D 1. Then chapo.GI r
s
/ D a0Ca1 .

r
s
/C


 
 
Can .
r
s
/n D 0 with an D 1, which implies that a0s

nCa1rs
n�1C
 
 
Canr

n D 0.
Since r and s have greatest common divisor 1, we get sjan, and so an D 1 implies
s D 1. Thus r

s
D r 2 Z.

Theorem 2.5.6. Take an undirected, simple graph G without loops and with eigen-
values �i . Then

n
X

iD1

�i D 0;
n
X

iD1

�2
i D 2 jEGj and

n
X

iD1

�3
i D 6 
 number of triangles:
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Proof. The trace of a matrix is the sum of its diagonal elements. Therefore we have
trace.A.G// D 0, since G has no loops. As A.G/ is diagonalizable, and since it is
symmetric, we get trace.Diag.A// D Pn

iD1 �i , where Diag.A/ is a diagonal form
of A.G/ which has the eigenvalues as its diagonal elements. We use the fact that
the trace is invariant under similarity transformations; this is true for the coefficients
of chapo.G/ and so, in particular, for the coefficient of tn�1 in chapo.G/, which by
Vieta’s Theorem is

Pn
iD1 �i . Thus

Pn
iD1 �i D 0.

Using Theorem 2.3.4 on the powers of the adjacency matrix, we obtain that
trace.A.G/2/ D sum of the vertex degrees, which is always equal to 2 jEGj. Di-
agonalizability of A.G/ then implies that

Pn
iD1 �

2
i D trace.A.G/2/.

Exercise 2.5.7. Prove the statement about the number of triangles in Theorem 2.5.6.

In line with the preceding theorem, we can interpret the coefficients of the charac-
teristic polynomial in terms of the number of cycles of the graph. In principle this can
be done for all coefficients, but here we present the result only for four coefficients
and prove it for three of them; cf. [Biggs 1996], Proposition 2.3 on p. 8. For the
complete result see, for example, [Behzad et al. 1979] Theorem 10.22 and the proof
in H. Sachs, Beziehungen zwischen den in einem Graphen enthaltenen Kreisen und
seinem charakteristischen Polynom, Publ. Math. Debrecen, 11 (1964) 119–134.

Theorem 2.5.8. The coefficients of the characteristic polynomial of a simple, undi-
rected graph G without loops have the following properties:

� an�1 D 0;

� �an�2 D jEGj, the number of edges;

� �an�3 is twice the number of triangles in G;

� an�4 is the number of pairs of disjoint edges, i.e. twice the number of quadran-
gles.

Proof. Since the diagonal elements of A.G/ are all zero, we get an�1 D 0; see the
previous theorem.

We use the fact from the theory of matrices that the coefficients of the characteristic
polynomial of A can be expressed in terms of the principal minors of A; in what
follows we show this for the first coefficients. A principal minor is the determinant of
a submatrix obtained by taking a subset of the rows and the same subset of columns.

A principal minor with two rows and columns with a non-zero entry must be of the
form

ˇ

ˇ

0 1
1 0

ˇ

ˇ. There is one such minor for each pair of adjacent vertices of G, and each
has value �1. Thus .�1/2an�2 D �jEGj.
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There are essentially three possible non-trivial principal minors with three rows and
columns, namely

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 0

1 0 0

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 1

1 0 0

1 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 1

1 0 1

1 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Only the last one is non-zero, with value 2. This minor corresponds to three mu-
tually adjacent vertices of G. This means that an�3 is twice the number of triangles
in G.

Example 2.5.9 (Characteristic polynomials and eigenvalues).

Graph Adjacency matrix Characteristic polynomial Eigenvalues

K2

�

0 1

1 0

�

chapo.K2/ D t2 � 1 �1; 1

P2

0

@

0 0 1

0 0 1

1 1 0

1

A chapo.P2/ D t3 � 2t �p2; 0;p2

K4

0

B

B

@

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1

C

C

A

chapo.K4/ D t4 � 6t2 � 8t � 3 �1;�1;�1; 3

C4 D K2;2

0

B

B

@

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

1

C

C

A

chapo.C4/ D t4 � 4t2 �2; 0; 0; 2

K2;3

0

B

B

B

B

@

0 0 1 1 1

0 0 1 1 1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

1

C

C

C

C

A

chapo.K2;3/ D t5 � 6t3 �p6; 0; 0; 0;p6

K4;4 chapo.K4;4/ D t8 � 16t6 �4; 0; 0; 0; 0; 0; 0; 4

Proposition 2.5.10. We have

Spec.Kn/ D
� �1 n � 1
n � 1 1

�

:
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Proof. Here and later we will also use the following notation for determinants.
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t �1 
 
 
 
 
 
 �1
�1 : : :

: : :
:::

:::
: : :

: : :
: : :

:::
:::

: : :
: : : �1

�1 
 
 
 
 
 
 �1 t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(subtract row 1 from the others)D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t �1 
 
 
 
 
 
 �1
�1 � t t C 1 0 
 
 
 0
::: 0

: : :
: : :

:::
:::

:::
: : :

: : : 0

�1 � t 0 
 
 
 0 t C 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(add columns 2; : : : ; n to column 1)D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�.n � 1/C t �1 
 
 
 
 
 
 �1
0 t C 1 0 
 
 
 0
:::

: : :
: : :

: : :
:::

:::
: : :

: : : 0

0 
 
 
 
 
 
 0 t C 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .�.n � 1/C t /.t C 1/n�1;

and this gives the statement.

Theorem 2.5.11. We have

Spec.Kp;q/ D
� �ppq 0

p
pq

1 p C q � 2 1

�

:

Proof. Several proofs of this result can be found in the chapter On the eigenvalues of a
graph by A. J. Schwenk and R. J. Wilson, in [Beineke/Wilson 1978]. We demonstrate
the following version.

The matrix of the bipartite graph Kp;q has the form

�

0 J
tJ 0

�

D A.Kp;q/;

where J is a p � q matrix formed from ones. This matrix has only two linearly
independent rows, i.e. the eigenvalue 0 has multiplicity m.0/ D p C q � 2. Now
Theorem 2.5.6 implies that ƒ D �� and, using the fact that jEj D p C q for Kp;q ,
Theorem 2.5.6 gives ƒ D �� D ppq. Then the characteristic polynomial is

chapo.Kp;q/ D .t2 � pq/ tpCq�2:
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Exercise 2.5.12. Prove that the converses of both results are also true, that is, com-
plete graphs and complete bipartite graphs are characterized within their family by
their spectra.

Exercise 2.5.13. Verify Theorem 2.5.6 for the graphs in Example 2.5.9 and in Theo-
rem 2.6.6.

2.6 Circulant graphs

The so-called circulant graphs generalize, for example, cycles and complete graphs.
Because of the circulant structure of their adjacency matrices, the computation of the
characteristic polynomial is simpler than usual. Note, however, that the eigenvalues
will not, in general, be real.

Definition 2.6.1. An n � n matrix S is called a circulant matrix if its entries satisfy

sij D s1j �iC1;

where the indices are reduced modulo n and thus belong to the set ¹1; : : : ; nº.
In other words, row i of S can be obtained from row 1 of S via a circular shift of

i � 1 steps. Thus every circulant matrix is determined by its first row.

Remark 2.6.2. Let W denote the circulant matrix with first row .0; 1; 0; : : : ; 0/, and
let S be the general circulant matrix with first row .s1; : : : ; sn/. Calculations give

S D
n
X

j D1

sjW
j �1 D s1W 0 C s2W 1 C 
 
 
 C snW n�1:

As chapo.W / D tn � 1, we get the eigenvalues 1; !; !2; : : : ; !n�1 , where ! D
exp 2�i

n
, the nth roots of unity. They are pairwise distinct, so we get that W is diago-

nalizable.
The eigenvalues of S are then determined by

�r D
n
X

j D1

sj!
.j �1/r ; r D 0; 1; : : : ; n � 1:

In particular, for the circulant matrix

A D

0

B

B

B

B

B

B

@

0 a2 : : : : : : an

an 0 a2 : : : an�1
:::
: : :

: : :
: : :

:::
:::

: : :
: : : a2

a2 : : : : : : an 0

1

C

C

C

C

C

C

A
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we get the eigenvalues

�r D
n
X

j D1

aj!
.j �1/r ; r D 0; : : : ; n � 1:

Thus �0 D Pn
j D1 aj D Pn

j D2 aj and �r D Pn�1
j D1 aj C1!

jr for r ¤ 0; see [Biggs
1996], p. 16, and, for example, p. 594 of [Brieskorn 1985].

Definition 2.6.3. A circulant graph is a graph whose vertices can be arranged so that
A.G/ is a circulant matrix.

The adjacency matrix of a circulant graph is symmetric with zeros on the diagonal,
and we have ai D an�iC2 for 2 � i � n according to Definition 2.6.1.

Theorem 2.6.4 ([Cvetković et al. 1979] Section 2.6, p. 72 ff.). The following proper-
ties hold:

(a)

Spec.Kn/ D
� �1 n � 1
n � 1 1

�

:

(b)

Spec.Cn/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

� �2 2 cos .n�2/�
n


 
 
 2 cos 2�
n
2

1 2 
 
 
 2 1

�

for n even,

�

2 cos .n�1/�
n


 
 
 2 cos 2�
n
2

2 
 
 
 2 1

�

for n odd.

(c)

Spec.K21;:::;2s
/ D

� �2 0 2s � 2
s � 1 s 1

�

:

(d) Pn�1 has the simple eigenvalues

�j D 2 cos
�j

nC 1; j D 1; : : : ; n:

Proof. (a) Compare with Proposition 2.5.10. As Kn is circulant, we get

ƒ DW �0 D n � 1; �r¤0 D
n�1
X

j D1

!jr D �1;

since 1C !r C 
 
 
 C !.n�1/r D 0.
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(b) The circuitCn is a circulant graph and the first row ofA.Cn/ is .0; 1; 0; : : : ; 0; 1/.
Therefore

�r D !r C !.n�1/r D e 2�i
n

r C e 2�i.n�1/
n

r

D e 2�ir
n C e2�r

„ƒ‚…

D1

e� 2�ir
n D 2 cos

2�r

n
:

(c) Again K2;:::;2 is a circulant graph. The first row of the adjacency matrix has
length 2s and contains 0 at positions 1 and s C 1 and 1 elsewhere; cf. [Biggs 1996]
p. 17.

(d) We already know the characteristic polynomials of paths. To determine the
eigenvalues one can use the following determinant, the so-called continuant (see, e.g.,
p. 595 of [Brieskorn 1985] just mentioned in Remark 2.6.2):

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1 1 0 : : : 0

1
: : :

: : :
: : :

:::

0
: : :

: : :
: : : 0

:::
: : :

: : :
: : : 1

0 : : : 0 1 an

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Remark 2.6.5. In the following theorem, the objects octahedron, dodecahedron and
icosahedron will appear, which together with the three-dimensional cube Q3 and the
tetrahedron (isomorphic to K4) make up the five platonic graphs. These are the only
graphs which can be drawn in the plane (or equivalently on the sphere) in such a way
that lines cross only at vertices, which are, as we say, completely regular; this means
that they are d -regular (all vertices have degree d ) and their geometric duals are d�-
regular (which is equivalent to saying that the regions of the drawing in the plane are
all bounded by d� edges) (cf. Section 4.1).

For convenience we will first give the combinatorial description of these five pla-
tonic graphs. Here jRj denotes the number of regions (or faces), d is the degree, d�
is the number of edges around one region, which is equal to the degree of the geomet-
ric dual graph, always in a planar representation on the sphere. This comes from the
Euler formula; see Theorem 13.1.11. A definition of planar representations and some
more information can be found in Chapter 13.

d d� jV j jEj jRj
3 3 4 6 4 Tetrahedron
3 4 8 12 6 Cube
3 5 20 30 8 Dodecahedron
4 3 6 12 8 Octahedron
5 3 12 30 20 Icosahedron



Section 2.7 Eigenvalues and the combinatorial structure 43

For the following, see On the eigenvalues of a graph by A. J. Schwenk and R. J. Wil-
son, Section 6, in the book [Beineke/Wilson 1978], as well as Table 4 in the Appendix
of [Cvetković et al. 1979].

Exerceorem 2.6.6. We have:

(a) chapo.Wp/ D .t � 1Cpp/.t � 1 �pp/Qp�2
iD1 .t � 2 cos 2�i

p�1
/, where Wp is

the wheel with p � 1 spokes; that is, using again the notation for the join, to be
introduced in Chapter 4, Wp D Cp�1 CK1.

In particular, for the tetrahedron W3 D K4 D C3 CK1 we have chapo.K4/ D
.t C 1/.t � 3/.t C 1/2.

(b) chapo.Qn/ D Qn
iD0.t C n � 2i/.

n
i /, where Qn is the n-dimensional cube. In

particular, chapo.Q3/ D .t � 3/.t � 1/3.t C 1/3.t C 3/.
(c) chapo (octahedron) D .t � 4/t3.t C 2/2.

(d) chapo (dodecahedron) D .t � 3/.t2 � 5/3.t � 1/5t4.t C 2/4.

(e) chapo (icosahedron) D .t � 5/.t2 � 5/3.t C 1/5.

2.7 Eigenvalues and the combinatorial structure

As the spectrum of a graph is independent of the numbering of its vertices, there
was once the hope that the spectrum could describe the structure of a graph up to
isomorphism; however, this soon turned out to be wrong.

Cospectral graphs

The smallest pair of cospectral graphs (i.e. non-isomorphic graphs with the same spec-
trum) was found with the graphs K1;4 and K1

S

C4. Since the second graph is not
connected, the next step was to seek connected cospectral graphs; this was achieved
with two graphs with six vertices. Nevertheless, there exist classes of graphs which
are characterized by their spectra – for example, complete graphs or completely bi-
partite graphs, as we saw in the previous section.

Definition 2.7.1. Non-isomorphic graphs with the same spectrum are said to be co-
spectral.

Example 2.7.2 (Cospectral graphs).

(a) We have

Spec.K1;4/ D Spec.C4

S

K1/ D
��2 0 2
1 3 1

�

with characteristic polynomial t3.t2 � 4/.
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(b) The graphs G1 and G2 are the smallest connected cospectral graphs; they have
the characteristic polynomial

t6 � 7t4 � 4t3 C 7t2 C 4t � 1 D .t � 1/.t C 1/2.t3 � t2 � 5t C 1/

�
�

�
� � � �

� �
� �

�
��
		 ��
		 ��

����G1 G2

(c) There exist two cospectral trees with eight vertices and characteristic polyno-
mial t8 � 7t6 C 9t4 D t4.t4 � 7t2 C 9/:

�
�
�

� �
�
�
�

�

�
�

�
�
�

��		
��

��
		

		
��
��
		

See A. Mowshowitz, The characteristic polynomial of a graph, J. Combin. Theory B
12 (1972) 177–193.

Remark 2.7.3.

(a) For every k there exist cospectral k-tuples of regular, connected graphs.

(b) Almost all (cf. Remark 7.2.14) trees with a given number of vertices are cospec-
tral; that is,

lim
p!1

sp

tp
D 0;

where sp is the number of trees with p vertices which are not cospectral to any
other tree with p vertices, and tp is the number of trees with p vertices. See
On the eigenvalues of a graph by A. J. Schwenk and R. J. Wilson, Theorem 7.2
(with a sketched proof), in [Beineke/Wilson 1978].

(c) Compare also Remark 2.7.6.

Eigenvalues, diameter and regularity

The following theorem reveals an interesting connection between eigenvalues and the
combinatorial structure of the graph. It is also interesting because of its proof, which
uses some linear algebra in a quite tricky way. We may say that computations are
done in the so-called adjacency algebra.

Theorem 2.7.4. If G has exactly p different eigenvalues, then G is not connected or
diam.G/ < p.

Proof. Because of Theorem 2.5.5, there exists a basis of eigenvectors of A D A.G/.
Then the minimal polynomial mipo.GI t / of A has only simple zeros (see any book
on linear algebra).This implies that mipo.GI t / has degree p.
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Take diam.G/ D q and let x D x0; : : : ; xq D y be a simple x; y path with q
edges in G; that is, for any i � q there exists a path of length i from x0 to xi but
no shorter path. Then Ai has at the .0; i/ position an entry greater than zero, and
all I D A0; A; A2; : : : ; Ai�1 have a zero entry there; so Ai is linearly independent
of I; A; : : : ; Ai�1. Thus I; A; : : : ; Aq are linearly independent. This implies q < p

as I; A; : : : ; Ap are linearly dependent, since A inserted into the minimal polynomial
gives zero; that is, mipo.GIA/ D 0 and so the minimal polynomial is a non-trivial
linear combination of these powers of A, which is 0.

Theorem 2.7.5. If G is a d -regular connected graph, then d is a simple eigenvalue
of G with eigenvector u D t.1; : : : ; 1/ such that j�j � d for all other eigenvalues �
of G.

Proof. It is clear that Au D du for u WD t .1; : : : ; 1/. Therefore d is an eigenvalue
corresponding to the eigenvector u.

Let x D t .x1; : : : ; xn/ be any non-zero vector with Ax D dx, and suppose that xj

is an entry of x with the largest absolute value. Now .Ax/j D dxj implies
P0

xi D
dxj , where

P0 denotes summation over those d vertices vi which are adjacent to vj .
Then maximality of xj implies that xi D xj for all these vertices. Choosing another
one of the xi and using connectedness of G, we can show that all entries of x are
equal. Thus x is a multiple of u. Therefore the eigenspace of d has dimension 1 and
thus d is simple.

Suppose now that Ay D �y with y ¤ 0, and let yi denote an entry of y with
largest absolute value. By the previous argument we have

P0
yi D �yj , and so

j�jjyj j D jP0
yi j �P0 jyi j � d jyj j. Thus j�j � d .

Automorphisms and eigenvalues

Remark 2.7.6. For all finite groups A1; : : : ; An there exist families of cospectral
graphs G1; : : : ; Gn with Ai Š Aut.Gi / for i D 1; : : : ; n. See L. Babai, Auto-
morphism group and category of cospectral graphs, Acta Math. Acad. Sc. Hung.
31 (1978) 295–306, where the principle is generalized to endomorphism monoids;
compare also with [Cvetković et al. 1979], Theorem 5.13 on p. 153 and p. 160.

The thesis by Oliver Brandt, On automorphism groups of cospectral graphs, Diplo-
marbeit, Oldenburg 1998, gives relatively small graphs of such type for the groups Sn

and direct products of copies of them.

Theorem 2.7.7. Let G be undirected with an eigenvalue � of multiplicity one, and let
v be an eigenvector corresponding to �. If P is the matrix of an automorphism of G,
then

Pv D ˙v:
In the directed case we have Pv D �v where � 2 C with j�j D 1.
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Proof. If v is an eigenvector corresponding to �, then Pv is also an eigenvector corre-
sponding to �, as APv D PAv D P�v D �Pv for the permutation matrix P which
describes the automorphism. Now multiplicity one implies that dim Eig.G; �/ D 1,
and therefore we get that Pv D �v for � 2 C. As P describes an automorphism,
we have P r D I for some r 2 N. Consequently, j�j D 1 and thus � D ˙1 if G is
undirected.

Theorem 2.7.8. Let G be undirected. If G has an automorphism p ¤ id such that
p2 ¤ id, then G has at least one eigenvalue with multiplicity greater than one. In
other words, if all eigenvalues of G are simple, then AutG consists entirely of involu-
tions, i.e. p2 D idAut G for all p 2 AutG.

Proof. If all eigenvalues have multiplicity one, then P 2v D v for all eigenvectors of
G by Theorem 2.7.7, because Pv D ˙v where P denotes the matrix of p. Since all
eigenvectors span Rn with jV j D n, we get that P 2v D v for all v 2 Rn. Therefore
P 2 is the identity matrix and p2 D idAut G .

Exercise 2.7.9. Control the results of Theorem 2.7.5 for the graphs in Theorem 2.6.4
and Theorem 2.6.6 and for non-regular graphs.

2.8 Comments

For further research I recommend looking at Remark 2.3.5, concerning the product of
graphs, and Section 2.4, on the representation of endomorphisms by transformation
matrices.

Since square matrices have determinants and permanents, these concepts can be
applied to graphs. So the value of the determinant can be related to the combinatorial
structure of the graph. Note that the permanent of (the adjacency matrix of) a digraph
counts the number of cycle covers of the digraph; references to this can be found on
the internet.

In Section 5.3 we will study the spectra of line graphs. Several other questions
concerning eigenvalues and the automorphism group are discussed in Chapter 8.

One subject that we do not touch on at all is the so-called Laplacian eigenvalues of
graphs. See, for example, B. Mohar, Some applications of Laplacian eigenvalues of
graphs, in the book [Hahn/Sabidussi 1997], pp. 227–275; also see [Bapat 2011] and T.
Bıyıkoǧlu, J. Leydold and P. F. Stadler, Laplacian Eigenvectors of Graphs: Perron–
Frobenius and Faber–Krahn type theorems (Lecture Notes in Mathematics 1915),
Springer 2007. We take an edge-weighted graphG and letA.G/ be the n�nweighted
adjacency matrix. Take the n� n diagonal matrix D.G/ where the vertex degrees are
the diagonal elements. Then L.G/ WD D.G/ � A.G/ is called the Laplacian matrix
of G.
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There are other polynomials for graphs, for example the chromatic polynomial
chropo.G; k/, which has a purely combinatorial meaning. Evaluation for an inte-
ger k gives the number of k-colorings of G. Of course, its eigenvalues can also be
investigated; see [Tutte 1998].

In this chapter we also touched on completely regular graphs. This is a property
which depends on the embedding (D drawing) on surfaces. It can be formulated
also for surfaces other than the plane or sphere, for example for the torus and ori-
entable surfaces of higher genus as well as for the projective plane, the Klein bottle
and surfaces of higher non-orientable genus. The interesting thing is that this topo-
logical question can be formulated algebraically, and this is possibly a clue to the
characterization of completely regular graphs on these surfaces. The starting point
in all cases would be the Euler–Poincaré formula; this shows which graphs could
be completely regular on the surface under consideration, but it does not give em-
beddings. The problem is completely solved for the torus. More information can
be found in [Liu 1995] and [White 2001]. Many interesting results can be found at
www.omeyer.gmxhome.de/on_completely_regular.pdf.



Chapter 3

Categories and functors

This chapter provides a short introduction to category theory. Categories play an im-
portant, albeit mostly hidden, role in many branches of mathematics; it is also useful
in many parts of informatics. In what follows, we will consider categories of graphs
and therefore introduce those concepts which will be used for graph categories; we
will also give examples of various categories which can be constructed using graphs.
The advantage of the graph-based approach to categories and functors is that the often
very abstract concepts can be made quite concrete and understandable in this context.
Most of this chapter follows [Kilp et al. 2000]; more information on categories and
functors can be found, for example, in [Herrlich/Strecker 1973].

3.1 Categories

The concept of a category serves to describe objects (which may but do not have to
be sets) together with their morphisms (which may but do not have to be mappings).
Moreover, this concept enables us to describe, for example, the class of all sets, which
is not a set. This, a fortiori, is the case for the class of all graphs.

Definition 3.1.1. A category C consists of the following data:

1. A class Ob C , the C -objects; if A is a C -object, then we write A 2 Ob C or
simply A 2 C .

2. A set C .A;B/ or MorC .A;B/ for every pair .A;B/ of C -objects, such that

C .A;B/
T

C .C;D/ D ;

for all A;B;C;D 2 C with .A;B/ ¤ .C;D/. The elements of C .A;B/ are
called C -morphisms from A to B . For f 2 C .A;B/, we call A the domain

(source) andB the codomain (tail, sink) of f and write f W A! B orA
f! B .

3. A composition of morphisms, i.e. a partial relation as follows: for any three
objects A;B;C 2 C there exists a mapping, the so-called law of composition

ı W
²

C .A;B/ � C .B; C / ! C .A; C /

.f; g/ 7! g ı f
(the symbol ı is often omitted), such that the following properties hold:
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(ass) the associativity law h ı .g ı f / D .h ı g/ ı f for the composition of
morphisms, whenever all necessary compositions are defined;

(id) there exist identity morphisms, which behave like neutral elements with
respect to the composition of morphisms, i.e. for every object A 2 C there
exists a morphism idA 2 C .A;A/ such that

f ı idA D f and idA ıg D g

for all B;C 2 C , f 2 C .A;B/ and g 2 C .C;A/.

The union of all morphism sets of a category C will in general be a class and not a
set. This is called the class of morphisms of C , denoted by Morph.C /.

Categories with sets and mappings, I

If the objects of a category are sets and the morphisms are mappings, then Defini-
tion 3.1.1 turns into the following.

A category consists of the following data:

1. A class of sets.

2. A set Map.A;B/ of mappings from A to B for every pair of sets A;B .

According to the definition of mappings we automatically get

Map.A;B/
T

Map.A0; B 0/ D ; for .A;B/ ¤ .A0; B 0/:

(Two mappings are different if they have different domains or codomains.)

3. For any two mappings f 2 Map.A;B/ and g 2 Map.B; C /, where A;B;C are
sets, a composition of mappings g ı f 2 Map.A; C / for which the following
hold automatically:

(ass) associativity;

(id) the existence of identity mappings, i.e. for every set A and a 2 A a map-
ping idA 2 Map.A;A/ with idA.a/ D a that satisfies the conditions re-
quired above.

Constructs, and small and large categories

Definition 3.1.2. A category C is called a construct or a concrete category if its ob-
jects are (structured) sets, its morphisms are (structure-preserving) mappings between
the respective sets, and the composition law is the composition of these mappings.
A category C is said to be small if Ob C is a set; otherwise it is said to be large.
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Theorem 3.1.3. If C is a category, then C op is also a category, where

Ob C op WD Ob C I
C op.A;B/ WD C .B;A/I and

g � f WD f ı g for f 2 C op.A;B/ D C .B;A/;

g 2 C op.B; C / D C .C;B/:

The category C op is called the opposite (dual) category to C . It comes from C by
“inverting all arrows”.

Question. Why is Setop not a concrete category?

Special objects and morphisms

Definition 3.1.4. An object T of a category C is said to be terminal if C .A; T /

contains exactly one element for every A 2 C . We say that an object I of a category
C is initial if C .I; A/ contains exactly one element for every A 2 C .

Remark 3.1.5. We say that initial and terminal objects are categorically dual as T is
terminal in C if and only if it is initial in C op.

In any category we can define isomorphisms without using concepts like injective
or surjective and without using that the objects have “elements”, which will not be
the case if the objects are not sets. Moreover, we will introduce notions that imitate
injectiveness and surjectiveness without using elements. In some concrete categories,
however, these turn out to be a little weaker than injectiveness and surjectiveness.

Definition 3.1.6. A morphism f 2 C .A;B/ with A;B 2 C is called an isomor-
phism if there exists a morphism g 2 C .B;A/ with the properties that f ı g D idB

and g ı f D idA.
A morphism f 2 C .A;B/ with A;B 2 C is called a monomorphism if it is left

cancelable, i.e. for all morphisms g; h 2 C .C;A/ with f ı g D f ı h we get g D h.
A morphism f 2 C .A;B/ with A;B 2 C is called an epimorphism if it is right

cancelable, i.e. for all morphisms g; h 2 C .B; C / with g ı f D h ı f we get g D h.

Proposition 3.1.7. Terminal objects of a category are always isomorphic to each
other, and so are initial objects.

Proof. Take two terminal objects T1 and T2 of C . Then by definition there exist
morphisms f W T1 ! T2 and g W T2 ! T1. Therefore idT2

and f ı g are morphisms
in C .T2; T2/, and jC .T2; T2/j D 1 implies idT2

D f ı g. Analogously, we prove
that idT1

D g ı f . Consequently, f and g are isomorphisms.
The statement for initial objects can be derived from the result for terminal objects

by going to the opposite category.
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Categories with sets and mappings, II

Exercise 3.1.8. Prove that in the category Set, monomorphisms are injective, epimor-
phisms are surjective and vice versa. Terminal objects are the one-element sets (which
are all isomorphic), and the empty set is the initial object. Moreover, mappings that
are both surjective and injective (which are then said to be bijective) are isomorphisms
in Set but not in the category of graphs with graph homomorphisms.

Categories with graphs

The following category PathG plays a role in object-oriented programming in infor-
matics.

Example 3.1.9 (Small non-concrete categories).

(a) Every directed graph G defines a small category PathG , with object set V con-
sisting of all vertices of G. If x and y are two vertices, then PathG.x; y/, the
set of all morphisms from x to y, consists of all x; y paths. The composition of
morphisms is the concatenation of paths.

If a W x ! y and b W y ! z are two non-trivial paths, then bıa D ab is the path
which is generated by traversing first a and then b. If we have a D .e1; : : : ; en/

and b D .enC1; : : : ; em/, then

b ı a D ab D .e1; : : : ; en; enC1; : : : ; em/:

This implies that

.e1; : : : ; en/ D e1 
 
 
 en D en ı 
 
 
 ı e1:

The trivial paths are the identities, i.e. for a W x ! y we get

a ı idx D idx ı a D a;
idy ı a D a ı idy D a:

Thus, all requirements for a category are fulfilled by PathG .

(b) See the examples in Remarks 3.2.6 and 3.2.11.

Example 3.1.10 (A small construct). The set Gra4 of all graphs with four vertices and
edge-preserving mappings of these graphs as morphisms is a small concrete category.

Example 3.1.11 (Non-categories).

(a) Ordered sets with antitone mappings .x � y ) f .x/ � f .y// and the compo-
sition of mappings do not form a category, since the composition of two antitone
mappings is not antitone.
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(b) Graphs with half-, locally or quasi-strong graph homomorphisms do not form a
category, since the composition of two such morphisms is not necessarily of the
same kind.

Example 3.1.12 (Large constructs). For the following categories, the composition
law is always the composition of mappings.

Gra graphs graph homomorphisms

SGra graphs strong graph homomorphisms

CGra graphs graph comorphisms

EGra graphs graph egamorphisms

SEGra graphs strong graph egamorphisms

Note that the categories EGra and SEGra turn into Gra and SGra if all graphs have
a loop at every vertex.

Other categories

Example 3.1.13 (Large constructs). The composition law is always the composition
of mappings.

Set sets mappings

Sgr semigroups semigroup homomorphisms

Mon monoids monoid homomorphisms

Grp groups group homomorphisms

Ab Abelian groups group homomorphisms

Rng rings ring homomorphisms

Field fields field homomorphisms

S -Act left S -acts, S 2 Sgr left act homomorphisms

Act-S right S -acts, S 2 Sgr right act homomorphisms

R-Mod left R-modules, R 2 Rng left module homomorphisms

Mod-R Right R-modules, R 2 Rng right module homomorphisms

F -Vec F -vector spaces, F 2 Field linear mappings

Top topological spaces continuous mappings

Ord ordered sets isotone (order-preserving) maps

Topı topological spaces open mappings
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Example 3.1.14 (Large categories, not concrete over Set).

(a) The category Rel has as objects all sets, and for sets A;B 2 Rel the morphism
set Rel.A;B/ WDP.A �B/ is the set of all binary relations between A and B;
the composition is the composition of relations.

(b) If C is a concrete category with at least two objects, then the dual category C op

is not concrete in general.

Example 3.1.15 (Small (“strange”) categories, not concrete over Set).

(a) If .M; 
 ; 1/ is a monoid set, let Ob M WD ¹1º and M .1; 1/ WD M , i.e. the
category M has exactly one object, morphisms are the monoid elements, and
the composition in M is monoid multiplication.

(b) Objects of the category Z-Mat are all natural numbers. Morphisms fromm 2 Z
to n 2 Z are all m � n matrices over Z. Composition of morphisms is matrix
multiplication.

(c) Take Ob P WDP.X/, the power set of X . Let P.A;B/ WD ¹.A;B/º, i.e. it is a
one-element set if A � B , and is empty otherwise. Composition of morphisms
is defined via .A;B/ ı .B; C / WD .A; C /.

(d) For every ordered set .P;�/, take the objects of the category P to be the el-
ements of the set P ; the morphism sets are all one-element or empty sets, i.e.
P.x; y/ WD ¹.x; y/º if x � y, and is empty otherwise. The composition law
is .x; y/ ı .y; z/ WD .x; z/. The previous example is the special case where
.P;�/ D .P.X/;�/.

3.2 Products & Co.

In addition to terminal and initial objects we define some other objects, which together
with certain morphisms form the so-called coproducts, products and tensor products.
The definitions are given axiomatically, i.e. in a very abstract form. Consequently
they are not constructions, since we only formulate which properties they must have,
if they exist.

Coproducts

The idea behind the concept of a coproduct is to describe the characteristic properties
of unions of sets categorically, that is, without using sets and elements.

Definition 3.2.1. Let .Ci /i2I be a non-empty family of objects in C . The pair
..ui /i2I ; C / with C 2 C and ui 2 C .Ci ; C / is called the coproduct of the .Ci /i2I ,
if ..ui /i2I ; C / solves the following universal problem.
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For all ..ki /i2I ; T / with T 2 C and ki 2 C .Ci ; T / there exists exactly one k 2
C .C; T / such that the following diagram is commutative for all i 2 I :

T C

Ci

	
	

	
		�

�



ki
ui

k

As usual, we write C D`i2I Ci . The morphism ui is called the i th injection. We
also write Œ.ki /i2I � D k and say that k is coproduct induced by .ki /i2I .

Exercise 3.2.2. Direct sums of vector spaces turn out to be coproducts, which are not
unions of the vector spaces, however. Recall that for a field F and a set I , the elements
of the direct sum (i.e. the coproduct) of the F -vector spaces Vi , i 2 I , consists of the
jI j-tuples .vi2I / such that at most finitely many components are not zero. Prove that
these vector spaces together with the natural injections satisfy the properties of the
coproduct.

More examples of coproducts in various graph categories are given in the next
chapter. The following concept looks very abstract. It will turn out, also in the next
chapter, that the amalgam of two graphs with a common subgraph is the result of
glueing together the two graphs along the common subgraph.

Definition 3.2.3. LetH;G1 andG2 be objects, and letm1 W H ! G1 andm2 W H !
G2 be monomorphisms in the category C . We call this constellation an amalgam situ-
ation. The pair

�

.u1; u2/; G1

`

.H;.m1;m2//G2

�

is called an amalgam (amalgamated
coproduct) of G1 and G2 with respect to .H; .m1m2// if:

(a) u1 W G1 ! G1

`

.H;.m1;m2//G2 and u2 W G2 ! G1

`

.H;.m1;m2//G2 are
morphisms such that u1m1 D u2m2, i.e. the square in the diagram below is
commutative; and

(b)
�

.u1; u2/; G1

`

.H;.m1;m2//G2

�

solves the following universal problem in C .

For every pair ..f1; f2/;Q/, where f1 W G1 ! G and f2 W G2 ! G with
f1m1 D f2m2, i.e. making the external rectangle commutative, there exists
exactly one morphism f W G1

`

.H;.m1;m2//G2 ! G such that both triangles
in the diagram are commutative.
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G

G2

H
m1

u2

m2u1

G1

G1

G2

( ( , ))H, m m1 2

f2

f1

f

We say that f is amalgam induced by .f1; f2/ and write f D Œ.f1; f2/
H �.

We can define multiple amalgams
`

.H;.mi /i2I /Gi in an analogous way.

Remark 3.2.4. If in the above definition m1 and m2 are just morphisms in C , we
get a so-called pushout. If, in addition, G1 D G2, then the pushout is called the
coequalizer of .m1; m2/.

Exercise 3.2.5. Coproducts as well as amalgams and pushouts are unique up to iso-
morphism in any category in which they exist.

The idea of the proof is to assume the existence of two coproducts where each
plays the role of T with respect to the other; the role of the ki is then taken by the
corresponding injections. The uniqueness of k in all these situations provides the
isomorphism, similar to the situation in Proposition 3.1.7.

Remark 3.2.6 (The coproduct as initial object in a new category). We take two ob-
jectsG1 andG2 in C and consider a new category C .G1;G2/ whose objects are triples
.f1; f2; G/, where f1 and f2 are morphisms in C which end in G and start, respec-
tively, in G1 and G2. For two such triples .f1; f2; G/ and .h1; h2;H/, a morphism in
this category is a morphism f in C such that f h1 D f1, and similarly with index 2.
Now the universal property of the coproduct implies that the coproduct G1

`

G2 is
the initial object in this new category.

In a suitably chosen category C .G1;G2;H/, the pushout becomes the initial object.

Products

The following two definitions are categorically dual to the definitions of the coproduct
and the amalgam. Formally, this means that the new ones can be obtained from the
old ones by reversing all arrows and exchanging mono and epi. The motivating idea
comes from direct products of vector spaces and Cartesian products of sets, with the
same goal as for the definition of coproducts.

Again, more examples of products in various graph categories will be presented in
the next chapter.
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Definition 3.2.7. Let .Pi /i2I be a non-empty family of objects in C . The pair
.P; .pi /i2I / with P 2 C and pi 2 C .P; Pi / is called the product of .Pi /i2I if
it solves the following universal problem in C .

For all .Q; .qi /i2I / with Q 2 C and qi 2 C .Q;Pi /, there exists exactly one
q 2 C .Q;P / such that the following diagram is commutative for all i 2 I :

Q P

Pi

	
	
	
		�

�

�
qi

pi

q

We write P D Q

i2I Pi . The morphism pi is called the i th projection. We also
write h.qi /i2I i D q and call q the product induced by .qi /i2I .

Definition 3.2.8. Let G1; G2 and H be objects, and let n1 W G1 ! H and n2 W
G2 ! H be epimorphisms in the category C . We call this constellation a coa-
malgam situation. The pair

�

G1

Q..n1;n2/;H/
G2; .p1; p2/

�

is called the coamalgam
(coamalgamated product) of G1 and G2 with respect to ..n1; n2/;H/ if:

(a) p1 W Gi

Q..n1;n2/;H/
G2 ! G1 and p2 W Gi

Q..n1;n2/;H/
G2 ! G2 are mor-

phisms such that n1p1 D n2p2, i.e. the square in the diagram below is commu-
tative; and

(b)
�

G1

Q..n1;n2/;H/
G2; .p1; p2/

�

solves the following universal problem in C .
For every pair .G; .f1; f2//, where f1 W G ! G1 and f2 W G ! G2 with
n1f1 D n2f2 (i.e. making the exterior rectangle commutative), there exists
exactly one morphism

f W G ! G1

Q..n1;n2/;H/
G2

such that both triangles in the diagram are commutative.

G

Ge

H
n1

p2

n2p1

G1

G1 G2

(( , ), )n n H1 2

f2

f1

f
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We say that f is coamalgam induced by .f1; f2/ and write h.f1; f2/H i D f .
Multiple coamalgams

Q..ni /i2I ;H/
Gi can be defined in an analogous way.

Remark 3.2.9. If in the above definition n1 and n2 are just morphisms in C , we get a
so-called pullback. Moreover, if in this situation G1 D G2, the pullback is called the
equalizer of .n1; n2/. Further, we observe that a subobject W � G1

Q

G2 is called a
subdirect product of G1 and G2 if pi .W / D Gi for i D 1; 2. So a coamalgam is a
special subdirect product.

Theorem 3.2.10. Products, as well as coamalgams, pullbacks and equalizers, are
unique up to isomorphism in every category where they exist.

Proof. This is an exercise which can also be done by the categorical dualization of
Exercise 3.2.5.

Remark 3.2.11 (The product as terminal object in a new category). As for coprod-
ucts and amalgams, we take another step toward abstraction. Now take two objects
G1 andG2 in the category C and consider a new category C.G1;G2/ whose objects are
triples .G; f1; f2/, where f1 and f2 are morphisms in C which start in G and end,
respectively, in G1 and G2. For two such triples .G; f1; f2/ and .H; h1; h2/, a mor-
phism in the new category is a morphism f such that h1 ıf D f1, and similarly with
index 2. Now the universal property of the product implies that the product G1

Q

G2

is the terminal object in the new category.
In a suitably modified category C.G1;G2;H/, the coamalgam will be the terminal

object.

Tensor products

We observe that tensor products can be defined only in concrete categories, since in
the definition we have to use that the “tensor factors” have elements – that is, they
are sets. Again, tensor products are, in every category where they exist, unique up to
isomorphism. Consequently, every tensor product of two factors is also the terminal
object in a suitably defined category (compare Remarks 3.2.6 and 3.2.11).

Definition 3.2.12. Let C be a concrete category and let A;B;C 2 C . A mapping
from the Cartesian product of the sets A and B into the set C , i.e. f W A � B ! C ,
is called a bimorphism from A�B to C if for every a 2 A and every b 2 B we have
f .a; 
 / 2 C .B; C / and f .
 ; b/ 2 C .A; C /.

Definition 3.2.13. Take A;B 2 C . The pair .	; T /, where T 2 C and 	 W A�B !
T , is a bimorphism. It is called the tensor product of A and B in C if .	; T / solves
the following universal problem.
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For all X 2 C and all bimorphisms 
 W A � B ! X , there exists exactly one
morphism 
� 2 C .T;X/ such that the following diagram is commutative:

X T

A � B
	
	

	
		�

�





	


�

We write T D A˝ B and call 
� the tensor product induced by 
 .

Exercise 3.2.14. Tensor products are unique up to isomorphism in every category
where they exist.

Categories with sets and mappings, III

Exerceorem 3.2.15. In the category of sets and mappings, the disjoint unionA PSB of
two sets A and B with the natural injections u1 and u2 is the coproduct. The induced
mapping is obtained as k.x/ D k1.x/ for x 2 A and k.x/ D k2.x/ for x 2 B .

The Cartesian product A � B of two sets A and B with the natural projections p1

and p2 is the product. The induced mapping is q.x/ D .q1.x/; q2.x//.
The Cartesian product A � B of two sets A and B with the mapping 	 D idA�B is

the tensor product; here we have 
� D 
 .
The amalgam over a common subset A \ B D H of the sets A and B is the (non-

disjoint) union of A and B . This is possible also if n1.A/ D n2.B/ D H ¤ A \ B .
Corresponding to the idea of the amalgam, we can take alternatively the disjoint union
and then identify the elements of the common subset H .

The coamalgam of the sets A and B with respect to a common image setH consist
of those pairs .a; b/ 2 A � B with n1.a/ D n2.b/.

For the proofs, all properties of the respective definitions must be shown directly in
the concrete situation, in particular the properties of the induced mappings.

3.3 Functors

Functors are to categories what mappings are to sets. In addition, for algebraic cate-
gories there exists a dualism between homomorphisms and antihomomorphisms, that
is, mappings which preserve the multiplication (say) and mappings which reverse the
multiplication (for example, forming �1). This is modeled in the relations between
categories by the concepts of covariant and contravariant functors.
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Covariant and contravariant functors

We define connections between categories that preserve or reverse compositions of
morphisms, which – remember – don’t have to be mappings.

Definition 3.3.1. Let C and D be categories. Let F W C ! D be an assignment of a
unique object F.A/ 2 D to an object A 2 C and a unique morphism F.f / in D to a
morphism f W A! A0 in C . We formulate the following two pairs of conditions, (1)
and (2) or (1) and .2�/:

(1) F.idA/ D idF .A/ for A 2 C ; we say that F preserves identities.

(2) F.f / W F.A/ ! F.A0/ and F.f2f1/ D F.f2/F.f1/ for f1 2 C .A1; A2/

and f2 2 C .A2; A3/, where A1; A2; A3 2 C ; we say that F preserves the
composition of morphisms.

(2�) F.f / W F.A0/ ! F.A/ and F.f2f1/ D F.f1/F.f2/ for f1 2 C .A1; A2/

and f2 2 C .A2; A3/, where A1; A2; A3 2 C ; we say that F reverses the
composition of morphisms.

If F satisfies (1) and (2), we call F a covariant functor. In this case we have

F.MorC .A1; A2// � MorD.F.A1/; F .A2//:

If F satisfies (1) and (2�), we call F a contravariant functor. In this case we have

F.MorC .A1; A2// � MorD.F.A2/; F .A1//:

We call F a functor if a specification of the variance is not necessary.

Composition of functors

Like mappings, functors can be composed if they “fit together”.

Definition 3.3.2. Let C ;D and E be categories and let F W C ! D and G W
D ! E be functors. The composition GF or G ı F of the functors F and G is
defined by .GF /.A/ D G.F.A// and .GF /.f / D G.F.f // for A;A0 2 C and
f 2 MorC .A;A

0/.

Remark 3.3.3. With this definition, GF W C ! E is a functor. HereGF is covariant
if F and G are both covariant or both contravariant. Otherwise GF is contravariant.
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Special functors – examples

Definition 3.3.4. A category C is called a subcategory of the category D if every
object from C is an object of D and if C .A;A0/ � D.A;A0/. This means that there
exists a functor IC

D
W C ! D defined by IC

D
.A/ D A for A 2 C and IC

D
.f / D f

for f 2 C .A;A0/. This functor is called an inclusion functor. Let F W D ! E be
any functor; then we call FIC

D
W C ! E the restriction of F to the subcategory C

of D. For C D D we call IC
C

the identity functor on C , written as IdC .

Since the inclusion functor is covariant, the restriction of F preserves the variance
of F ; cf. Remark 3.3.3.

Definition 3.3.5.

(a) Let C be a concrete category. For A 2 C we denote by bAc 2 Set the so-called
underlying set of the object A. For f 2 MorC .A1; A2/, where A1; A2 2 C ,
we denote by bf c W bA1c ! bA2c the mapping in Set “under” f . In this way,
b c W C ! Set becomes a covariant functor, the forgetful functor of C into
Set.

(b) The transfer from a category C to the opposite (dual) category C op is a con-
travariant functor, the op or dualization functor. We write �op W C ! C op.

Mor functors

We now consider three Mor functors for a category C .

Definition 3.3.6. Let A;A0; B; B 0 2 C be objects. Defining

MorC . ; B/ W C ! Set

with MorC .A;B/ WD C .A;B/ 2 Set

and MorC .f; B/ W MorC .A
0; B/! MorC .A;B/ for f W A! A0

where MorC .f; B/ D ˇ ı f for ˇ 2 MorC .A
0; B/

gives the contravariant Mor functor.
Analogously, we define the covariant Mor functor

MorC .A; / W C ! Set;

where now MorC .A; g/ WMorC .A;B/!MorC .A;B
0/ is given by MorC .A; g/.˛/D

g ı ˛ for g W B ! B 0 and ˛ 2 MorC .B;B
0/. Combining the two, we get

MorC . ; / W C op � C ! Set;

the Mor functor in two variables.
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The following diagram shows the situation for the contravariant Mor functor:

A

A0

MorC . ; B/
MorC .A;B/

MorC .f; B/

MorC .A
0; B/

f �

�

�

�

�
MorC . ; B/

Other examples of functors can be obtained from the coproducts, products and
tensor product, if we fix “one component”. We will make this concrete for graphs in
the next chapter.

Properties of functors

The following properties of functors model injective, surjective and bijective map-
pings. For functors, these properties can be considered separately for objects and for
morphisms.

Definition 3.3.7. Let C and D be categories. A covariant functor F W C ! D is
said to be:

� faithful if the mapping

MorC .A;A
0/! MorD.F.A/; F.A

0//

is injective for all A;A0 2 C ;

� full if the mapping

MorC .A;A
0/! MorD.F.A/; F.A

0//

is surjective for all A;A0 2 C ;

� a full embedding if F is full and faithful;

� dense (or representative) if for every B 2 D there exists an A 2 C such that
F.A/ is isomorphic to B;

� an injector if F is a faithful functor which is injective up to isomorphisms with
respect to objects, i.e. F.A/ Š F.A0/ implies A Š A0;

� a surjector if F is a full functor which is surjective with respect to objects, i.e.
for every B 2 D there exists an A 2 C such that F.A/ D B .
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Definition 3.3.8. If C is a subcategory of D so that the inclusion functor is full, then
C is called a full subcategory of D.

Preservation and reflection of properties by functors provides useful information
when investigating categories with the help of functors.

Definition 3.3.9. We say that a functor F W C ! D preserves a property P of a
morphism f in C if F.f / in D also has the property P . We say that F reflects a
property P if f has P in C whenever F.f / has P in D. Analogous definitions can
be made with respect to properties of objects.

It is clear that every functor preserves commutative diagrams.

On the level of mappings we know this same principle: graph homomorphisms
preserve edges, while graph comorphisms reflect edges.

If we look for more analogies between mappings and functors, the existence of the
identity functor on every category suggests that for a functor F W C ! C 0 there might
exist a “left inverse” functorG W C 0 ! C such thatGıF is the identity functor on C .
This would mean that the two functors IdC andG ıF behave similarly on objects and
on morphisms. This leads to the concept of a natural transformation.

Definition 3.3.10. A natural transformation ‚ W IdC ! G ı F relates the two
functors so that the following square is commutative for all objects A;B 2 C and all
morphisms f W A! B (here ‚A is a morphism in C for every object A 2 C ):

� �

A

B

‚A
G.F.A//

G.F.f //

G.F.B//

f �

�

�
‚B

This is the so-called condition of being natural, which can be written as

G.F.f //.‚A.a// D ‚B.f .a// for all a 2 A.

A natural transformation‚ is called a natural equivalence if‚A is an isomorphism
in C for every A 2 C . In the same way, we can define natural transformations and
equivalences more generally for two functors F1; F2 W C ! D instead of IdC and
G ı F .
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3.4 Comments

The concepts of natural transformation and natural equivalence do not seem “natural”
at all, and they are very abstract. But they turn out to be quite useful in the sections on
constructions of graphs and power functors; for examples we also point to Section 4.6.

Natural equivalence is known from linear algebra. There we prove that a vector
space is naturally isomorphic to its double dual. A finite-dimensional vector space is
also isomorphic to its dual, but this isomorphism is not natural.

Categories came up out of the wish to consider, for instance, all vector spaces over
a fixed field. In this category one takes linear mappings as morphisms. This is similar
to the category of all sets along with the mappings between them.

The main problem is that the collection of all sets does not form a set. This might
seem fascinating and possibly disturbing. This a fortiori is the case for the class of all
graphs. Category language somehow gets around the problem without focusing too
much attention on it: for everyday use we just ignore the issue.

In this chapter we have given several examples of “strange” categories which,
nonetheless, are of interest in informatics. I point to Remarks 3.2.6 and 3.2.11, which
contain abstraction steps similar to those used in informatics.

In what follows, we will use the language of categories and functors in several
places, for example to classify various graph products from a “higher” viewpoint.
The concrete graph constructions work without category language.

It may be worthwhile to have a look at End functors which, for example, start in
graph categories and go to the category of monoids. Problems arise since this is actu-
ally a functor in two variables, contravariant in the first and covariant in the second;
see Definition 3.3.6. This is probably the reason that, so far, there has been no real
progress in this direction.
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Binary graph operations

In set theory and many other areas – not just in mathematics – one can generate
new objects from old via binary operations such as unions and Cartesian products,
analogous to producing new numbers by addition or multiplication. Owing to the
rich structure of graphs, there are several variants for each construction, and we will
present these separately and in detail.

We will first consider four forms of unions of graphs, followed by eight forms of
products. All constructions will be described directly in the definitions and can be
used independently of any categorical considerations; but whenever possible we will
also provide the categorical descriptions of the constructions (they solve so-called
universal problems). This will make the structural differences clearer.

If we choose very special categories, the unions become initial objects and the
products terminal objects; compare with Remarks 3.2.6 and 3.2.11, for example.

4.1 Unions

In this section, the vertex sets of the new graphs will be the unions of the vertex sets
of the old graphs.

The union

Definition 4.1.1. Let G1 D .V1; E1/ and G2 D .V2; E2/ be graphs with disjoint
vertex sets, i.e. V1

T

V2 D ;. The union (or coproduct) of G1 and G2 is defined to
be

G1

S

G2 WD .V1

S

V2; E1

S

E2/:

The mappings ui WD id
G1

S

G2
jGi
; i 2 ¹1; 2º; are called the natural injections.

The following theorem shows that this construction in the category Gra satisfies the
properties that we formulated for the coproduct in general categories. It also contains
the statement that the union of two sets with the usual injections is the coproduct in
the category Set.

Recall from linear algebra that the proof for the coproduct in the category of F -
vector spaces is quite different; see Exercise 3.2.2.

Theorem 4.1.2. The pair ..u1; u2/; G1

S

G2/ is the (categorical) coproduct in Gra
and in EGra; that is:
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(a) The natural injections u1 W G1 ! G1

S

G2 and u2 W G2 ! G1

S

G2 are
morphisms.

(b) ..u1; u2/; G1

S

G2/ solves the following universal problem.
For all graphs G and for all morphisms f1 W G1 ! G and f2 W G2 ! G there
exists exactly one morphism f such that following diagram is commutative:

G2

G2

G

G1

G1

f1

f2

u1

u2

f

Here, i.e. in the categories Gra and EGra, we have

f W
´

G1

S

G2 ! G

xi 7! fi .xi / for xi 2 Gi ; i 2 ¹1; 2º:
We write G1

`

G2 and, analogously,
`

i2I Gi for multiple unions. Moreover, we
write Œ.f1; f2/� D f and say that f is coproduct induced by .f1; f2/.

Proof. We formulate the proof for the category Gra. The only difference in EGra
arises when f1 or f2 is in EGra but not in Gra; but in that case, clearly the coproduct-
induced f , defined as in Gra, is also in EGra.

From the construction it becomes clear that ..u1; u2/; G1

S

G2/ is independent of
G and f1; f2. We define f .x1/ WD f1.x1/ for x1 2 G1 and f .x2/ WD f2.x2/ for
x2 2 G2. Since V1 and V2 are disjoint, f is correctly defined and the diagram is
commutative.

To prove uniqueness of f , suppose that there exists a g with the same properties.
Then

g.xi / D .ui ı g/.xi / D fi .xi / D .ui ı f /.xi / D f .xi / for all xi ; i D 1; 2:
The proof up to this point is not needed if we know that the disjoint union together
with the injections is the coproduct in the category Set. But we have to show that u1

and u2 are graph homomorphisms, which is clear from their definition, and that f is
a graph homomorphism. So take x1; x

0
1 2 V1; then

.x1; x
0
1/ 2 E.G1

S

G2/) .x1; x
0
1/ 2 E.G1/

) .f1.x1/; f1.x
0
1// 2 E.G/

) .f .x1/; f .x
0
1// 2 E.G/;

since by hypothesis f1 is a graph homomorphism; similarly for edges from V2.
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Example 4.1.3 (Coproducts in SGra?). The injections ui are always strong, but f is
not strong in general, even if the fi are strong. Thus ..ui /i2I ;

S

i2I Gi / is not the
coproduct in the category SGra, consisting of graphs with strong graph homomor-
phisms.
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K2

K1 K1

K1

S

K1

u2 u1

id id9Šf

It is clear that f is not strong in this situation.

The join

The following definition of the join is given for undirected graphs. For directed graphs
several variations are possible.

Definition 4.1.4. Let G1 D .V1; E1/ and G2 D .V2; E2/, where V1

T

V2 D ;. The
join of G1 and G2, denoted by G1 CG2, is defined to be the union G1

S

G2 plus all
edges between vertices from G1 and vertices from G2. Formally, this means

G1 CG2 WD .V1

S

V2 ; E1

S

E2

S¹.x1; x2/ j xi 2 Vi ; i D 1; 2º/:

Example 4.1.5 (Join).
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b

c

G1 CG2

x

y

Corollary 4.1.6. We have G1

S

G2 � G1 C G2, i.e. the union is a (non-strong)
subgraph of the join.

Exerceorem 4.1.7. In the category CGra we have G1

`

G2 Š ..u1; u2/; G1 CG2/,
i.e. in this category the join together with the injections is the coproduct.
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The edge sum

The following definition of the edge sum is valid for both undirected and directed
graphs. The definition of the edge sum requires that the two graphs have the same
vertex set. The edge sum is obtained by laying one graph on top of the other.

Definition 4.1.8. Let G1 D .V;E1/ and G2 D .V;E2/ be graphs. The edge sum is
defined to be

G1 ˚G2 WD .V;E1

S

E2/:

Example 4.1.9 (Edge sum).
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G1 G2 G1 ˚G2

For graphs with different vertex sets, we modify the construction as follows.

Definition 4.1.10. Take the graphs G1 D .V1; E1/ and G2 D .V2; E2/ and set
V1

T

V2 D V . The generalized edge sum is defined to be

G1˚G2 WD .G1

S

K jV2nV j/˚ .G2

S

K jV1nV j/;

where Kn is the totally disconnected graph with n vertices.

We interpret the construction as follows: add to G1 the vertices of G2 which do
not belong to G1, and add to G2 the vertices of G1 which do not belong to G2. Call
the results G0

1 and G0
2; then form their edge sum. This gives the generalized edge

sum. The problem with this construction is that we have to say which vertices of the
graphs are considered equal. The following example shows that there may be several
possibilities. It is clear that there is no difference between directed and undirected
graphs in this case.

Example 4.1.11 (Generalized edge sum).
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G1 G2 G1 ˚G2

These difficulties are circumvented by making the following definition.

Definition 4.1.12. Let H D .V;E/, G1 D .V1; E1/ and G2 D .V2; E2/ be graphs,
and let m1 W H ! G1 and m2 W H ! G2 be injective strong graph homomor-
phisms. The amalgam (amalgamated coproduct, pushout) ofG1 andG2 with respect
to .H; .m1m2// is defined by

V.G1

`

.H;.m1;m2//G2/ WD .V1 nm1.H//
S

V
S

.V2 nm2.H//

and

E.G1

`

.H;.m1;m2//G2/

WD ¹.xi ; yi / 2 Ei j xi ; yi 2 Vi nmi .H/; i D 1; 2º
S¹.x; z/ j z 2 V; xi 2 Vi nmi .H/; .xi ; mi .z// 2 Ei ; i D 1; 2º
S¹.z; z0/ j z; z0 2 V; .mi .z/;mi .z

0// 2 Ei ; i D 1; 2º:
Again, we define multiple amalgams

`

.H;.mi /i2I /Gi analogously.

In practice, we consider H as a common subgraph of G1 and G2 and form the
union in such a way that we paste together the two graphs along H .

Remark 4.1.13. Formally we get the same result if we define

G1

`

.H;.m1;m2//G2 WD
�

G1

`

G2

�

=�

where, for x; y 2 G1

`

G2, we set

x � y if 9z 2 H with m1.z/ D x; m2.z/ D y or x D y:
This implies that .x�; y�/ 2 E.G1

`

.H;.m1;m2//G2/ if there exists i 2 ¹1; 2º; x0 2
x�

T

Gi ; y
0 2 y�

T

Gi with .x0; y0/ 2 Ei .
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Example 4.1.14 (Amalgam).
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x3 x4

x1 x2

z4

z1 z2

y3 y4

y1 y2

G1 H G2

m1.z1/ D x3; m2.z1/ D y1

m1.z2/ D x2; m2.z2/ D y2

m1.z4/ D x4; m2.z4/ D y4
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G1

`

.H;.m1;m2//G2

Theorem 4.1.15. The amalgam G1

`

.H;.m1;m2//G2 has the properties of the cate-
gorically defined amalgam in Gra and in EGra; that is:

(a) the (codomain-modified) natural injections u1 W G1 ! G1

`

.H;.m1;m2//G2

and u2 W G2 ! G1

`

.H;.m1;m2//G2 are graph homomorphisms with u1m1 D
u2m2, i.e. the square is commutative; and

(b) ..u1; u2/; G1

`

.H;.m1;m2//G2/ solves the following universal problem in Gra
and in EGra.

For all graphs G and all morphisms f1 W G1 ! G and f2 W G2 ! G with
f2m2 D f1m1, i.e. which make the exterior quadrangle commutative, there ex-
ists exactly one morphism f W G1

`

.H;.m1;m2//G2 ! G such that the triangles
are commutative.

G

G2

H
m1

u2

m2u1

G1

G1

G2

( ( , ))H, m m1 2

f2

f1

f

Here, i.e. in the category Gra, one has f .xi / D fi .xi / for i D 1; 2.
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Proof. For i D 1; 2 define

ui .xi / WD
²

xi if xi 2 Vi nmi .H/

z if mi .z/ D xi for z 2 H:
It is clear that these are graph homomorphisms and that for z 2 H we have
u1.m1.z// D z D u2.m2.z//, as for sets.

As for the coproduct, we define

f .xi / WD fi .xi / for i D 1; 2:
Now f is well defined as for sets, since by hypothesis we have

f .x/ D f1.m1.z// D f2.m2.z// D f .y/ if

²

m1.z/ D x 2 G1

m2.z/ D y 2 G2:

As for the coproduct, we get that f is a graph homomorphism. For the mappings
f1; f2; f; u1; u2 we show commutativity by calculation as for sets; we also show
uniqueness of f . In EGra we get the same results.

Exercise 4.1.16. For H D ;, the amalgam becomes the coproduct, i.e.

G1

`

;G2 Š G1

`

G2:

Corollary 4.1.17. The generalized edge sumG1˚G2 is an amalgamG1

`

.H;.m1;m2//

G2 with H D .V1

T

V2;;/ and the injections mi W V1

T

V2 ! Vi , i D 1; 2, where
mi W V1

T

V2 ! Vi is defined by mi D idVi
j
V1

T

V2
.

Proof. By construction of the amalgam we get

V.G1

`

.H;.m1;m2//G2/ D .V1 n V2/
S

.V1

T

V2/
S

.V2 n V1/;

E.G1

`

.H;.m1;m2//G2/ D ¹.x; y/ j .x; y/ 2 E.G1/
S

E.G2/º:
Remark 4.1.18. For G1 D .V;E1/ and G2 D .V;E2/, the edge sum G1 ˚ G2 is
the amalgam G1

`

.H;.m1;m2//G2 with H D .V;;/ and the identity injections m1

and m2.

Exercise 4.1.19. Construct the amalgam of two graphs in the categories CGra and
EGra. You can take the graphs from Example 4.1.14.

4.2 Products

In this section we consider binary graph operations for which the vertex set of the
result is the Cartesian product of the vertex sets of the “factors”. We proceed in the
same way as for the union of the vertex sets, i.e. we give the definitions of the new
graphs and describe the constructions by their categorical properties.
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The cross product

The cross product is defined in the same way for directed and undirected graphs. Note
that in the literature the names enclosed in parentheses are also used. We choose to
use the term “cross product” because it is suggested by the structure of this product in
the first example.

Definition 4.2.1. The cross product (categorical product, conjunction) of the graphs
Gi D .Vi ; Ei /, i D 1; 2, is defined to be

G1 �G2 WD
�

V1 � V2;
®�

.x; y/; .x0; y0/
� j .x; x0/ 2 E1 and .y; y0/ 2 E2

¯

�

:

Multiple cross products can be defined analogously. In the pictures we will mostly
label vertices simply as xx0 instead of .x; x0/.

Example 4.2.2 (Cross product).

�

�

� � �

� � �

� � �

�
��
�
��

	
		

	
		

G2

G1

a1 a2 a3

b1 b2 b3b
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� �
G2

G1

a1 a2 a3

b1 b2 b3b

a

1 2 3

Theorem 4.2.3. The cross product together with the natural projections p1 W G1 �
G2 ! G1 and p2 W G1�G2 ! G2 form the categorical product in the category Gra;
that is:

(a) p1 and p2 are morphisms;

(b) .G1�G2; .p1; p2// solves the following universal problem in the category Gra.

For all graphs G and all morphisms f1 W G ! G1 and f2 W G ! G2, there
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exists exactly one morphism f W G ! G1�G2 such that the following diagram
is commutative:

G

G2p2

p1

G1

f2

f1

f

G1 G2

We write G1�G2 and, analogously,
Q

i2I Gi for multiple products. Moreover, we
write f DW h.f1; f2/i and say that f is product induced by .f1; f2/.

Here, i.e. in the category Gra, we have f .x/ D .f1.x/; f2.x// for all x 2 G.

Proof. This is left as an exercise: turn around the arrows and replace injections by
projections in the corresponding proof for the coproduct.

Remark 4.2.4. The cross product G1 � G2 corresponds to the so-called Kronecker
product of the adjacency matrices,

A.G1 �G2/ D A.G1/ � A.G2/

where, for i; j 2 ¹1; : : : mº and k; ` 2 ¹1; : : : ; nº, we define

A.G1/ � A.G2/ D .aij / � .bk`/ D

0

B

@

a11.bk`/ 
 
 
 a1m.bk`/
:::

: : :
:::

am1.bk`/ 
 
 
 amm.bk`/

1

C

A

with

aij .bk`/ D

0

B

@

aij b11 
 
 
 aij b1n
:::

: : :
:::

aij bn1 
 
 
 aij bnn

1

C

A

:

In this way we obtain an mn � mn matrix where mn is the number of vertices of
G1 �G2.

The coamalgamated product

The next definition, categorically dual to Definition 3.2.3, we give formally, which
means that:

� all “arrows” for the morphisms are reversed; and

� injective and surjective are exchanged.
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Moreover, we see again that the categorical description of the cross product is cate-
gorically dual to the categorical description of the union.

Definition 4.2.5. Let G1 D .V1; E1/, G2 D .V2; E2/ and H D .V;E/ be graphs,
and let n1 W G1 ! H and n2 W G2 ! H be surjective strong graph homomorphisms.
The strong subgraph of G1 �G2 with the vertex set ¹.x1; x2/ 2 G1 �G2 j n1.x1/ D
n2.x2/º is called the coamalgam (coamalgamated product, pullback) of G1 and G2

with respect to ..n1; n2/;H/.

We write G1

Q..n1;n2/;H/
G2 and, analogously,

Q..ni /i2I ;H/
Gi for multiple coa-

malgams.
Note that for the vertices of the coamalgam we have that ¹.x1; x2/ 2 G1 � G2 j

n1.x1/ D n2.x2/º DSz2H n�1
1 .z/ � n�1

2 .z/.

Theorem 4.2.6. The coamalgam G1

Q..n1;n2/;H/
G2 has the following properties:

(a) the (domain-modified) natural projections p1 W G1

Q..n1;n2/;H/
G2 ! G1

and u2 W G1

Q..n1;n2/;H/
G2 ! G2 are graph homomorphisms and we have

n1p1 D n2p2, i.e. the square is commutative;

(b)
�

G1

Q..n1;n2/;H/
G2; .p1; p2/

�

solves the following universal problem in Gra.

For all graphs G and all morphisms f1 W G ! G1 and f2 W G ! G2 such
that n1f1 D n2f2, i.e. which make the exterior quadrangle commutative, there
exists exactly one morphism f such that the triangles are commutative.

G

Ge

H
n1

p2

n2p1

G1

G1 G2

(( , ), )n n H1 2

f2

f1

f

We say that f is coamalgam induced by .f1; f2/.
Here, i.e. in the category Gra, we have f .x/ D .f1.x/; f2.x// for all x 2 G.

Proof. Take .x1; x2/ 2Sz2H n�1
1 .z/ � n�1

2 .z/.
(a) It is clear that the projections are graph homomorphisms. Moreover,

n1 p1 .x1; x2/ D n1.x1/ D z;
n2 p2 .x1; x2/ D n2.x2/ D z:
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(b) Define
f .y/ D .f1.y/; f2.y// 2 G1

Q..n1;n2/;H/
G2:

Then
n1p1f .y/ D n1f1.y/ D n2f2.y/ D n2p2f .y/;

and thus f .y/ 2 G1

Q..n1;n2/;H/
G2. In this way both triangles become commuta-

tive, and f is unique as for sets since, again, so far we have only mappings on the
vertex sets.

Furthermore, f is a graph homomorphism:

.y; y0/ 2 E.G/ ) .f1.y/; f1.y
0// 2 E.G1/ and .f2.y/; f2.y

0// 2 E.G2/:

Consequently,

..f1.y/; f2.y//; .f1.y
0/; f2.y

0/// 2 E.G1

Q..n1;n2/;H/
G2/

since everything lies in G1

Q..n1;n2/;H/
G2, which by definition is a strong subgraph

of G1

Q

G2.

Remark 4.2.7. The definitions of the mappings f (including correctness and unique-
ness) as well as their commutativity properties have been proved as for sets and map-
pings. Since graphs and graph homomorphisms are sets (the vertex sets) and map-
pings, the coproducts, amalgams, products and coamalgams must have the required
properties. Consequently, also the injections, projections and induced morphisms are
the same mappings. The only additional steps in the proofs are to show that injections,
projections and induced morphisms belong to the category in question.

Corollary 4.2.8. For H D K
.1/
1 , the coamalgam G1

Q..n1;n2/;H/
G2 turns into the

cross product, i.e. we have G1

QK
.1/
1 G2 D G1 �G2.

Proof. For H D K
.1/
1 we always have n1f1 D n2f2 for all f1; f2. Thus the formu-

lation of the above theorem is the categorical description of the product.

Example 4.2.9 (Coamalgam).
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a1
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a2
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The coamalgam is the strong subgraph of G1

Q

G2 with the vertices n�1
1 .z1/ �

n�1
2 .z1/ D ¹b1º and n�1

1 .z2/ � n�1
2 .z2/ D ¹a2º; that is, it consists of the edge

.a2; b1/.

Exercise 4.2.10. The cross product is not the product in the category CGra. By Re-
mark 4.2.7, the projections or the induced morphism will not be in CGra.

The disjunction of graphs

Definition 4.2.11. The disjunction of the graphs G and H is defined to be

G _H WD .V .G/ � V.H/; ¹¹.x; y/; .x0; y0/º j ¹x; x0º 2 E.G/ or ¹y; y0º 2 E.H/º/:

Exercise 4.2.12. In CGra, the disjunction .G_H; .p1; p2// is the categorical product
of G and H . We have to show that the induced morphism and the injections belong
to CGra.

Example 4.2.13 (Disjunction).
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Exactly the edges between any two non-adjacent vertices on the outer boundary of the
square in the picture do not exist!

Exercise 4.2.14. Find the construction of the coamalgam of two graphs in the cate-
gory CGra. Start with an example.

4.3 Tensor products and the product in EGra

After the product and the coamalgam, which have similar categorical characteriza-
tions, we now consider constructions that we can describe as tensor products. More-
over, we give the product in EGra.
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The box product

Here we again have the same definitions for directed and undirected graphs. Alterna-
tive names for the box product are given in parentheses. We decided to use the name
“box product” because that is what is suggested by the structure of the graph in the
first example. The graphs are the same ones as in Example 4.2.2.

Definition 4.3.1. The box product (product, Cartesian product, Cartesian sum) of
the graphs G1 D .V1; E1/ and G2 D .V2; E2/ is defined to be

G1 �G2 WD
�

V1 � V2;
®�

.x; y/; .x; y0/
� j x 2 G1; .y; y

0/ 2 E2

¯

S

®�

.x; y/; .x0; y/
� j y 2 G2; .x; x

0/ 2 E1

¯�

:

Remark 4.3.2. The box product G1 �G2 has the adjacency matrix .A.G1/ � I2/C
.I1 � A.G2//, where Ii denotes the identity matrix with the size of Gi , for i D
1; 2, and � denotes the Kronecker product (see Remark 4.2.4) and C the sum of the
matrices (cf. [Cvetković et al. 1979], Section 2.5 on p. 67). This construct is called
the Kronecker sum of the two matrices.

Example 4.3.3 (Box product).

�

�

� � �

� � �

� � �

b1 b2 b3

a1 a2 a3

1 2 3

b

a

Recall that mappings that start in two-fold Cartesian products and which compo-
nentwise are morphisms in the respective category, like 	 and 
 , are called bimor-
phisms, cf. Definition 3.2.12. The most famous box products are “cubes”.

Definition 4.3.4. The graph given by Q1 D K2 and Qn D Qn�1 �K2 for n > 1 is
called the n-cube.

With this definition, it is easy to draw the four-dimensional cube in two-dimensional
space. It has eight three-dimensional cubes as “faces”. Should we throw it into four-
dimensional space, it would fall on one of the three-dimensional faces. With some
practice one can imagine the five-dimensional cube, and so on.
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Theorem 4.3.5. The box product G1 � G2 together with the identity mapping 	 W
V1 � V2 ! G1 �G2 is the tensor product in the categories Gra and EGra; that is:

(a) for every x 2 V1 the mapping 	.x; / W G2 ! G1 � G2 is a morphism, and for
every y 2 V2 the mapping 	. ; y/ W G1 ! G1 � G2 is a morphism, i.e. 	 is a
bimorphism;

(b) .	; G1 �G2/ solves the following universal problem in Gra and in EGra.

For every graph X and every bimorphism 
 W V1 � V2 ! X , there exists ex-
actly one morphism 
� W G1 � G2 ! X such that the following diagram is
commutative:

E1 E 2

X G2G1

We say that 
� is tensor product induced by 
 .
Here, i.e. in the categories Gra and EGra, one has 
� D 
 ı 	�1.

Proof. It is clear that 
� D 
	�1 makes the diagram commutative and is uniquely
determined as for sets.

We have to show that 
� is a graph homomorphism. Take ..x1; x2/; .x
0
1; x

0
2// 2

E.G1 �G2/, that is,

Œ.x1; x
0
1/ 2 E.G1/ ^ x2 D x0

2� _ Œ.x2; x
0
2/ 2 E.G2/ ^ x1 D x0

1�:

Consider

.
�.x1; x2/; 

�.x0

1; x
0
2// D .
	�1.x1; x2/; 
	

�1.x0
1; x

0
2//

D .
.x1; x2/; 
.x
0
1; x

0
2//:

Now, x2 D x0
2 and .x1; x

0
1/ 2 E.G1/

� bimorphHHHHH) .
.x1; x2/, 
.x0
1; x2// 2 E.X/, and

x1 D x0
1 and .x2; x

0
2/ 2 E.G2/

� bimorphHHHHH) .
.x1; x2/; 
.x1; x
0
2// 2 E.X/.
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Example 4.3.6 (Box product in CGra). The box product is not the tensor product in
the category CGra.

�

�

� �

� �

� �

� �

� �

� �

� �
1 2

b

a

b1 b2

a1 a2

b1 b2

a1 a2

K2 K4

K2

�
�
�

	
	
	



�

�
�
�
�
�
�
�
�� 




À 
�

	

We see that 	 is a bicomorphism, since the embeddings

	.a; / W K2 ! K2 �K2 and 	.b; / W K2 ! K2 �K2

	. ; 1/ W K2 ! K2 �K2 and 	. ; 2/ W K2 ! K2 �K2

are graph comorphisms.
We choose X D K4 and define 
 by the embeddings


.a; / W K2 ! K4 and 
.b; / W K2 ! K4;


. ; 1/ W K2 ! K4 and 
. ; 2/ W K2 ! K4;

according to the labeling of the vertices, which are graph comorphisms. Then 
 is a
bicomorphism.

But the induced mapping 
� is not a graph comorphism, as .
�.a1/; 
�.b2// is an
edge without a preimage.

Exercise 4.3.7. The box product is not the product in the category CGra. Here the
projections from the box product are graph homomorphisms but not graph comor-
phisms. To see this, consider the above example for the box product. Here we have

.p2.a1/; p2.a2// D .1; 2/ 2 E.G2/ but .p1.a1/; p1.a2// D .a/ … E.G1/:
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The boxcross product

Now we consider the edge sum of the cross product and the box product. This so-
called boxcross product also has a categorical meaning: it is the product in the cate-
gory EGra.

Definition 4.3.8. The boxcross product (strong product, normal product) is defined
to be

G1 �G2 WD .G1 �G2/˚ .G1 �G2/:

Exercise 4.3.9. The boxcross product .G1 � G2; .p1; p2// together with the natural
projections constitute the product in the category EGra. Again, we have to show that
the induced mapping and the projections are the category EGra.

Example 4.3.10 (Boxcross product).
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K2

P2

It is easy to see that the projections are not comorphisms.
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� � ��

� �

��

�
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b3 3�
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�
�
�

	
	
	

�

�

In the preimage under p2, the edge between the encircled vertices does not exist!

Exercise 4.3.11. Find the construction of the coamalgam of two graphs in the cate-
gory EGra. Start with an example.

The complete product

The following definition is the same for directed and for undirected graphs.

Definition 4.3.12. The complete product (join product) is defined by

G �H WD .G�H/˚ .KjGj �KjH j/:
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Example 4.3.13 (Complete product).

�

�

� � �

� � �

� � �

b1 b2 b3

a1 a2 a3

1 2 3

b

a

In the picture we have to add all diagonals to getK2 �P2, so we have all edges except
for .a1; a3/ and .b1; b3/.

Exercise 4.3.14. The complete product together with the identity mapping 	 W V.G/�
V.H/! G �H is the tensor product but not the product in the category CGra.

Synopsis of the results

Corollary 4.3.15. We summarize in a table which of the compositions between graphs
play which categorical role in the respective categories.

Gra EGra CGra

Coproduct Union Union Join

Product Cross product Boxcross product Disjunction

Tensor product Box product Box product Complete product

Corollary 4.3.16. In SGra and SEGra, coproducts, products and tensor products do
not exist.

Proof. This follows from the fact that the category SGra is the intersection of the
categories Gra and CGra. Now, all three constructions are different in these two
categories, but they would have to coincide on the intersection. A similar argument
can be used for SEGra.

Product constructions as functors in one variable

All product constructions define covariant functors in the respective categories. We
make this concrete for the box product.
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Example 4.3.17 (Tensor functors). For the box product and a fixed G 2 Gra we get
the functor

G � � W Gra �! Gra

H1 7�! G�H1

?

?

y

f 7�! G � f WD
?

?

y

.x;y/
?

?

y

>
.x;f .y//

H2 7�! G�H2 :

It is an easy exercise to see that the properties of a functor hold.

The respective functors could also be considered in the first variable.

4.4 Lexicographic products and the corona

The lexicographic products are also graphs built on the Cartesian product of the vertex
sets of two (or more) graphs. They do not have a categorical description. This is also
true of the corona and its generalizations.

Lexicographic products

For directed and undirected graphs we have the same definitions. After Example 4.4.4
we will give a practical method for constructing lexicographic and generalized lexi-
cographic products.

Definition 4.4.1. The lexicographic product (composition) of G1 and G2 is defined
to be

G1ŒG2� WD
�

V1 � V2;
®

..x; y/; .x0; y0// j .x; x0/ 2 E1

¯

S

®¹.x; y/; .x; y0/º j x 2 V1; .y; y
0/ 2 E2º

�

:

Remark 4.4.2. The lexicographic productG1ŒG2� has the adjacency matrix .A.G1/�
J2/C.I1�A.G2//, where J2 denotes the matrix of ones of the same size asG2, I1 is
the identity matrix of the same size as G1, and � denotes the Kronecker product (cf.
Remark 4.2.4) andC the sum of the matrices (cf. [Cvetković et al. 1979], Section 2.5
on p. 71).

Definition 4.4.3. Let G D .V;E/ and let .Hx/x2G be graphs with Hx D .Vx; Ex/.
The generalized lexicographic product (G -join) of G with .Hx/x2G is defined to be

GŒ.Hx/x2G � WD
�®

.x; yx/ j x 2 V; yx 2 Hx

¯

;
®�

.x; yx/; .x
0; y0

x/
� j .x; x0/ 2 E¯

S

®�

.x; yx/; .x; y
0
x/
� j x 2 V; .yx; y

0
x/ 2 Ex

¯�

:
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Example 4.4.4 (Lexicographic products).

a

b

0 1 2

K2ŒP2

P2ŒK2

P2

K2

K1

P2Œ.K1; K2; P2

Construction 4.4.5. We can operationalize the definitions as follows. Take the first
graph G1, pump up its vertices and insert the second graph G2 in each vertex. An
edge between two vertices of G1 then means that each vertex of G2 inside the one
pumped-up vertex ofG1 is adjacent to every vertex inside the other pumped-up vertex
ofG1. We proceed analogously for the generalized lexicographic product, where now
different graphs are inserted in the pumped-up vertices of G1.

Exercise 4.4.6. We have GŒH�˚ ŒG�H D G _H and

Kn;m D K2Œ.Kn; Km/�; Kn1;:::;nr
D Kr Œ.Kn1

; : : : ; Knr
�/:

The corona

We mention the corona only briefly, since it is a construction by accident. It originated
from a statement about automorphism groups which turned out to be false for lexico-
graphic products. This was the equation in Exercise 4.4.10 with the lexicographic
product instead of the corona.

As for the join, different variants are possible for directed graphs.
The corona G1 G G2 was defined by Frucht and Harary as the following graph.

Take one copy of G1 and n1 copies of G2, where n1 denotes the number of vertices
of G1. Now connect the i th vertex of G1 by edges with all the vertices of the i th copy
of G2.
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Definition 4.4.7. Let G1 D .V1; E1/ and G2 D .V2; E2/ be graphs. The corona of
G1 and G2 is defined to be

G1 GG2 WD .V1

S

.V1 � V2/; E1

S¹.x; .x; y// j x 2 V1; y 2 V2º
S¹..x; y/; .x; y0// j x 2 V1; .y; y

0/ 2 E2º/:
Remark 4.4.8. The corona is generalized in the same way as the lexicographic prod-
uct; for each vertex of G1 one takes different graphs instead of one G2, in anal-
ogy to the generalized lexicographic product. The notation is, for instance, K2 G
ŒP2; K2

S

K1�, as shown in Example 4.4.9.

Example 4.4.9 (Coronas).
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a0 a1 a2 b1 b2 b3

K2 G ŒP2; K2

S

K1�

Exerceorem 4.4.10. Prove that Aut.G G H/ D .Aut.G/ o Aut.H/jG/, using the
notation for the wreath product from Chapter 9. What can you say if Aut is replaced
by LEnd or QEnd or SEnd?

4.5 Algebraic properties

In this section we do some algebra on a “higher level”, i.e. we compose not elements
but entire graphs and look at some algebraic properties of these compositions, such as
commutativity.
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Remark 4.5.1. The following relations are valid for subgraphs:

G1ŒG2� � � G1 �G2

G1 �G2 � G1 _G2 � G1 �G2

ŒG1�G2 � � G1 �G2

Remark 4.5.2. All operations except for the lexicographic product and the corona are
commutative. The lexicographic product is commutative using the natural bijection
.x; y/ 7! .y; x/ if and only if both factors are complete graphs, and also in the trivial
cases whereG D H or one factor isK1. All operations are associative. So we always
get “semigroups of graphs”, in the case of the edge sum on graphs with a fixed vertex
set.

For �;�;�;_ and the lexicographic product, K1 is the identity element; for
S

and C, the empty set is the identity element. So in these cases we even get “monoids
of graphs”. For the other operations, such as � and˚, identity elements do not exist.

Zero elements never exist for operations based on the union of the underlying sets;
the empty set is the zero element for operations based on the Cartesian product of the
underlying sets.

Using the results of the following theorem we get “semirings of graphs” with
S

as addition and all products except the lexicographic product. With the join C as
addition and � or _ as multiplication, we also get “semirings of graphs”.

Theorem 4.5.3 (Distributivities). Let G;H1 and H2 be graphs with jGj D n. Then
(assuming V.H1/ D V.H2/ for˚) the following hold:

(1.1) G � .H1

S

H2/ D .G �H1/
S

.G �H2/.

(1.2) G � .H1 CH2/ D .G �H1/C .G �H2/ if and only if G D K.n/
n .

(1.3) G � .H1 ˚H2/ D .G �H1/˚ .G �H2/.

(2.1) G�.H1

S

H2/ D .G�H1/
S

.G�H2/.

(2.2) G�.H1 CH2/ D .G�H1/C .G�H2/ if and only if G D K1.

(2.3) G�.H1 ˚H2/ D .G�H1/˚ .G�H2/.

(3.1) G � .H1

S

H2/ D .G �H1/
S

.G �H2/.

(3.2) G � .H1 CH2/ D .G �H1/C .G �H2/ if and only if G D Kn.

(3.3) G � .H1 ˚H2/ D .G �H1/˚ .G �H2/.

(4.1) G � .H1

S

H2/ D .G �H1/
S

.G �H2/.

(4.2) G � .H1 CH2/ D .G �H1/C .G �H2/.

(4.3) G � .H1 ˚H2/ D .G �H1/˚ .G �H2/.
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(5.1) G _ .H1

S

H2/ D .G _H1/
S

.G _H2/.

(5.2) G _ .H1 CH2/ D .G _H1/C .G _H2/.

(5.3) G _ .H1 ˚H2/ D .G _H1/˚ .G _H2/.

(6.1a) GŒH1

S

H2� D .GŒH1�/
S

.GŒH2�/ if and only if G D Kn.

(6.2a) GŒH1 CH2� D .GŒH1�/C .GŒH2�/ if and only if G D K.n/
n .

(6.3a) GŒH1 ˚H2� D .GŒH1�/˚ .GŒH2�/.

(6.1b) .H1

S

H2/ŒG� D .H1ŒG�/
S

.H2ŒG�/.

(6.2b) .H1 CH2/ŒG� D .H1ŒG�/C .H2ŒG�/.

(6.3b) .H1 ˚H2/ŒG� D .H1ŒG�/˚ .H2ŒG�/.

4.6 Mor constructions

This section is for specialists who like tricky constructions. To such specialists who
like category theory as well, the left adjointness of these constructions to different
products will be a source of fascinating and technically challenging problems.

All of the following six constructions can also be made for directed graphs. The
resulting graphs will differ in the numbers of vertices and edges.

See, for comparison, Mati Kilp and Ulrich Knauer, Graph operations and categor-
ical constructions, Acta Comment. Univ. Tartu, Mathematica 5 (2001) 43–57. Parts
(a) of Construction 4.6.1 and Theorem 4.6.4 can also be found in Definition 5.18 and
as a remark before Proposition 5.19 in the chapter Graph homomorphism: structure
and symmetry by Gena Hahn and Claude Tardiff in [Hahn/Sabidussi 1997].

Diamond products

For the following three constructions we will use the same symbol and the same no-
tation. The differences will become clear from the category where the construction
takes place. The definitions are the same for directed and undirected graphs.

Construction 4.6.1.

(a) The diamond product G –̇ H of two graphs G and H in Gra is defined by

V.G –̇ H/ WD Gra.G;H/; the set of graph homomorphisms from G to H;

E.G –̇ H/ WD ¹.˛; ˇ/ j .˛.x/; ˇ.x// 2E.H/ for all x 2 Gº:
(b) The diamond product G –̇ H of two graphs G and H in EGra is defined by

V.G –̇ H/ WD EGra.G;H/; the set of graph egamorphisms from G to H;

E.G –̇ H/ WD ¹.˛; ˇ/ j .˛.x/; ˇ.x// 2E.H/ for all x 2 Gº:
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(c) The diamond product G –̇ H of two graphs G and H in CGra is defined by

V.G –̇ H/ WD CGra.G;H/; the set of graph comorphisms from G to H;

E.G –̇ H/ WD ¹.˛; ˇ/ j 9x 2 G such that .˛.x/; ˇ.x// 2E.H/º:

Note that these operations are highly non-commutative.

Note, moreover, that the definitions of adjacencies in (a) and (b) have the same
structure, which is understandable as the two categories have the same tensor prod-
uct (see Theorem 4.3.5) and the constructions are left adjoint to tensor products (see
Theorem 4.6.4).

Example 4.6.2 (Diamond products).

For G D � �
a b

�
c

and H D � �
1 2

we get G –̇ H as follows:

in Gra: in EGra: in CGra:

� �

� �

�
�
�
��	

	
	
	

122 212

121 211

� �

� �

�
�
�
��	

	
	
	

122 212

121 211
� �
� �

111 222

112 221

� �111 222

The vertex ijk denotes the morphism that maps a to i , b to j and c to k for i; j; k 2
¹1; 2º.

Remark 4.6.3. The diamond products define covariant functors in the respective cat-
egories. So for Gra we get

G –̇ � W Gra �! Gra

H1 7�! G –̇H1

?

?

y

f 7�! G –̇ f WD
?

?

y

?̨

?

y

>
f ˛

H2 7�! G –̇H2 :

Considering the respective functors in the first variable, we get contravariant functors;
cf. Definition 3.3.6.
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Left inverses for tensor functors

In the situation described in the next theorem, one usually says that the diamond
functors are left adjoint to the tensor functors; cf. Example 4.3.17. Recall Defini-
tion 3.3.10.

Theorem 4.6.4. The diamond functors are “left inverse” to the tensor functors in one
variable in Gra, EGra and CGra.

Proof. (a) We show that there exists a natural transformation

‚ W IdGra.�/! .G –̇ �/.G��/ D G –̇ .G��/;

where IdGra.�/ is the identity functor on Gra; in other words, ‚ relates the two
functors with respect to objects and morphisms. The following rectangle in Gra,
which contains the definition of ‚A.a/ for A 2 Gra and a 2 A, is commutative for
all morphisms f W A! B in Gra.

� �

A

B

‚A

G –̇ .G�A/

G –̇ .G�f /

G –̇ .G�B/

f

‚A.a/ W
´

G ! G�A
x 7�! .x; a/

‚B .f .a// W
´

G ! G�B
x 7�! .x; f .a//

a

f .a/

�

�

�

�

�

�

.
‚B

1. We compute for all a 2 A and all x 2 G that

.G –̇ .G � f //.‚A.a//.x/ D .G –̇ .idG � f //.‚A.a//.x/

D ..idG � f /‚A.a//.x/

D .idG � f /.‚A.a/.x// D .idG � f /.x; a/

D .x; f .a// D .‚B.f .a///.x/:

This proves commutativity.

2. We prove that for all a 2 A we get ‚A.a/ 2 V.G –̇ .G �H//. Since

.‚A.a/.x/;‚A.a/.x
0// D ..x; a/; .x0; a// 2 E.G � A/;

for .x; x0/ 2 E.G/ we have ‚A.a/ 2 V.G –̇ .G � A// D Gra.G;G � A/.
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3. We prove that ‚A is a morphism in Gra. If .a; a0/ 2 E.A/, then for all x 2 G
we get

.‚A.a/.x/;‚A.a
0/.x// D ..x; a/; .x; a0// 2 E.G � A/

by the definition of G � A. Consequently,

.‚A.a/;‚A.a
0// 2 E.G –̇ .G � A//:

Thus ‚A 2 Gra.A;G –̇ .G � A//.

Putting the above together, we have that ‚ is a natural transformation.
(b) Analogous to (a).
(c) We follow the scheme of the proof of (a).

1. The definition of the mapping ‚A W A ! .G –̇ �/.G � �/ for A 2 CGra and
the proof of commutativity of the diagrams are the same as in (a).

2. If .‚A.a/.x/;‚A.a/.x
0// D ..x; a/; .x0; a// 2 E.G � A/, then the definition

of the complete product implies that .x; x0/ 2 E.G/. Consequently, ‚A.a/ 2
V.G –̇ .G � A// D CGra.G;G � A/.

3. If .‚A.a/;‚A.a
0// 2 E.G –̇ .G � A//, i.e. there exists x 2 V.G/ such

that .‚A.a/.x/;‚A.a
0/.x// D ..x; a/; .x; a0// 2 E.G � A/, then the defi-

nition of the complete product implies that .a; a0/ 2 E.A/. Therefore ‚A 2
CGra.A;G –̇ .G � A//.

Again, we have that ‚ is a natural transformation.

Power products

For the following three constructions we will again use the same symbol and the same
notation, with the differences becoming clear from the category where the construc-
tion takes place; the definitions are also the same for directed and undirected graphs.

Construction 4.6.5.

(a) The power product G & H of the graphs G and H in Gra is defined by

V.G & H/ WD Set.G;H/ D Map.G;H/; the set of mappings from G to H;

E.G & H/ WD ¹.˛; ˇ/ j ˛ ¤ ˇ; .˛.x/; ˇ.x0// 2 E.H/ for all .x; x0/ 2 E.G/º:

(b) The power product G & H of the graphs G and H in EGra is defined by

V.G & H/ WD EGra.G;H/;

E.G & H/ WD ¹.˛; ˇ/ j .˛.x/; ˇ.x0// 2 E.H/ for all .x; x0/ 2 E.G/;
.˛.x/; ˇ.x// 2 E.H/ for all x 2 Gº:
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(c) The power product G & H of the graphs G and H in CGra is defined by

V.G & H/ WD CGra.G;H/;

E.G & H/ WD ¹.˛; ˇ/ j 9 x; x0 2 G W .˛.x/; ˇ.x0// 2 E.H/; .x; x0/ … E.G/º:

The symbol& is supposed to remind us that these operations are not commutative.

Example 4.6.6 (Power products).

For G D � �
a b

�
c

and H D � �
1 2

we get G & H as follows,

where the vertex sets are the respective sets of morphisms:

in Gra: in EGra: in CGra:

� �

� �

�
�
�
��	

	
	
	

111 222

112 221

� �121 212

122 211

� �

� �

� �111 222

112 221

� �121 212

122 211

� �

� �111 222

As in Example 4.6.2, the vertex ijk denotes the morphism which maps a to i , b to j
and c to k for i; j; k 2 ¹1; 2º.

Left inverses to product functors

In the situation described in the next theorem, one usually says that the power functors
are left adjoint to the product functors. Recall Definition 3.3.10 and compare with
Theorem 4.6.4.

Theorem 4.6.7. The power functors are “left inverse” to the product functors in one
variable in Gra, EGra and CGra, if we consider the constructions as functors.

Proof. The proofs for Gra and EGra follow the scheme of the proof of part (a) in
Theorem 4.6.4. We prove the statement for CGra.

1. The definition of the mapping ‚A W A ! .G & �/.G _ �/ for A 2 CGra
and the proofs of commutativity of the diagrams are the same as in part (a) of
Theorem 4.6.4.
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2. If .‚A.a/.x/;‚A.a/.x
0// D ..x; a/; .x0; a// 2 E.G_A/, then the definition of

the disjunction implies that .x; x0/ 2 E.G/. Thus‚A.a/ 2 V.G & .G_A// D
CGra.G;G _ A/.

3. If .‚A.a/;‚A.a
0// 2 E.G & .G _A/, i.e. there exists x; x0 2 V.G/ such that

.‚A.a/.x/;‚A.a
0/.x0// D ..x; a/; .x0; a0// 2 E.G _ A/ but .x; x0/ … E.G/,

then the definition of the disjunction implies that .a; a0/ 2 E.A/. Thus ‚A 2
CGra.A;G & .G _ A//.

Putting the above together, we have again that ‚ is a natural transformation.

Exercise 4.6.8. Determine diamond and power products of several small graphs in
each of the three categories.

4.7 Comments

In this chapter there are several exercises which the reader can use to gain familiarity
with the subject.

In Sections 4.1 through 4.3 it is interesting to see how graph compositions such as
sums and various products get a categorical interpretation. In particular, in each case
we can see that a graph-theoretical construction satisfies universal and categorical
properties. In the abstract definition of the categorical product as given in Section 3.2,
we described only the abstract properties of an object with a family of morphisms,
called the categorical product. In this chapter we prove that, for example, the cross
product with the projections satisfies these abstract properties in the category Gra and
can therefore be called the product in this category.

The meaning of a universal construction can also be made clear in this concrete
case. If we start with G1 and G2, then whatever graph G and whatever homomor-
phisms f1 W G ! G1 and f2 W G ! G2 we take, we can always find f W G !
G1 �G2 such that the diagram is commutative; cf. Theorem 4.2.3.

Here we also get an impression of what the difference is between a categorical
description – of the product, for example – and a non-categorical definition – of the
lexicographic product, for example. The latter is given only inside a given category,
but not in an arbitrary abstract category. This means that we cannot take it to this or
another construction in a different category by using a functor. We will resume this
discussion in Chapter 11.

The Mor constructions of Section 4.6, separate from their categorical meanings,
are of some interest in themselves and can be studied with respect to various algebraic
or other properties – that is, which properties of the components are inherited by the
respective construction, and under what additional conditions. As far as I can see,
there are many open questions.
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Line graph and other unary graph operations

Similar to binary graph operations, new objects can also be constructed from just one
graph. The formation of the complement and loop complement are unary operations
with an unchanged vertex set. The same is true of the opposite graph of directed or
undirected graphs; see Definition 1.1.8. Constructing the geometric dual graph for a
planar graph may be considered a unary operation with a changing vertex set.

The three operations starting from Section 5.2 also give graphs with new vertex
sets. They work in a natural way for undirected graphs. For directed graphs, there are
several possibilities in each of the three cases; these can be formulated according to
specific needs or just as a game to familiarize oneself with the concepts.

5.1 Complements, opposite graphs and geometric duals

Definition 5.1.1. If G D .V;E/ is a graph without loops, we define the complement
of G to be G D .V;E/ where .x; y/ 2 E if and only if .x; y/ … E; x ¤ y. If
G D .V;E/ is a graph, possibly with loops, we define the loop complement of G to
be G

ı D .V;Eı
/ where .x; y/ 2 Eı

if and only if .x; y/ … E.

Exercise 5.1.2. The formation of the complement and of the loop complement can be
considered as covariant functors from the category Gra to the category CGra.

Theorem 5.1.3. If the graph G is d -regular with n vertices and has eigenvalues
d; d2; : : : ; dn, then G and G have the same eigenvectors and G has eigenvalues
n � d � 1;�1 � d2; : : : ;�1 � dn.

Proof. See [Godsil/Royle 2001], Lemma 8.5.1 on p. 172. The adjacency matrix of G
is given by A.G/ D Jn� In�A.G/, where Jn is the n�nmatrix consisting entirely
of ones and In is the n � n identity matrix. Let ¹u; u2; : : : ; unº be an orthonormal
set of eigenvectors of A.G/, where u D t .1; : : : ; 1/; cf. Theorem 2.7.5. Then u
is an eigenvector of A.G/ with the eigenvalue n � 1 � d , as an easy computation
shows. For 2 � i � n, the eigenvector ui D .ui1

; : : : ; uin
/ is orthogonal to u and so

ui1
C 
 
 
 C uin

D 0. Now we calculate

A.G/ui D .Jn � In � A.G//ui D 0 � 1 � di :

Therefore ui is an eigenvector of A.G/ with eigenvalue �1 � di .
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Remark 5.1.4. The opposite graph for a directed graph is defined in Definition 1.1.8;
this can be seen as a contravariant functor; see Definition 3.3.5.

We note that on the category PathG (cf. Example 3.1.9(a)), this functor takes a
morphism which is an x; y path to a morphism which is a y; x path.

Remark 5.1.5 (Geometric dual). Observe that the geometric dualG� of a plane graph
G is the graph which has the regions of the original graph G as vertices; so it has a
new vertex set, and two vertices in G� are adjacent if and only if the two regions
in G have a common edge. Plane, planar and non-planar graphs will be defined in
Chapter 13.

This procedure can be generalized to non-planar graphs embeddable on surfaces
of genus greater than zero. Note that different embeddings may be possible on one
surface and therefore different geometric duals will exist. It might be interesting to
consider different embeddings as functors.

Note that the geometric dual of a simple graph may have loops and multiple edges.
Consequently, we will have to use the morphism concept from Definition 1.4.1 in this
case; that is, the functor would go to the category EGra.

5.2 The line graph

We discuss this construction and its properties in some detail. In particular, we study
the determinability of a graph by its line graph – can non-isomorphic graphs have
isomorphic line graphs?

In Section 5.3 we will discuss eigenvalues of line graphs and how they depend on
the eigenvalues of the original graph.

Definition 5.2.1. The graph LG D .E; ¹¹e; e0º j e \ e0 ¤ ;; e ¤ e0º/ is called the
line graph of G .

Lemma 5.2.2. We have jV.LG/j D jEj and jE.LG/j DPx2V

�

degG.x/
2

�

.

Proof. Any two edges in G which are incident with the vertex x of G give an edge in
LG; thus we have a total of

P

x2V

�

degG.x/
2

�

edges in LG.

Remark 5.2.3 (Line graphs of directed graphs). A line graph of a directed graph can
be constructed in several different ways. We can use the above definition unchanged,
or we can join two vertices e1 and e2 of the line graph with an undirected edge if both
edges in the original graph have a common source or a common tail. This always
gives an undirected graph. We can also require that two vertices e1 and e2 of the line
graph form an edge .e1; e2/ if t .e1/ D o.e2/ or o.e1/ D t .e2/ in the original graph.
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Remark 5.2.4 (The line graph as a functor). We note that L can be interpreted as
a functor from the category Gra into the category EGra upon setting Lf .e/ WD
.f .o.e//; f .t.e/// where f is a morphism in Gra, e on the left-hand side of the
equality is a vertex in LG, and e on the right-hand side is an edge in the graph G.

Example 5.2.5 (Line graph). The line graphs of graphs on the left are shown on the
right.

K1;3

K3

K4 n ¹eº

C4
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2
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21

3

1

2
4

5

3

1

24

4

1

3

5

4 2

1

3

Observe that L.K4 n ¹eº/ D C4 CK1.
The line graph of K3 amalgamated with K2 at one vertex is K4 n ¹eº.
LK4 is the amalgam of C4 C K1 with itself amalgamated along C4, which is iso-

morphic to T .K3/ in Example 5.4.4.
We note that the complement of LK5 is the Petersen graph, also denoted by K5W2

or O3 (see [Biggs 1996], p. 20):



94 Chapter 5 Line graph and other unary graph operations

This is a fascinating graph which serves as example or counterexample in many differ-
ent situations. There is a monograph devoted to this graph: [Holton/Sheehan 1993].

Lemma 5.2.6. Take x0 2 G with degG.x0/ D 1, and let ¹x0; : : : ; x`º be a simple
path such that degG.x1/ D 
 
 
 D degG.x`�1/ D 2 and degG.x`/ D 1 or degG.x`/ >

2, where ` � 2. The ` edges on this path form a simple path in LG of length ` � 1,
where the end vertices have the same degree properties. Conversely, each simple path
of this type having length `�1 in LG comes from such a simple path of length ` inG.

Proof. It is clear that the edges e1; : : : ; e` of the path inG are the vertices of a path of
length `�1 in LG. If degG.x`/ D 1, then degLG.e`/ D 1. If degG.x`/ > 2, then the
edges e`C1; e`C2; : : : in G are incident with x`. Then these edges of G as vertices of
LG are adjacent to e`, i.e. degLG.x`/ > 2.

Conversely, suppose that e1; : : : ; e` is a simple path of length ` � 1 in LG. Then
this is a simple path of length ` in G with the vertices ¹x0; : : : ; x`º. It follows that
degG.x`/ ¤ 2 if degLG.e`/ ¤ 2, since otherwise both degrees would be 2.

Theorem 5.2.7. A connected graph G is isomorphic to its line graph LG if and only
if it is a circuit; that is, G Š LG if and only if G Š Cn for some n 2 N.

Proof. Suppose G Š LG. Then

n D jV j D jEj D jV.LG/j D jE.LG/j

D
X

x2V

�

degG.x/

2

�

D 1

2

X

x2V

degG.x/.degG.x/ � 1/

D 1

2

X

x2V

degG.x/
2 � 1

2

X

x2V

degG.x/ D
1

2

X

x2V

degG.x/
2 � n;

and thus 4n DPx2V degG.x/
2.

If degG.x/ � 2, then because of 4n D 22n we get that degG.x/ D 2.
If degG.x/ D 1, then there exists a simple path of length ` inG, as G is connected.

Since G Š LG, there exists a simple path of length ` in LG, which corresponds to a
simple path of length `C 1 in G by Lemma 5.2.6, and so on. Thus, in G there would
have to exist arbitrarily long simple paths.

The converse is obvious.
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Determinability of G by LG

Here we pose a typical question: Can G be described uniquely by LG? The answer
is yes, with two exceptions. This also answers the question of under what conditions
the functor L is an injector.

For the next theorem, compare the two graphs K3 and K1;3 in Example 5.2.5 and
their line graphs.

Theorem 5.2.8. Let G and G0 be connected and simple. We have LG Š LG0 if and
only if G Š G0 or G D K3; G

0 D K1;3, and every isomorphism '1 W LG ! LG0
is induced by exactly one isomorphism ' W G ! G0, i.e. for all e 2 LG with e D
¹u; vº 2 E.G/ one has '1.e/ D ¹'.u/; '.v/º.

Proof. From Example 5.2.5 we know that LK3 D K3 D K1;3 but LK3 ¤ K1;3.
Now suppose that LG Š LG0 but LG … ¹K3; K1;3º or LG0 … ¹K3; K1;3º.

We consider all graphs with up to four vertices, except for the two graphs mentioned
above. These are K2; K4; P2; P3; C4; K4 n ¹eº and K3 amalgamated at one vertex
with K2. Consider the associated line graphs. It is clear that no two of them are
isomorphic, and none are equal to K1;3; cf. Example 5.2.5.

Now take G to be a graph with more than four vertices. We show that every iso-
morphism '1 W LG ! LG0 is induced by exactly one isomorphism ' W G ! G0, i.e.
for every e 2 LG; e D ¹u; vº 2 E.G/ we have '1.e/ D ¹'.u/; '.v/º.

Uniqueness of ': Assume that ' and  induce '1, i.e. for all e D ¹u; vº 2 E.G/
we have '1.e/ D ¹'.u/; '.v/º D ¹ .u/;  .v/º. Suppose that w is another ver-
tex of G such that ` WD ¹v;wº 2 E.G/, say. Then ¹e; `º 2 E.LG/ and thus
¹'1.e/; '1.`/º 2 E.LG0/ and '1.`/ D ¹'.v/; '.w/º D ¹ .v/;  .w/º. Then '.v/
and  .v/ are incident with the edges '1.e/ and '1.`/ in G0. Since two distinct edges
cannot have two vertices in common, we get '.v/ D  .v/. And since '1.e/ 2 E.G/
contains only two vertices, '.v/ D  .v/ implies that '.u/ D  .u/.

Existence of ': Now we have an isomorphism '1 W LG ! LG0.
(1) If K1;3 D ¹uº C ¹v1; v2; v3º with edges e1; e2; e3 is contained in G, then the

three edges '1.e1/; '1.e2/; '1.e3/ of '1.K1;3/ in G0 also form a K1;3. To see this,
we proceed as follows.

As G is connected and has at least five vertices, there exists ` D ¹v1; wº or ` D
¹u;wº as an edge inG. InLG the vertices e1; e2; e3 form aK3, and ` is adjacent only
to e1 or to all three vertices of theK3. In LG0 D '1.LG/ we have the same situation.
Then `0 WD '1.`/ is adjacent to '1.e1/ DW e0

1, say, or to all of the '1.ei / DW e0
i ,

i D 1; 2; 3. These vertices are edges in G0; that is e0
1; e

0
2; e

0
3 form a K3 or a K1;3

in G0.
Suppose that they form K3. Then `0 has to be incident with all three edges, which

is not possible in K3. Otherwise, `0 has to be adjacent only to e0
1, which is also

impossible in K3. Thus e0
1; e

0
2; e

0
3 form K1;3 in G0, and this proves (1).
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(2) Set in.v/ WD ¹e 2 E j v 2 eº for v 2 G, compare Definition 1.1.9. We consider
two cases and show that in both cases '1.in.v// D in.v0/.

(a) If degG.v/ � 2, there exists exactly one v0 2 Te2in.v/ '1.e/. To see this, sup-
pose that v in G is the common vertex of the edges e1 and e2. Then '1.e1/ ¤
'1.e2/ in G0 and '1.e1/

T

'1.e2/ ¤ ;, since '1 is a graph isomorphism and so
¹'1.e1/; '1.e2/º2E.LG0/. InG0 there exists exactly one v02'1.e1/

T

'1.e2/,
since G and G0 are simple and two edges can have only one common ver-
tex. Since this is the case for any two edges in in.v/, we get the unique v0 2
T

e2in.v/ '1.e/.

It remains to show that '1.in.v// D in.v0/. Take e 2 in.v/, i.e. v 2 e.

� If degG.v/ > 2, then we have the three edges e; e1 and e2 with com-
mon vertex v, and therefore the three edges '1.e/; '1.e1/; '1.e2/ have the
common vertex v0 inG0 because of (1). Consequently, '1.in.v// � in.v0/.

� If degG.v/ D 2, then in.v/ D ¹e1; e2º and thus again '1.in.v// � in.v0/
as v0 2Te2in.v/ '1.e/.

Conversely, take e0 2 in.v0/ in G0. Then we get the reverse inclusion when
considering '�1

1 .

(b) If degG.v/ D 1, there exists exactly one v0 2 '1.e/. Suppose that e D ¹v; uº in
G. Then degG.u/ � 2, as G is connected and has more than two vertices. As in
(a), we get '1.in.u// D in.u0/, where u0 2 G0 is unique in having this property.
But since e0 WD '1.e/ in G0 has exactly two end vertices, we again obtain that
there exists exactly one v0 2 G0 with e0 D ¹u0; v0º. It remains to show that
v0 2 '1.e/. This follows once we show that '1.in.v// D in.v0/. So suppose
e0 ¤ `0 are both in in.v0/ in G0. In LG0 we get ¹e0; `0º 2 E.LG0/, and as '�1

1

is an isomorphism we have ¹e; '�1
1 .`0/º 2 E.LG/, i.e. e

T

'�1
1 .`0/ ¤ ; in

G. As degG.v/ D 1, it follows that u 2 eT'�1
1 .`0/. Then '�1

1 .`0/ 2 in.u/
implies '1'

�1
1 .`0/ 2 '1.in.u//

T

in.v0/ D in.u0/
T

in.v0/, which contradicts
the simplicity of G0. Thus degG0.v0/ D 1, i.e. jin.v/j D jin.v0/j D 1, and as
'1.e/ 2 in.v0/, we get that in this case '1.in.v// D in.v0/, too.

This proves (2).
Now we can prove the rest of the theorem. Define ' W G ! G0 by '.v/ WD v0 ac-

cording to (2), which then is well defined. It is apparent that '1.e/ D ¹'.v/; '.u/º for
e D ¹v; uº, since ¹eº D in.v/

T

in.u/. Thus ¹'1.e/º D in.v0/
T

in.u0/. Therefore '
induces '1.

Moreover, '1.in.v// D in.'.v// D in.'.w// D '1.in.w// if '.v/ D '.w/ and
thus in.v/ D in.w/, since '1 is an isomorphism. Now '.v/ D '.w/ implies v D w,
i.e. ' is injective; since G is simple, connected and has at least two edges, not both
of v and w have degree 1. So both have degree at least 2 as in.v/ D in.w/ and thus
v D w by 2(a).
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Now ' is also surjective, as for v0 2 G0 there exists e0 2 E.G0/ with v0 2 e0. Upon
setting ¹u; vº D '�1

1 .e0/, the definition of ' implies that '.u/ D v0 or '.v/ D v0.
Finally, ' is a graph homomorphism, as ¹'.u/; '.v/º D '1.e/ 2 E.G0/ for e D
¹u; vº 2 E.G/ since '1 is a mapping, and analogously for '�1.

5.3 Spectra of line graphs

In this section we consider only line graphs of undirected graphs.

Proposition 5.3.1. Take G to be without loops, simple, with jEj D m, and with the
adjacency matrix A.G/. Let LG be the line graph of G. Denote by Im the m � m
identity matrix. Then

tB.G/B.G/ D 2 Im C A.LG/
and

B.G/ tB.G/ D D.G/ � .A.G/C tA.G//G

if G is directed, while
B tB D D.G/C A.G/

if G is undirected.
Here tB denotes the transpose of B , and we use the so-called directed/undirected

vertex valency matrix D.G/ WD .degree.xi /ıij /i;j D1;:::;n 2 M.n � nIN0/, where
degree.xi / WD indeg.xi /C outdeg.xi / for directed graphs and degree.xi / WD deg.xi /

for undirected graphs.

Proof. Take G to be without loops and simple, with jV j D n. Then consider the
.k; l/th entry

. tB B/kl D
n
X

iD1

bik bil ;

which is the standard scalar product of the kth and l th columns of B . For k D l ,
every column contributes 2. For k ¤ l , the product is 1 if and only if the edges k and
l are incident in the vertex i . This can happen at most once since G is simple. This is
the value of the .k; l/th entry of A.LG/.

To prove the second equality we consider the .i; j /th entry of the matrix:

.B tB/ij D
m
X

lD1

bil bjl :

For i D j we get
m
X

lD1

bil bil D degree.xi /:
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The sum is taken over all edges that are incident with the vertex i , as A.G/ has zeros
on the diagonal.

For i ¤ j we get that the standard scalar product of row i with row j contributes
a non-zero value if and only if the two rows have a non-zero entry at the same place,
which gives �1 as the product. This column corresponds to an edge between the
vertices i and j , so we have the .i; j /th entry of �.A.G/C tA.G//.

If G is undirected, we get only the entries of A.G/ and no negative numbers.

Theorem 5.3.2 (Sachs). If G is a simple d -regular graph without loops and with n
vertices and m D 1

2
nd edges, then for m � n we have

chapo.LGI t / D .t C 2/m�n chapo.GI t C 2 � d/:
Proof. Define two square matrices with nCm rows and columns:

U WD
�

tIn �B
0 Im

�

and V WD
�

In B
tB tIm

�

;

where B is the incidence matrix of G and tB its transpose; cf. Definition 2.2.1. Then

UV D
�

tIn � B tB 0
tB tIm

�

; V U D
�

tIn 0

t tB tIm � tBB

�

:

As
det.UV / D det.U / det.V / D det.V / det.U / D det.V U /;

we get

det.UV / D ˇˇtIn � B tB
ˇ

ˇ

ˇ

ˇtIm

ˇ

ˇ D det.UV / D det.V U / D ˇˇtIn

ˇ

ˇ

ˇ

ˇtIm � tBB
ˇ

ˇ:

The equality of the determinants gives the equations

tm jtIn � B tBj D tn jtIm � tBBj
or equivalently, tm�n jtIn � B tBj .�/D jtIm � tBBj:

With tBB
.~/D A.LG/C 2Im and B tB

.}/D D.G/C A.G/ (see Proposition 5.3.1),
we calculate that

chapo.LGI t / D det.tIm � A.LG//
.~/D det..t C 2/Im � tBB/

.�/D .t C 2/m�n det..t C 2/In � B tB/

.}/D .t C 2/m�n det..t C 2 � d/In � A.G//
D .t C 2/m�n chapo.GI t C 2 � d/:
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Corollary 5.3.3. Let G be a d -regular graph with m � n and spectrum

Spec.G/ D
�

�1 
 
 
 �p�1 d

m.�1/ 
 
 
 m.�p � 1/ 1
�

:

Then

Spec.LG/ D
� �2 �1 C d � 2 
 
 
 �p�1 C d � 2 2d � 2
m � n m.�1/ 
 
 
 m.�p�1/ 1

�

:

Example 5.3.4 (Spectra of line graphs). The line graph LKn is sometimes called a
triangle graph and is denoted by �n. Its vertices correspond to n.n � 1/=2 pairs of
numbers from the set ¹1; : : : ; nº. Two vertices are adjacent if the corresponding pairs
have a common member. The known spectrum of Kn and Theorem 5.3.2 imply that

Spec.�n/ D
� �2 n � 4 2n � 4

1
2
n.n � 3/ n � 1 1

�

:

We observe that

Spec.�5/ D
� �2 1 6
5 4 1

�

:

Application of Theorem 5.1.3, taking into account that the Petersen graph K5W2 has
n.n � 1/=2 D 10 vertices, gives

Spec.K5W2/ D
� �2 1 3
4 5 1

�

:

Theorem 5.3.5. We always have �.LG/ � �2.

Proof. The matrix tBB is positive semidefinite, since for all matrices of this form one
has for the norm of Bz that

tz tB Bz DW kBzk2 � 0
for all z 2 Rn. This means that the eigenvalues of tBB are non-negative. Now
A.LG/ D tBB � 2Im implies that all eigenvalues of this matrix are greater than or
equal to �2, as .tBB � 2Im/v D tBBv � 2v D �v � 2v D .� � 2/v if � is an
eigenvalue of tBB .

Which graphs are line graphs?

Using the preceding theorem, we can conclude that G is not a line graph if �.G/ <
�2. There also exist graphs with �.G/ D �2which are not line graphs – one example
is the Petersen graph; cf. [Biggs 1996], 3b on p. 20.

More generally, there is a characterization of line graphs by nine forbidden sub-
graphs with at most six vertices each; see L. W. Beineke, Characterization of derived
graphs, J. Combin. Theory 9 (1970) 129–135.
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Theorem 5.3.6. A graph is a line graph if and only if it does not contain one of the
following graphs as a strong subgraph.

Remark 5.3.7. A connected, d -regular graph G with d � 17 and �.G/ D �2 is
either a line graph or K2;:::;2; cf. [Behzad et al. 1979], who point to Hofmann and
Ray-Chaudhuri without giving a reference. According to [Biggs 1996], p. 21, there
are seven d -regular graphs with d < 17 and smallest eigenvalue �2 which are not
line graphs: the Petersen graph, the four exceptions from Theorem 5.3.8, a 5-regular
graph with 16 vertices, and a 16-regular graph with 37 vertices.

Theorem 5.3.8.

(1) If Spec.G/ D Spec.LKp/ for p ¤ 8, then G Š LKp.

For p D 8 there exist three exceptional graphs.

(2) If Spec.G/ D Spec.LKp;p/ for p ¤ 4, then G Š LKp;p.

For p D 4 there exists one exceptional graph.

For (1), see also J. Hoffman, On the exceptional case in the characterization of the
arcs of a complete graph, IBM J. Res. Dev. 4 (1960) 487–496.

Example 5.3.9 (The exceptional graph with p D 4 in Theorem 5.3.8). In this graph,
figure on the next page, the first vertex in the upper row is identified with the first
vertex in the bottom row, and so on; also, every vertex in the slanted line on the right
is identified with the corresponding vertex in the left slanted line. This graph G then
has 16 vertices and the same spectrum as LK4;4. It is clear that the two are not
isomorphic since LK4;4 Š K4 �K4, which has several copies of C4; this is not the
case in G.
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Spec.G/ D Spec.LK4;4/

Spec.K4;4/
Example 2:5:9D

� �4 0 4
1 6 1

�

;

Spec.LK4;4/
Theorem 5:3:2D

� �2 �4C 4 � 2 0C 4 � 2 2 � 4 � 2
16 � 8 1 6 1

�

D
� �2 �2 2 6

8 1 6 1

�

D
� �2 2 6

9 6 1

�

:

Compare with [Biggs 1996], p. 21, and S. S. Shrikhande, The uniqueness of the L2

association scheme, Ann. Math. Stat. 30 (1959) 791–798.

Remark 5.3.10. Let G be a connected, d -regular multigraph with n vertices and m
edges, and let .�; �/ be a pair of corresponding eigenvalues of G and LG. Then
the incidence matrix B.G/ maps the eigenspace Eig.LG;�/ onto the eigenspace
Eig.G; �/ and tB.G/ maps Eig.G; �/ onto Eig.LG;�/; cf. [Cvetković et al. 1979]
Theorem 3.36.

5.4 The total graph

This unary construction is based on the construction of the line graph. The total graph
is a combination of the graph G and the line graph LG seen from the vertex set and
from the edge set, plus some additional edges which form the third set in the edge set
of the following definition.

Definition 5.4.1. The graph TG D .V
S

E; E
S

E.LG/
S¹¹v; eº j v 2 eº/ is

called the total graph of G.
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Remark 5.4.2 (Total graphs of directed graphs). First, take into account the various
possibilities for the line graph of directed graphs; see Remark 5.2.3. For the existence
of an edge .v; e/ or .e; v/, we can now require that v D t .e/ or v D o.e/.

Exerceorem 5.4.3 (The matrix of a total graph). For a graph G one has

A.TG/ D
�

A.G/ B.G/
tB.G/ A.LG/

�

:

For a d -regular graph G (where d > 1) with n vertices, m edges and eigenvalues
�i ; i D 1; : : : ; n, this implies that TG has m � n eigenvalues �2 and the 2n eigen-
values 1

2
.2�i C d � 2˙

p

4�i C d2 C 4 /, i D 1; : : : ; n (cf. [Cvetković et al. 1979]
Theorem 2.20).

Example 5.4.4 (Total graph).

K3 T .K3/
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c b

a

1 2

3

1

b

3

c

2

a

It is clear that TG always contains G and LG as subgraphs.

Exercise 5.4.5 (The total functor). Convince yourself that T becomes a covariant
functor from the category Gra into the category EGra upon defining Tf W TG !
TG0 for f W G ! G0 by Tf ..v; w// D .f .v/; f .w// for v;w 2 V.G/.

Question. Which properties shown for the line graph in the previous section can be
generalized to the total graph?

5.5 The tree graph

This final unary construction gives a “graph from certain subgraphs of a graph”.

Definition 5.5.1. Let T1; : : : ; T` denote all spanning trees of G. The (spanning) tree
graph TrG is defined by V.TrG/ D ¹T1; : : : ; T`º and E.TrG/ D ¹¹Ti ; Tj º j Ti and
Tj coincide except for one edgeº.
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Example 5.5.2 (Tree graph). We drawG, its trees T1; : : : ; T5 and its tree graph TrG;
its central vertex corresponds to T5.

G T1 T2 T3 T4

T5

tree graph TrG

T1

Exercise 5.5.3 (The spanning tree functor). Interpret Tr as a functor from the category
Gra into the category EGra by defining Trf . If, in the above example, we consider
the mapping f which takesG ontoK3, then this implies that TrG is mapped ontoK3.
This means that Trf is in EGra. Note that for the homomorphisms f in this case,
whereG has multiple edges, we need a homomorphism concept which also takes care
of edges like in Definition 1.4.1.

In general, under the functor Tr, different graph homomorphisms do not stay differ-
ent, i.e. Trf D Trg in EGra is possible even though f ¤ g in Gra. This means that
the functor is not faithful. Moreover, this functor does not preserve different objects,
i.e. it is not injective on objects.

5.6 Comments

As mentioned earlier, it might be interesting to study unary operations as functors. In
certain cases it will require some effort to define the appropriate categories; but apart
from that, preservation and reflection of properties can be investigated.

On the non-categorical level, it could be interesting to study how properties of
the total graph depend on the respective properties of the original graph. There is a
monograph devoted to coloring questions in this context; see [Yap 1996].

After investigating determinants and permanents for graphs as mentioned in the
Comments section of Chapter 2, it would be interesting to then examine these concepts
for line graphs and total graphs.



Chapter 6

Graphs and vector spaces

In this chapter we use linear algebra to construct vector spaces from graphs and con-
nect them by linear mappings. In the last four sections of this chapter we give some
applications to voltage and current problems.

Take a field F and a directed graph G D .V;E/ with jV j D n and jEj D m. As
for sets, we define

F V WD ¹f W V ! F j f is a mappingº:
Since F is a field, addition and multiplication in F induce an addition and a scalar

multiplication on F V : for g; h 2 F V , we set .f C g/.v/ WD f .v/ C g.v/ and
.kf /.v/ WD kf .v/ for all v 2 V and k 2 F . In this way F V becomes an F -vector
space.

We denote by ıij the Kronecker symbol, such that ıij D 0 if i ¤ j and ıjj D 1.

6.1 Vertex space and edge space

We start with two vector spaces associated with every graph – the cycle space and
the cocycle space. For undirected graphs, these vector spaces are considered over the
two-element field F2 D ¹0; 1º, where 1C 1 D 0. For directed graphs, we choose an
arbitrary field F with characteristic zero, for example the real numbers R.

Definition 6.1.1. The vertex space ofG D .V;E/ overF is defined asC0.G/ WD F V

with operations induced by F . An element of C0.G/ is called a 0-chain (0-simplex).
The edge space of G over F is defined as C1.G/ WD FE , again with operations

induced by F . An element of C1.G/ is called a 1-chain (1-simplex).

The elements of the vertex space correspond in a natural way to a subset of V . An
arbitrary element of the vertex space is a formal linear combination of the vertices.
For a vertex set U � V , the corresponding element in F V is the indicator function
V ! F , which assigns 1 to the vertices of U and 0 to the other vertices. The neutral
element of C0.G/ is the empty vertex set ;.

Theorem and Definition 6.1.2. A basis of C0.G/ is .fi /iD1;:::;n where fi 2 C0.G/

with fi .xj / D ıij for xj 2 V; i; j D 1; : : : ; n, and dimF .C0.G// D jV j D n. This
basis is called the standard vertex basis.

In an analogous way, we define the standard edge basis .gj /j D1;:::;m, and we have
dimF .C1.G// D jEj D m.
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Proof. It is clear that we have minimal generating systems.

Notation 6.1.3. For V.G/ D ¹x1; : : : ; xnº and E.G/ D ¹e1; : : : ; emº, we can write
the elements of f 2 C0.G/ and g 2 C1.G/ as follows:

f D
n
X

iD1

�ifi or f D .�1; : : : ; �n/ with �i D f .xi / 2 F for xi 2 V.G/;

g D
m
X

j D1

�iej or g D .�1; : : : ; �m/ with �j D g.ej / 2 F for ej 2 E.G/:

The boundary & Co.

The following two linear mappings relate the vertex and edge spaces. Moreover, they
have a representation by matrices already introduced.

Definition 6.1.4. The boundary operator @ W C1.G/ ! C0.G/ is defined by linear
extension of

@.e/ D o.e/ � t .e/ for e 2 E to C1.G/:

We call @.g/ WDPej 2E �j @.ej / the boundary of g DPej 2E �j ej in C1.
The coboundary operator @� W C0.G/! C1.G/ is defined by linear extension of

@�.x/ WD
m
X

j D1

�j ej where, for x 2 V , �j D

8

ˆ

<

ˆ

:

1 if x D o.ej /
�1 if x D t .ej /
0 otherwise

to C0.G/:

We call @�.f / WDPxi 2V �i@
�.xi / the coboundary of f DPxi 2V �ixi in C0.

The boundary operator takes 1-chains to 0-chains; the coboundary operator takes
0-chains to 1-chains.

Example 6.1.5 (Standard bases, boundary and coboundary, directed).
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x4

x1 x3

x2

e4 e3

e2e1

e5
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Standard vertex basis: .1; 0; 0; 0/, .0; 1; 0; 0/, .0; 0; 1; 0/, .0; 0; 0; 1/.
Standard edge basis: .1; 0; 0; 0; 0/, : : : , .0; 0; 0; 0; 1/.
We have

@.e5/ D x2 � x4 D .0; 1; 0;�1/;
@.e2 C e3 C e5/ D 2x2 � 2x3 D .0; 2;�2; 0/;

@.�e2 C e3 C e5/ D 0:

The kernel of @ corresponds to the directed cycles.
The image of @� corresponds to the coboundaries.
We have

@�.x1/ D e1 � e4 D .1; 0; 0;�1; 0/;
@�.x2/ D �e1 C e2 C e5 D .�1; 1; 0; 0; 1/;

@�.x1 C x2/ D e2 � e4 C e5 D .0; 1; 0;�1; 1/:

Example 6.1.6 (Boundary and coboundary, over F2).

� � �

� �
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x4 x5 x6e8 e9

e4 e5 e6 e7

x2 x3
e3

e1 e2

x1

The 1-chain �1 D e1 C e2 C e4 C e9 has the boundary

@.�1/ D .x1 C x2/C .x1 C x3/C .x2 C x4/C .x5 C x6/ D x3 C x4 C x5 C x6:

The 0-chain �0 D x3 C x4 C x5 C x6 has the coboundary

@�.�0/ D .e2 C e3 C e6 C e7/C .e4 C e8/C .e5 C e6 C e8 C e9/C .e7 C e9/

D e2 C e3 C e4 C e5:

Matrix representation

As is usual in linear algebra, we define the matrix of a linear mapping with respect to
given bases.
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Theorem 6.1.7. LetB0 andB1 denote the standard bases ofC0.G/ andC1.G/. Then
the representing matrix of @ is the incidence matrixB.G/, and the representing matrix
of @� is tB.G/, the transpose of B.G/; that is, in the usual linear algebra notation,

M
B1

B0
.@/ D B.G/ and M

B0

B1
.@�/ D tB.G/:

Proof. The column i of B.G/ indicates the start and end vertices of the edge i . This
means that it contains the coordinates with respect to B0 of the image of the i th basis
vector of B1 under @.

The row j of B.G/, which is the same as the column j of tB.G/, represents the
edges of G which start from the vertex j byC1 and those which end in this vertex by
�1. This means that it contains the coordinates with respect to B1 of the image of the
j th basis vector of B0 under @�.

Example 6.1.8 (Matrix representation of @ for the graph in Example 6.1.5).

M
B1

B0
.@/ D B.G/ D

0

B

B

@

1 0 0 �1 0

�1 1 0 0 1

0 �1 �1 0 0

0 0 1 1 �1

1

C

C

A

:

6.2 Cycle spaces, bases & Co.

The following definitions of the cycle space and the cocycle space are based on the
possibility of using edges opposite in direction. We describe this using the notion of
orientation.

Definition 6.2.1. Let G D .V;E; o; t/ be a directed graph, and let E 0 � E. A
mapping dir W E 0 ! V � V is called an orientation of E 0 if for e 2 E 0 we set

dir.e/ D ..o.e/; t.e// or dir.e/ D ..t.e/; o.e//:

The cycle space

Let L D ¹ei1
; : : : ; eipº be a semicycle in G. Choose an orientation dir on L such that

dir.L/ D ¹dir.ei1
/; : : : ; dir.eip /º is a cycle, and define

zdir.L/ W

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

E ! F

e 7!

8

ˆ

<

ˆ

:

1 if e 2 L; e D dir.e/;

�1 if e 2 L; e ¤ dir.e/;

0 if e … L:
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The subspace generated,

Z.G/ WD span¹zdir.L/ j dir.L/ is an oriented semicycle in Gº � C1.G/;

is called the cycle space of G.

For an orientation dir on E 0 and e 2 E 0 one has

@.e/ D @.dir.e// or @.e/ D �@.dir.e//:

Corollary 6.2.14 will imply that the elements of Z.G/ are exactly the semicycles.

Lemma 6.2.2. A semicircuit Z1 is not a linear combination of other semicircuits in
Z.G/ if it contains an edge which does not appear in any other semicircuit (and not
only in this case). There always exists a basis of semicircuits for Z.G/.

Proof. There exists a generating system for Z.G/ of semicircuits; as every semicycle
is the union of semicircuits by Lemma 1.1.4, i.e. it belongs toZ.G/, it must be the sum
of the corresponding elements in Z.G/. In Example 6.2.4, the semicircuit consisting
of the edges e3; e6; e9 is not a linear combination of the others, even though each of
its edges appears also in another semicircuit.

Definition 6.2.3. The cycle rank (cyclomatic number, Betti number) 
.G/ of G is
defined to be 
.G/ WD dimF .Z.G//.

Example 6.2.4 (Cycles, cycle rank).
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e8 e7

e9

e2 e5

e3 e6

e1 e4

G

L1 D .e3;�e8; e7;�e6/ zdir.L1/ D .0; 0; 1; 0; 0;�1; 1;�1; 0/

L2 D .�e4; e3; e9;�e5/ zdir.L2/ D .0; 0; 1;�1;�1; 0; 0; 0; 1/

zdir.L1/ C zdir.L2/ D .0; 0; 2;�1;�1;�1; 1;�1;�1/
zdir.L1/ � zdir.L2/ D .0; 0; 0; 1; 1;�1; 1;�1; 1/
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Proposition 6.2.5. Take G D .V;E; o; t/ with k weak components. Then


.G/ � jEj � jV j C k:

In Corollary 6.2.14 it will be seen that we even have equality.

Proof. Every spanning forest has jV j�k edges. Take one spanning forest. Adjoining
one edge of G which does not belong to this forest gives exactly one semicircuit.
For this we have jEj � .jV j � k/ possibilities. All of these are linearly independent
by Lemma 6.2.2. (A spanning forest is the union of the spanning trees of the weak
components of G.)

The cocycle space

Definition 6.2.6. Let G D .V;E; o; t/ be a graph. The set of all edges of G connect-
ing V1 and V2, for a given partition V D V1

S

V2, is called a semicocycle (separating
edge set, cut) of G. A minimal semicocycle is called a semicocircuit of G.

So a semicocycle (or separating edge set) S of a connected graph G is a set such
that G n S is not connected. A semicocircuit is a minimal separating edge set.

Example 6.2.7 (Cut).
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d

Take V1 D ¹aº, V2 to be the rest;
then ¹1; 3º is a cut.

Take V1 D ¹b; f º, V2 to be the rest;
then ¹1; 2; 3; 4; 8; 9º is a

non-minimal cut.

Definition 6.2.8. Let U D ¹ei1
; : : : ; eir

º be a semicocycle in G with partition V1

S

V2 D V . Choose an orientation dir on U such that in dir.U / all edges have the same
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direction (from V1 to V2, say). Define

sdir.U / W

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

E ! F

e 7!

8

ˆ

<

ˆ

:

1 if e 2 U; e D dir.e/;

�1 if e 2 U; e ¤ dir.e/;

0 if e … U:
The subspace generated,

S.G/ WD span¹sdir.U / j dir.U / is an oriented semicocycle in Gº � C1.G/;

is called the cocycle space of G.

Lemma 6.2.9. A semicocircuit is not a linear combination of other semicocircuits (in
S.G/) if it contains an edge which lies in no other semicocircuit (and not only in this
case). There always exists a basis for S.G/ of semicocircuits.

Definition 6.2.10. The cocycle rank (cocyclomatic number) 
�.G/ is defined by


�.G/ WD dimF S.G/:

Proposition 6.2.11. Let G D .V;E; p/ be a graph with k weak components. Then


�.G/ � jV j � k:
Proof. Every spanning forest has jV j�k edges. Each of these (together with suitable
other edges) defines a cut. By Lemma 6.2.9 they are all linearly independent.

Again we even have equality, as we shall see in Corollary 6.2.14.

Example 6.2.12 (Cocycles, cocycle rank). Consider again Example 6.1.5 and one
graph from Example 6.2.4.
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1 2 V1 D ¹aº; U1 D ¹1; 4º; Sdir.U1/ D .1; 0; 0;�1; 0/

V1 D ¹a; dº; U2 D ¹1; 3; 5º; Sdir.U2/ D .1; 0; 1; 0;�1/
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Orthogonality

Now we need the concept of orthogonality in the usual sense. Recall that for two
coordinate vectors v D .v1; : : : ; vn/ and w D .w1; : : : ; wn/ in Rn, the standard
scalar product is defined by h v ; w i WD v1w1 C 
 
 
 C vnwn.

Two vectors v;w 2 Rn are said to be orthogonal, written as v ? w, if h v ; w i D 0,
where h ; i denotes the standard scalar product in Rn. For U � Rn, we call U? WD
¹w 2 Rn j hu ; w i D 0; u 2 U º the orthogonal complement of U in Rn. The zero
vector is thus orthogonal to every vector.

Note that if we now consider vector spaces over R, we get

C1.G/ D span¹e1; : : : ; emº Š Rm:

Theorem 6.2.13. With respect to the standard scalar product in C1.G/, one has

Z.G/? D S.G/:

Proof. We show that Z.G/? � S.G/, i.e. for all zL 2 Z.G/ one has h zL ; sU i D 0
for all sU 2 S.G/, whereL is a semicycle andU a semicocycle. Only those edges that
belong to L and U contribute non-zero summands to the scalar product. We consider
the following situation, where e1 lies in U and L, and U separates V1 and V2.

V1 V2

e2

e1

L

orientation of U

As L is a semicycle, there exists an edge e2 with the given orientation. Otherwise
e1 would have to be used twice and then the e1th coordinate in the vector of L would
have the value 0 (once with 1 and once with �1). Because of the orientation of U , the
edge e2 contributes to the scalar product h zL ; zU i the summand �1 if e1 gives the
summand 1 (and vice versa). The same is true of all edges between V1 and V2, i.e. for
every edge e1 in U and L with summand 1 in the scalar product there exists an edge
in the scalar product with summand �1. Thus S.G/ � Z.G/?.

To prove S.G/? � Z.G/, we proceed as follows. As C1.G/ is finite-dimensional,
we get S.G/

`

S.G/? Š C1.G/. Thus

dimS.G/C dimS.G/? D m D jEj ;
dimS.G/C dimZ.G/ � jEj :
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Lemmas 6.2.2 and 6.2.9 imply that

dimS.G/C dimZ.G/ � jV j � k C jEj � jV j C k D jEj :

Therefore we have equality! Consequently,

dimZ.G/ D jEj � jV j C k;
dimS.G/ D jV j � k;
S.G/? D Z.G/:

Corollary 6.2.14. For graphs G with k components, we have

(1) C1.G/ Š Z.G/`S.G/I
(2) 
.G/ D jEj � jV j C kI
(3) 
�.G/ D jV j � k.

Definition 6.2.15. Let G D .V;E; p/ be a graph with k components, and let T be
a spanning forest of G. Each of the jV j � k edges of T defines a cocircuit. We call
this a fundamental cocycle. These cocycles form a basis of S.G/, a so-called cocycle
basis. Each of the jEj � jV j C k edges of G which do not lie on T define a circuit,
which is called a fundamental cycle. These cycles form a basis of Z.G/, a so-called
cycle basis in G.

The boundary operator & Co.

According to the next lemma, the elements of Z.G/ are closed semipaths.

Lemma 6.2.16. The elements of Z.G/ are 1-chains with boundary 0; that is,

Z.G/ � ker @ D ¹z 2 Z.G/ j @.z/ D 0º:

Proof. For oriented semicycles z 2 Z.G/, one has @.z/ D 0; similarly for linear
combinations.

Lemma 6.2.17. The elements of S.G/ are coboundaries of 0-chains; that is,

S.G/ � Im @� D ¹@�.x/ j x 2 C0.G/º DW coker @�:

Proof. Let U be a fundamental cocircuit which separates V1 and V2, i.e. an element
of a basis of S.G/, and let dir be an orientation. Consider

@�� X

xi 2V1

xi

�

D
X

xi 2V1

@�.xi / D
X

e2E

�ee D sdir.U /;
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where

�e D

8

ˆ

<

ˆ

:

C1 if e 2 U starts in V1;

�1 if e 2 U ends in V1;

0 if e … U:

Theorem 6.2.18. The elements of Z.G/ are exactly the 1-chains with boundary 0;
that is,

Z.G/ D ker @:

The elements of S.G/ are exactly the coboundaries of 0-chains of G; that is,

S.G/ D Im @� D coker @�:

Proof. As always in vector spaces we have dim.ker @/ C dim.Im @/ D dim.C1.G//

for @ W C1.G/! C0.G/. For the ranks of the matrices we have

rank.B/ D rank.tB/ D dim.Im @�/:

Thus dim.ker @/Cdim.Im @�/ D dim.C1.G//. By virtue of Corollary 6.2.14 we have

Z.G/
`

S.G/ Š C1.G/:

This implies the statement with Lemmas 6.2.16 and 6.2.17.

Example 6.2.19 (Cycle rank).
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10 8

dim.C1.K5// D 10;

dim.Z.K5// D 6 D 
.K5/;

dim.S.K5// D 4.

Exercise 6.2.20. Prove that 
.K3;3/ D 4.

6.3 Application: MacLane’s planarity criterion

In 1937 Saunders MacLane gave an algebraic characterization of planar graphs, which
relies on an algebraic analysis of the boundary circuits of the regions in a plane graph.
Plane graphs are graphs embedded in the plane such that edges intersect only in ver-
tices. Graphs having such an embedding are said to be planar.

We recall that a graph is planar if and only if it does not contain (a subgraph home-
omorphic to), or cannot be shrunk to (i.e. does not contain a subgraph contractible to),
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one of the two Kuratowski graphsK5 orK3;3; cf. Theorem 13.1.9. So basically these
two graphs are the prototypes of non-planar graphs. We will also use Euler’s formula
jV j � jEj C jRj D 2 for plane graphs G D .V;E/, where jRj denotes the number
of regions of G, including the unbounded region; see Theorem 13.1.11. This formula
can be proved quite easily by induction on the number of edges jEj of G.

Definition 6.3.1. A basis ¹C1; : : : ; Crº of Z.G/ is called a two-cycle basis if every
e 2 E appears in at most two of the Ci .

Example 6.3.2 (No two-cycle basis). The circuits .1; 6; 19/, .2; 8; 9/, .7; 3; 10/,
.8; 6; 4/, .5; 7; 8/ in Example 6.2.19 are linearly independent but do not form a ba-
sis as dim.K5/ D 6. A sixth circuit for a two-cycle basis must contain the edges
1; : : : ; 5. This, then, has to be a linear combination of the above five circuits. Thus
there does not exist a two-cycle basis.

Example 6.3.3 (Two-cycle basis). We show K4 and a two-cycle basis of it:
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Lemma 6.3.4. Let ¹D1; : : : ;Drº be a basis of Z.G/ over Z2. Then there exist cir-
cuits Ci � Di , i 2 ¹1; : : : rº, such that ¹C1; : : : ; Crº is again a cycle basis of Z.G/.

Proof. LetD1 be an edge disjoint union of circuits, sayD1 D C 0
1

S

: : :
S

C 0
t . Not all

of the C 0
i can be represented usingD2; : : : ;Dr , so there exists a circuit, say C 0

1, which
is not a linear combination of D2; : : : ;Dr . We form a new basis C 0

1;D2; : : : ;Dr . By
continuing in this way we obtain a basis as desired.

Lemma 6.3.5. Take G1 and G2 with jV1

T

V2j � 1, and let B1 and B2 be two bases
of Z.Gi /. Then B1

S

B2 is a basis of Z.G/, where G D G1

`

V1

T

V2
G2 is an

amalgam, and we have Z.G/ D Z.G1/
`

Z.G2/.

Proof. We have the following situation:

G1 G2

x

G

The statement about G is now clear; the statement about Z.G/ comes from linear
algebra.
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Theorem 6.3.6 (MacLane). The graph G D .V;E/ is planar if and only if Z.G/ as
a vector space over Z2 has a two-cycle basis.

Proof. By Lemma 6.3.4 we may assume that G is at least 2-connected.
For “)”, let R1; : : : ; Rr be inner regions of a plane embedding of G and let

C1; : : : ; Cr be the corresponding boundary circuits. Each e 2 E appears in at most
two of the Ci . By Corollary 6.2.14 we get


.G/ D jEj � jV j C 1:
We have jRj D r C 1, taking into account also the exterior region. From Euler’s

formula we get
jEj � jV j C 1 D r D 
.G/:

It remains to show that C1; : : : ; Cr is a generating system inZ.G/. For an arbitrary
C 2 Z.G/, suppose that Ci1

; : : : ; Cis
are those of the Cj 2 ¹C1; : : : ; Crº, which lie

in the inner region of C (possibly including C itself). Then

C D
s
X

lD1

Cil
;

since the edges of a circuit Ci belong to two of these Cil
exactly if they do not lie on

C . So the C1; : : : ; Cr generate Z.G/. Putting the above facts together, we see that
C1; : : : ; Cr is a two-cycle basis of Z.G/.

For “(”, let C1; : : : ; Cr be a two-cycle basis.
We show in two steps that for every e 2 E, Z.Gne/ also has a two-cycle basis.

1. If e is contained in two of the Ci , say C1 and C2, then C1 C C2; C3; : : : ; Cr is
a two-cycle basis of Z.Gne/.

2. If e is contained in only one of the Ci , say C1, then C2; : : : ; Cr is a two-cycle
basis of Z.Gne/.

In the first case, every circuit C � G ne in its linear representation by C1; : : : ; Cr

contains either none or both of the circuits C1 and C2. In the second case, the repre-
sentation of C does not contain C1.

IfG were not planar, thenG would contain eitherK5 orK3;3, which by hypothesis
would also have two-cycle bases, using the fact that Z.G ne/ has a two-cycle basis
for all e 2 E. This leads to a contradiction as follows. Let C1; : : : ; Cr be a two-cycle
basis for K3;3 or K5. Consider

C0 WD
r
X

iD1

Ci :

Then C0 � Z.G/, C0 ¤ ;, is the set of edges which lie in exactly one of the Ci , for
1 � i � r . Moreover, C0 is itself a cycle. But for K5 we have jC0j � 3 and for K3;3

we have jC0j � 4.



116 Chapter 6 Graphs and vector spaces

By Lemma 6.2.2 we have


.K5/ D 6; 
.K3;3/ D 4
(see also Example 6.2.19). This implies the following contradictions. ForK5 we have

6 
 3 �
6
X

iD1

jCi j D 2 jEj � jC0j D 20 � jC0j � 17

(in the first place we have equality if all the Ci are triangles), and for K3;3 we have

4 
 4 �
4
X

iD1

jCi j D 2 jEj � jC0j D 18 � jC0j � 14:

6.4 Homology of graphs

We now take one more step towards abstraction in the direction of algebraic topology.
We do this to obtain another view on direct decompositions of the edge space and
vertex space of a graph. This section leads away from graphs; it can safely be skipped
and returned to later as needed.

First, we recall the situation for arbitrary vector spaces over a field F .

Exact sequences of vector spaces

Definition 6.4.1. Consider the F -vector spaces V0; : : : ; Vr and the linear mappings
f1; : : : ; fr such that

Vr

fr�! Vr�1

fr�1���! 
 
 
 �! V2

f2�! V1

f1�! V0:

This sequence is called an exact sequence if for all i D 1; : : : ; r�1 one has ImfiC1 D
ker fi .

Now let V
f�! W �! 0 (or 0 �! V

f�! W ) be an exact sequence such that

there exists a linear mapping V
g � W with f ı g D idW (or g ı f D idV ); then the

sequence is said to be exact direct (split exact).

Exercise 6.4.2. Let V and W be F -vector spaces. The sequence 0 �! V
f�! W is

exact if and only if f is injective. The sequence W
f�! V �! 0 is exact if and only

if f is surjective.

The next result explains the name “split exact”. The proof follows directly from the
definition of split exact.
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Exercise 6.4.3. Let V and W be F -vector spaces. The sequence 0 �! V
f�! W

is split exact if and only if V is a direct summand of W , and the sequence W
f�!

V �! 0 is split exact if and only if V is a direct summand of W . The sequence

0 �! V
f�! W

f�! V 0 �! 0 is split exact if and only if W is the direct sum of V
and V 0, i.e. if and only if W Š V `V 0 D V ˚ V 0.

Chain complexes and homology groups of graphs

We apply this bit of theory to the spaces associated with a graph.

Definition 6.4.4. Let G be a connected graph. The homomorphism

" W C0.G/! F

n
X

iD1

xivi 7!
n
X

iD1

xi

is called an augmentation mapping.

The (in general not exact) sequence

0! C1.G/
@! C0.G/! 0

with boundary operator @ is called the chain complex of G.
If G is connected, we call

0! C1.G/
@! C0.G/

"! F ! 0

the augmented chain complex of G.
All theorems in this section are merely reformulations of the results about vertex

and edge spaces in a different language. They may be considered as “Exerceorems”.

Theorem 6.4.5. Let G be a graph with k weak components, and let Z.G/, C1.G/

and C0.G/ be the F -vector spaces generated by G. Then

0 �! Z.G/
��! C1.G/

@�! C0.G/
��! C0.G/= Im @ �! 0

is an exact sequence. Here  is the embedding, @ is the boundary operator and � W
C0.G/ �! C0.G/= Im @ is the natural surjection.

Furthermore, we have C0.G/= Im @ Š F k , where now � W C0.G/ �! F k on the
components of G is the augmentation mapping into the respective component of F k .



118 Chapter 6 Graphs and vector spaces

Definition 6.4.6. The factor group H0.G/ WD C0.G/= Im @ is called the 0th homol-
ogy group of G, and H1.G/ WD C1.G/= ker @ Š C1.G/=Z.G/ Š S.G/ is called the
1st homology group of G.

Theorem 6.4.7. Let G be a graph with k weak components, and let Z.G/, S.G/,
C1.G/ and C0.G/ be the F -vector spaces generated by G. Then

0 � Z.G/ � � C1.G/
@�

 � C0.G/
��

 � F k  � 0
is an exact sequence. Here � W C1.G/ �! C1.G/=S.G/ is the natural homomor-
phism, @� is the coboundary operator, �� is the embedding for which ��.bj / D
Pnj

`D1
vj`

, where bj is the j th basis vector of F k and vj`
, ` D 1; : : : ; nj , are the

vertices of the j th component of G. Furthermore, we have C1.G/=S.G/ Š Z.G/.

Corollary 6.4.8. We have C0.G/ Š Im @
`

ker @�.

Theorem 6.4.9. Let G be a graph with k weak components, and let Z.G/, S.G/,
C1.G/, C0.G/ be the F -vector spaces generated by G. Then in

0 ���! Z.G/ ���! C1.G/
@

���! C0.G/
�

���! F k ���! 0

C1.G/=Z.G/

0 0




�




�

all sequences are exact, and the triangle is a commutative diagram with

C1.G/=Z.G/ Š S.G/ Š Im @:

By reversing all arrows we get the diagram

0  ��� Z.G/
u

 ��� G1.G/
@�

 ��� C0.G/
��

 ��� F k  ��� 0

C0.G/=�
�.F k/

0 0

�

�

)

)

which has the same properties, with C0.G/=�
�.F k/ Š Im @�.
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In both cases the sequences from upper left to lower right, from lower left to upper
right and conversely are exact direct.

The diagrams show that

C1.G/ Š C1.G/=Z.G/
`

Z.G/ Š S.G/`Z.G/

Š C0.G/=�
�.F k/

`

Z.G/ Š Im @�` ker @

and

C0.G/ Š C0.G/=�
�.F k/

`

F k Š C1.G/=Z.G/
`

F k

Š S.G/`F k Š Im @
`

ker @�:

In particular,

C1.G/=Z.G/ Š C0.G/=�
�.F k/ Š S.G/ Š Im @ Š Im @�:

6.5 Application: number of spanning trees

In this section we start with the first application of the theory developed earlier in this
chapter.

Let G D .V;E/ be a directed, connected graph, with jV j D n and jEj D m.

Lemma 6.5.1. Let eB and C be cocycle and cycle matrices of G, i.e. basis matrices
of S.G/ and Z.G/, and take L � E. Denote by eBjL and C jL the submatrices
which contain only elements belonging to L. Then the columns of eBjL are linearly
independent if and only if L has no semicircuit, and the rows of C jL are linearly
independent if and only if L has no semicocircuits.

Example 6.5.2. We take the graph

3

ba

4

1

2

e

cd

(a) Here L D ¹a; b; cº contains no semicircuit, and the columns of

eBjL D
0

@

1 0 0

�1 1 0

0 0 �1

1

A

are linearly independent.
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But L D ¹c; d; eº contains a semicircuit, and the columns of

eBjL D
0

@

0 �1 1
0 0 0

�1 1 0

1

A

are linearly dependent.

(b) Now L D ¹a; bº contains a semicocircuit, and the rows of

C jL D
�

1 �1
1 �1

�

are linearly dependent. But L D ¹b; cº contains no semicocircuit, and the rows
of

C jL D
�

1 �1
1 0

�

are linearly independent.

Proposition 6.5.3. Let B be the incidence matrix of G; let eB be obtained from it by
deleting one row. Then eB is a cocycle matrix of G, and this matrix is invertible.

Proof. The row vectors of the incidence matrix B of G are cocircuits. For one row
z, select those edges which do not have 0 at the entry z. Call this set U , which is
a cocircuit (see Definition 6.2.6 ff.). Deletion of these edges isolates the vertex v.
For e 2 U we have sdir.U /.e/ D z.e/. Therefore the rows are the elements of the
cocycle space. Now B has rank n � 1 by Theorem 2.2.3, and any n � 1 rows are
linearly independent. So deletion of one row gives a cocycle matrix, which clearly is
invertible.

Example 6.5.4. The incidence matrix of the graph from Example 6.5.2 is

0

B

B

@

1 0 0 �1 1

�1 1 0 0 0

0 �1 1 0 �1
0 0 �1 1 0

1

C

C

A

:

Deletion of the third row gives
0

@

1 0 0 �1 1
�1 1 0 0 0

0 0 �1 1 0

1

A ;

which is a cocycle matrix.
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Corollary 6.5.5. The number of spanning trees of G is equal to the number of non-
singular .n � 1/ � .n � 1/ submatrices of eB .

Proof. By Proposition 6.5.3 we know that eB corresponds to the incidence matrix
with one row deleted. The .n � 1/ � .n � 1/ submatrices of eB therefore correspond
to the incidence matrices of subgraphs of G with .n� 1/ edges. By Lemma 6.5.1 and
Proposition 6.5.3 these incidence matrices correspond to trees exactly when they are
non-singular. As they contain all vertices, the trees are spanning.

Proposition 6.5.6. The incidence matrix B of a directed graph is totally unimodular,
i.e. every square submatrix has determinant 0, 1 or �1.

Proof. We use Poincaré’s Lemma (see, e.g., [Biggs 1996] p. 32).
Let S be a square submatrix of B . If every column of S has two non-zero entries,

they must be C1 and �1. Then every column has sum 0. Therefore S is singular
and detS D 0. Analogously, detS D 0 if all entries are zero. The remaining case is
where one column of S has exactly one non-zero entry. We expand the determinant
with respect to this row: detS D ˙ detS 0, where S 0 contains one row and one column
fewer than S . Continuing in this way, we get total unimodularity as the determinant
is either 0 or a single entry of S .

Example 6.5.7. We show that Proposition 6.5.6 is not valid for undirected graphs.
Take K3 with incidence matrix

0

@

0 1 1

1 0 1

1 1 0

1

A ;

which has determinant equal to 2.

Theorem 6.5.8 (Matrix Tree Theorem). Let G be a directed graph, and let eB be its
incidence matrix with one row deleted. The number of spanning trees is 	.G/ D
det.eB t

eB/.

Proof. By the Determinant Multiplication Theorem, for a p�q matrixK and a q�p
matrix L with p � q, we get that detKL D P

P detKPLP D
P

P detKP detLP .
Here P denotes all p-element subsets of ¹1; : : : ; qº; KP is the p � p submatrix of K
that uses only the columns from P , and LP is defined similarly. We apply this to eB
and get

deteB t
eB D

X

P

deteBP det t
eBP

D
X

Ptree

deteBPtree det t
eBPtree C

X

Pnon-tree

deteBPnon-tree det t
eBPnon-tree :
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Here Ptree consists of the elements in P which form the spanning trees ofG accord-
ing to Lemma 6.5.1 and Corollary 6.5.5, and Pnon-tree is made up of the other elements.
Now Lemma 6.5.1 and Proposition 6.5.6 imply that the determinant of a submatrix
representing a tree is either 1 or �1, and the determinant of other .n � 1/ � .n � 1/
submatrices is 0. Thus deteB t

eB DPPtree
1CPPnon-tree

0.

Example 6.5.9. Consider again the graph from Example 6.5.2. Its spanning trees are
as follows:

3

ba

4

1

2

c

3

a

4

1

2

e

c

3

a

4

1

2

e

d

3

ba

4

1

2

d

3

b

4

1

2

cd

3
a

4

1

2

cd

3

b

4

1

2

e

d

3

b

4

1

2

e

c

Take eB from Example 6.5.4. It follows that

det.eB t
eB/ D det

0

B

B

B

B

@

0

@

1 0 0 �1 1
�1 1 0 0 0

0 0 �1 1 0

1

A

0

B

B

B

B

@

1 �1 0

0 1 0

0 0 �1
�1 0 1

1 0 0

1

C

C

C

C

A

1

C

C

C

C

A

D det

0

@

3 �1 �1
�1 2 0

�1 0 2

1

A D 8:

Definition 6.5.10. Take G D .V;E/ with jV j D n and jEj D m. An m � .m � nC
1/ matrix C whose j th column is the j th basis vector of Z.G/ with respect to the
standard basis e1; : : : ; em of C1.G/ is called a cycle matrix of G. An .n � 1/ � m
matrix eB whose j th row is the j th basis vector S.G/ with respect to the standard
basis e1; : : : ; em in C1.G/ is called a cocycle matrix of G.

Corollary 6.5.11. Let e1; : : : ; en�1 be the edges of a spanning tree of G, and denote
by en; : : : ; em the other edges (the cords with respect to the tree). Let Ci denote the
circuit generated by en�1Ci with the edges of the spanning tree oriented as en�1Ci .
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The cycle matrix C formed with the cycle basis of Z.G/ obtained in this way has the
form

C D
 

CT

IN

!

;

where IN denotes the .m � nC 1/ � .m � nC 1/ unit matrix and CT the rest.

Proof. According to Definition 6.5.10, the j th column contains the j th basis vector,
which contains 1 in the row of en�1Cj and 0 in the rows from n to m; we get the
.m�nC 1/� .m�nC 1/ unit matrix IN . Note that CT is .n� 1/� .m�nC 1/.

Exercise 6.5.12. The number of spanning trees of G is 	.G/ D ˇ

ˇdet
�

eB
tC

�

ˇ

ˇ, where C
is the cycle matrix of G from Corollary 6.5.11 and eB is the incidence matrix with one

row deleted. This means that
ˇ

ˇdet
�

eB
tC

�

ˇ

ˇ D det.eB t
eB/.

Example 6.5.13. Select the edges a; b and c as the spanning tree of the graph in
Example 6.5.2. Then C has the following form:

0

B

B

B

B

@

1 �1
1 �1
1 0

1 0

0 1

1

C

C

C

C

A

:

Consider the spanning trees of this graph as in Example 6.5.9. With eB from Exam-
ple 6.5.4 and C as above, we get

det

 

eB
tC

!

D det

0

B

B

B

B

@

1 0 0 �1 1
�1 1 0 0 0

0 0 �1 1 0

1 1 1 1 0

�1 �1 0 0 1

1

C

C

C

C

A

D �8:

6.6 Application: electrical networks

Here we come to the so-called Kirchhoff laws, well known in physics. The kernel is
the law U D IR as written in physics, which is hidden in Theorem 6.6.10. Here U
denotes the voltage, I the current and R the resistance of an electrical network.

Take G D .V;E/ to be a directed, connected graph, with jV j D n, jEj D m and
the R-vector spaces C0.G/ and C1.G/. Note that m � n � 1 as G is connected.

Definition 6.6.1. A mapping pot W V ! R is called a potential on G. Given a
potential pot on G, the mapping u W E ! R defined by u.e/ D pot.o.e//� pot.t.e//
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is called a voltage or tension on G. A mapping r W E ! R, r.ei / D ri , is called an
edge resistance, for i D 1; : : : ; m.

Remark 6.6.2. The potentials on G D .V;E/ are exactly the elements of the R-
vector space C0.G/ D RV . Voltages and resistances are elements of C1.G/. An
element of C1.G/ will sometimes be called a voltage generator. The voltage of an
edge is the potential difference between its endpoints, with the additional property
seen in the next example and formulated in the next theorem. We will see in Defini-
tion 6.6.5 that currents are also elements of C1.G/ with (another) additional property.

Example 6.6.3. Consider the following graph:

3

ba

4

1

2

e

cd

We define the potential pot W V ! R by pot.1/ D 1, pot.2/ D 3, pot.3/ D 4 and
pot.4/ D 5, and get the voltage u W E ! R with u.a/ D �2, u.b/ D �1, u.c/ D �1,
u.d/ D 4 and u.e/ D �3, as given in the following figure:

−3
1

3

4

5

−1

−14

−2

Consider the semicycles .c; d; e/ and .a; b; e/. Then

t.0; 0; 1; 1; 1/ t.�2;�1;�1; 4;�3/ D 0 D t.1; 1; 0; 0;�1/ t.�2;�1;�1; 4;�3/:

This leads to the so-called Kirchhoff’s voltage law: the voltage along circles is always
0 – otherwise one would get a “short-circuit” (Kurzschluss).

Theorem 6.6.4 (Kirchhoff’s voltage law, mesh law). An element u 2 C1.G/ is a
voltage on G if and only if h z ; u i D 0 for all z 2 Z.G/, i.e. if and only if u 2 S.G/.
Proof. For “)”, let u2C1.G/ be a voltage onG and take z 2Z.G/. By Lemma 6.2.2
there exists a semicircuit z1; : : : ; zn and factors �1; : : : ; �n 2 R such that z D �1z1C



Section 6.6 Application: electrical networks 125


 
 
 C �nzn. We show that h zi ; u i D 0 for i 2 ¹1; : : : ; nº, since then we would have
h z ; u i D h�1z1C
 
 
C�nzn ; u i D �1h z1 ; u iC
 
 
C�nh zn ; u i D 0C
 
 
C0 D
0. We will prove by induction on n that for all semipaths with simple edges L D
.v1; e1; : : : ; en�1; vn/ with n 2 N n ¹0; 1º, one has h zdir.L/ ; u i D pot.v1/�pot.vn/.

Base step for induction: for L D .v1; e1; v2/ suppose that v1 is the starting point
and v2 the end of e1, or vice versa. Then zdir.L/.e1/ D 1 or zdir.L/.e1/ D �1. In
both cases we have zdir.L/.e1/u.e1/ D pot.v1/ � pot.v2/. For edges e ¤ e1 of the
graph, one has zdir.L/.e/ D 0 and thus zdir.L/.e/u.e/ D 0. This gives h zdir.L/ ; u i D
P

e2E zdir.L/.e/u.e/ D pot.v1/ � pot.v2/.
Induction hypothesis: for n � 2, i.e. for all semipaths L0 D .v1; e1; : : : ; en�1; vn/,

one has h zdir.L/ ; u i D pot.v1/ � pot.vn/.
Induction step: now take L D .v1; e1; : : : ; en�1; vn; en; vnC1/; then we have
h zdir.L0/ ; u i D pot.v1/� pot.vn/. Then, again, zdir.L/.en/ D 1 or zdir.L/.en/ D �1,
and in both cases zdir.L/.en/u.en/ D pot.vn/ � pot.vnC1/. With the definition of the
standard scalar product, we get h zdir.L/ ; u i D h zdir.L0/ ; u i C zdir.L/.en/u.en/ D
pot.v1/� pot.vn/C pot.vn/� pot.vnC1/ D pot.v1/� pot.vnC1/. This completes the
induction proof.

If we now consider a semicircuit L D .v1; e1; : : : ; en�1; vn/, then v1 D vn and
thus h zdir.L/ ; u i D pot.v1/ � pot.v1/ D 0. Consequently u 2 S.G/.

For “(”, take u 2 S.G/, i.e. h z ; u i D 0 for all z 2 Z.G/. We define a potential
pot W V ! R by pot.v/ WD a for v 2 V , with any a 2 R, for example a D 0. For
e 2 out.v/ define pot.t.e// WD pot.v/ � u.e/, and for e0 2 in.v/ define pot.o.e// WD
u.e/C pot.v/. By continuing this procedure we get a correctly defined mapping pot
such that u.e/ D pot.o.e// � pot.t.e// is a voltage, u 2 S.G/.

Definition 6.6.5. A current on G is a mapping w W E ! R with
X

t.e/Dv

w.e/ �
X

o.e/Dv

w.e/ D 0 for all v 2 V:

Example 6.6.6. The next figure shows a current on the graph of Example 6.6.3, where
we define w W E ! R by w.a/ D 1, w.b/ D 1, w.c/ D 2, w.d/ D 2 and w.e/ D 1.
Here we indeed have “flow in D flow out”.

Upon multiplying the associated vector t .1; 1; 2; 2; 1/ by the vector of the voltage
given above, we get 0.

1

2 2

1

1
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The reason is that the voltages are exactly the cocycles and the currents are exactly
the cycles.

Theorem 6.6.7 (Kirchhoff’s current law, vertex law). An element w 2 C1.G/ is a
current onG if and only if hw ; u i D 0 for all u 2 S.G/, i.e. if and only ifw 2 Z.G/.

Corollary 6.6.8. Linear combinations of currents are currents; every current on a
graph depends on jEj � jV j C 1 parameters and is determined completely by those
parameters. Linear combinations of voltages are voltages; every voltage on a graph
depends on jV j � 1 parameters and is determined completely by those parameters.

Proof. It is clear that linear combinations of currents are currents, since linear com-
binations of cycles are cycles. Linear combinations of voltages are voltages, since
linear combinations of cocycles are cocycles. Corollary 6.3.2 gives the rest, since
jEj � jV jC 1 and jV j � 1 are the dimensions of the cycle and cocycle spaces, respec-
tively.

Corollary 6.6.9. We have tCu D 0 if and only if u 2 C1.G/ is a voltage on G, and
eBw D 0 if and only if w 2 C1.G/ is a current on G.

Proof. We have that tCu D 0 if and only if u is a voltage, as the multiplication of
tC by u means that u is multiplied with vectors from Z.G/ and the results are then
added. If this gives 0, we must have started from a voltage.

Conversely, multiplication of a voltage by a current gives 0.
We also have that eBw D 0 if and only if w is a current, since the given multiplica-

tion means that w 2 C1.G/ is multiplied with basis vectors from S.G/ and the results
are added. If this gives 0, we know that w was a current.

Conversely, multiplication of a current by a voltage gives 0.

Theorem 6.6.10. Let G D .V;E/ be a graph (an “electrical network”) with a map-
ping r W E �! R, r.ei / D ri , for i D 1; : : : ; m (the “edge resistances”). Take
g 2 C1.E/ (a “voltage generator”), and set R WD .riıij /i;j D1;:::;m. Then the current
w with u D Rw C g is given by

w D �C.tCRC/�1tCg;

where C is the cycle matrix generated by a spanning tree of G according to Corol-
lary 6:5:11 (w and g are written as column vectors).

Proof. We arrange the matrix B and the vectors w and u according to C in Corol-
lary 6.5.11, i.e. w D .wT ; wN /, u D .uT ; uN / and B D .BT ; BN /. Then one part
contains the information about the edges belonging to the spanning tree, and the other
part contains the information about the other edges.
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Corollary 6.6.9 now implies that BTwT CBNwN D 0, or wT D �B�1
T BNwN D

CTwN . This implies w D CwN . Again by Corollary 6.6.9 we get tCu D 0, as u is a
voltage. Inserting u D RwCg gives tCRwC tCg D 0, and with w D CwN we get
.tCRC/wN D � tCg. As .tCRC/ is invertible, multiplication by C.tCRC/�1 from
the left gives �C.tCRC/�1 tCg D CwN D w.

Example 6.6.11. Take C from Example 6.5.13, and let r.a/ D 2, r.b/ D 1, r.c/ D
3, r.d/ D 1 and r.e/ D 2. Let g be the voltage from Example 6.6.3. Then

�w D C.tCRC/�1 tCg D
0

B

B

B

B

@

1 �1
1 �1
1 0

1 0

0 1

1

C

C

C

C

A

0

B

B

B

B

@

�

1 1 1 1 0

�1 �1 0 0 1
�

0

B

B

B

B

@

2 0 0 0 0

0 1 0 0 0

0 0 3 0 0

0 0 0 1 0

0 0 0 0 2

1

C

C

C

C

A

0

B

B

B

B

@

1 �1
1 �1
1 0

1 0

0 1

1

C

C

C

C

A

1

C

C

C

C

A

�1

�

1 1 1 1 0

�1 �1 0 0 1
�

0

B

B

B

B

@

�2
�1
�1
4

�3

1

C

C

C

C

A

D

0

B

B

B

B

@

1 �1
1 �1
1 0

1 0

0 1

1

C

C

C

C

A
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7
26

!

�

1 1 1 1 0

�1 �1 0 0 1
�

0

B

B

B

B

@

�2
�1
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4

�3

1

C

C

C

C

A

D 1
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0
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B

B

B

@
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C
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A

0
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B

B

@
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4
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1

C

C

C

C

A

D

0

B

B

B

B

@

0

0

0

0

0

1

C

C

C

C

A

:

This is not surprising since voltages neutralize each other. Now select g 2 C1.E/; g …
S.G/, say g D t.1; 0; 0; 1; 0/, and get

w D �1
26

0

B

B

B

B

@
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6 6 2 2 �4
2 2 5 5 3
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1

C
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A

0

B
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1

0

0

1

0

1

C

C

C

C

A

D

0

B

B

B

B

B

B
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�8
26
�8
26
�7
26
�7
26
1

26

1

C

C

C

C

C

C

A

I

and as voltage u we get

u D Rw C g D

0

B

B

B

B

B

B

@

10
26
�8
26

�21
26
19
26
2

26

1

C

C
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C

C

A

:
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The following figure collects the results:

31

0

0
0
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Resistance r

Generator voltage g

Current w

Tension u

Potential

6.7 Application: squared rectangles

This application is quite surprising, as it is a kind of game. Much of the history of this
problem can be found in the very personal book [Tutte 1998].

The first perfect rectangle has order 9, i.e. it consists of nine different squares and
has side length 32 � 33. It was found by Z. Moron and is depicted in Example 6.7.3.
Now the search for squared rectangles has been computerized and the results listed up
to order 21, according to [Tutte 1998]. The smallest perfect square has order 21.

The first perfect square, found by P. P. Sprague who published his result in 1939,
has order 55. A smaller one of order 26 was composed of two perfect rectangles
(377�608 and 231�377), and a square of length 231 was presented in 1940 by Tutte
and coauthors.

Definition 6.7.1. A squared rectangle is a rectangle which can be decomposed into
at least two squares. If all the squares making up a squared rectangle are of different
sizes, one calls the rectangle a perfect rectangle. The order of a squared rectangle is
the number of constituent squares. A squared rectangle is said to be simple if it does
not contain other squared rectangles.

Construction 6.7.2. A squared rectangle leads to a directed graph or electrical net-
work as follows:

(a) Assign to each horizontal line segment a vertex.

(b) Put an edge between two vertices if the corresponding line segments contain
segments which are borders of one square – top or bottom. The direction of the
edge is “from top to bottom”.

(c) Add the edge .y; x/, where x is the “highest” and y the “lowest” vertex.

(d) Assigning to each vertex the distance to the lowest vertex gives a potential.

(e) Assigning resistance 1 to every edge makes Kirchhoff’s current law (Defini-
tion 6.6.5) true for all vertices except x and y.
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Example 6.7.3. We give an example of the construction of the graph from a squared
rectangle. The diagram below is taken from [Tutte 1998], p. 3.

18
15

14
10 9

4
7 8 8

18
15

1014
9

74
1

A

F

E

B C

D

1

Theorem 6.7.4 (Brooks et al. 1940). Every graph of a simple squared rectangle (ac-
cording to Construction 6:7:2) is 3-vertex connected and planar, with a current on
the edges after adding one additional edge. Conversely, every current on a 3-vertex
connected and planar graph gives a squared rectangle after deletion of .y; x/.

Proof. See R. L. Brooks, C. A. Smith, A. H. Stone, W. T. Tutte, The dissection of
rectangles into squares, Duke Math. J. 7 (1940) 312–340.

Construction 6.7.5 (to determine a simple squared rectangle).

(a) Start with a 3-vertex connected planar digraph G0 D .V 0; E 0/ (see Defini-
tion 1.2.3), where x; y 2 V 0 are such that .y; x/ is the only incoming edge
of x and .y; x/ is the only outgoing edge of y, with incidence matrix B 0.

(b) Delete .y; x/; here x is the first vertex (i.e. first row in B 0) and y is the last
vertex corresponding to the row deleted from B 0. Call the resulting graph G.

(c) Determine 	.G/.

(d) Select a spanning tree in G.

(e) Form C .

(f) Solve

 

eB
tC

!

w D

0

B

B

@

	.G/

0
:::

0

1

C

C

A

so that the components of w are in N:
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Proof. Consider the graph G0 with n vertices and mC 1 edges. Its incidence matrix
after deleting the last row is of size .n � 1/ � .mC 1/ and has the form

eB 0 D

0

B

B

@

eB

�1
0
:::

0

1

C

C

A

:

Here the .n � 1/ �m matrix eB is the incidence matrix of G after deletion of the last
row of B corresponding to y, and x corresponds to the first row of B , where B is
n �m.

The cycle matrix C 0 of G0 is of size .mC 1/� .m� nC 2/ and has the form given
below:

C 0 D

0

B

B

B

B

@

CT c

IN

0
:::

0

0 
 
 
 0 1

1

C

C

C

C

A

:

Here CT is of size .n � 1/ � .m � n C 1/, where m � n C 1 D 
.G/, and IN is
the .m � nC 1/ � .m � nC 1/ unit matrix; both matrices are as in Corollary 6.5.11,
i.e. C D �

CT

IN

�

is the cycle matrix of G, which is of size m � .m � nC 1/. The last
row of C 0 corresponds to y and the last column of C 0 corresponds to the cycle of G0
generated by the arc .y; x/, so the vector c has length n � 1.

Now we put a voltage on .y; x/, i.e. we use the “voltage generator” gD t.0; : : : ; 0; s/

of length mC 1, so that g..y; x// D s and is 0 otherwise.
As in Construction 6.7.2, every edge gets assigned the resistance 1. So in the for-

mula u0 D Rw0 C g, according to Theorem 6.6.10, we have R D I , the unit matrix.
This implies that u0 D w0 C g, where we write u0 D .u0

1; : : : ; u
0
mC1/ and similarly

for w0. Corollary 6.6.9 implies that
tC 0u0 D 0 and B 0w0 D 0:

Deleting the arc .y; x/ gives u D w, where u D .u0
1; : : : ; u

0
m/ and similarly for w,

since the difference between u0 and w0 was g. Moreover, the forms of C 0 and eB 0 give

eBw D

0

B

B

@

s

0
:::

0

1

C

C

A

; tCu D 0;

and putting the above together we get

�

eB
tC

�

w D

0

B

B

@

s

0
:::

0

1

C

C

A

:



Section 6.7 Application: squared rectangles 131

Now
�

eB
tC

�

, which is m � m, is invertible by Exercise 6.5.12. Thus we have a unique
solution. If we select s D 	.G/, we get integer solutions.

Exercise 6.7.6. Prove the last sentence in the proof, i.e. if we select s D 	.G/, we get
integer solutions. Do you remember from linear algebra why the system is solvable?

Example 6.7.7. We find the squared rectangle for the 3-connected planar graph G0
drawn below. Note that this graph also gives a squared rectangle of order nine, but it
is different from Example 6.7.3.
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4
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i
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The above graph is G0. Deletion of the edge j gives the graph G which has the
incidence matrix

B D
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�1 0 0 0 0 1 1 0 0

0 �1 1 0 0 0 0 1 1
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:

Deletion of the last row gives

eB D

0

B

B

B

B

@

1 1 0 0 0 0 0 0 0

�1 0 0 0 0 1 1 0 0

0 �1 1 0 0 0 0 1 1

0 0 �1 1 0 �1 0 0 0
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C

C

C

A

:

Using Theorem 6.5.8, we get 	.G/ D 69.
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With the spanning tree formed by a; b; c; d and e we obtain

C D
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:

We have to solve the following linear system:
0
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:

The solution is w D t.33; 36; 2; 7; 16; 5; 28; 9; 25/, which corresponds to the squared
rectangle.

Exercise 6.7.8. Check the above example step by step: control CT , and calculate B 0,
C 0 (in particular the vector c), u0; w0, 	 and w.

Find 3-vertex connected planar digraphs G0 D .V 0; E 0/ where x; y 2 V 0 are such
that .y; x/ is the only incoming edge of x and .y; x/ is the only outgoing edge of y.
Apply Construction 6.7.5 to find simple squared rectangles.

6.8 Application: shortest (longest) paths

Networks can be used to model the distribution of goods, data etc. Suppose that the
goods are produced at one point q, and as much as possible must be transported to
some other point s. This means that all different paths from q to s should be used in a
way that does not exceed their capacities.

The main idea is to use Kirchhoff’s current law, which says that there are no positive
or negative holes in the network, i.e. at intermediate points nothing is lost and nothing
is added. This model makes sense only if the goods are being transported in single
units, since flows may have to be split up differently at each vertex.
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Definition 6.8.1. A directed, weakly connected graph G D .V;E; q; s; k/ without
loops and multiple edges and with exactly one source q (named after the German
word “Quelle”) and one sink s together with an edge valuation k W E ! N

S¹1º
is called a transportation network. For e 2 E, we call k.e/ the capacity of e. The
uniqueness requirement for the source and sink is sometimes relaxed.

Transportation Problem 6.8.2. Let G D .V;E; q; s; k/ be a transportation network.
Find a potential pot on G such that pot.s/ is maximal for pot.q/ D 0 satisfying the
capacity condition on the voltage, u.e/ D pot.t.e//�pot.o.e// � k.e/ for all e 2 E,
and Kirchhoff’s current rule (Theorem 6.6.7) at every vertex other than q or s.

Potential Problem 6.8.3. LetG D .V;E; q; s; k/ be a transportation network. Find a
potential pot onG such that the voltage satisfies u.e/ D pot.t.e//�pot.o.e// � k.e/
for all e 2 E and pot.s/ is maximal for pot.q/ D 0.

Theorem 6.8.4. Let G D .V;E; q; s; k/ be a transportation network. The problem of
finding a shortest/longest q; s path is a potential problem.

Proof. Consider w; v 2 V with .w; v/ D e 2 E. Set a.e/ WD k.e/, which is the
length of a w; v path using the edge e. The problem of finding a longest q; s path
can be defined as follows. Find a function pot W V ! R

S¹1º on G that gives
the distance of a vertex to the source q such that for all e 2 E we take k.e/ as the
length of e and pot.s/ is minimal/maximal for pot.q/ D 0. This is clearly a potential
problem.

Algorithm 6.8.5 (Shortest path). Determine a shortest path in a transportation net-
work G D .V;E; q; s; k/ from q to any other vertex in G. Observe that, for the
purpose of the algorithm, the uniqueness of the sink is not essential.

(1) (a) Set V1 WD ¹v1º WD ¹qº.
(b) Set pot.v1/ WD 0.

(2) Now we have assigned pot.vi / for vi 2 Vk , k � 1. Select v … Vk and vi 2 Vk

such that .vi ; v/ 2 E and pot.vi /C k..vi ; v// is minimal.

(a) Set pot.v/ WD pot.vi /C k..vi ; v//.

(b) Set VkC1 WD Vk

S¹vº.
(3) If no v exists according to (2), then pot.vi / is the length of a shortest q; vi path.

The edges selected in (2) form a spanning tree which contains the shortest paths.

Proof. The following example illustrates the algorithm and suggests how to prove its
correctness. Note that if v is not unique in (2), we just select any possible v. The other
possible vertices will be selected in the next steps. All these vertices then have the
same potential assigned to them. Note, moreover, that the selection of vi 2 Vk in (2)
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may also not be unique, specifically in the case where several vertices of Vk already
have the same potential. A selection then implies deciding on one of several shortest
paths. Step (3) is reached if Vk D V .

Example 6.8.6 (Shortest path algorithm). Consider the following graph:

4
c

b

a

q

3

3

1
s

3

(1) (a) Set V1 WD ¹qº.
(b) Set pot.q/ WD 0.

(2) Select b and q 2 V1, with b … V1 but .q; b/ 2 E and pot.q/Ck..q; b//minimal.

(a) Set pot.b/ WD pot.q/C k..q; b// D 0C 3 D 3.

(b) Set V2 WD V1

S¹bº D ¹q; bº.
(2) Select a and q 2 V2, with a … V2 but .q; a/ 2 E and pot.q/Ck..q; a//minimal.

(a) Set pot.a/ WD pot.a/C k..q; a// D 0C 4 D 4.

(b) Set V3 WD V2

S¹aº D ¹q; a; bº.
(2) Select c and a 2 V3, with c … V3 but .a; c/ 2 E and pot.a/Ck..a; c//minimal.

(a) Set pot.c/ WD pot.a/C k..a; c// D 4C 1 D 5.

(b) Set V4 WD V3

S¹cº D ¹q; a; b; cº.
(2) Select s and c 2 V4, with s … V4 but .c; s/ 2 E and pot.c/C k..c; s// minimal.

(a) Set pot.s/ WD pot.c/C k..c; s// D 5C 3 D 8.

(b) Set V5 WD V4

S¹dº D ¹q; a; b; c; sº.
(3) There are no further choices of v in step (2), so pot.vi / is the length of a shortest

q; vi path. The spanning tree selected in this case contains all arcs except for
.b; c/.

Remark 6.8.7. There exist many algorithms for determining shortest/longest paths,
including the following:

(1) “Dantzig” (only for k W K ! RC) – gives shortest distances and one shortest
path;

(2) “Warshall” – result as in (1);
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(3) “Moore” – gives shortest distances and all shortest paths;

(4) “Dijkstra” – result as in (3);

(5) five other algorithms in [Marshall 1971].

See also [Kocay/Kreher 2005].
Finally, I also mention some applications of shortest/longest path problems in other

fields.

(1) “Kürzeste Wege beim Abbiegen und Umsteigen bzw. unter Belastungen”; see
[Knödel 1969], pp. 46–47 and pp. 56–59, or search the internet for “shortest
paths with delay”.

(2) Critical paths in networks – CPM and PERT; see [Marshall 1971], pp. 98–104.

(3) “Graphentheoretisches Modell der menschlichen Niere” [Laue 1971], or A.
Espinoza-Valdeza, R. Femata, F. C. Ordaz-Salazarb, A model for renal arterial
branching based on graph theory, Mathematical Biosciences 225 (2010) 36–43.

6.9 Comments

This chapter starts off very theoretically, but the concepts developed nevertheless
have many applications. The applications we presented are on quite different lev-
els; the shortest path and transportation problems do not really use the theory, while
MacLane’s planarity criterion and the other examples go deeper. The section on ho-
mology of graphs systematically synthesizes the results of the previous sections and
does not contain much additional information about graphs and their connection to
linear algebra.



Chapter 7

Graphs, groups and monoids

The theory of groups is a powerful and effective tool for investigating symmetries of
various objects with the help of their automorphisms. So it is not surprising that there
is a fruitful correspondence between groups and graphs.

We recall that .A; 
/ is a group if A is closed with respect to the “multiplication”
operation and the following three axioms are satisfied: associativity, existence of a
unique identity element and existence of an inverse for every element.

7.1 Groups of a graph

A bijective mapping of a finite set into itself is called a permutation. If a set of
permutations is closed with respect to composition of mappings, then the above three
axioms of a group are satisfied automatically and this set of permutations is called a
permutation group.

An automorphism of a graph G is an isomorphism of G onto itself. So every
automorphism ˛ of G is a permutation of the vertex set which preserves the relation
“is a neighbor of”. Obviously, the bijection ˛ takes a vertex to a vertex of the same
degree.

It is also clear that the composition of two automorphisms is an automorphism; so
the automorphisms of G form a permutation group on the vertex set of G. We call it
the group of G and write Aut.G/. Analogously, we talk about the monoid End.G/ of
the graph G.

We write permutations as mappings, cycles or lists as in the following example. We
write transformations as mappings or as lists, as in the following example.

Example 7.1.1 (Automorphism group, endomorphism monoid).

�

� �

�
�
�

G2

1 3

Aut.G/ D
8

<

:

id ;
1 7! 1

2 7! 3

3 7! 2

D .2 3/ D
�

1 2 3

1 3 2

�

9

=

;

Š Z2;

End.G/ D Z2

S

²

1; 2 7! 2

3 7! 3
;
1; 2 7! 3

3 7! 2
;
1; 3 7! 3

3 7! 2
;
1; 3 7! 2

2 7! 3
D
�

1 2 3

2 3 2

�³

:
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Exercise 7.1.2. We have Aut.G/ Š Aut.G/, whereG denotes the complement graph
of G.

Edge group

Definition 7.1.3. Let G D .V;E/ be undirected with jEj ¤ ;. An edge automor-
phism of a graph is a bijective mapping  of E to itself such that  .e/

T

 .e0/ D ;
if and only if e \ e0 D ; for e; e0 2 E. The edge group Aut1.G/ is the set of all edge
automorphisms of G with composition.

An edge automorphism ofG is called an induced edge automorphism if there ex-
ists an automorphism ' ofG such that for all e2E one has .e/D¹'.o.e//; '.t.e//º.
The group of induced edge automorphisms is denoted by Aut�1.G/.

Theorem 7.1.4. For a connected graph G we have Aut.G/ Š Aut�1.G/ if and only if
G ¤ K2.

Proof. It is clear that the statement is not true for K2 since Aut.K2/ D Z2 but
jAut1.K2/j D 1 and thus jAut�1.K2/j D 1. A proof of the positive part can be found
in [Behzad et al. 1979], p. 176 ff. It is not very complicated but quite long. Another
proof is in [Harary 1969] on p. 165.

Corollary 7.1.5. Let G ¤ K2 be connected. One has

Aut.G/ Š Aut�1.G/ � Aut1.G/ Š Aut.LG/;

where LG is the line graph of G.

This corollary raises one of those “natural questions” which the following theorem
answers; see H. Whitney, Congruent graphs and the connectivity of graphs, Amer.
J. Math. 54 (1932) 150–168, or [Behzad et al. 1979].

Theorem 7.1.6 (Hemminger, Sabidussi, Whitney). For a connected graphG one has

Aut�1.G/ Š Aut1.G/ if and only if G ¤ ; K4 or K4 n e.

Exercise 7.1.7. Prove that there is no isomorphism for the three exceptional graphs.

Remark 7.1.8. It is quite obvious that induced edge endomorphisms will in general
be egamorphisms. If we set End1.G/ WD End.LG/, we have to take into account that
the functor L goes into the category EGra; cf. Remark 5.2.4.

Question. Can you find an analog to Theorem 7.1.6 for endomorphisms?
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7.2 Asymmetric graphs and rigid graphs

In this section we deal with graphs that have small endomorphism monoids and au-
tomorphism groups. From Definition 1.7.1 we recall that a graph G is S unretrac-
tive if SEnd.G/ D Aut.G/, and it is unretractive if End.G/ D Aut.G/. More
generally, G is said to be X -Y unretractive (or X -Y rigid) if X.G/ D Y.G/ for
X; Y 2 ¹End;HEnd;LEnd;QEnd; SEnd;Autº. Graphs G with jEnd.G/j D 1 are said
to be rigid and graphs with jAut.G/j D 1 are said to be asymmetric.

Recall that a graphG is said to be k-vertex-color-critical or simply k-vertex-critical
if G can be vertex-colored with k colors, i.e. G has a k-coloring, and G n ¹xº can be
colored with fewer than k colors for any vertex x. A vertex coloring assigns different
colors to adjacent vertices.

Theorem 7.2.1. If G is k-vertex-critical, then G is unretractive.

Proof. If for an endomorphism f ofG one has f .G/ ¤ G, then f .G/ can be colored
with h < k colors. But then we would get an h-coloring of G: color every preimage
in G of a vertex in f .G/ with the same color as the image. This is an h-coloring of G
since adjacent vertices do not have the same image under f . But then f is bijective
and therefore End.G/ D Aut.G/.

Corollary 7.2.2. The graphs C2nC1 are 3-vertex-critical, and the graphs Kn are n-
vertex -critical for n 2 N. Therefore they are unretractive.

The first rigid graph was found by Z. Hedrlín and A. Pultr in Symmetric relations
(undirected graphs) with given semigroups, Monatsh. Math. 69 (1965) 318–322; see
also Z. Hedrlín and A. Pultr, On rigid undirected graphs, Canad. J. Math. 18 (1966)
1237–1242.

Theorem 7.2.3. The following graph G is rigid:

A
3

A
1

A
2

545′′

6′′ 0 1

2

3

7 6

5′4′3′

Proof. The graph consists of three copies of C7, namely A1; A2 and A3, which are
unretractive by Corollary 7.2.2. Take f 2 End.G/; then f .Ai / D Aj for i; j 2
¹1; 2; 3º. Now, f .A1/ D f .A2/would imply f .0/ D f .2/, since 1, 6, and 7 can only
have one image each. But this is not possible since f jA3

is injective. By a similar
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argument, we get that the different C7 must stay different. Thus f is surjective and
hence bijective, i.e. it is an automorphism. But then common points of at least two of
the circuits must be fixed by f . Consequently, all points are fixed. Thus f D idG .

Theorem 7.2.4 (Vertex-minimal d -regular asymmetric graphs). Let �.d/ be the min-
imal number of vertices of all asymmetric, d -regular graphs, i.e. graphs with vertex-
degree d for all vertices. Then one has

d 0 1 2 3 4 5 6 d even d odd .d > 6/

�.d/ 1 – – 12 10 10 11 d C 4 d C 5 :

Proof. It is clear that for d D 1 there is only K2 while for d D 2 there are only
circuits Cn, and both are not asymmetric. The following graphs are asymmetric with
d D 3 and d D 4:

1 2

4 3

5 6
7 9

8
10

11 12
1 3

6 4
5

2
7

8
9

10

For the rest see H. Whitney, Congruent graphs and the connectivity of graphs, Amer.
J. Math. 54 (1932) 150–168, or [Behzad et al. 1979]).

Exercise 7.2.5. Observe that both graphs drawn in the proof of the previous theo-
rem are not rigid since they can be mapped onto K3, the first with congruence classes
¹1; 9; 12º, ¹2; 5; 8; 11º and ¹3; 5; 7; 10º, and the second with congruence classes
¹1; 4; 10º; ¹2; 6; 8º and ¹3; 5; 7; 9º.

Theorem 7.2.6. For all n � 8 there exist rigid graphs with n vertices. There exist ten
rigid graphs with eight vertices, and none with fewer than eight vertices.

Proof. Pictures of these ten graphs can be found in U. Knauer, Endomorphisms of
graphs, II. Various unretractive graphs, Arch. Math. 55 (1990) 193–203. They are
reproduced below; under each graph we give an internal number and the number of
edges, followed by the number of automorphisms in the next line.
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6109 14
1

7681 15
1

8114 15
1

8117 15
1

8137 15
1

7720 15
1

9449 16
1

9663 16
1

9484 16
1

10688 17
1

The first graph has the least possible number of edges, which is 14.
The infinite series can be constructed from the following graph with 16 edges with-

out using the vertex d ; it is the fourth graph in the second row above:

d
b

a

c

1

2

3

0 4

To get a graph with 10, 12, 14, . . . vertices, insert two new edges starting from the
vertex c to two new vertices on the edge joining 3 and 4, and so on. To get the graph
with nine vertices, start with the eight-vertex graph and put in the vertex d with the
three edges as indicated. The same procedure starting from the graph with 10 vertices
gives a graph with 11 vertices and so on.

To prove this we look at even n.
To see that Aut.G/ D 1 we look at the vertex c, which is the only vertex with all

neighbors on an odd cycle. So it must be fixed under an automorphism. Because of a
and b, the cycle cannot be reflected about c, so it must be fixed overall. It is clear that
a, b and also d – if it is used – cannot be permuted in this situation.

Now, since the neighbors of c form an odd cycle C , together with c they form a
wheel. So a vertex coloringG needs four colors, and a and b can also be colored with
these colors. The same is true for d – if it is used. So G n ¹a; bº and G n ¹a; b; dº are
vertex-critical and thus unretractive; cf. Theorem 7.2.1.

Next, we show that inserting a and b and possibly also d does not change the sit-
uation. We consider at the same time the possibly inserted pairs of points between
3 and 4 with the numbers up to n � 4 for n � 4. Suppose we have an endomor-
phism f such that f .a/ 2 C D ¹0; : : : ; n � 4º or f .b/ 2 C D ¹0; : : : ; n � 4º.
Since C is fixed, f .a/ D c and f .b/ 2 C are impossible. So f .a/ D b implies
f .¹0; 2; 3º/ D f .N.a/

T

C/ � N.b/
T

C D ¹0; 1º. which is also impossible as
C is fixed. Similarly, if f .a/ D d we get f .d/ D 0, which is impossible since
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¹d; 2º … E. Consequently, f .a/ D a; f .b/ D b and possibly f .d/ D d ; that is,
End.G/ D Aut.G/.

Definition 7.2.7. A family of graphs .Gi /i2I is said to be mutually rigid if for i; j 2
I , Hom.Gi ; Gj / D ; whenever i ¤ j and jEnd.Gi /j D 1.

It can be checked that in the list of ten rigid graphs with eight vertices, the second
up to the sixth are mutually rigid, as well as the seventh and the eighth.

Theorem 7.2.8. The countably many graphs constructed in the proof of Theorem 7.2.6
are mutually rigid.

Proof. (See [Hell 1974], pp. 291–301.) A homomorphism from a graph in the series
from Theorem 7.2.6 to a smaller one cannot exist, as it would have to be a folding of
the path in the middle from 3 to n�4, and this would mean shortening an odd cycle. A
homomorphism from a graph in the series from Theorem 7.2.6 to a larger one would
have to take the cycle C (with notation as in the proof of Theorem 7.2.6) to an odd
cycle of the same length. Moreover, there has to be a vertex which is a neighbor to all
vertices on this cycle. This can only be c, since the length of this cycle is at least five.
So all these graphs are mutually rigid.

Example 7.2.9. For illustration, on the next page we present all unretractive graphs
(i.e. graphs with End D Aut) with seven or eight vertices. Again, under each graph
we have in the first line an internal number and the number of edges, and in the
second line the number of automorphisms, which in this case is also the number of
endomorphisms.

796 12
4

670 11
8

898 13
4

895 13
2

801 12
2

963 14
4

800 12
6

Exercise 7.2.10. Check that the monoids (groups) not equal to Z2 in the graphs with
seven vertices are Z2 � Z2 � Z2, Z6 Š Z2 � Z3 and Z2 � Z2.
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983 10
8

1361 10
8

2266 11
4

3245 12
16

4811 13
12

4174 13
8

6061 14
4

5069 14
2

6140 14
2

6496 14
8

6539 14
2

6549 14
2

6573 14
2

6576 14
2

6574 14
2

6577 14
2

6988 14
14

7671 15
2

7988 15
2

8019 15
2

8199 15
4

7691 15
2

8134 15
2

8140 15
2

7630 15
4

8011 15
2

8012 15
2

9317 16
16

9315 16
12

9380 16
2

9456 16
2

9661 16
4

9373 16
2

9391 16
2

9454 16
2

9505 16
2

10618 17
2

1063017
4

10632 17
2

10640 17
4

10644 17
2

10751 12
2

10896 18
2

11364 18
8

10083 18
8

11551 19
6

11561 19
2

11632 19
4

11924 20
4

11964 20
2

12210 21
14

12303 23
60
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Using a computer program, one can determine the following numbers. Note that in
these computations the “Isomorphism Problem” plays an important role.

Theorem 7.2.11. Let �.n/ denote the number of non-isomorphic simple undirected
graphs with n vertices, let ˛.n/ denote the number of non-isomorphic simple undi-
rected asymmetric graphs with n vertices, and let %.n/ denote the number of non-
isomorphic simple undirected rigid graphs with n vertices. Then we have the follow-
ing:

n 1 2 3 4 5 6 7 8 9 10

�.n/ 1 2 4 11 34 156 1044 12 346 274 668 12 005 168

˛.n/ 0 0 0 0 0 9 152 3 697 126 148 7 971 623

%.n/ 0 0 0 0 0 0 0 10 682 52 905

The next theorem, which needs a new definition to make it precise, suggests an
extrapolation of this list.

Definition 7.2.12. Denote by G.n/ the set of all simple graphs without loops and
with n vertices, and denote by GP.n/ the set of all graphs from G.n/ with a certain
property P . We say that almost all graphs have property P if

lim
n!1

jGP.n/j
jG.n/j D 1:

Theorem 7.2.13. Almost all graphs are asymmetric and almost all graphs are rigid.

The first statement is almost folklore; it probably goes back to P. Erdős. For a proof
see [Godsil/Royle 2001], Corollary 2.3.3 on p. 24. The second assertion is sometimes
considered to be almost the same, but this is in fact not the case. A relatively short
and independent proof of the second statement using the first is given in “Almost all
graphs are rigid – revisited” by Jens Koetters, in [Kaschek/Knauer 2009], pp. 5420–
5424; see also Theorem 4.7 in [Hell/Nešetřil 2004].

Remark 7.2.14. Similar “almost all” results can be found in A. D. Korschunov, Basic
properties of stochastic graphs, Uspechi Mat. Nauk 40 (1985) 107–173 (in Russian,
with English translation), and for example, under “Random graphs” in [Chartrand,
Lesniak 2005], the fourth edition of Graphs & Digraphs or in [West 2001].

For example:

� Almost all graphs have a unique vertex of maximal (minimal) degree.

� Almost all graphs are connected. Almost all graphs have diameter 2.

� Almost all trees are cospectral (cf. Remark 2.7.3).
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Project 7.2.15. Develop a suitable program to compute (all?) X -Y unretractive
graphs with a small number of vertices, where X; Y 2 ¹End, HEnd, LEnd, QEnd,
SEnd, Autº.

Find all small graphs for which these endomorphisms sets are monoids or not
monoids.

7.3 Cayley graphs

We recall the following definitions.
A set M with a binary composition M � M ! M , .a; b/ 7! ab, is called a

groupoid. A groupoid is called a semigroup if the composition is associative. A
semigroup is called a monoid if there exists a neutral element e 2 M , i.e. a e D
e a D a for all a 2M .

R. König asked the following question: when is a given group isomorphic to the
automorphism group of a simple undirected graph? Roberto Frucht answered this
question by a construction. His proof that every group is isomorphic to the automor-
phism group of a graph uses the Cayley color graph. We define this a little more
generally for groupoids, since it turns out that König’s question has the same positive
answer for certain groupoids as it has for groups.

Note that the Cayley graph for groupoids may have multiple arcs and loops.

Definition 7.3.1. Let A be a (finite) groupoid and C D ¹ai j i D 1; : : : ; nº � A a
subset. The directed graph Cay.A; C / WD .A;E.C // such that, for x; y 2 A,

.x; y/ 2 E.C/, xai D y for some ai 2 C
is called the Cayley (color) graph of A with connection set C . We say that the edge
e D .x; y/ has color ai . We use the same notation for the uncolored Cayley graph,
which is obtained by neglecting the colors.

For groups – and possibly quasi-groups as well – one defines another variant of
Cayley graphs, which will be used in Theorems 7.5.8, 7.7.12 and 7.7.13. We use the
definition from [Klin et al. 1988], S. 107.

Definition 7.3.2. LetA be a group, and let� � A be a system of generating elements
with 1 … � but such that i 2 � implies i�1 2 �. We denote by Cay.A;�/ the König
graph of A with respect to � which is uncolored and undirected.

Both definitions can also be given using multiplication from the left by the elements
of the connection set.

We observe that the requirement that � D ��1 makes the graph undirected. Since
this is usual for groups, most authors use the term Cayley graph instead of König
graph.
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For the investigation of Cayley graphs of right groups, for example, it will be im-
portant to consider generating sets C which give directed Cayley graphs of groups.

Example 7.3.3 (Cayley graphs and connection sets). We consider Z3 D .¹0; 1; 2º;C/
and give Cay.Z3; C /

0

1

2

with C D ¹1º ¤ C�1

0

1

2

with C D ¹1; 2º ¤ C�1.

Proposition 7.3.4. Let A be a groupoid and C � A. A mapping ' W A ! A is an
endomorphism of Cay.A; C / that preserves colors if and only if '.xi/ D '.x/ i for
all x 2 A; i 2 C .

Proof. For “(”, take .x; y/ 2 E.Cay.A; C //, i.e. xi D y. Then '.y/ D '.xi/ D
'.x/i and .'.x/, '.y// 2 E.Cay.A; C //.

The proof of “)” follows from the definition.

Definition 7.3.5. A mapping ' W A ! A with '.xi/ D '.x/i for all x 2 A and
i 2 I is called a color endomorphism of Cay.A; C /. The monoid formed by such
mappings is denoted by ColEnd.Cay.A; C //. We define color automorphisms and
ColAut.Cay.A; C // analogously.

Observe that color endomorphisms of Cay.A; C / are graph endomorphisms which
are “linear” with respect to the operation of C on A.

Corollary 7.3.6. If ' is a bijective color endomorphism, then ' is a color automor-
phism.

Proof. Let ' be a bijective color endomorphism and consider the mapping '�1. Take
.'.x/; '.y// 2 E.C/, i.e. '.x/j D '.y/ D '.xj /. As ' is injective, we get xj D y,
i.e. .x; y/ 2 E.C/, .x; y/ 2 '�1.'.x/; '.y//.

Recall that every element of a groupoid (or monoid) is a finite product of elements
of a generating set C of the groupoid.

Theorem 7.3.7. Let A be a monoid. For every generating set C of A, the mapping

ƒ W A! ColEnd.Cay.A; C //

b 7! �b;

where �b is left translation by b, i.e. �b.x/ WD b x for all x 2 A, defines a monoid
isomorphism.
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Proof. First we have that �b 2 ColEnd.Cay.A; C //, since for x 2 A and i 2 C one
has

�b.x i/ D b.x i/ D .bx/i Proposition 7.3.4D �b.x/i:

Next, we prove that ƒ is injective. Suppose that b ¤ b0 2 A. Then �b ¤ �b0 as
1A 2 A, since �b.1A/ D b ¤ b0 D �b0.1A/.

Now, ƒ is a monoid homomorphism. To show this, for x 2 A and b1; b2 2 A
calculate

ƒ.b1b2/.x/ D �b1b2
.x/ D .b1b2/x D b1.b2x/ D �b1

.b2x/ D �b1
.�b2

.x//

D ƒ.b1/.ƒ.b2/.x// D .ƒ.b1/ƒ.b2//.x/;

which means that

ƒ.b1b2/ D ƒ.b1/ƒ.b2/ and ƒ.1A/ D idCay.A;I/ :

Finally, ƒ is surjective. Take ' 2 ColEnd.Cay.A; I // with '.1A/ D b 2 A. We
shall show that ƒ.b/ D '. Take a 2 A, i.e. a D i1 
 
 
 is with i1; : : : ; is 2 C . Then

ƒ.b/.a/ D �b.a/ D �b.1A i1 
 
 
 is/ D �b.1A/ i1 
 
 
 is D '.1A/i1 
 
 
 is D '.a/:
Remark 7.3.8. It is clear that for a group A we get

A Š ColAut.Cay.A; C //:

If A is a semigroup without identity, then the proof of the theorem shows that we
do not get

A Š ColEnd.Cay.A; C //:

Exercise 7.3.9. Take the group Z2 � Z2 with two-element and three-element gener-
ating sets, the group Z6 with generating sets ¹1º and ¹2; 3º, and the symmetric group
S3 with generating sets ¹.12/; .23/º and ¹.12/; .123/º, permutations written as cycles,
and draw the six Cayley graphs. Check that A Š ColAut.Cay.A; C // in each case.
Find the connection sets for which A Š Aut.Cay.A; C //.

Take a small semigroup without identity, such as the two-element right zero semi-
group R2 D ¹r1; r2º with multiplication rr 0 D r 0 for r; r 0 2 R2. Show that the only
generating set is R2 itself. Show that the semigroups R2 and ColEnd.R2; R2/ are not
isomorphic, even if we delete the identity from ColEnd.R2; R2/.

7.4 Frucht-type results

A Frucht-type result is a construction of an undirected and uncolored graph with a
prescribed automorphism group or a prescribed endomorphism monoid. We consider
this type of problem in this section. The straightforward question of which graphs
have a one-element group or a one-element monoid, i.e. which graphs are asymmetric
or rigid, was already been discussed in the previous section.
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Frucht’s theorem and its generalization for monoids

Theorem 7.4.1 (Frucht 1938). For every finite group A there exists a simple undi-
rected graph G with Aut.G/ Š A.

Proof. Consider the Cayley color graph Cay.A; C / with its natural edge coloring,
where C is a generating set which does not contain the identity 1A of A. We then
replace every edge of color k, for example .x; y/, by a subgraph of the following
form:

� � � �

�
�

x uk

u0
k

vk

v0
kC1

y

Subgraphs which take over this function are also known as šip (a Czech word, because
the first papers on this subject were from Prague) or gadgets (for example in Groups
by P. J. Cameron, in [Beineke/Wilson 1997]). If y D xk, say, we add new vertices
uk; u

0
k

and vk; v
0
kC1

, as well as a uk; u
0
k

path of length 2k and a vk; v
0
kC1

path of
length 2k C 1 as indicated in the figure.

We see that Frucht’s construction replaces every directed edge .x; y/ by an undi-
rected graph with one starting vertex and one end vertex. The resulting graph has
n2.2n�1/ vertices altogether. It is clear that every color automorphism of Cay.A; C /
is an automorphism of G. Conversely, it is clear that G has no other automorphisms.
(cf. [Harary 1969], p. 177).

Corollary 7.4.2. For every groupA there exist infinitely many non-isomorphic graphs
G with Aut.G/ Š A.

Remark 7.4.3. A similar result is valid for infinite groups; see G. Sabidussi, Graphs
with given infinite groups, Monatsh. Math. 64 (1969) 64–67. If A has a countable
generating system, one can use the same principle of construction. Otherwise one has
to find suitable families of graphs which can be “inserted”.

For monoids A this construction does not lead to the desired result, since “folding
the tails” gives many new endomorphisms which do not correspond to elements of A.
The situation can be repaired by inserting other graphs with the property that they
do not have non-trivial endomorphisms or homomorphisms between each other, i.e.
mutually rigid graphs. This idea goes back to Pavol Hell, therefore we use the symbol
H in the next theorem, which stands for Hell graph.

Theorem 7.4.4. For every finite monoid A, there exists a simple undirected graph H
with End.H/ Š A.
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Proof. In Z. Hedrlín and A. Pultr, Symmetric relations (undirected graphs) with given
semigroups, Monatsh. Math. 69 (1965) 318–322, only one rigid graph (the graph from
Theorem 7.2.3) is used for the construction of a suitable graph H .

We follow P. Hell and use the idea of the proof of Theorem 7.4.1; that is, we con-
struct the Cayley color graph for a generating set of the monoid. If there are loops,
we replace those of color c by a 2-cycle colored with colors c1 and c2. In this case
we replace any directed edge of any color, say a, by a directed path of length two
colored with the colors a1 and a2. If there are no loops, we omit this step. Now we
insert different mutually rigid graphs for different colors, identifying endpoints of the
original arc with two non-adjacent vertices of the respective rigid graph, say a and c,
from the drawing of the respective family in the proof of Theorem 7.2.6.

Corollary 7.4.5. For every finite monoid A, there exists a graph H such that

HEnd.H/ D End.H/ Š AI

however, in general, End.H/ ¤ LEnd.H/.

Proof. In the original graph we consider a situation where f .1/ D f .2/ but there
is no edge between the two preimage sets, like in Example 1.5.10. Then f .1/ is no
longer adjacent to a vertex in the image graph of the Hell graph H constructed in
the proof of Theorem 7.4.4. To check whether the argument stays true for connected
graphs, consider the graph from Example 1.5.10 plus K1.

For the second statement, it is clear that already for Cay.Ze
2; ¹1; eº/we have End ¤

HEnd, where Ze
2 D ¹e; 0; 1º is the two-element group with an externally adjoint new

identity e D 1Ze
2
.

Exercise 7.4.6. Check both parts of the previous proof.

Question. For which monoids A do there exist graphs G with LEnd.G/ Š A, with
QEnd.G/ Š A, or with SEnd.G/ Š A? A partial answer can be found in Suohai
Fan, Graphical Strong Representations of Monoids (Int. Conf. on Semigroups and its
Related Topics, Kunming, 1995), Springer, Singapore 1998, pp. 130–139.

7.5 Graph-theoretic requirements

In the previous section we constructed graphs with a given monoid or a given group.
Now we sharpen the requirements by imposing additional conditions on the graphs.

In this section many results are not proved, or the proofs are only partial or sketched.
Some of the proofs can be taken as extended exercises and could serve as starting
points for theses at the Bachelor’s or higher level.
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Smallest graphs for given groups

Theorem 7.5.1 (Babai 1974). For a group A, denote by �.A/ the minimal number of
vertices of all graphs G with Aut.G/ Š A. Then one has

A Z2 Z3 Z4 Z5 Zp A

�.A/ 2 9 10 15 2p � 2jAj
where p is a prime number greater than 5.

This theorem is due to L. Babai, On the minimum order of graphs with groups, Can.
Bull. Math. 17 (1974) 467–470.

Example 7.5.2. The following graph is vertex-minimal with group Z3. We can inter-
pret it as the Cayley graph Cay.Z3; ¹1º/ with gadget K4 n ¹eº.

Exercise 7.5.3. Prove that this graph can be turned into a graph with monoid Z3 by
subdividing every edge of the inner triangle by an additional vertex.

Theorem 7.5.4. Let n � 3. The only connected graph with groups Sn and

n vertices is Kn;

nC 1 vertices is K1;n;

nC 2 vertices is K1 CK1;n:

Proof. See Connected extremal graphs having symmetric automorphism group by
Gerwitz and Quintas in [Tutte 1966], and also [Halin 1980] II, p. 122.

For further results on vertex-minimal graphs with a given group, see [Arlinghaus
1985].

Corollary 7.5.5. Since, by Theorem 7:5:1, the smallest graph with group Z4 has ten
vertices, we can conclude that in Example 7:2:9, among the first seven graphs with
seven and eight vertices we have the smallest graph with (group and) monoid Z2�Z2.
Moreover, there labeled with number 800 we find the smallest graph with (group and)
monoid Z6.
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Question. Can you find smallest graphs with given monoids? To have a better chance
of success, one should restrict the classes of monoids considered, for instance to
groups themselves, right groups, Clifford semigroups (to be introduced later), etc.
See also Example 7.5.2 and Corollary 7.5.5.

Additional properties of group-realizing graphs

We now describe some further properties of a graph, which it has in addition to a
given automorphism group.

For the proof of the next theorem, we introduce the “type” of a vertex of an r-
regular graph, and describe a graph by a quadratic form. Here we define the type only
for r D 3.

Definition 7.5.6. Let v be a vertex of a cubic graphG which is incident with the edges
e1; e2 and e3. For i ¤ j , we denote by �ij the length of a shortest cycle containing
ei and ej . We set �ij D 0 if ei and ej do not lie on a cycle. Let �1; �2; �3 be the
numbers �ij arranged in non-decreasing order. The triple .�1; �2; �3/ is called the
type of the vertex v in G.

For examples see the proof of the next theorem.

Lemma 7.5.7. Every (undirected) graph G D .V;E/, V D ¹x1; : : : ; xnº, with ad-
jacency matrix A can be characterized by a quadratic form which defines – and is
defined by – the upper triangle of A in the variables ¹x1; : : : ; xnº. This form is un-
changed under automorphisms of G.

Proof. Instead of giving a formal proof, we just look at the graph K3 which, with the
upper triangle of its adjacency matrix filled up with zeros, gives the quadratic form
x1x2Cx2x3Cx1x3 D .x1; x2; x3/A.K3/

t.x1; x2; x3/; this remains unchanged under
permutation of the indices.

Theorem 7.5.8. For every finite group A with jAj D n and generating set �, where
j�j D m, there exists a 3-regular graph G, i.e. a graph G such that all vertices have
degree 3, Aut.G/ Š A and the number of vertices jV.G/j is given as follows:

A ¹1º Z2;Z3 Zn;n�4 cyclic non-cyclic

jV.G/j 12 10 3n; 6n 2.mC 2/n 2mn

Proof. See R. Frucht, Graphs of degree 3 with a given abstract group, Canad. J. Math.
(1949) 365–378. First, we display graphs corresponding to the groups ¹1º (which
appeared already in Theorem 7.2.4), Z2 and Z3:
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1 2

4 3

5 6
7 9

8
10

11 12

The following interesting proof for the case of jV.G/j D 6n, which uses the repre-
sentation of a graph by a quadratic form, is taken from [Behzad et al. 1979], pp. 184–
185.

Consider the following quadratic form with 6n variables ai ; : : : ; fi ; i D 1; : : : ; n,
modulo n:

X

.aibi C aiei C aifi C bici C cidi C cifi C fiei /

C
X

.bj ej C1 C djdj C1/C bne1 C d1dn/:

This form represents the following 3-regular graph, drawn for n D 5:

e
af

bc

d5 d4

d1

d2

d3

Clearly, any cyclic permutation of the indices leaves the quadratic from unchanged,
so Zn is a subgroup of the automorphism group. Using the type of a vertex, we show
that there exist no other automorphisms of this graph. First, we list the vertices along
with their types:

ai ; fi W .3; 4; 5/; bi W .4; 7; 9/; ci W .4; 7; 7/; ei W .3; 7; 8/;

di W
8

<

:

.n; 7; 7/ if n � 7;

.7; 7; n/ if 7 < n < 11;
.7; 7; 11/ if 11 � n:

It is clear that only vertices of the same type can be permuted.
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Now denote by ˛ the turn by 1 of the 5-cycle, i.e. of the entire graph, so ˛ is an
automorphism. Let ˇ be another automorphism.

Case 1. Suppose ˇ.b1/ D b1. Since the neighbors a1; c1 and e2 of b1 have different
types, they cannot be permuted; so they must be fixed. The same argument applies to
all vertices with index 1.

Case 2. Suppose ˇ.b1/ ¤ b1. Then because of the type we get ˇ.b1/ D bj , with
j ¤ 1. But since ˛j �1.b1/ D bj , we get that .˛j �1/�1.ˇ.b1// D b1. Now by
Case 1 we get .˛j �1/�1ˇ D ˛n and thus ˇ D ˛j �1.

So in both cases ˇ 2 Zn.

The proof of the following theorem (see H. Izbicki, Reguläre Graphen beliebi-
gen Grades mit vorgegebenen Eigenschaften, Monatsh. Math. 61 (1957) 42–50, and
G. Sabidussi, Graphs with given groups and given graph theoretical properties,
Canad. J. Math. (1957) 515–525) uses the concept of fixed-point-free graphs, which
will be defined a little later in Definition 7.7.1.

Theorem 7.5.9. For every finite group A and for all c; d 2 N with 2 � c � d and
d � 3, there exist infinitely many graphs G with Aut.G/ Š A which are d -regular
and have the chromatic number �.G/ D c, that c is the minimal number of colors
needed to color the vertices of G such that adjacent vertices have different colors.

Proof. The proof goes as follows. Construct a connected graph G0 which is fixed-
point-free, �-prime (see Theorem 10.5.5) and such that Aut.G0/ D A. Construct a
connected graph G00 6Š G0 which has the required properties, is �-prime and satisfies
jAut.G00/j D 1. One then has to prove that Aut.G0 �G00/ D Aut.G0/�Aut.G00/ D A
(which was done in G. Sabidussi, Graph multiplication, Math. Z. 76 (1971) 446–457)
and that � preserves the required properties in the following sense: if G0 is fixed-
point-free, then G0 � G00 is fixed-point-free; if G0 is m-regular and G00 is n-regular,
then G0 � G00 is mC n-regular; the chromatic number of G0 � G00 is the maximum
of the chromatic numbers of G0 and G00; if G0 is m-fold connected and G00 is n-fold
connected, then G0 � G00 is m C n-fold connected. The construction of G uses the
Frucht principle.

Theorem 7.5.10. For every monoidM and every groupA there exists a graphG with
a vertex or an edge x such that End.G/ Š A and End.G n ¹xº/ ŠM .

Proof. (See p. 101 ff in P. Hell, On some independence results in graph theory, in:
Proc. Conf. Algebraic Aspects of Combinatorics, Univ. Toronto, Winnipeg 1975, pp.
89–122.) The idea of the proof is as follows. Let GA be a graph with End.GA/ D A

and let GM be a graph with End.GM / D M . Such graphs can be obtained by the
method of Theorem 7.4.4. We then consider the graph G which is the union of GM

and jM j copies of GA. Now add edges from the identity element 1M 2 M to all
vertices of the first GA, and set e D .1M ; 1GA

/; also add edges from every other
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vertex ofGM to all vertices of the corresponding copy ofGA except for the vertex 1A.
It can be shown that any endomorphism fixes everything but the componentGA which
is adjacent to 1M . On this component any automorphism of GA is possible. One can
show analogously that after removing e, all endomorphisms ofGM are possible. Then
End.G n ¹eº/ DM and End.G/ D A.

GA GA GA
1A 1A 1A

1M GM

e

The statement about the vertex x is obtained upon replacing all vertical edges by
a path of length 2, where the middle point of the path corresponding to the edge e is
called x. Now deletion of the vertex x actually means that we delete e.

Theorem 7.5.11. Let H be an arbitrary (finite or infinite) graph and B � End.H/ a
subsemigroup. Then there exists a graph G such that:

(a) H � G is a strong subgraph;

(b) for all ' 2 End.G/ one has '.H/ � H ;

(c) for all '; '0 2 End.G/ one has that 'jH D '0jH implies ' D '0;
(d) End.G/jH WD ¹'jH j ' 2 End.G/º D B .

Proof. See G. Foldes and G. Sabidussi, On semigroups of graph endomorphisms,
Discrete Math. 30 (1986) 117–120.

Theorem 7.5.12. Every graph with chromatic number k is a strong subgraph of a
rigid graph with chromatic number k C 1.

Proof. See L. Babai and J. Nešetřil, High chromatic rigid graphs I, Colloq. Math.
Soc. J. Bolyai 18 (1976) 53–60.

Theorem 7.5.13. For every monoid M there exists a graph G with End.G/ Š M

such that G has one of the following properties:

(a) G has no cycle shorter than k, k > 7.

(b) G has chromatic number 3.

(c) G is directed and has an arbitrary chromatic number greater than or equal to 2.

Proof. See E. Mendelsohn, On a technique for representing semigroups as endomor-
phism semigroups of graphs with given properties, Semigroup Forum 4 (1972) 283–
294.
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Theorem 7.5.14. For directed graphs we have the following.

Exactly those directed cycles
�!
Cpk , with p prime and k 2 N, are the graphsG such

that:

(a) End.G/ Š Zpk I
(b) jV.G/j D pkI and

(c) no proper subgraph of G has property (a).

Proof. See R. Goebel, Zn-critical digraphs, Elektr. Informationsverarb. und Kommu-
nik. 22 (1986) 25–30.

7.6 Transformation monoids and permutation groups

We know from earlier sections of this chapter that every group or monoid is the auto-
morphism group or endomorphism monoid, respectively, of an uncolored undirected
graph. Here, by “group” we mean what is sometimes called an abstract group, which
historically is distinguished from a permutation group. A famous theorem due to
A. Cayley shows that every group is a permutation group of some set. The proof goes
as follows. Start with the group A D ¹a1; : : : ; anº and define for a 2 A the permu-
tation pa by left multiplication: pa.ai / D aai . Then ¹pa j a 2 Aº is a subgroup of
Sn acting from the left on ¹1; : : : ; nº, and is hence what is known as a permutation
group.

Another “natural” question that arises is which permutation groups are automor-
phism groups of graphs.

To make the difference clear, we will use the terminology from representation the-
ory of monoids; see, for example, [Kilp et al. 2000], which formalizes what we might
call non-additive module theory.

Definition 7.6.1. Let X be a set and M a semigroup. We call .M;X/ a left M -act
if there exists a “scalar multiplication” M � X ! X , .m; x/ 7! mx 2 X , such that
m0.mx/ D .m0m/x for x 2 X and m;m0 2 M . If M is a monoid, we require in
addition that 1Mx D x. Analogously, one defines a right M -act and writes .X;M/.
In both cases we say that M acts on X , from the left or from the right, if more
precision is needed.

Let .M;X/ and .M; Y / be left M -acts. A “linear” mapping 
 W .M;X/! .M; Y /

is called a left act morphism if 
.mx/ D m
.x/ for all x 2 X and m 2M .
Let .M;X/ and .N; Y / be left acts for two semigroups M and N . A pair of map-

pings .�; 
/ W .M;X/! .N; Y / is called a semilinear morphism if � is a semigroup
homomorphism and 
.mx/ D �.m/
.x/ for x 2 X; m 2M . If 
 and� are bijective,
we use the term semilinear isomorphism.
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We can think of an M -act X as a vector space without addition of vectors and with
scalars taken from a semigroup or monoid instead of from the scalar field. Indeed,
from the usual eight axioms characterizing vector spaces, only one remains if M is a
semigroup and not a monoid, and two remain if we have an identity 1M .

So every F -vector space V is a two-sided F -act. In this way, linear mappings
become act morphisms. The concept of a semilinear mapping from an F -vector space
to an F 0-vector space, used in linear algebra, turns into the semilinear morphism just
defined.

Other examples of left acts over monoids include .Aut.G/;G/, .SEnd.G/;G/,
.End.G/;G/, .Cnd.G/;G/, .EEnd.G/;G/ and .SEEnd.G/;G/ if G is a graph and
we write endomorphisms from the left.

Note that for a given semigroup M , the left M -acts together with the left act mor-
phisms form a category, denoted by M -Act. See Example 3.1.13.

Definition 7.6.2. Let the group A be a subgroup of Sn, i.e. there exists a semilinear
morphism .�; id¹1;:::;nº/ W .A; ¹1; : : : ; nº/ ! .Sn; ¹1; : : : ; nº/ where � is injective.
Then we call the left A-act .A; ¹1; : : : ; nº/ a permutation group. For a connected
graph G D .V;E/ with jV j D n, the permutation group .A; ¹1; : : : ; nº/ is the auto-
morphism group ofG if .Aut.G/; V / and .A; ¹1; : : : ; nº/ are semilinearly isomorphic
as left acts. In this case we call .A; ¹1; : : : ; nº/ the permutation group of the graphG.

A monoid A is called the transformation monoid of the graph G if there exists a
connected graph G D .V;E/ such that .End.G/; V / and .A; ¹1; : : : ; nº/ are semilin-
early isomorphic as left acts.

Question. Which groups are permutation groups and which monoids are transforma-
tion monoids of graphs?

We give some examples.

Example 7.6.3. It is clear that the permutation group .Z3; ¹1; 2; 3º/ cannot be the
permutation group of a graph G, since G must have three vertices and no such undi-
rected graph has automorphism group Z3. This is a brute-force argument.

It is also easy to see that the permutation group .A4; ¹1; 2; 3; 4º/ is not the permu-
tation group of a graph, by checking all graphs with four vertices; see also Groups by
P. J. Cameron, in [Beineke/Wilson 1997], p. 130.

Now consider the permutation group .Z2 � Z2; ¹1; 2; 3; 4º/. A graph with this
group as its permutation group must have four vertices. By considering all graphs with
four vertices, we wee that only K4 n ¹1; 3º has automorphism group Z2 � Z2. Now
.�; id¹1;2;3;4º/ with �..1; 0// D .13/ and �..0; 1// D .24/ is a group isomorphism
and establishes the semilinear isomorphism.

Also, .�; 
/ W .Z2 �Z2; V .L.K4 n ¹eº///! .Aut.L.K4 n ¹eº//; V .L.K4 n ¹eº///
where 
 is a bijective mapping.
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It is clear that Sn is the permutation group and the transformation monoid of the
complete graph Kn.

For later use, we define orbits and collect some information about them.

Definition 7.6.4. Let G D .V;E/ be a graph and U � End.G/ a subsemigroup. For
x 2 G, we call Ux WD ¹u.x/ j u 2 U º the U -orbit of x in G .

With this definition the following lemma is clear.

Lemma 7.6.5. If U is a subgroup of Aut.G/, then the U -orbits in G form a partition
V D V1

S 
 
 
SVk .

Lemma 7.6.6. Let V1; : : : ; Vk be the U -orbits in G for a subgroup U of Aut.G/.
Then for all i; j � k and v; v0 2 Vi , we have jNG.v/

T

Vj j D jNG.v
0/
T

Vj j.

Proof. Suppose that '.v/ D v0, i.e. v and v0 are in one orbit Vi . As ' is an automor-
phism, it follows that '.NG.v// D NG.'.v// D NG.v

0/. In particular, jNG.v
0/j D

jNG.v/j since ' is bijective; see Proposition 1.4.7. For every orbit Vj one has '.Vj / D
Vj and thus

jNG.v
0/
T

Vj j D jNG.'.v//
T

'.Vj /j D j'.NG.v/
T

Vj /j D jNG.v/
T

Vj j:

7.7 Actions on graphs

In this section, we relate automorphism groups and endomorphism monoids even
more closely to the elements of a graph by considering the action of the group or
monoid of the graph on the vertices of the graph. In particular, we consider transitive
actions and fixed-point-free actions. Again, some of the results that are not proved
can be starting points for further research.

Fixed-point-free actions on graphs

A fixed-point-free action is an action for which there are no one-element orbits, apart
from orbits under the identity. We give the following definition in its general form for
monoids. So far it is mostly used for subgroups U of Aut.G/.

Definition 7.7.1. We say that a subsemigroup U � Aut.G/ acts strictly fixed-point-
free on G if for all x 2 G and all ' 2 U; ' ¤ idG , we have '.x/ ¤ x. In other
words, every element of U other than idG does not fix any vertex of G. We say that
U acts fixed-point-free on G if for all x 2 G there exists ' 2 U with '.x/ ¤ x.
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Lemma 7.7.2. A subgroup U � End.G/ acts fixed-point-free on G if and only if for
all x; y 2 G there exists at most one ' 2 U with '.x/ D y.

If the subgroup U � End.G/ acts strictly fixed-point-free on G, then we have
jU j � jGj.

Proof. To prove necessity, suppose '.x/ D  .x/ D y; then x D '�1'.x/ D
'�1 .x/ and x D  �1'.x/ imply that ' D  .

Sufficiency is obvious, since we can then assume that there exists one x 2 G such
that '.x/ D x for all ' 2 U .

The last statement is clear since no x 2 G can have more than jGj images.

Example 7.7.3. The action of U D ¹0; 2; 4 D �2º on Cay.Z6; ¹1º/ is strictly fixed-
point-free. Observe that Cay.Z6; ¹1º/ is not U -vertex transitive; cf. Definition 7.7.5.

Remark 7.7.4. The action of U on G being strictly fixed-point-free is equivalent to
saying that G is a strongly faithful U -act (i.e. '.x/ D '0.x/ for some x 2 G implies
' D '0).

The weaker property of U acting fixed-point-free on G is equivalent to saying that
G is a faithful U -act (i.e. '.x/ D '0.x/ for all x 2 G implies ' D '0).

Transitive actions on graphs

The various concepts of the transitive action of a group impose symmetry conditions
on the graph. The following definitions can also be formulated for monoid action, in
which case symmetry requirements are much weaker. Vertex transitivity is taken up
again in Section 12.7.

Definition 7.7.5. A graph G D .V;E/ is said to be:

� vertex transitive (vertex symmetric) if for all u; x 2 V there exists ' 2 Aut.G/
with '.u/ D x;

� edge transitive (edge symmetric) if for all .u; v/; .x; y/ 2 E there exists ' 2
Aut.G/ with .'.u/; '.v// D .x; y/;

� transitive (symmetric) if it is both vertex transitive and edge transitive;

� s-transitive if for all u; v; x; y 2 V with d.u; v/ D d.x; y/ D s there exists
' 2 Aut.G/ with '.u/ D x and '.v/ D y;

� distance transitive if for all v; u; x; y 2 V with d.v; u/ D d.x; y/ there exists
' 2 Aut.G/ with '.v/ D x and '.u/ D y.
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Each of these concepts can be considered for the action of any subset U of the
endomorphism monoid End.G/, in which case we will add the prefix U - and write,
for example, “U -vertex transitive”.

We note that the one-element group is the permutation group of any asymmetric
graph whose points are all fixed points, and (therefore) the group does not act vertex
transitively.

The action of Z2 �Z2 onK4 n ¹eº is fixed-point-free, butK4 n ¹eº is not Z2 �Z2-
vertex transitive; cf. Example 7.6.3.

Remark 7.7.6. A vertex transitive action of U on G is a (globally) surjective action
on the vertex set of G, i.e. every element of G is in the image of some ' 2 U .

If G is connected, then 1-transitive implies transitive (i.e. 0-transitive). Note that
1-transitive is stronger than transitive, at least for undirected graphs.

It is clear that a graph is distance transitive if it is s-transitive for all s 2 N.

Regular actions

Definition 7.7.7. Let U � Aut.G/ be a subgroup which acts strictly fixed-point-free
onG. If, in addition,G D .V;E/ isU -vertex transitive, we say that we have a regular
action of U on G.

Remark 7.7.8. The notion of a regular action ofU onG is fundamental to the concept
of a (graphical) regular representation of an abstract group (see, for example, [Biggs
1996], Definition 16.4 on p. 124). A group which is the automorphism group of a
graph G and acts regularly on G is said to have a graphical regular representation.

It has been shown that the only groups which have no graphical regular representa-
tion are Abelian groups of exponent greater than 2, generalized dicyclic groups, and
13 exceptional groups, among them Z2

2;Z
3
2;Z

4
2, the dihedral groupsD6;D8;D10 and

the alternating group A4; see [Biggs 1996] 16g on p. 128. These groups must all be
solvable (for the definition check any book on group theory).

We have the following result.

Proposition 7.7.9. If the subgroup U � Aut.G/ acts strictly fixed-point-free on the
finite graph G and if jU j D jGj, then G is U -vertex transitive. If G is U -vertex
transitive, then jU j � jGj.
Proof. For x 2 G we have jUxj D jU j, since otherwise there would exist ' ¤ '0 2
U with '.x/ D '0.x/ and thus '�1'0.x/ D x. Since jU j D jGj, we have jUxj D jGj
and consequently Ux D G, as Ux � G and everything is finite. But this means that
for every x; y 2 G there exists ' 2 U with '.x/ D y. This implies the second
statement.
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Theorem 7.7.10. Exactly the following implications hold:

vertex transitive

edge transitive

distance transitive transitive

In particular, vertex transitive and edge transitive together imply transitive.

Proof. All implications follow directly from the definitions.
We proved the non-implications by examples.
The graph K1;2 Š P2 is edge transitive, but it is not vertex transitive since no

endpoint can go to the middle point via an automorphism.
The graph K3 �K2 (the 3-prism) is vertex transitive but not edge transitive, since

otherwise a C4 would have to go onto a K3.
The graph K4 n ¹eº is not edge transitive and not vertex transitive.
The graph C4 is distance transitive and thus has all the other properties.
The graph P.8; 3/ is depicted below:

P(8,3)

It can be shown to be transitive but not distance transitive; see [Biggs 1996], 15e on
p. 119.

Theorem 7.7.11 ([Biggs 1996] p. 115). If a connected graph is edge transitive but
not vertex transitive, then it is bipartite.

The following theorem (see [Biggs 1996] 16.2, p. 123) concerns vertex transitivity
of the König graph of a group A. In the second part, certain group automorphisms of
a group A are identified as graph automorphisms of a suitable König graph.

Theorem 7.7.12. Let A be a group with a generating set � D ��1.

(a) The König graph Cay.A;�/ is Aut.Cay.A;�//-vertex transitive.

(b) If � is a group automorphism of the group A with �.�/ D �, then � 2
Aut.Cay.A;�// and �.1/ D 1.

The next theorem (see [Biggs 1996] 16.3, p. 124) gives a criterion for a graph G
to be a König graph. It is also noted that the Petersen graph (which is LK5) is vertex
transitive but not a König graph. This theorem will reappear as Theorem 11.3.2 for
digraphs.
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Theorem 7.7.13. Let G be connected. There exists a subgroup U � Aut.G/ which
acts regularly on the graph G if and only if G D Cay.U;�/ for a suitable generating
set � � U .

7.8 Comments

Permutation groups of graphs have attracted much attention to date, but less attention
has been paid to transformation monoids of graphs; see Definition 7.6.2 and the ques-
tion before Example 7.6.3. The various transitivities may also hold some interest for
further research.

Theorems like 7.5.4, 7.5.8 and 7.5.9 can serve as models for questions arising
when Aut is replaced by SEnd or even bigger subsets of End.G/ such as HEnd.G/,
LEnd.G/ or QEnd.G/.

Another line of thought would involve replacing the group A in these theorems by
a semigroup or monoid which is close to groups, for example right or left groups or
Clifford semigroups (see Chapter 9 and later).



Chapter 8

The characteristic polynomial of graphs

We continue the discussion started in Sections 2.5 and 5.3 concerning eigenvalues and
characteristic polynomials of graphs.

8.1 Eigenvectors of symmetric matrices

It is often difficult to determine the eigenvalues of graphs or matrices, so it is some-
times useful to obtain bounds for them. We use the so-called Rayleigh quotient of an
eigenvector to achieve this aim. The next definition and the two subsequent theorems
are valid for any symmetric matrices.

Definition 8.1.1. Take A D .aij /i;j , with i; j 2 ¹1; : : : ; nº, and v D .v1; : : : ; vn/ 2
Rn. We call

R.v/ D h v ; Av ih v ; v i D
Pn

i;j D1 aij vivj
Pn

iD1 v
2
i

the Rayleigh quotient of v with respect to A.

Theorem 8.1.2. If A is symmetric, then for all v 2 Rn, v ¤ 0, we have

� D �.A/ � R.v/ � ƒ.A/ D ƒ:
Moreover,

� D R.v/ or R.v/ D ƒ
if and only if v is an eigenvector for � or for ƒ, respectively.

Proof. Let u1; : : : ; un be an orthonormal basis of eigenvectors for A. Choose an
arbitrary linear combination v DPn

iD1 
i ui and compute

R.v/ D h v ; Av i
h v ; v i D

Pn
iD1h 
iui ; A
iui i
Pn

iD1h 
iui ; 
iui i
ui is eigenvectorD

Pn
iD1h 
iui ; �iui
i i
Pn

iD1h 
iui ; 
iui i D
Pn

iD1 �i

2
i

Pn
iD1 


2
i

:

This implies that

� D
Pn

iD1 �

2
i

Pn
iD1 


2
i

���i� R.v/
�i �ƒ� ƒ:
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Moreover, if v is an eigenvector for �, then

R.v/ D h v ; Av ih v ; v i D
h v ; �v i
h v ; v i D

�h v ; v i
h v ; v i D �;

and similarly for ƒ.
Conversely, if v is not an eigenvector for �, then A has at least two different eigen-

values; therefore all inequalities are strict.

Theorem 8.1.3. Let A be a symmetric matrix with only non-negative entries, and
let v D .v1; : : : ; vn/ 2 Rn be an eigenvector corresponding to ƒ.A/. Then Qv D
.jv1j ; : : : ; jvnj/ is an eigenvector for ƒ.A/ and j�.A/j � ƒ.A/.
Proof. Note that aij � 0 implies R. Qw/ � R.w/ for all w D .w1; : : : ; wn/ 2 Rn by
the definition of R. Also, Theorem 8.1.2 implies that

R. Qw/ � ƒ.A/, �R. Qw/ � �ƒ.A/) �R. Qw/ � R.w/:
If w is an eigenvector corresponding to �.A/, then again using Theorem 8.1.2 we get

�ƒ.A/ � �R. Qw/ � �.A/ w EV for �D R.w/ � R. Qw/ � ƒ.A/; i.e. j�j � ƒ:
If v is an eigenvector corresponding to ƒ.A/, then ƒ.A/ D R.v/ � R. Qv/ � ƒ.A/.
Theorem 8.1.2 implies that Qv is an eigenvector for ƒ.A/.

Eigenvalues and connectedness

Theorem 8.1.4. If G is connected, then ƒ D ƒ.G/ is a simple eigenvalue and every
eigenvector of ƒ has only non-zero entries of the same sign.

Proof. By assumption, A.G/ cannot be decomposed into blocks; see Theorem 2.1.8.

(a) We show that no entry of v is 0 if Av D ƒv.
Take v D .v1; : : : ; vs; vsC1; : : : ; vn

„ ƒ‚ …

D0

/. Then A Qv D ƒ Qv (with Qv as in Theo-

rem 8.1.3). This means that
n
X

j D1

aij

ˇ

ˇvj
ˇ

ˇ D ƒ jvi j D 0 for all i D s C 1; : : : ; n:

Explicitly, this is saying that
0

B

B

B

B

B

B

B

B

@

a11 
 
 
 a1s 
 
 
 a1n
:::

: : :
:::

: : :
:::

as1 
 
 
 ass 
 
 
 asn

a.sC1/1 
 
 
 a.sC1/s 
 
 
 a.sC1/n
:::

: : :
:::

: : :
:::

an1 
 
 
 ans 
 
 
 ann

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

jv1j
:::

jvsj
0
:::

0

1

C

C

C

C

C

C

C

A

D ƒ

0

B

B

B

B

B

B

B

@

jv1j
:::

jvsj
0
:::

0

1

C

C

C

C

C

C

C

A

:
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As all entries of A are non-negative and all the jvi j are positive, we get that the
lower left rectangle of the matrix consists entirely of zeros. As A is symmetric,
the same is true for the corresponding upper right rectangle of the matrix.

But then A would be block decomposable, which is a contradiction.

(b) Now we show that all components of v have the same sign. Set

NC.v/ WD ¹i j vi > 0º;
N�.v/ WD ¹j j vj < 0º;

which implies, by (a), that

NC.v/
S

N�.v/ D ¹1; : : : ; nº: .�/

By Theorems 8.1.2 and 8.1.3 we get that ƒ D R.v/ D R. Qv/. For i 2 NC.v/
and j 2 N�.v/ it follows that

aij vivj < 0 or aij D 0 .}/

or

aij jvi j
ˇ

ˇvj
ˇ

ˇ > 0 or aij D 0:

Now � and } imply aij D 0 for all such i; j . The symmetry of A would again
give a block decomposition. Thus NC.v/ D ; or N�.v/ D ;.

(c) Because of (b), there does not exist an eigenvector of ƒ orthogonal to v. Other-
wise it would have components smaller than zero as well as components greater
than zero to give the scalar product 0 with v. This implies that ƒ is simple.

Corollary 8.1.5. Every eigenvector corresponding to an eigenvalue �i ¤ ƒ.G/ has
at least one negative and at least one positive component.

Regular graphs and eigenvalues

Theorem 8.1.6. For a graph G, the following statements are equivalent:

(i) G is d -regular.

(ii) ƒ.G/ D dG , the average vertex degree.

(iii) G has v D t .1; : : : ; 1/ as an eigenvector for ƒ.G/.

Moreover, if m.ƒ.G// D r , then G has exactly r components.
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Proof. (i) ) (ii). Owing to the d -regularity of G, all row sums of the adjacency
matrix are equal to d , i.e. Av D dv for v WD t .1; : : : ; 1/. Then d is an eigenvalue cor-
responding to the eigenvector v. By hypothesis we have d D dG . By Theorem 8.4.8
we get d D dG � ƒ.G/ � �G D d .

(ii)) (iii). Again take v WD t .1; : : : ; 1/; then

dG D 1

n

X

aij
by hyp.D R.v/:

From Theorem 8.1.2 we get that v is an eigenvector corresponding to ƒ.G/ D dG .
(iii)) (i): By hypothesis we have Av D ƒ.G/v. As v D .1; : : : ; 1/ is an eigen-

vector corresponding toƒ.G/, we get for every row i that
Pn

j D1 aij D ƒ. Therefore
all vertex degrees are ƒ.

Moreover, if G is connected, we get m.ƒ.G// D 1 by Theorem 8.1.4. If G is not
connected, then in the case of d -regularity every component has the eigenvalue ƒ D
d with multiplicity one, so in total we get m.ƒ.G// D r if G has r components.

Exercise 8.1.7. All connected regular graphs with largest eigenvalue 3 and exactly
three different eigenvalues are known; see, for instance, J. J. Seidel, Strongly regular
graphs with .�1; 1; 0/ adjacency matrix having eigenvalue 3, Linear Alg. Appl. 1
(1968) 281–298.

8.2 Interpretation of the coefficients of chapo.G/

It turns out that the coefficients of the characteristic polynomial of a directed graph can
be interpreted relatively easily. The interpretation for undirected graphs will follow
from this.

Theorem 8.2.1. Let EG be a directed graph (possibly with loops and multiple edges).
For the coefficients of the characteristic polynomial chapo. EG/ D Pn

iD0 ai t
n�i , we

have
ai D

X

ELi 2 ELi

.�1/k. ELi /

where

ELi WD ¹ ELi � EG W j ELi j D i; the components of ELi are directed circuits

i.e. indeg.x/ D outdeg.x/ D 1 for all x 2 ELiº;
k. ELi / WD number of components of ELi ;

and ai D 0 for ELi D ;.
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This means that every subgraph ELi with i vertices contributes C1 or �1 to ai ,
depending on whether ELi has an even or odd number of directed circuits (cf. [Sachs
1972], pp. 119–134).

Proof. By the Leibniz formula for determinants, we get that the constant coefficient
is

an D .�1/n det..aij /i;j / D
X

pD���
.�1/nCl.p/a1i1

a2i2

 
 
 anin

;

where l.p/ is the number of inversions of the permutation p W j 7! ij for j; ij 2
¹1; : : : ; nº. A summand of an is therefore not equal to zero if and only if all the a1i1

,
: : : , anin

are non-zero, i.e. if and only if .x1; xi1
/, .x2; xi2

/, : : : , .xn; xin
/ are edges

in EG.
As p is a permutation, all second indices are again numbers from 1; : : : ; n. Thus,

in EG, we have a circuit of length n or a circuit of length 2, say x1; x2; x1, and a circuit
of length 3, say x3; x4; x5; x3, etc. For p this implies i2 D 1; i5 D 3, etc. This is true
if all aij D 1, i.e. for simple graphs. For aij > 1 the statement remains true, since
in that case jaij j edges go from xi to xj which generate the same number of circuits
containing xi and xj in this sense.

We now compare this to the right-hand side of the formula. Take ELn 2 ELn and
consider the possible cases:

(a) ELn is an n-angle, i.e. l.p/ D n � 1 and the summand is �1.

Geometric interpretation: we get the negative number of n-angles.

(b) ELn is an .n � 1/-angle and a loop, i.e. l.p/ D n � 2 and the summand is C1.

Geometric interpretation: we get the positive number of .n � 1/-angles, such
that the remaining vertex has a loop.

(c) ELn is an .n � 2/-angle and a 2-circuit or an .n � 2/-angle and two loops, i.e.
l.p/ D n � 2 or l.p/ D n � 3.

Geometric interpretation: we get the negative number of .n � 2/-angles and 2-
circuits, or the negative number of .n � 2/-angles with one loop at each of the
two other vertices.

(d) ELn is an .n � 3/-angle and one triangle or an .n � 3/-angle, one 2-circuit and
one loop etc.

We now use that for the coefficients ai with i < n one has that .�1/i ai is the sum of
the principal i th row minors of A D .aij /. Each of these corresponds uniquely to a
subgraph of EG on i vertices.
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Example 8.2.2 (corresponding to Theorem 8.2.1).

EG D

EL5 D
°

EL1 D EL4 D ;

EL3 D
°

EL2 D
°

± ±

±

Interpretation of the coefficients for undirected graphs

Theorem 8.2.3. Let G be without loops and multiple edges with the characteristic
polynomial chapo.G/ DPn

iD0 ai t
n�i . Then a0 D 1 and, for 1 � i � n,

ai D
²

P

H2Ki
.�1/k.H/ 2c.H/ for Ki ¤ ;;
0 for Ki D ;;

where

Ki WD ¹H � G W jH j D i; components of H are K2 or circuitsº;
k.H/ WD number of components of H;

c.H/ WD number of circuits of H .

Proof. The idea is to replace in G the edge ¹x1; x2º by .x1; x2/ and .x2; x1/; call the
result EG. Now we count the circuits of G in EG twice; the edges become 2-circuits and
are counted in EG only once, all according to Theorem 8.2.1.

Corollary 8.2.4. Take G without loops and multiple edges. Then the coefficients of
the characteristic polynomial are such that:

a0 D 1I
a1 D 0I
�a2 D jEj I
�a3

2
D number of triangles in GI

a4 D number of pairs of disjoint edges

� twice the number of rectangles.

IfG has loops, then�a1 D the number of loops, but the other coefficients of chapo.G/
are more difficult to interpret.
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Corollary 8.2.5. The length of the shortest odd circuits in G is the first odd index
i ¤ 1 with ai ¤ 0, and there are �ai=2 shortest odd circuits.

Exactly for the bipartite graphs, all coefficients with odd i are zero.
For trees we have that the number of choices of r disjoint edges in the tree is

.�1/ra2r .

Proof. The statements follow from the structure of the Ki . For odd i , each H 2 Ki

does not consist of K2 only. In K5, say, there is no C5 but nevertheless a5 ¤ 0; so
there exists at least one C3, which then, however, appears in K3. The cardinality of
this Ki is �ai=2, since the smallest odd circuit is counted twice.

For bipartite graphs everything is clear, since they don not have odd circuits, i.e.
Ki D ; for odd i .

The statement for trees is also clear from Corollary 8.2.4. You may want to check
this statement for some (small) trees.

Example 8.2.6 (Coefficients for undirected graphs).

�
�

�
�������

�
� � � �

�

�
�

�
�

��� ���

G chapo.G/ D t4 � 5t2 � 4t

K1 D ;
a1 D 0

K2 D
°

, , , ,

,

, ,

a2 D �5
k.H/ D 1 for all H; c.H/ D 0 for all H

K3 D
°

a3 D .�1/ 
 2C .�1/ 
 2 D �4
k.H/ D 1 for all H c.H/ D 1 for all H

K4 D
°

a4 D 0
k.H1/ D 1; c.H1/ D 1
k.H2/ D 2; c.H2/ D 0
k.H3/ D 2; c.H3/ D 0

K1 D ;i D 1 W

i D 2 W

i D 3 W

i D 4 W

±

� �
� � �

���� ���

±

� �
�

�
�

�
�
�

�
�
�
�

������ ���
��� ±
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8.3 Spectra of trees

Recursion formula for trees

Theorem 8.3.1. Let G D .V;E/ be a tree with jEj > 2, and take x 2 V with
deg.x/ D 1 and ¹x; x0º 2 E. Then

chapo.GI t / D t 
 chapo.Gnx/ � chapo..Gnx/ n x0/:

See E. Heilbronner, Some comments on cospectral graphs, Match 5 (1979) 105–133.

Example 8.3.2 (Characteristic polynomials of trees).

chapo

�

x2
x1

�

D t 
 chapo

� �

� chapo

� �

D t 
 chapo

� �

� chapo

� �

D t8 � 7t6 C 9t4:
Corollary 8.3.3. For paths Pn with n � 1 edges, where n � 2, we get

chapo.PnI t / D t 
 chapo.Pn�1I t / � chapo.Pn�2I t /:
Exerceorem 8.3.4 (O. Brandt, Automorphismengruppen kospektraler Graphen, Diplo-
marbeit, Oldenburg 1998). If G is composed from G1 and G2 such that there is ex-
actly one joining in-between, say x1 2 V.G1/ is joined by an edge to v2 2 V.G2/,
then

chapo.G/ D chapo.G1/ chapo.G2/ � chapo.G1 n x1/ chapo.G2 n x2/:

Example 8.3.5 (Characteristic polynomials of undirected paths).

chapo.P0/ D t;
chapo.P1/ D t2 � 1;
chapo.P2/ D t3 � 2t;
chapo.P3/ D t4 � 3t2 C 1;
chapo.P4/ D t5 � 4t3 C 3t;
chapo.P5/ D t6 � 5t4 C 6t2 � 1;
chapo.P6/ D t7 � 6t5 C 10t3 � 4t;
chapo.P7/ D t8 � 7t6 C 15t4 � 10t2 C 1;
chapo.P8/ D t9 � 8t7 C 21t5 � 20t3 C 5t:
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See F. Harary, Clarence King and A. Mowshowitz, Cospectral graphs and di-
graphs, Bull. London Math. Soc. 3 (1971) 321–328.

8.4 The spectral radius of undirected graphs

Let G D .V;E/ be a graph with jV j D n and jEj D m. Denote by �.G/ the smallest
eigenvalue and by ƒ.G/ the largest eigenvalue of G.

Subgraphs

Theorem 8.4.1. If G0 � G is a subgraph, then ƒ.G0/ � ƒ.G/.
If G0 is a strong subgraph, then, in addition, �.G/ � �.G0/.

Proof. We prove the first statement for G0 D G n e, with e D ¹xi ; xj º. Let v D
.v1; : : : ; vn/ be an eigenvector corresponding to the eigenvalue ƒ.G0/, with norm
kvk D 1. By Theorem 8.1.4 we have vl � 0 for all l D 1; : : : ; n. Then, using
Theorem 8.1.2, the definition of R, vi ; vj > 0 and again Theorem 8.1.2 in this order,
we get

ƒ.G n e/ D RGne.v/ D RG.v/ � 2vivj � RG.v/ � ƒ.G/:

By induction we get the statement about ƒ.G/.
Now let G0 be a strong subgraph. We prove both assertions for G0 D G n xi . We

obtain A.Gnxi / from A.G/ by deletion of the i th row and column. For v 2 Rn�1 we
denote by Ov 2 Rn the vector obtained from v by inserting 0 at the position i .

For all v 2 Rn�1, v ¤ 0, we have RGnx.v/ D RG. Ov/ by the definition of R.
Let v be an eigenvector of G n x for ƒ.G n x/. By Theorem 8.1.2 we have

ƒ.Gnx/ D RGnx.v/ D RG. Ov/ � ƒ.G/:

Moreover, we have that for an eigenvector v corresponding to �.G n x/,

�.G/ � RG. Ov/ D RGnx.v/ D �.Gnx/:

The statement follows again by induction.

Example 8.4.2. To illustrate the situation, we look at the pathP2 (see Example 8.3.5).
It has smallest eigenvalue �p2. It is not a strong subgraph of K3. So we have
�1 D �.K3/ > �.P2/ D �

p
2.

The following theorem goes back to Cauchy, although I am not sure whether its
name (which to some extent describes how the eigenvalues are arranged) is due to
Cauchy too.
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Theorem 8.4.3 (Interlacing Theorem). Let �1 � 
 
 
 � �n be the spectrum of G and
�1 � 
 
 
 � �n�1 the spectrum of G n x. Then

�1 � �1 � �2 � �2 � 
 
 
 � �n�1 � �n:

Upper bounds

As spectra and spectral radii are often not easy to determine, we now derive some
upper bounds. In the following, n denotes the number of vertices and m the number
of edges of G.

Theorem 8.4.4. We have ƒ.G/ �
q

2m.n�1/
n

.

Proof. For n D 1 everything is clear since ƒ.K1/ D 0.
If n � 2, then in Rp we use the Cauchy–Schwarz inequality

�

p
X

iD1

aibi

�2 �
�

p
X

iD1

a2
i

��

p
X

iD1

b2
i

�

:

Setting p D n � 1, ai D 1 and bi D �i for all 1 � i � n � 1, we get

�

n�1
X

iD1

1�i

�2 � .n � 1/
�

n�1
X

iD1

�2
i

�

:

As
Pn

iD1 �i D 0 (Theorem 2.5.6), we get

n�1
X

iD1

�i D ��n and thus
�

n�1
X

iD1

�i

�2 D �2
n with ƒ.G/ D �n:

Consequently,

�2
n � .n � 1/

�

n�1
X

iD1

�2
i

�

C .n � 1/�2
n

, n�2
n � .n � 1/

n
X

iD1

�2
i

„ƒ‚…

2jE j

Theorem 2:5:6D .n � 1/ 
 2 
 jEj jKjDmD .n � 1/ 
 2 
m

) ƒ.G/ �
r

2m.n � 1/
n

:

We state some more results without giving proofs here.
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Theorem 8.4.5 (Schwenk, unpublished according to [Behzad et al. 1979]).

ƒ.G/ � p2m � nC 1:

Remark 8.4.6. Theorem 8.4.5 gives a better bound than does Theorem 8.4.4, since

2m

n
D 1

n

X

x2G

deg.x/ DW dG and, by Theorem 8.4.4, ƒ.G/�
p

2m � dG :

As dG � n � 1 (with equality for Kn), it follows that
p
2m � nC 1 � p2m � dG .

Corollary 8.4.7. If G is connected,

ƒ.G/ �
p

2 jEj � jV j C 1 D
p

mC 
.G/:
Proof. Use the formula for the cyclomatic number (Corollary 6.2.14).

Lower bounds

Theorem 8.4.8. Let�G be the largest and dG D 1
n

P

x2G deg.x/ the average vertex
degree in G. Then

dG � ƒ.G/ � �G :

Proof. For v D .1; : : : ; 1/ one has tA D t .deg.x1/; : : : ; deg.xn//. We calculate that

ƒ.G/
Theorem 8:1:2� h v ; Av i

h v ; v i
vD.1;:::;1/D

P

x2G deg.x/

n
D dG :

Let v D .v1; : : : ; vn/ be an eigenvector for ƒ.G/, where we may assume that
vi > 0 for all i D 1; : : : ; n, and let vp WD max¹v1; : : : ; vnº. Because Av D ƒv, for
the pth component we have that

ƒvp D
n
X

j D1

apj vj � vp
n
X

j D1

apj � vp�G :

Theorem 8.4.9. If G is connected with jV j D n � 2, then

ƒ.G/ � 2 cos
�

nC 1:

Equality holds exactly for the path Pn�1 with n vertices. In particular, the graph G
is not connected if ƒ.G/ < 2 cos �

nC1
.

Proof. See L. Collatz and U. Singowitz, Spektren endlicher Graphen, Abh. Math.
Sem. Univ. Hamburg 21 (1957) 63–77.
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Exercise 8.4.10. Find a definition of the chromatic number � and prove that �.G/ �
1Cƒ.G/.
Exerceorem 8.4.11. For a connected graph G one has �.G/ D 1Cƒ.G/ if and only
if G D Kn or G D C2mC1 with suitable n;m.

Project 8.4.12. Find other bounds in the literature or from the internet and collect the
different bounds in a table; include all the information necessary for each bound.

8.5 Spectral determinability

In this section we collect some results on graphs which are determined by the spec-
trum up to isomorphism.

Spectral uniqueness of Kn and Kp;q

Theorem 8.5.1. For the graph G with eigenvalues � D �1 � 
 
 
 � �n D ƒ, we
have:

(a) G Š Kn , ƒ D n � 1;

(b) G Š Kp;q , ƒ D �� D ppq and �i D 0 for all 1 < i < n D p C q.

Proof. (a) The “)” statement is just Proposition 2.5.10.
For “(”,

ƒ D n � 1 Theorem 8:4:5) n � 1 � p2m � nC 1
, n2 � 2nC 1 � 2m � nC 1

, n2 � n
2
� m

, n.n � 1/
2

� m:

Then

G Š Kn as
n.n � 1/

2
D jE.Kn/j :

(b) The “)” statement is Theorem 2.5.11.
To prove “(”, note that as chapo.G/ D .t2 C a2/ t

pCq�2, coefficients with odd
index are zero, and so by Corollary 8.2.5 the graph G is bipartite. From �a2 D pq,
which is the number of edges, we conclude thatG is complete bipartite. From pCq D
n we can determine p and q.

Theorem 8.5.2. Let G ¤ K1 be connected with chapo.G/ D Pn
iD0 ai t

n�i and
� D �1 � �2 
 
 
 � �n D ƒ. The following are equivalent:



Section 8.5 Spectral determinability 173

(i) G is bipartite.

(ii) a2i�1 D 0 for all 1 � i � dn
2
e.

(iii) �i D ��nC1�i for 1 � i � n; that is, ��1 D �n, ��2 D �n�1; and so on.

(iv) ƒ D ��.

Moreover, m.�i / D m.��i /.

Proof. (i), (ii) is Corollary 8.2.5.
(i) ) (iii): Let ¹x1; : : : ; xsº, ¹xsC1; : : : ; xnº be a bipartition. In the adjacency

matrix A of a bipartite graph,

A D
�

0

0

�

;

we have aij D 0 for i; j � s and for i; j � s C 1.
Let � be an eigenvalue with the eigenvector v, i.e. Av D �v. Then

Av D

0

B

B

B

B

B

B

B

B

B

@

Pn
iDsC1 a1ivi

:::
Pn

iDsC1 asivi
Ps

iD1 a.sC1/ivi
:::

Ps
iD1 anivi

1

C

C

C

C

C

C

C

C

C

A

D �

0

B

B

B

B

B

B

B

B

@

v1
:::

vs

vsC1
:::

vn

1

C

C

C

C

C

C

C

C

A

:

This implies that Qv D t .v1; : : : ; vs;�vsC1; : : : ;�vn/ is an eigenvector corresponding
to the eigenvalue ��. The ordering of the eigenvalues gives (iii).

The mapping v 7! Qv provides an isomorphism between Eig.G; �/ and Eig.G;��/.
Diagonalizability implies that dim Eig.G; �/ D m.�/ for all eigenvalues �. Then
m.�/ D m.��/ for all � and the last statement is also proved.

(iii)) (iv) is trivial.
(iv)) (i): ForAvD �1v we may assume that kvkD 1. ThenR.v/DP aij vivj D

�1 D ��n by hypothesis, and the triangle inequality gives

X

aij jvi jjvj j � jR.v/j � �n:

Using Theorem 8.1.2, we also get the converse relation, i.e. we have equality every-
where. Moreover, Qv is an eigenvector for �n (see Theorem 8.1.3) and all its coordi-
nates are non-zero. For v we then have v1; : : : ; vs > 0, say, and vsC1; : : : ; vn < 0,
where s ¤ 0; n because eigenvectors corresponding to different eigenvalues of a sym-
metric matrix are orthogonal. On the other hand,

P

aij jvi jjvj j D jP aij vivj j is
possible only if no two summands on the right have opposite signs.
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If all the summands are negative, say, then because aij � 0, we get that aij D 0

for all i � s and j > s, and vice versa. Thus

A D
�

0

0

�

;

and consequently G would not be connected.
If all the summands are non-positive, it follows that aij D 0 for all i; j � s and

i; j > s. Then we have

A D
�

0

0

�

;

and G is bipartite.

Exerceorem 8.5.3. The Petersen graph with characteristic polynomial .t � 3/.t �
1/5.t C 2/4 is uniquely determined by its spectrum, and so, by the way is the dodeca-
hedral graph.

Exerceorem 8.5.4. If G is connected with ƒ.G/ D 2, then

G 2
²

K1;4 ; Cp ; ; ; ;

³

:

If G is connected with ƒ.G/ < 2, then G is a subgraph of one of these graphs.

Exerceorem 8.5.5. A connected graph has exactly one positive eigenvalue if it is
complete multipartite, i.e. the vertex set has an r-partition V1; : : : ; Vr such that there
are no edges inside one Vi and any two vertices from different Vi are adjacent.

8.6 Eigenvalues and group actions

First we use the concept of a group orbit on a graph to gain some more information
about the characteristic polynomial of certain graphs. This, in turn, gives information
about the automorphism group of a graph in some cases.

Groups, orbits and eigenvalues

Theorem 8.6.1. LetG D .V;E/ be a (directed) graph, where V1; : : : ; Vk are Aut.G/
orbits in G. Then there exists a polynomial chapo.T / of degree k which divides the
characteristic polynomial chapo.G/.

Proof. (See A. Mowshowitz, The adjacency matrix and the group of a graph, in
[Harary/Palmer 1973], pp. 129–148, and also [Godsil/Royle 2001], Theorem 9.3.3
on p. 197.)
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Consider the vector tz D .z1; : : : ; z1; : : : ; zk; : : : ; zk/, where zi appears exactly
jVi j times for i D 1; : : : ; k. Let T D .tij / be a matrix where tij is the number of
edges from Vi to Vj for i; j D 1; : : : ; k; cf. Lemma 7.6.6. Then for A D A.G/ we
get

Az D

0

B

B

B

@

t11z1 C 
 
 
 C t1kzk

t21z1 C 
 
 
 C t2kzk
:::

tk1z1 C 
 
 
 C tkkzk

1

C

C

C

A

D T z

where z D t .z1; : : : ; zk/. Now choose for z 2 Ck an eigenvector corresponding
to some eigenvalue � of T . Then T z D �z and Az D �z. This means that every
eigenvalue of T is an eigenvalue of A, and thus chapo.T / divides chapo.A/.

Corollary 8.6.2. When the characteristic polynomial chapo.G/ is irreducible over Q
(and not only in this case), we have jAut.G/j D 1.

Proof. See A. Mowshowitz, Graphs, groups and matrices, Proc. Canad. Math. Congr.
(1971) 509–522, as stated in [Cvetković et al. 1979], p. 153, Exercise 5.51.

If chapo.G/ is irreducible over Q and hence over Z, we automatically get
chapo.A/ D chapo.T /. Then k D n and all orbits are one-element orbits.

Example 8.6.3. The converse is not true in general, i.e. there exist asymmetric graphs
with irreducible characteristic polynomial.

Consider a tree T with an odd number of vertices and jAut.T /j D 1, for example
a path with six vertices where vertex 3 has a pending edge. This gives a bipartite
graph with seven vertices, i.e. the constant coefficient a7 in the characteristic polyno-
mial is zero; cf. Corollary 8.2.5. Then chapo.T / has a factor t , and therefore is not
irreducible.

Another example is the following asymmetric graph:

It has characteristic polynomial x.x5 � 8x3 � 6x2 C 8x C 6/.

Exerceorem 8.6.4. If G has an automorphism with s odd and t even orbits, then the
number of simple eigenvalues ofG is no greater than sC2t . There are examples with
equality and with strict inequality.
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8.7 Transitive graphs and eigenvalues

In Section 2.7 we presented a result connecting automorphisms and eigenvectors,
which we used already for line graphs in Section 5.3. This Theorem 2.7.7 will be
used again now.

Theorem 8.7.1. Let G be connected, d -regular, undirected and Aut.G/-vertex tran-
sitive. Let � be a simple eigenvalue. If jV j D n is even, then � 2 ¹2˛ � d j ˛ 2
¹0; : : : ; dºº. If jV j is odd, then � D d .

Proof. See [Cvetković et al. 1979], Theorem. 5.2 on p. 136, originally due to M. Pe-
tersdorf and H. Sachs, Spectrum und Automorphismengruppe von Graphen, in: Com-
binatorial Theory and Its Applications III, North-Holland, Amsterdam 1969, pp. 891–
907. Let P be the matrix of an automorphism p 2 Aut.G/. Let v be an eigenvector
of �. From Theorem 2.7.7 we get Pv D ˙v. If, say, p.xi / D xj for xi ; xj 2 V.G/,
we get for the components vi ; vj of v that vi D .P v/j D ˙vj . As G is Aut.G/-
vertex transitive, we can find such p for each pair of vertices. Thus vi D ˙vj for all
components of the above eigenvector corresponding to �.

Now, if n is odd, Theorem 8.1.6 implies that u D t .1; : : : ; 1/ is an eigenvector
for d . If � ¤ d we get hu; vi D 0, since eigenvectors for different eigenvalues are
orthogonal. Moreover, a calculation gives

P

vi D 0, which is not possible for an odd
number of summands of the same non-negative value. Therefore, in this case, � D d .

If n is even, we set ˛ WD j¹xj 2 NG.xi / W vj D viºj for xi 2 G, and thus d � ˛ D
j¹xj 2 NG.xi / W vj D �viºj. Because Av D �v, we get .Av/i D �vi , where the
components of v are added which correspond to the neighbors of xi . Consequently,
.Av/i D ˛vj � .d � ˛/vj D .2˛ � d/vj D �vj , i.e. � D 2˛ � d .

In the following result we relate the investigation of transitivity to eigenvalues.

Theorem 8.7.2. LetG be a d -regular, undirected and Aut.G/-vertex transitive graph
with jV j D 2qk D n, where k is odd. Then the following hold:

(a) If q D 0, then � D d is the only simple eigenvalue of the graph G.

(b) If q D 1, then G has at most one simple eigenvalue � ¤ d and, if so, then
� D 4ˇ � d where ˇ 2 ¹0; 1; : : : ; 1

2
.d � 1/º.

(c) If q � 2, then G has at most 2q simple eigenvalues including � D d ; they are
all of the form � D 2˛ � d for ˛ 2 ¹0; 1; : : : ; dº.

Proof. See [Cvetković et al. 1979], Theorem 5.3 and footnote on p. 137; the result was
obtained by H. Sachs and M. Stiebitz. Let v 2 Rn be an eigenvector corresponding
to a simple eigenvalue �, and let P be the matrix of an automorphism p 2 Aut.G/.
Then Theorem 2.7.7 implies Pv D ˙v. If we suppose that p.xi / D xj , then for the
components vi ; vj of v we get that vi D .P v/j D ˙vj . As G is vertex transitive,
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such p exists for every pair of vertices of G. Thus vi D ˙vj for components of the
eigenvector v of �.

(a) This is the case where n is odd. Theorem 2.7.5 implies that u D t .1; : : : ; 1/ is an
eigenvector to the eigenvalue d . If � ¤ d we get hu; vi DP vi D 0, as eigenvectors
corresponding to different eigenvalues are orthogonal. The second equality is not
possible for an odd number of summands with the same non-zero absolute value. So
we have � D d in this case.

(c) This is the case where n is even. For xi 2 G, set ˛ WD j¹xj 2 NG.xi / W vj D
viºj. Then d � a D j¹xj 2 NG.xi / W vj D �viºj. Now Av D �v implies .Av/i D
�vi . Here those components of v are added which correspond to the neighbors of xi .
So we get .Av/i D ˛vi � .d � ˛/vi D .2˛ � d/vi D �vi , i.e. 2˛ � d D �.

We omit the proof of the special case (b).

Exercise 8.7.3. Find examples of each case. Cases (b) and (c) need two examples
each, because of the “at most”.

Theorem 8.7.4. Let G be undirected, d -regular and Aut.G/-vertex transitive, and
let � be a simple eigenvalue. Then � D ˙d .

Proof. Take xj ; x` 2 N.xi /. By hypothesis, there exists an automorphism p with
p.xi / D xi and p.xj / D x`. This implies that for the permutation matrix P of p, we
have Pv D v. Therefore xj D x`. Consequently ˛ D 0 or d and � D ˙d , with the
notation of Theorem 8.7.1.

Corollary 8.7.5. Under the conditions of Theorem 8:7:4, d and �d are the only
possible simple eigenvalues and �d arises exactly when G is bipartite.

Proof. The first statement is clear; the second follows from Theorem 8.5.2

Derogatory graphs

The following definition for matrices originates from linear algebra. It raises some
questions for graphs that are “natural” in the mathematical sense. Can we describe
(some) derogatory and non-derogatory graphs?

Definition 8.7.6. A graph G is said to be derogatory if its minimal and characteristic
polynomials do not coincide, i.e. if mipo.G/ ¤ chapo.G/.

It is clear that graphs whose eigenvalues are all simple are not derogatory. The next
theorem characterizes such graphs if they are assumed to be Aut.G/-vertex transitive.

Theorem 8.7.7. Let G be directed and Aut.G/-vertex transitive. Then G is not
derogatory if and only if all eigenvalues of G are simple. All undirected d -regular
graphs other than K2 are derogatory.
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Proof. Suppose that G is undirected and all eigenvalues of G are simple. Then A.G/
is diagonalizable. From Theorem 8.7.2(a) we get that G has only one simple eigen-
value if jV.G/j is odd. So jV.G/j must be even. Then Theorem 8.7.2(c) gives d C 1
simple eigenvalues with d -regularity. But then d C 1 D n. This implies G D Kn and
thus n D 2 since all eigenvalues have to be simple.

The converse is trivial.
For the case of directed graphs, see Theorem 15 on p. 87 of H. Sachs and M. Stieb-

itz, Simple eigenvalues of transitive graphs, Stud. Sci. Math. Hung. 17 (1982) 77–
90.

Exercise 8.7.8. Compute the minimal polynomials for some derogatory graphs such
as K3, as well as for directed Aut-vertex transitive graphs with non-simple eigenval-
ues.

Graphs with Abelian groups

Here we impose commutativity as an algebraic restriction on the group of a graph G
with n vertices.

Theorem 8.7.9. Let G be undirected and Aut.G/-vertex transitive, and suppose that
Aut.G/ is Abelian. Then Aut.G/ acts strictly fixed-point-free on G and consists en-
tirely of involutions, i.e. g2 D 1G for all g 2 G. These groups are the so-called
elementary Abelian 2-groups.

Proof. See W. Imrich, Graphs with transitive Abelian automorphism group, in: Com-
binatorial Theory and Its Applications II, North-Holland, Amsterdam 1970, pp. 651–
656, and also [Imrich/Klavžar 2000].

Exerceorem 8.7.10. All groups Zs
2 can be obtained in this way, except when s D

2; 3; 4; cf. Remark 7.7.8.

Theorem 8.7.11. Let G be Aut.G/-vertex transitive with n vertices (either directed
or undirected). If G has more than n

2
simple eigenvalues, then Aut.G/ is Abelian.

Proof. See Theorem 15 on p. 87 of H. Sachs, M. Stiebitz, Simple eigenvalues of
transitive graphs, Stud. Sci. Math. Hung. 17 (1982) 77–90.

Exercise 8.7.12. Find a negative example and a positive one.

Corollary 8.7.13. Let G be undirected and Aut.G/-vertex transitive with n vertices.
If G has more than n

2
simple eigenvalues, then Aut.G/ acts strictly fixed-point-free

on G and consists entirely of involutions.

Proof. Use the two previous theorems.
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Remark 8.7.14. Note that in the cases where G is undirected and Aut.G/-vertex
transitive and Aut.G/ is Abelian, the action is regular and thus G is a Cayley graph;
cf. Theorem 7.7.13.

Question. It seems clear that a graph G has an Abelian strong monoid if and only
if SEnd.G/ D Aut.G/ and Aut.G/ is Abelian. If SEnd.G/ ¤ Aut.G/, there exist
two idempotent strong endomorphisms which do not commute. Which graphs have
an Abelian endomorphism monoid? Apparently such graphs must fulfill SEnd.G/ D
Aut.G/.

all eigenvalues simple simple eigenvalue 

…

Aut AbelianAut

Aut

Aut Abelian

Aut (G) acts
strictly fixed-point-free
and G is a Caley graph
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8.8 Comments

As in the previous chapter, one might want to consider generalizations from Aut to
SEnd on one side and replace groups by semigroups which are close to groups on the
other side.

Note that the question of spectral determinability has parallels with the determin-
ability by the endospectrum (Section 1.7) and also with the determinability of certain
semigroups by their Cayley graphs, as studied in later chapters.

We collected some of the results about transitive graphs in the diagram on p. 179.
This is possible way to obtain an overview of different results, and is recommended
also in other situations where there are many results on a topic which at first glance
may seem confusing. It would be a good exercise to identify in the text the results
corresponding to the implications shown in the diagram.



Chapter 9

Graphs and monoids

There are various connections between graphs and monoids and, in particular, groups.
Some of these have been discussed in previous chapters. In this chapter, after a brief
review of semigroup theory we study von Neumann regularity of the endomorphisms
of bipartite graphs and related properties, locally strong monoids of paths, and strong
monoids in general. The latter concept is closely related to lexicographic products of
graphs and wreath products of monoids over acts. All three topics show the close links
between algebraic properties and geometric/combinatorial properties of the graphs.

9.1 Semigroups

The content of this first section is of purely algebraic nature, but the ideas will be
applied to graphs later. We give some notation, definitions and results, all of which
can be found, for example, in [Petrich/Reilly 1999]. The reader may skip this section
initially, and consult it later when needed.

An element m of a monoid M is said to be (von Neumann) regular if there exists
n 2 M with mnm D m. In this case, for p D nmn one has mpm D m and
pmp D p. An element p with this property is called a pseudo-inverse of m. Note
that sometimes the word inverse is used, even for n. If all elements of M are regular,
M is called a regular monoid.

An elementm of a monoidM is said to be completely regular if it has a commuting
pseudo-inverse, i.e. there exists p 2 M with pm D mp. A monoid M is said to be
completely regular if all of its elements are completely regular.

We denote by Idpt.M/ the idempotent elements of M and by C.M/ the elements
of the center of M , i.e. elements which commute with all other elements of M .

Definition 9.1.1. A regular semigroup M is said to be:

� orthodox if Idpt.M/ is a semigroup;

� left inverse if ee0e D e0e for all e; e0 2 Idpt.M/;

� right inverse if ee0e D ee0 for all e; e0 2 Idpt.M/;

� inverse if Idpt.M/ is commutative;

� a Clifford semigroup if Idpt.M/ � C.M/, i.e. the elements of Idpt.M/ com-
mute with all elements of M .
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Note that only regular and completely regular are concepts which apply also to
individual elements of a semigroup. Taking into account the following theorem we
could also call elements of a semigroup “inverse”, but this is unusual, because of
possible confusion.

Theorem 9.1.2. The following implications hold:

� group) Clifford semigroup, completely regular and inverse;

� completely regular, union of maximal subgroups;

� inverse , regular and every element has a unique pseudo-inverse , left in-
verse and right inverse) orthodox.

A semigroup S is called a right zero semigroup if xy D y for all x; y 2 S ;
it is called a left zero semigroup if xy D x for all x; y 2 S . We denote by Rn

(respectively, Ln) the n-element right (respectively, left) zero semigroup, for n 2 N.
A semigroup S is called a right (respectively, left) group, if it is uniquely right

(respectively, left) solvable, i.e. for all r; t 2 S there exists a unique s 2 S such that
rs D t (respectively, sr D t ). It turns out that right groups are always of the form
A �Rn and left groups of the form A � Ln where A is a group.

As usual, multiplication on S D A �Rn is defined componentwise by

.g; r/.g0; r 0/ D .gg0; r 0/ for g; g0 2 A and r; r 0 2 Rn:

This is why we call the semigroup S D A � Rn also a right zero union of groups
(RZUG) over A and S D Ln � A a left zero union of groups (LZUG) over A: the
multiplication has the same structure as in right or left zero semigroups, i.e. the right
or left factor is dominant and determines the group in which we play.

Exercise 9.1.3. Prove that right groups are always of the form A � Rn where A is a
group.

Prove that a multiplication of the form g1g2 2 A2 for gi 2 Ai , i D 1; 2, leads to a
semigroup, i.e. it is associative only if A1 Š A2.

A band is a semigroup that consists entirely of commuting idempotents.
A semigroup S is said to be right (respectively, left) cancellative if for all x; y; z 2

S we have that xy D xz (respectively, yx D zx) implies y D z.
A non-empty subset I of S is called a right (respectively, left) ideal of S if s 2 S

and a 2 I imply that as 2 I (respectively, sa 2 I ); I is a (two-sided) ideal of S if it
is both a left and a right ideal of S . A (right or left) ideal I of S is proper if I ¤ S .

Let s 2 S . The right, left and two-sided ideals sS; Ss and sSs of S are called the
principal right, left and two-sided ideals of S generated by s. A semigroup S is said
to be right simple if it has no proper right ideals and left simple if it has no proper left
ideals and simple if it has no ideals.

A completely regular semigroup S is completely simple if it is simple.
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We have the following implications:

Completely simple semigroup

Right group Left group

Right zero semigroup Left zero semigroupGroup

������

������

� �

�

�������

�������

Remark 9.1.4. We note that completely simple semigroups are exactly the so-called
Rees matrix semigroups. They are defined as follows.

Suppose that A is a group, I and ƒ are non-empty sets, and P is a ƒ � I matrix
over A. The Rees matrix semigroup M.A; I;ƒ; P / with sandwich matrix P consists
of all triples .g; i; �/ where i 2 I; � 2 ƒ and g 2 A, with multiplication defined by

.g1; i1; �1/.g2; i2; �2/ D .g1p�1i2
g2; i1; �2/;

with p�1i2
2 P . If there exists an element 1 2 I Tƒ such that for all i 2 I and

� 2 ƒ we have p�1 D p1i D 1A, the identity of A, we say that P is normalized.
It is a well-known result that a semigroup S is completely simple if and only if

S is isomorphic to a Rees matrix semigroup with a normalized sandwich matrix.
Moreover, S is a right (respectively, left) group if and only if jI j D 1 (respectively,
jƒj D 1).

Exercise 9.1.5. Check these statements, possibly referring to the literature.

Let X be a partially ordered set and let Y � X . An element b of X is called a
lower bound for Y if b � y for every y in Y . A lower bound c of Y is called a
greatest lower bound (meet) for Y if b � c for every lower bound b of Y . An upper
bound and a least upper bound (join) are defined analogously. A partially ordered set
X is called a meet (respectively, join) semilattice if every two-element subset ¹a; bº
of X has a meet (respectively, join) in X . The meet of ¹a; bº will be denoted by a^ b
and the join by a _ b. A partially ordered set X is called a semilattice if it is a meet
semilattice or a join semilattice. Here all semilattices will be meet semilattices.

A semigroup S is said to be a semilattice of (disjoint) semigroups .S˛; ı˛/, ˛ 2 Y ,
if:

(1) Y is a semilattice;

(2) S DS˛2Y S˛;

(3) S˛Sˇ � S˛^ˇ .

It is a strong semilattice of semigroups if, in addition, for all ˇ � ˛ in Y there exists
a semigroup homomorphism fˇ;˛ W Sˇ ! S˛, called the defining homomorphism or
structure homomorphism, such that:
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(4) f˛;˛ D idS˛
, the identity mapping, for all ˛ 2 Y ;

(5) fˇ;˛ıf�;ˇ D f�;˛ for all ˛; ˇ; � 2 Y with ˛ � ˇ � � , where the multiplication
of x 2 S˛ and y 2 Sˇ in S DS˛2Y S˛ is defined by

xy D f˛;˛^ˇ .x/fˇ;˛^ˇ .y/:

It might seem more natural, in these definitions, to write the defining homomor-
phisms as mappings on the right of the argument; but we don’t do this, since it would
be the only place in the book where it comes up.

Theorem 9.1.6. For a semigroup S , the following are equivalent:

(i) S is a Clifford semigroup.

(ii) S is a semilattice of groups.

(iii) S is a strong semilattice of groups, ŒY IA˛; fˇ;˛�, where Y is a semilattice, the
A˛ are groups and the fˇ;˛ are defining homomorphisms, for ˛; ˇ 2 Y .

We observe that a semilattice of semigroups may not be strong if the semigroups
are not groups. An example of this situation will appear in Theorem 9.3.10.

In what follows, we will mainly use the term strong semilattice of groups rather
than Clifford semigroup. We will also use the properties of and formulate results for
the special case of strong chains of semigroups.

Besides the above, we need the following standard definitions and notation. If A
is a non-empty subset of the semigroup S , then hAi means the subsemigroup of S
generated by A. The subsemigroup hAi consists of all elements of S that can be
expressed as finite products of elements of A.

An element s of a semigroup S is said to be periodic if there exist positive integers
m; n such that smCn D sm. A subset A of S is periodic if every element of A is
periodic. In particular, if all principal left ideals of a semigroup are finite, or even
more obviuos if the semigroup is finite, then the semigroup is periodic.

As usual, a constant mapping cy W X ! Y for y 2 Y is defined by cy.x/ D y for
all x 2 X . The identity mapping on X is denoted by idX .

To get a better feel for semigroups, the reader may want to look at some tables
that show the number of non-isomorphic semigroups with a given (small) number
of elements. These tables can be found in P. Grillet, Computing finite commutative
semigroups, Semigroup Forum 53 (1996) 140–154, and Computing finite commutative
semigroups: Part III, Semigroup Forum 67 (2003) 185–204.



Section 9.2 End-regular bipartite graphs 185

Theorem 9.1.7. The number of non-isomorphic and non-antiisomorphic n-element
semigroups having certain properties are given in the following table. Among them
are all 17 groups with less than 11 elements, namely Z2, Z3, Z4, Z2 � Z2 Š D2,
Z5, Z6 Š Z2 �Z3, D3 Š S3, Z7, Z8, Z3

2, Z4 �Z2, Z9, Z3 �Z3, Z10 Š Z5 �Z2,
D5 and the non-commutative quaternions. Besides them only D3, D4, D5 are non-
commutative.

n 2 3 4 5 6 7 8

All 4 18 126 1 160 15 973 836 021 1 843 120 128

Commutative 3 12 58 325 2 143 17 291 221 805

n 9 10

Commutative 11 545 843 3 518 930 337

Commutative Clifford 25 284 161 698

From an internet search I found the total number of semigroups with nine elements
which are not isomorphic or antiisomorphic to be 52 989 400 714 478. The result is
due to A. Diestler, T. Kelsey and J. Mitchell.

Project 9.1.8. How many non-commutative Clifford semigroups (which are not
groups) with no more than ten elements exist? Which of them are monoids? For
this you have to use at least one of the non-commutative groups. For the defining
homomorphisms it will be helpful to see that, for instance, there is no non-trivial
homomorphism from S3 onto Z3, as Z2 is not normal in S3.

You can answer the same question for all commutative Clifford semigroups with
two, three, four elements and so on.

9.2 End-regular bipartite graphs

In this section we present some results on bipartite graphs with regular endomorphism
monoids. Some early results in this direction were published in E. Wilkeit, Graphs
with a regular endomorphism monoid, Arch. Math. 66 (1996) 344–352.

As a tool we will use factorizations of endomorphisms according to the Homo-
morphism Theorem (Theorem 1.6.10), the so-called epi-mono factorizations (see Re-
mark 1.6.11) and retract-coretract factorizations (cf. Definition 1.5.8).

Regular endomorphisms and retracts

Theorem 9.2.1. The endomorphism f 2 End.G/ of a graph G is regular if and only
if every epi-mono factorization of f is a retract-coretract factorization.

Proof. To prove necessity, for f 2 End.G/ we first get an epi-mono factorization
f D f �	f

by the Homomorphism Theorem (Theorem 1.6.10). From the defining
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formula for the regularity of f we then get that f and thus also �	f
is a retraction

with coretraction g or gf .
The sufficiency is clear.

Corollary 9.2.2. The endomorphism monoid of any graph G is regular if and only
if for every graph congruence � on G the canonical epimorphism G ! G=� is a
retraction and every monomorphism G=�! G is a coretraction.

Proposition 9.2.3. The following are equivalent for every graph G and any integer
n � 1:

(i) The graph G is bipartite and has diameter greater than or equal to k.

(ii) The path Pk of length k is a retract of G.

(iii) The path Pk of length k is a factor graph of G.

Proof. (i) ) (ii): Let ` be the diameter of G and choose a vertex u 2 G with ec-
centricity `, i.e. u is a starting point of a shortest path of length `. For 0 � i � `

set

Ni .u/ WD ¹v 2 G j d.u; v/ D iº;
Ri .u/ WD Ni .u/ for 0 � i � k � 2;

Rk�1.u/ WD
[

¹NkC2j �1.u/ j 0 � j � .` � k C 1/=2º;
Rk.u/ WD

[

¹NkC2j .u/ j 0 � j � .` � k/=2º:
Since G is bipartite, there are no adjacent vertices in Ni .u/ or in Ri .u/. Therefore

x � y , 9 i 2 N; 0 � i � k W x; y 2 Ri .u/

defines a congruence � on G. Obviously, G=� Š Pk and the canonical surjection
G ! G=� is a retraction. Thus, any path of length k beginning in u is a possible
image under a corresponding coretraction.

(ii)) (iii) is trivial.
(iii)) (i): By contraposition we see that if G contains a circuit of odd length or if

diam.G/ < k, then every factor graph of G has the respective property.

End-regular and End-orthodox connected bipartite graphs

Corollary 9.2.4. Any bipartite graph G with regular endomorphism monoid has di-
ameter less than 5.

Proof. By Proposition 9.2.3, every bipartite graph with diameter 5 or greater has P5

as a retract and P3 as a subgraph. The surjection of P5 D ¹0; 1; 2; 3; 4; 5º onto P3

which identifies 1 and 3 as well as 2 and 4 is obviously not a retraction. Then, by
Theorem 9.2.1, the monoid of G is not regular.
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The following observation is not difficult to understand. A proof can be found in
R. Nowakowski and I. Rival, Fixed-edge theorem for graphs without loops, J. Graph
Theory 3 (1979) 339–350.

Lemma 9.2.5. Every circuit of minimal length in a bipartite graph G is a retract
of G.

Theorem 9.2.6. The connected bipartite graphs with a regular endomorphism monoid
are exactly the following:

(a) Km;n, including K1; K2; C4 and the trees of diameter 2, i.e. the stars;

(b) the trees of diameter 3, which are the double stars, and C6;

(c) C8 and the path P4 of length 4.

Proof. By Corollary 9.2.4, a bipartite graph with regular endomorphism monoid has
diameter at most 4.

In this case, we infer that G does not contain a subgraph K1;3 if G has a factor
graph P4 or C6, and G does not contain a subgraph C4 if it has a factor graph P3.

(a) If G has diameter less than or equal to 2, then G is complete bipartite. If G is a
tree, then it is a star, i.e. G D K1;n with n > 1.

(b) Suppose G has diameter 3. If G is a tree, we get the double stars, namely
P3ŒKn; K1; K1; Km� withm; n � 1; see Theorem 1.7.5. Since G has a retract P3, by
Proposition 9.2.3 we get that C4 is a forbidden subgraph of G. So if G is not a tree,
it must contain C6 as a circuit of minimal length, which is a retract of G as stated in
Lemma 9.2.5. We infer thatG does not contain any subgraphK1;3 and hence contains
no vertex of degree � 3. Therefore it is C6.

(c) Suppose now that G has diameter 4. Then P4 is a retract of G and, in analogy
to (b), we get that G does not contain a vertex of degree 3 or greater. Therefore G is
C8 or P4.

Using Theorem 9.2.1, it is routine to show that the given graphs have regular endo-
morphism monoids.

Theorem 9.2.7. The connected bipartite graphs with an orthodox endomorphism
monoid are exactly the following:

(a) K1 and K2, with jEnd.K1/j D 1 and End.K2/ D Z2;

(b) C4 and the path P2 of length 2, with End D SEnd in both cases,

(c) the path P3 of length 3.

The endomorphism monoids are not inverse except for the trivial cases ofK1 andK2.

Proof. We have to examine only the graphs from Theorem 9.2.6. This inspection
shows that only in the given cases do the idempotents of the respective endomor-
phism monoid form themselves a monoid. As an example, consider the following
two idempotent endomorphisms of C6 D ¹0; 1; 2; 3; 4; 5º: (1) map 0 to 2 and 5 to 3,
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while the rest remains fixed; (2) map 3 and 5 to 1, map 4 to 0, while the rest is fixed.
Application of the second after the first is not an idempotent.

For the last statement, it is clear that idempotents do not commute.

Question. Which of the above endomorphisms are locally strong, quasi-strong, or
strong? How do these properties relate to algebraic properties?

Question. Investigate bipartite graphs with an idempotent closed endomorphism
monoid which is not necessarily regular, i.e. not orthodox.

9.3 Locally strong endomorphisms of paths
In Theorem 1.7.5 it was proved that all endomorphisms of paths (as special trees)
which are not automorphisms are locally strong or half-strong, that is, paths are of
endotype 6, End D HEnd ¤ LEnd ¤ QEnd D SEnd D Aut.

Recall that an endomorphism of a graph is locally strong if it reflects edges “lo-
cally”. This means that if vertices X D ¹x1; : : : ; xnº are mapped onto x and vertices
X 0 D ¹x0

1; : : : ; x
0
nº are mapped onto x0, which are adjacent, then each xi is adjacent

to at least one x0
j and vice versa. Half-strong means that there exists at least one edge

between X and X 0. Strong endomorphisms, as used in later sections of the chapter,
reflect all edges, i.e. all vertices of X are adjacent to all vertices of X 0.

In S. Arworn, An algorithm for the numbers of endomorphisms on paths, Discrete
Math. 309 (2009) 94–103, there is an algorithm for determining the cardinalities of
the endomorphism monoids of finite undirected paths. Another way of counting all
endomorphisms of undirected paths by first counting the congruence classes was in-
troduced by Martin Michels in About the Structure of Endomorphisms of Graphs,
Diplomarbeit, Oldenburg 2005. Part of this work has been published as U. Knauer
and M. Michels, The congruence classes of paths and cycles, Discrete Math. 309
(2009) 5352–5359.

We now present an algorithm to determine the cardinalities of the set of locally
strong endomorphisms of finite undirected and directed paths. We show, moreover,
that the set of locally strong endomorphisms on an undirected path will form a monoid
if and only if the length of the path is a prime number or equal to 4. For directed
paths the condition turns into “length prime, 4 or 8”. Theorems 9.3.10 and 9.3.12
give algebraic descriptions of these monoids. This section is based on S. Arworn,
U. Knauer and S. Leeratanavalee, Locally strong endomorphisms of paths, Discrete
Math. 308 (2008) 2525–2532.

Undirected paths

Let Pn D ¹0; : : : ; nº denote the undirected path of length n with nC 1 vertices.
Let f W Pn ! Pn be an endomorphism. The length of the image path of f is

called the length of f . We denote the set of endomorphisms of length l by Endl.Pn/,
or LEndl.Pn/ if the endomorphisms are locally strong.
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An endomorphism f W Pn ! Pn is called a complete folding if the congruence
relation ker f D ¹.x; y/ 2 Pn � Pn j f .x/ D f .y/º partitions Pn into l C 1 classes
where l jn and the equivalence classes are of the form

Œ0� D ¹2ml 2 Pn j m D 0; 1; : : : º;
Œl � D ¹.2mC 1/l 2 Pn j m D 0; 1; 2; : : : º;
Œr� D ¹2ml C r 2 Pn j m D 0; 1; : : : ºS¹2ml � r 2 Pn j m D 1; 2; : : : º

for r such that 0 < r < l:

Clearly, in this case a complete folding has length l .
In the following picture we have a complete folding with l D 5 of P20:
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Remark 9.3.1. An undirected path has exactly two automorphisms.
It is clear that every complete folding of an undirected path is locally strong.
Moreover, if f is a locally strong endomorphism and f .Pn/ D ¹a, a C 1, : : : ,

aC lº � Pn, then f .0/ D a or aC l .

Lemma 9.3.2. Every locally strong endomorphism on Pn is a complete folding.

Proof. Let f W Pn ! Pn be a locally strong endomorphism on Pn, and let f .Pn/ D
¹a; a C 1; : : : ; a C lº. By Remark 9.3.1 we get f .0/ D a or a C l . Suppose that
f .0/ D a; then f .1/ D a C 1. Next, we show that f .r/ D a C r for all r with
0 � r � l . Suppose there exists t; 0 < t < l; such that f .r/ D a C r for all r with
0 � r � t but f .t C 1/ D aC t � 1.

�
�

�
�

�
�

�

�
�
�

0
1

�
�
t

t C 1

�
�

�
�

�
�

�
�
�
�
�
�
� aC l

f .Pn/

�
aC t

a

�
�
aC 1



190 Chapter 9 Graphs and monoids

Since ¹aC t; aC t C 1º 2 E; t 2 f �1.aC t / and t � 1; t C 1 2 f �1.aC t � 1/,
there is no x 2 f �1.a C t C 1/ such that ¹t; xº 2 E. So f is not a locally strong
endomorphism. Thus f .r/ D aC r for all r D 0; 1; : : : ; l .

Suppose now that f .lC r/ D aC l � r for all r D 0; 1; : : : ; t 0 but f .lC t 0C 1/ D
aC l � t 0 C 1 for some t 0 with 0 < t 0 < l .
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f .Pn/

�

aC l � t 0 C 1

a

aC l � t 0
�
aC 1

Then f .lC t 0C1/ D f .lC t 0�1/ D aC l � t 0C1. Hence there is no x 2 f �1.aC
l � t 0 � 1/ such that ¹x; l C t 0º 2 E. So f is not a locally strong endomorphism.

If l does not divide n, then n 2 Œr� for some r with 0 < r < l . Hence f .n/ D aCr
and f .n � 1/ D a C r � 1 (or a C r C 1). Then ¹a C r; a C r C 1º 2 E (or
aC r � 1; aC r 2 E) but there is no x 2 f �1.aC r C 1/ (or x 2 f �1.aC r � 1//
such that ¹n; xº 2 E. This contradicts the assumption of f being locally strong. Thus
l jn.

From Remark 9.3.1 and Lemma 9.3.2 we then get the following result.

Theorem 9.3.3. An endomorphism of an undirected path is locally strong if and only
if it is a complete folding.

We will denote a locally strong endomorphism f W Pn ! Pn of length l which
maps 0 to a and 1 to aC 1 (respectively, a � 1) by fl;aC (respectively, fl;a�).

For example:

f3;2C W P9 ! P9 is

f3;2C D
�

0 1 2 3 4 5 6 7 8 9

2 3 4 5 4 3 2 3 4 5

�

I

f3;6� W P9 ! P9 is

f3;6� D
�

0 1 2 3 4 5 6 7 8 9

6 5 4 3 4 5 6 5 4 3

�

:

Theorem 9.3.4. Denote by LEndl.Pn/ all locally strong endomorphisms of length l
of the undirected path Pn. Then jLEndl.Pn/j D 2.n � l C 1/ and jLEnd.Pn/j D
2
P

ljn.n � l C 1/.
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Proof. This is quite clear, since every divisor of n determines a congruence on Pn,
which in turn is determined by a locally strong endomorphism, and the respective
factor graph can be embedded in Pn exactly 2.n � l C 1/ times. This argument is of
course based on the Homomorphism Theorem (Theorem 1.6.10).

Directed paths

We consider “up-up” directed paths
�!
P n of length n as follows:
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if n is odd.
This corresponds to directed bipartite graphs and is a way of defining directed paths

such that there exist non-trivial endomorphisms.

Remark 9.3.5. If f W �!Pn ! �!Pn is an endomorphism of the directed path
�!
Pn, then

f .x/ is odd if and only if x is odd. And jAut.
�!
Pn/j D 1 if n is odd, and D 2 if n is

even.

In the same manner as for undirected paths case, we obtain the following result.

Theorem 9.3.6. An endomorphism on the directed path is locally strong if and only
if it is a complete folding.

Now the formula for the number of locally strong endomorphisms becomes a little
more complicated.

Theorem 9.3.7. Denote by LEndl.
�!
Pn/ the set of all locally strong endomorphisms

of length l of the directed path
�!
Pn, where l divides n. Then

jLEndl.
�!
Pn/j D

²

n � l C 1 if l is odd;
n � l C 2 if l is even:

Also,

jLEnd.
�!
Pn/j D

²

P

ljn.n � l C 1/ if n is odd;
P

ljn;odd.n � l C 1/C
P

ljn;even.n � l C 2/ if n is even:
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Proof. Case 1. Suppose that n is odd and l jn.
In the picture we have n D 15 and l D 5:
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Then

jLEndl.Pn/j D j¹fl;xC W Pn ! Pn j x D 0; 2; 4; : : : ; n � lºj
C j¹fl;x� W Pn ! Pn j x D n � 1; n � 3; n � 5; : : : ; l C 1ºj

D
ˇ

ˇ

ˇ

ˇ

²

fl;xC W Pn ! Pn

ˇ

ˇ

ˇ

x D 0; 2; 4; : : : ; 2
�

n � l
2

�³
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ˇ
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²

fl;x� W Pn ! Pn

ˇ

ˇ

ˇ

x D n � 1; n � 3; n � 5; : : : ;

n �
�
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2
C 1
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2
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D n � l C 1:

Case 2. Suppose that n is even and l jn.
Case 2(a). Here l is odd; in the picture we have n D 20 and l D 5:

�
�

�
�

�
�

�
�

�
�

�0
1

2
�

�
l

l C 1
l C 2

�
�

2l
n��	

���
��	

���
��	��


���
��

���

��
��	
���

��	
���
��	��


���
��

���

��

�

�
�

�
�

�
�

�
�

�

f .Pn/

x C l or x � l
�

�

�
�

x�
�
�
�
�
�

�

�

�



Section 9.3 Locally strong endomorphisms of paths 193

Then

ˇ

ˇLEndl.Pn/
ˇ

ˇ D ˇˇ¹fl;xC W Pn ! Pn j x D 0; 2; 4; : : : ; n � l � 1º
ˇ

ˇ

C ˇˇ¹fl;x� W Pn ! Pn j x D n; n � 2; n � 4; : : : ; l C 1º
ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

²

fl;xC W Pn ! Pn j x D 0; 2; 4; : : : ; 2
�

n � l � 1
2

�³

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

²

fl;x� W Pn ! Pn j x D n; n � 2; n � 4; : : : ;

n � 2
�

n � l � 1
2

�³

ˇ

ˇ

ˇ

ˇ

D
�

n � l � 1
2

C 1
�

C
�

n � l � 1
2

C 1
�

D n � l � 1C 2
D n � l C 1:

Case 2(b). Now suppose that l is even.
In the picture below we have n D 16 and l D 4. (Note that if n=l is odd it would

end with n on the top as in Case 1.)
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�

�
�

x�
�
�
�
�

�

�


Then

ˇ

ˇLEndl.Pn/
ˇ

ˇ D ˇˇ¹fl;xC W Pn ! Pn j x D 0; 2; 4; : : : ; n � lº
ˇ

ˇ

C ˇˇ¹fl;x� W Pn ! Pn j x D n; n � 2; n � 4; 
 
 
 ; lº
ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

²

fl;xC W Pn ! Pn j x D 0; 2; 4; : : : ; 2
�

n � l
2

�³

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

²

fl;x� W Pn ! Pn j x D n; n � 2; n � 4; : : : ; n � 2
�

n � l
2

�³

ˇ

ˇ

ˇ

ˇ

D
�

n � l
2
C 1

�

C
�

n � l
2
C 1

�

D n � l C 2:
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Therefore, we get

jLEnd.Pn/j D
´P

ljn.n � l C 1/ if n is odd;
P

ljn
l odd

.n � l C 1/CP ljn
l even

.n � l C 2/ if n is even:

Algebraic properties of LEnd

The following two observations are clear.

Lemma 9.3.8. Every endomorphism f W Pn ! Pn of length 1 of a path Pn is a
locally strong endomorphism. Moreover, in this case f ı g and g ı f are of length 1
for any g W Pn ! Pn.

Remark 9.3.9. The above lemma implies that the set of endomorphisms of length 1
is always a left group. This left group forms the infimum in the not necessarily strong
semilattice of subsets of LEnd.Pn/ which are not necessarily groups or semigroups.

Recall that in unions of groups, i.e. in completely regular semigroups, the multipli-
cation of elements from different groups cannot be described easily. Here we are in a
more comfortable situation if n is prime.

Theorem 9.3.10. The set LEnd.Pn/ forms a monoid if and only if n is a prime num-
ber or 4. If n is prime, then LEnd.Pn/ is a left group consisting of copies of Z2

together with the automorphism group Z2. The monoid LEnd.P4/ is a union of
groups if we delete the two elements f2;1C and f2;3� , which are not even regular
in LEnd.P4/. This union of groups is a (non-strong) semilattice of left groups with
infimum LEnd1.P4/, the left group of endomorphisms of length 1.

Proof. If p > 2 is a prime which divides n, consider

fp;0C ı fp;2C D
�

0 1 2 3 
 
 
 p � 1 p p C 1 
 
 

2 3 4 5 
 
 
 p � 1 p � 2 p � 1 
 
 


�

:

This is not a complete folding, thus fp;0C ı fp;2C is not a locally strong endomor-
phism.

If n D 2k with k � 3, consider

f2;0C ı f4;1C D
�

0 1 2 3 4 5 6 7 8 
 
 

1 2 1 0 1 0 1 2 1 
 
 


�

;
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2
1

Again, f2;0C ıf4;1C is not a locally strong endomorphism. This proves the necessity.
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To prove sufficiency, observe that if n is prime we get the statement from Lemma
9.3.8 and Theorem 9.3.6. The algebraic structure of the monoid is obviously of the
described form. On P4 there are eight locally strong endomorphisms of length 1,
namely f1;0C , f1;1� , f1;1C , f1;2� , f1;2C , f1;3� , f1;3C and f1;4� ; there are six lo-
cally strong endomorphisms of length 2, namely f2;0C , f2;1C , f2;2� , f2;2C , f2;3�

and f2;4� ; and there are only two locally strong endomorphisms of length 4, namely
f4;0C and f4;4� , which are the automorphisms. We give the multiplication table on
page 196, omitting the two automorphisms. In the table on the next page we write
rxC for fr;xC and rx� for fr;x� , for all r; x 2 P4.

Upon deleting the last two rows and columns, we have a union of groups, more pre-
cisely a chain of left groups, withL4�Z2 as the infimum, namelyL4�Z2

S

L2�Z2.
The two automorphisms form the group Z2 which is the supremum.

Remark 9.3.11. Note that the two locally strong endomorphisms which are not reg-
ular in LEnd.P4/ are regular in End.P4/. For example, f2;1C has the two inverses

g1 D
�

0 1 2 3 4

1 2 1 0 1

�

and g2 D
�

0 1 2 3 4

3 2 3 4 3

�

in End.P4/;

and similarly for f2;3� .

For directed paths we have the following theorem.

Theorem 9.3.12. The set LEnd.
�!
P n/ on a directed path

�!
P n forms a monoid if and

only if n is a prime number or 4 or 8.

Proof. In the case where the length n of the directed path has a prime divisor greater
than 2, we use the same proof as for undirected paths. Locally strong endomorphisms
of length 2 satisfy the conditions of Lemma 9.3.8, stated there for locally strong endo-
morphisms of length 1 for undirected paths. To see this, we interpret two successive
directed arcs, such as .0; 1/ and .1; 2/ as a single undirected arc.

With this argument, we can use the first part of the proof of Theorem 9.3.10 to see

that LEnd.
�!
P2k / is not closed starting with

�!
P16.

Consequently, for LEnd.
�!
P8/ we get the same multiplication table as for LEnd.P4/

in Theorem 9.3.10; we merely have to add the eight endomorphisms of
�!
P8 of length

1, which again are locally strong.

For
�!
P4, let us consider the multiplication table of LEnd.

�!
P4/ after deleting the two

automorphisms; this is a union of groups: four one-element groups and two copies
of Z2, i.e. L4

S

.L2 � Z2/, where again Ln denotes the left zero semigroup with n
elements. The table is displayed below on page 197.
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ı 10C 12� 14� 12C 20C 22� 24� 22C

10C 10C 10C 10C 10C 10C 10C 10C 10C

12� 12� 12� 12� 12� 12� 12� 12� 12�

14� 14� 14� 14� 14� 14� 14� 14� 14�

12C 12C 12C 12C 12C 12C 12C 12C 12C

20C 10C 12� 10C 12� 20C 22� 20C 22�

22� 12� 10C 12� 10C 22� 20C 22� 20C

24� 14� 12C 14� 12C 24� 22C 24� 22C

22C 12C 14� 12C 14� 22C 24� 22C 24�

The automorphisms give another group Z2.

9.4 Wreath product of monoids over an act

This section again focuses on algebraic aspects, which will later be applied to graphs.
Recall that for a monoid S and a non-empty set A, the set of all mappings SA from A

to S with the multiplication .fg/.a/ D f .a/g.a/ for f; g 2 SA and all a 2 A forms
a monoid. Again, for s 2 S we denote by cs 2 SA the constant mapping which maps
all elements of A onto s.

Let R be a monoid (or semigroup), and let A be a set. Recall the definition of a left
(or right) R-act from Definition 7.6.1. We write RA if R operates on A from the left
by .rr 0/a D r.r 0a/ 2 A (and 1R a D a for 1R 2 R) for all r; r 0 2 R and a 2 A;
operations from the right are defined analogously.

Most of the following concepts can be found, for example, in [Kilp et al. 2000].

Construction 9.4.1. Let R and S be monoids and let RA be a left R-act. On the set
R � SA consider the multiplication defined by

.r; f /.p; g/ D .rp; fpg/

for r; p 2 R and f; g 2 SA, where for a 2 A we set

.fpg/.a/ WD f .pa/g.a/:
Lemma 9.4.2. With the above multiplication,R�SA becomes a monoid with identity
1R�SA D .1R; c1/.

Proof. Let a 2 A, p; q; r 2 R and f; g; h 2 SA. Then

..fpg/qh/.a/ D .fpg/.qa/h.a/

D f .pqa/g.qa/h.a/ D .fpqgqh/.a/
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and therefore

..r; f /.p; g//.q; h/ D .rp; fpg/.q; h/ D .rpq; .fpg/qh/

D .rpq; fpqgqh/ D .r; f /.pq; gqh/

D .r; f /..p; g/.q; h//;

i.e. multiplication in .R � SA/ is associative.
Since

.r; f /.1; c1/ D .r; f1c1/ D .r; f / D .r; c1f / D .1; c1/.r; f /

for all r 2 R and f 2 SA, we have that 1R�SA D .1R; c1/ is the identity element of
the semigroup R � SA, so R � SA is a monoid.

Definition 9.4.3. We denote the above monoid by .R o S jRA/ and call it the wreath
product of R by S through RA.

Example 9.4.4. For monoids R; S and an R-act RA it is clear that

.R o S jRA/ Š

8

ˆ

<

ˆ

:

R � S if jRAj D 1;
SA if jRj D 1;
R if jS j D 1:

Therefore the smallest non-trivial example needs R, S , RA with two elements at
least, and has eight elements; the next larger one will have 12 elements. For a con-
crete example, take the complete graph K2. A computation shows that .Aut.K2/ o
Aut.K2/jAut K2

K2/ is isomorphic to the eight-element dihedral group D4.

Lemma 9.4.5. The canonical mapping

.R o S jRA/! R

.r; f / 7! r;

which is surjective, and the canonical mappings

R! .R o S jRA/
r 7! .r; c1/;

S ! .R o S jRA/
s 7! .1; cs/;

which are injective, are monoid homomorphisms.
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Moreover, the canonical mapping

R
Q

S ! .R o S jRA/
.r; s/ 7! .r; cs/

is a monoid homomorphism.

Proof. Note that

.r; cs/.r
0; cs0/ D .rr 0; .cs/r 0cs0/ D .rr 0; css0/:

The rest is clear.

Lemma 9.4.6. If ı W S ! S 0 is a monoid homomorphism, then the mapping

.idR o ıjidA/ W .R o S jRA/ �! .R o S 0jRA/

such that
.idR o ıjidA/..r; f // D .r; ıf / for r 2 R; f 2 SA

is a monoid homomorphism.
Moreover, .idR o ıjidA/ is injective (respectively, surjective) if and only if ı is injec-

tive (respectively, surjective).

Proof. First, note that ıf 2 S 0A with the usual composition of mappings. Take
.r; f /; .p; g/ 2 .R o S jRA/. For every a 2 RA we have

ı.f .pa/g.a// D ı.f .pa//ı.g.a// D ..ıf /.pa//..ıg/.a//;

so we get that ı.fpg/ D .ıf /p.ıg/. Then

.idR o ıjidA/..r; f /.p; g// D .idR o ıjidA/..rp; fpg// D .rp; ı.fpg//

D .rp; .ıf /p.ıg// D .r; ıf /.p; ıg/
D ..idR o ıjidA/..r; f ///..idR o ıjidA/..p; g///:

Moreover,

.idR o ıjidA/..1R; c1// D .1R; ıc1/ D .1R; c1/ 2 .R o S 0jRA/:

Thus we see that .idR o ıjidA/ is a monoid homomorphism.
Finally, note that the mapping SA ! S 0A with f 7! ıf is injective (surjective)

if and only if ı W S ! S 0 is injective (surjective). Thus we have that .idR o ıjidA/ is
injective (surjective) if and only if ı is injective (surjective).
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Lemma 9.4.7. If ˛ W RA! RA
0 is a homomorphism of left R-acts, then the mapping

.idR o idS j˛/ W .R o S jRA0/ �! .R o S jRA/

such that

.idR o idS j˛/..r; f 0// D .r; f 0˛/ for r 2 R; f 0 2 SA0

is a monoid homomorphism.
Moreover, if jS j � 2, then .idR o idS j˛/ is injective (respectively, surjective) if and

only if ˛ is surjective (respectively, injective).

Proof. First, note that f 0˛ 2 SA with the usual composition of mappings. Since
˛ W RA ! RA

0 is a homomorphism of left R-acts, for every a 2 RA, p 2 R and
f 0; g0 2 SA0

we have that

..f 0
pg

0/˛/.a/ D .f 0
pg

0/.˛.a// D f 0.p˛.a//g0.˛.a//

D f 0.˛.pa//g0.˛.a// D .f 0˛/.pa/.g0˛/.a/ D ..f 0˛/p.g0˛//.a/;

i.e.
.f 0

pg
0/˛ D .f 0˛/p.g0˛/. Then

.idR o idS j˛/..r; f 0/.p; g0// D .idR o idS j˛/..rp; f 0
pg

0//

D .rp; .f 0˛/p.g0˛// D .r; f 0˛/.p; g0˛/
D ..idR o idS j˛/..r; f 0///..idR o idS j˛/..p; g0///

and

.idR o idS j˛/..1R; c1// D .1R; c1˛/ D .1R; c1/ 2 .R o S jRA/:
Therefore .idR o idS j˛/ is a monoid homomorphism.

Finally, note that if jS j � 2, then the mapping SA0 ! SA with f 0 7! f 0˛ is
surjective if and only if ˛ is injective and it is injective if and only if ˛ is surjective.

9.5 Structure of the strong monoid

We know that every monoid is isomorphic to the endomorphism monoid of a graph;
see Theorem 7.4.4. In contrast, observe that not every monoid is isomorphic to the
strong monoid of a graph, since a strong monoid has at least two idempotents not
equal to 1, if it is not a group (recall Corollary 1.5.6).

Here we consider only graphs without loops, and therefore all congruences are
loop-free congruences; see Definition 1.6.4.
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The canonical strong decomposition of G

Definition 9.5.1. Take G D .V;E/, finite or infinite. Define the relation � 2 V � V
by x�x0 , NG.x/ D NG.x

0/; it is called the canonical strong congruence. We will
write �G if necessary, for instance when several graphs are involved. The factor graph
G=� WD .G� ; E�/ WD .¹x� j x 2 Gº; ¹¹x� ; y�º j ¹x; yº 2 Eº/ is called the canonical
strong factor graph of G.

As a consequence of this definition, we get that for ¹x� ; y�º 2 E� , all preimages of
x� have all preimages of y� as neighbors and vice versa.

Lemma 9.5.2. The canonical surjection �� W G ! G=� is a strong graph homomor-
phism.

Theorem 9.5.3. The canonical strong factor graph G=� is S unretractive if G=� is
finite, that is, SEnd.G=�/ D Aut.G=�/.

Proof. If G=� were to have a non-bijective strong endomorphism, there would exist
two vertices in G=� with the same neighborhood; cf. Proposition 1.5.5. This is not
possible since their preimages would then also have the same neighborhood in G and
thus the congruence � would identify them.

Example 9.5.4. We show that SEnd.G=�/ ¤ Aut.G=�/ is possible if G=� is not
finite. Take jNj copies of the path P3 of length 3. This is already a canonical strong
factor graph since � is trivial. Moving the whole graph one step to the right is a strong
endomorphism which is clearly not surjective and thus not an automorphism.

The following theorem can also be considered as a construction which enables us
to construct all graphs with a given canonical strong factor graph. It works as follows:
start with an S-A unretractive graph U and insert in place of each vertex u of U a set
Yu such that if u; u0 is an edge in U we connect all points in Yu with all points in Yu0

by edges. It is clear from the definition of � that the canonical strong factor graph has
the following structure.

Theorem 9.5.5. For every graph G we have a decomposition in a generalized lexi-
cographic product G D U Œ.Vu/u2U � where U D G=� is the canonical strong factor
graph and the Yu D ¹x 2 G j ��.x/ D u 2 U º, u 2 U , are sets.

This immediately implies the following corollary.

Corollary 9.5.6. Let G be finite. Then jSEnd.G/j D 1 if and only if jAut.G/j D 1.

Proof. The existence of a non-bijective strong endomorphism of G implies that at
least one Yu has more than one element. But then the permutation of these two vertices
gives a non-trivial automorphism of G; see Proposition 1.7.3.
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Decomposition of SEnd

The canonical strong decomposition of a graphG gives a decomposition of the monoid
SEnd.G/ which makes it possible to analyze algebraic properties of SEnd.G/ in a
very convenient way.

The multiplication of these decomposed strong endomorphisms of G can be in-
terpreted algebraically as the composition in a so-called generalized wreath product
with a small category, as will be shown in Example 9.5.13. However, except in Corol-
lary 9.5.15, we will not make use of this interpretation in what follows.

We use Definition 9.5.1.

Lemma 9.5.7. For f 2 SEnd.G/ consider the equivalence relation �f .G/ on f .G/
defined by f .x/�f .G/f .x

0/ , Nf .G/.f .x// D Nf .G/.f .x
0// for x; x0 2 G. Then

jf .G/=�f .G/j D jG=�j.

Proof. We use the Homomorphism Theorem (Theorem 1.6.10), factorizing the com-
position ��f .G/

f as f 0�� where now f 0 W G=� ! f .G/=�f .G/, Œx�� 7! Œf .x/��f .G/
.

Here f 0 is well-defined if � � Ker.��f .G/
f / and injective if we have the equality

� D Ker.��f .G/
f /; it is then even bijective since ��f .G/

f is of course surjective.
For the first statement, we show that Nf .G/.f .x// D Nf .G/.f .x

0// if x�f .G/x
0.

Take f .y/ 2 Nf .G/.f .x//; then y 2 NG.f .x// D NG.f .x
0// as f is strong, and

f .y/2Nf .G/.f .x
0// as f is a homomorphism. ThusNf .G/.f .x//�Nf .G/.f .x

0//,
and similarly for the converse implication.

For the second statement, we prove that NG.x/ D NG.x
0/, i.e. x�x0 if f .x/�f .G/

f .x0/ or, equivalently, if Nf .G/.f .x// D Nf .G/.f .x
0//. Assume that Œx�� ¤ Œx0�� .

Then there exists y 2 G with ¹x; yº 2 E; ¹x0; yº … E and hence ¹f .x/; f .y/º 2
E; ¹f .x0/; f .y/º … E as f is strong, contradicting the assumption. So together we
have that f 0 is a bijective mapping and thus jf .G/=�f .G/j D jG=�j.

Lemma 9.5.8. Let G=� be finite and f 2 SEnd.G/. Then, for x; x0 2 G,

Nf .G/.f .x// D Nf .G/.f .x
0// implies NG.f .x// D NG.f .x

0//:

Proof. We know that NG.f .x// � Nf .G/.f .x// D Nf .G/.f .x
0// � NG.f .x

0//.
This means that possibly jf .G/=�f .G/j � jf .G/=�j � jG=�j, but then Lemma 9.5.7
implies the equality NG.f .x// D NG.f .x

0//, using finiteness.

Exercise 9.5.9. Prove that the result is different if jG=�j is infinite. Take the union
of one P2 D ¹10; 20; 30º and infinitely many .P3/i D ¹0i ; 1i ; 2i ; 3iº and f such
that every path is mapped one step to the right while preserving the numbers (i.e.
ni 7! niC1). Then NG.f .10// D ¹01; 21º ¤ ¹21º D NG.f .30//. But G=� just
identifies 10 and 30 and thus Nf .G/.f .10// D ¹f .20/º D Nf .G/.f .30//.
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Theorem 9.5.10. Take a graph G with the canonical strong decomposition G D
U Œ.Yu/u2U �whereU is finite. Then for every f 2SEnd.G/ and .u; yu/2U Œ.Yu/u2U �

we have
f ..u; yu// D .s.u/; fu.yu//:

This way every f 2 SEnd.G/ is a pair .s; .fu/u2U / where s 2 Aut.U / and fu W
Yu ! Ys.u/ is a mapping for all u 2 U . Conversely, all such pairs are strong
endomorphisms of G. With this notation, we have the following multiplication in
SEnd.U Œ.Yu/u2U �/:

.s; .fu/u2U /.t; .gu/u2U / D .st; .ftugu/u2U /;

that is,

.u; .yu//
.t;.gu//7�����! .tu; .gu.yu///

.s;.ftu//7������! .stu; .ftu.gu.yu///

2 Yu 2 Ytu 2 Ystu

Note that associativity of this multiplication is established once we prove the the-
orem, since it is based on a composition of two mappings, namely the multiplication
in Aut.U / and the action of Aut.U / on U . Note moreover the similarity to the mul-
tiplication in the wreath product (Construction 9.4.1). There we had in the second
component one mapping f 2 SA, now we have a family of mappings.

Proof. It is clear that every pair .s; .fu/u2U / is a strong endomorphism of
U Œ.Yu/u2U �.

Take f 2 SEnd.U Œ.Yu/u2U �/ with f ..u; yu// D .v; yv/ 2 U Œ.Yu/u2U �. De-
fine s W U ! U by su WD v D p1.f .u; yu// for an arbitrary yu 2 Yu. We show
that this is a correct definition. To do this, suppose that f ..u; yu// D .v; yv/ and
f ..u; y0

u// D .v0; y0
v0/, where according to the decomposition of G we have that

.u; yu/ � .u; y
0
u/, i.e. NG.u; yu/ D NG.u; y

0
u/, which implies that f .NG.u; yu// D

f .NG.u; y
0
u//. By the definition ofNf .G/, this gives the equalityNf .G/.f .u; yu// D

Nf .G/.f .u; y
0
u//. Consequently, we get from Lemma 9.5.8 that NG.f .x// D

NG.f .x
0//. This implies p1.f .u; yu// D p1.f .u; y

0
u//, which proves the correct-

ness of the definition of s.
Now define fu W Yu ! Ysu by yu 7! p2.f .u; yu//, which clearly is a correct

definition.
Since Aut.U / D SEnd.U /, we have to show that s is strong, i.e. that ¹u; vº 2 E.U /

if and only if ¹su; svº 2 E.U /. Now, ¹u; vº 2 E.U / means that

¹.u; yu/; .v; yv/º 2 E.G/ for all yu 2 Yu; yv 2 Yv:

As f is strong, this is equivalent to

¹f .u; yu/; f .v; yv/º D ¹.su; fu.yu//; .sv; fv.yv//º 2 E.G/;
which is the case if and only if ¹su; svº 2 E.U /.



204 Chapter 9 Graphs and monoids

Exercise 9.5.11. Find an example which shows that quasi-strong endomorphisms in
general do not preserve �-classes.

A generalized wreath product with a small category

The semigroup side of this decomposition procedure in Theorem 9.5.10 can be de-
scribed in a more abstract way as a generalized wreath product. This, however, is
rather complicated and technical, and may appeal only to specialists; if you choose to
skip it, nothing serious will be lost. Application 9.5.13 is just a reformulation of parts
of Theorem 9.5.10.

Construction 9.5.12. Let K be a small category and R a monoid such that X WD
Ob K 2 R-Act. Write M WD Morph K WDSx;y2X K .x; y/ and consider

W WD ¹.r; f / j r 2 R; f 2MX ; f .x/ 2 K .x; rx/ for x 2 Xº:

Then, for .r; f /; .p; g/ 2 W define

.r; f /.p; g/ WD .rp; fpg/;

where .fpg/.x/ WD f .px/g.x/ for any x 2 X and f .px/g.x/ is the composition of
morphisms in K .

Application 9.5.13. Take a simple undirected graph G, and let U WD G=� be the
canonical strong factor graph of G. Then G D U Œ.Yu/u2U � is the canonical strong
decomposition of G and Yu denotes the equivalence class of u 2 U with respect to �.
Define the small category K D KG=� by Ob K WD U and K .u; v/ WD Set.Yu; Yv/

with composition of morphisms as in Set for u; v 2 U , and take R D Aut.U /. Then

˛ W SEnd.G/! Aut.U / oK DW W
f 7! .p; .fu//

defines an isomorphism of monoids, where p is the permutation of U induced by f
and fu WD f jYu

W Yu ! Ypu is the corresponding mapping induced by f .
(See [Kilp et al. 2000] pp. 175–178.)

Question. How can you specialize this example from SEnd.G/ to Aut.G/?

Cardinality of SEnd.G/

Now the analysis of Example 9.5.13 and a simple counting argument gives the fol-
lowing theorem.
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Theorem 9.5.14. Let G be finite, with G D U Œ.Yu/u2U �. Then

jSEnd.G/j D
X

s2Aut.U /

Y

u2U

jYsujjYuj:

Upon analyzing the possible right-hand sides of this formula, this immediately im-
plies the following:

Corollary 9.5.15. There exists no graph G such that SEnd.G/ ¤ Aut.G/, i.e. with
endotype greater than 15 and jSEnd.G/j 2 ¹2; 3; 5; : : : ; 25; 29º.

9.6 Some algebraic properties of SEnd

Strong monoids have several interesting algebraic properties that depend on the struc-
ture of the graph. These properties can be described conveniently using the canonical
decomposition.

Regularity and more for TA

First we collect some easy facts about the transformation monoid of a set A.

Theorem 9.6.1. LetA be a set and TA D AA the full transformation monoid ofA (i.e.
all mappings from A to A). Then TA is always regular and, moreover, the following
implications hold:

(a) completely regular, orthodox, left inverse, jAj � 2;

(b) right inverse , inverse , Clifford , group , commutative , idempotent
, jAj D 1.

Proof. Regularity is well known and easy to prove.
Sufficiency is obvious in all cases.
Necessity in each case is proved by exhibiting a counterexample. Take A D
¹1; 2; 3º. For “completely regular” consider f .1/ D 2; f .2/ D f .3/ D 3. Then
any pseudo-inverse g must satisfy g.2/ D 1, and then gf .1/ D 1 but 1 … Im fg.

For “orthodox” and “left inverse”, consider the two idempotents h.1/ D 1; h.2/ D
h.3/ D 3 and g.1/ D g.2/ D 2; g.3/ D 3. Then gh is not idempotent and hgh ¤ gh.

The other cases are treated similarly, but using A D ¹1; 2º.

Corollary 9.6.2. For TA, the implications in Theorem 9:1:2 reduce to:

group
, inverse
, right inverse
, Clifford monoid

9

>

=

>

;

)
8

<

:

completely regular
, orthodox
, left inverse

9

=

;

) regular.
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Regularity and more for SEnd.G/

Theorem 9.6.3. Take G D U Œ.Yu/u2U � with jU j finite. Then SEnd.G/ is a regular
monoid, i.e. for every element .s; .fu// 2 SEnd.U Œ.Yu/u2U �/ one has

.s; .fu//.s
�1; .f 0

u//.s; .fu// D .s; .fu//;

where we choose

f 0
u.yu/ 2

´

.fs�1u/
�1.yu/ if yu 2 Im fs�1u;

Ys�1u if yu 2 Yu n Imfs�1u:

Proof. We have to prove that the proposed f 0 satisfies the equality ff 0f D f . Note,
that s 2 Aut.U / by Theorem 9.5.10. Indeed, for .u; yu/ 2 U Œ.Yu/u2U � we get

.u; yu/
f7! .su; fu.yu//

f 0

7! .s�1su; f 0.fu.yu///
f7! .su; fu.yu//:

Example 9.6.4. If U D ¹0; 1; 2; : : : º is an infinite chain, then SEnd.U / Š .N;C/,
which obviously is not regular.

For convenience we formulate the following lemma, which is clear from the struc-
ture of U Œ.Yu/u2U �.

Lemma 9.6.5. An element .s; .fu// 2 SEnd.U Œ.Yu/u2U �/ is idempotent if and only
if s D idU and fu is idempotent for all u 2 U .

Theorem 9.6.6. The monoid SEnd.U Œ.Yu/u2U �/ is:

(a) completely regular, for all u 2 U we have jYuj � 2, and jYuj D 2 implies
jYsuj D 1 for all s 2 Aut.U / with su ¤ u;

(b) orthodox, left inverse, jYuj � 2 for all u 2 U ;

(c) right inverse, inverse, Clifford, group, jYuj D 1 for all u 2 U ;

(d) commutative, for all u 2 U , jYuj D 1, and Aut.U / is commutative;

(e) idempotent, for all u 2 U , jYuj D 1, and jAut.U /j D 1.

Proof. (a) Sufficiency is obvious; any pseudo-inverse constructed in Theorem 9.6.3
will do in this case. To prove necessity, note that the first part of the condition follows
from the corresponding part of Theorem 9.6.1. Now assume that jYuj D 2 and take
idU ¤ s 2 Aut.U / such that jYsuj D 2. Consider .s; .fu// where fu W Yu !
Ysu is surjective and fs�1u W Ys�1u ! Yu is not surjective. Any pseudo-inverse of
.s; .fu// is of the form .s�1; .gu//, and because of the complete regularity we have
.s; .fu//.s

�1; .gu// D .idU ; .fs�1ugu// D .idU ; .gsufu// D .s�1; .gu//.s; .fu//

for some pseudo-inverse. Now bijectivity of fu implies that gsu W Ysu ! Yu actually
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satisfies gsu D f �1
u , i.e. gsufu is surjective on Yu. On the other hand, as fs�1u is

not surjective onto Yu we get that gsufu ¤ fs�1ugu, which is a contradiction.
For parts (b) to (e) sufficiency is obvious; use Lemma 9.6.5 for (b). Necessity is

also obvious in all cases, owing to Theorem 9.6.1; one uses .idU ; .fu// where the fu

are from the respective counterexamples in the proof of Theorem 9.6.1.

Corollary 9.6.7. The implication structure of Corollary 9:6:2 is slightly different for
SEnd.U Œ.Yu/u2U �/ and becomes the following:

group
, Clifford monoid
, inverse
, right inverse

9

>

=

>

;

) completely
regular

)
8

<

:

orthodox
,
left inverse

9

=

;

) regular.

9.7 Comments

The decomposition of SEnd is very useful for the algebraic investigation of the strong
monoid of a graph, as we have seen. Using the strong decomposition of a graph G it
should be easy to describe all automorphisms of G.

End-regularity of graphs has been investigated by a number of researchers. One
important special case deals with the so-called split graphs. These are graphs which
have a complete graph Kn as a core and, in addition, a set I of mutually independent
vertices which are adjacent only to vertices of Kn. Here regular, idempotent closed,
orthodox and completely regular endomorphism monoids are investigated.

It would be interesting to replace the complete graph by an asymmetric graph or
even a rigid graph and ask the same questions about the endomorphisms.

These constructions also point toward possibilities of building graphs whose en-
domorphism monoids are Clifford monoids, in which case the structure semilattice
under the Clifford semigroup is a lattice and the identity element of the top group
figures as the identity element of the endomorphism monoid.
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Compositions, unretractivities and monoids

In this chapter, all graphs are without loops.
We consider various compositions of graphs and investigate various unretractivities

of these compositions. Moreover, we ask under what conditions a composition of
graphs leads to suitable composition of monoids. The idea behind this question, which
is quite familiar in mathematics, is a sort of distributivity of End or Aut over the
operations.

Unfortunately, it is not convenient to consider End or Aut as functors, since they are
functors in two variables and, for instance, End.G/ D Hom.G;G/ is contravariant in
the first variable and covariant in the second; similarly for Aut.

10.1 Lexicographic products

First we look at some simple properties associated with wreath products of monoids,
lexicographic products of graphs. Recall that we do not have categorical descriptions
for lexicographic and wreath products. Let G and H be graphs.

Lemma 10.1.1. Take f 2 D f 2 End.GŒH�/ and ¹x; x0º 2 E.G/. For Hx WD
¹.x; y/ 2 GŒH� j y 2 H º, the H -layer at x, one has f .Hx0/

T

Hx D ;. In other
words, for f 2 D f 2 End.GŒH�/, the equality f .x0; y0/ D f .x; y/ D .x; y/ implies
¹x; x0º … E.G/.
Proof. Assume that f .x0; y0/ D .x; y/ 2 f .Hx0/

T

Hx for some y0 2 V.H/ and
¹x; x0º 2 E.G/. Then ¹.x0; y0/; f .x0; y0/º D ¹.x0; y0/; .x; y/º 2 E.GŒH�/, and
applying f again gives a loop, which is impossible.

Lemma 10.1.2. Take G 2 ¹Kn; C2nC1º. For f 2 D f 2 End.GŒH�/ we have that
f .x; y/ D .x; y0/ for all .x; y/ 2 GŒH�, with y0 2 H , i.e. p1f D p1.

Proof. With Lemma 10.1.1, this is clear for Kn. Suppose that there exist .x; y/;
.x0; y0/ 2 V.C2nC1ŒH �/, with x ¤ x0, such that f .x; y/ D .x0; y0/ D f .x0; y0/. Let
P1 and P2 be the two different paths in C2nC1 connecting x and x0. We construct two
paths in C2nC1ŒH � connecting .x; y/ and .x0; y0/ using the first components from P1

and P2, possibly with some of them used more than once. Then p1f W P1 ! C2nC1

and p1f W P2 ! C2nC1 are graph homomorphisms, which when combined give
an endomorphism p1f W C2nC1 ! C2nC1. This is not bijective with p1f .x/ D
p1f .x

0/, which is impossible as End.C2nC1/ D Aut.C2nC1/.
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Lemma 10.1.3. For 
2 D 
 2 SEnd.G/ and x 2 G, one has N.x/ D N.
.x//.

Proof. Take x0 2 N.x/. Then ¹
.x/; 
.x0/º D ¹
2.x/; 
.x0/º 2 E.G/, and hence
¹
.x/; x0º 2 E.G/ as 
 is strong. Consequently, N.x/ � N.
.x//. Conversely, take
x0 2 N.
.x//. Then ¹
2.x/; 
.x0/º D ¹
.x/; 
.x0/º 2 E.G/, and thus ¹x; x0º 2
E.G/ as 
 is strong. Consequently, N.x/ � N.
.x//.

Remark 10.1.4. For M 2 ¹End; SEndº, we have that .M.G/ oM.H/jG/ is a group
if and only if M.G/ and M.H/ are groups.

Exerceorem 10.1.5. Let G and H be (arbitrary) graphs and recall Definition 9.4.3.
Then:

(1) .End.G/ o End.H/jG/ � End.GŒH�/;

(2) .Aut.G/ o Aut.H/jG/ � Aut.GŒH�/.

Note that a corresponding result is not true for strong endomorphisms; neither are
the converse implications, as the following example shows.

Example 10.1.6. As usual, T2 denotes the full transformation monoid on two ele-
ments, S2 the permutation group on two elements and D4 the dihedral group on four
elements.

Now .SEnd.K2/ o SEnd.K2/jK2/ Š .T2 o S2jK2/, which is not a group and thus
not contained in SEnd.K2ŒK2�/ D Aut.K2ŒK2�/ D Aut.C4/ Š D4. So .SEnd.K2/ o
SEnd.K2/jK2/ 6� SEnd.K2ŒK2�/.

Observe that .Aut.K2 o Aut.K2/jK2/ Š Aut.K2ŒK2�/.
For the converse implication, observe that

.SEnd.K2/ o SEnd.K2/jK2/ D .Aut.K2/ o Aut.K2/jK2/

has eight elements and therefore does not contain SEnd.K2ŒK2�/ D SEnd.K4/ D
Aut.K4/ Š S4, which has 24 elements. So

.SEnd.K2/ o SEnd.K2/jK2/ 6� SEnd.K2ŒK2�/:

This also shows that the converse implication of (2) in Exerceorem 10.1.5 is not
true in general.

Equality in (1) of Exerceorem 10.1.5 will turn out to be sufficient for one implica-
tion with SEnd (see Theorem 10.3.1), which, in turn, is sufficient for equality in (2)
of Exerceorem 10.1.5 (see Theorem 10.3.2). This equality in (2) is characterized in
Theorem 10.3.5. A similar characterization of the corresponding equality for SEnd is
given in Theorem 10.3.10.
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Next, we consider six types of strong endomorphisms of lexicographic products
GŒH� of graphs G and H which can be constructed from strong endomorphisms of
the components (1, 2a, 2b) and vice versa (3, 4a, 4b). The straightforward proofs use
the preceding two lemmas. We leave them as exercises.

Construction 10.1.7. Take .x; y/ 2 GŒH�.
(1) For � 2 SEnd.H/ set f ..x; y// WD .x; �.y//. Then f 2 SEnd.GŒH�/. More-

over, � is injective if and only if f is injective.

(2a) Take 
2D 
 2SEnd.G/ and set f ..x; y// WD .
.x/; y/. Then f 2SEnd.GŒH�/.

Moreover, f is injective if and only if 
 is injective.

(2b) Take y0 2 H , an isolated vertex, and 
2 D 
 2 SEnd.G/.

Set f ..x; y// WD
°

.
.x/; y0/ for y D y0;

.x; y/ otherwise:

Then f 2 SEnd.GŒH�/.

Moreover, 
 is injective if and only if f is injective.

(3) Take f 2 D f 2 SEnd.GŒH�/. For x 2 G set 
.x/ WD p1f .x; y0/ for some
isolated vertex y0 2 H . Then 
 2 SEnd.G/.

(4a) Take f 2 D f 2 SEnd.GŒH�/. For x 2 G set �x.y/ WD p2f ..x; y// for
y 2 H . Then �x 2 SEnd.H/.

(4b) Take f 2 D f 2 SEnd.GŒH�/. Suppose that H D H1

S

H2 where H1 is
connected. For x 2 G set �x.y/ WD p2f ..x; y// if y 2 H1, and �x.y/ WD y if
y 2 H2. Then �x 2 SEnd.H/.

Question. Can these constructions be extended to End, HEnd, LEnd and QEnd of
lexicographic products?

10.2 Unretractivities and lexicographic products

In this section we present results about the E-S unretractivity, E-A unretractivity and
S-A unretractivity of the lexicographic product (of certain finite graphs); that is, we
consider lexicographic products such that all endomorphisms are strong or automor-
phisms or such that all strong endomorphisms are bijective, i.e. automorphisms. Re-
call from Definition 1.7.1 that a graph has endotype 0 if it is E-A unretractive, endo-
type 16 if it is E-S unretractive, and endotype less than 16 if it is S-A unretractive.

The first results on this topic can be found in U. Knauer, Unretractive and S un-
retractive joins and lexicographic products of graphs, J. Graph Theory 11 (1987)
429–440, and U. Knauer, Endomorphisms of graphs II. Various unretractive graphs,
Arch. Math. 55 (1990) 193–203.
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Theorem 10.2.1. Take G 2 ¹Kn; C2nC1º. Then End.GŒH�/ D Aut.GŒH�/ if and
only if End.H/ D Aut.H/.

Proof. To prove necessity, note that by Exerceorem 10.1.5 we have

.End.G/ o End.H/jG/ � End.GŒH�/ D Aut.GŒH�/:

Then End.G/ and End.H/ are groups and thus G and H are unretractive.
To prove sufficiency, take G 2 ¹Kn; C2nC1º and suppose that End.H/ D Aut.H/.

By finiteness we may assume for f 2 End.GŒH�/ that f 2 D f .
Case 1. There exist .x; y/; .x; y0/ 2 V.GŒH�/ such that f .x; y0/ D .x; y/ with

y ¤ y0. Then f .x; y/ D .x; y/ since f is idempotent. Now take �x 2 End.H/
defined as in (4b) of Construction 10.1.7. Then �x is not injective as y ¤ y0. This
contradicts End.H/ D Aut.H/.

Now, if G D Kn, then f 2 D f 2 End.KnŒH �/ implies p1f .x; y/ D x by
Lemma 10.1.2, so Case 1 is done.

Case 2. There exist .x; y/; .x0; y0/ 2 V.C2nC1ŒH �/, with x ¤ x0, such that
f .x; y/ D .x0; y0/ D f .x0; y0/. Then Lemma 10.1.2 implies that p1f D p1, which
is a contradiction.

We give two definitions next, one of which is known from Definition 9.5.1. Both
will be used again later, for example in Theorem 10.3.5, where they originated.

Definition 10.2.2. The relation �G � G �G is defined by

x �G x
0 , NG.x/ D NG.x

0/:

The relation �G � G �G is defined by

x �G x
0 , NG.x/

S¹xº D NG.x
0/
S¹x0º:

Now x�Gx
0 means that x and x0 are not adjacent and have the same neighbors, and

x�Gx
0 means that x and x0 are adjacent and have the same neighbors. So �G D �

or �G D � mean that different non-adjacent or adjacent vertices don’t have the same
neighbors in G. The smallest examples with non-trivial relations are the path P2 D
¹0; 1; 2º of length 2, where 1�P2

3, and the complete graph K3 D ¹1; 2; 3º, where
1�K3

3 and the same for any other pair of points in K3.
The notation comes from Sabidussi’s original paper The composition of graphs,

Duke Math. J. 26 (1959) 693–696. Later, the relation �G was mostly called RG and
�G was mostly called SG .

We have the following results under certain conditions; see R. Kaschek, Über das
Endomorphismenmonoid des lexikographischen Produktes endlicher Graphen, Dis-
sertation, Oldenburg 1990.
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Remark 10.2.3. End.GŒH�/ D Aut.GŒH�/ if and only if:

(a) End.GŒH�/ D .Aut.G/ o Aut.H/jG/, under the condition that H is connected
and �G D �, where as usual � denotes the diagonal of G �G;

(b) End.G/ D Aut.G/ and End.H/ D Aut.H/, under the condition that G has no
triangles and no isolated vertices.

Note that Theorem 10.2.1 is a special case of (b).

Proposition 10.2.4. If End.GŒH�/ D SEnd.GŒH�/, then End.G/ D SEnd.G/ and
End.H/ D SEnd.H/.

Proof. Take 
 2 End.G/ and suppose that ¹
.x/; 
.x0/º 2 E.G/ for x; x0 2 G.
Define f WD .
; idY / 2 End.GŒH�/ D SEnd.GŒH�/, i.e. f .x; y/ D .
.x/; y/ for
.x; y/ 2 GŒH�. Since ¹f .x; y/; f .x0; y/º D ¹.
.x/; y/; .
.x0/; y/º 2 E.GŒH�/,
we get ¹.x; y/; .x0; y/º 2 E.GŒH�/ and thus ¹x; x0º 2 E.G/. This proves that 
 is
strong.

Take � 2 End.H/ and suppose that ¹�.y/; �.y0/º 2 E.H/ for y; y0 2 H . De-
fine f WD .idx; �/ 2 End.GŒH�/ D SEnd.GŒH�/, i.e. f .x; y/ D .x; �.y// for
.x; y/ 2 GŒH�. Since ¹f .x; y/; f .x; y0/º D ¹.x; �.y//; .x; �.y0//º 2 E.GŒH�/,
we get ¹.x; y/; .x0; y/º 2 E.GŒH�/ and thus ¹y; y0º 2 E.H/. This proves that � is
strong.

Corollary 10.2.5. If jH j � 2 and End.GŒH�/ D SEnd.GŒH�/, then End.G/ D
Aut.G/ or E.H/ D ;.

Proof. If there exists 
 2 SEnd.G/ with 
.x/ D 
.x0/ for x ¤ x0, then .
; idY / is not
strong if ¹y; y0º 2 E.H/.

Lemma 10.2.6. If End.H/ D SEnd.H/, then End.C2nC1ŒH �/ D SEnd.C2nC1ŒH �/.

Proof. Take f 2 End.C2nC1ŒH �/ n SEnd.C2nC1ŒH �/. Then there exists

¹.x1; y1/; .x2; y2/º … E.C2nC1ŒH �/

such that ¹.x0
1; y

0
1/; .x

0
2; y

0
2/º D ¹f .x1; y1/; f .x2; y2/º 2 E.C2nC1ŒH �/

This is true for any power of f and so we suppose that f is idempotent. Then by
Lemma 10.1.2 we obtain that x1 D x0

1 and x2 D x0
2. Now ¹.x1; y1/; .x2; y2/º …

E.C2nC1ŒH �/ and ¹.x1; y
0
1/; .x2; y

0
2/º 2 E.C2nC1ŒH �/ imply that x1 D x2,

¹y1; y2º … E.H/, ¹y0
1; y

0
2º 2 E.H/. Defining �.y/ WD p2f .x1; y/ gives an en-

domorphism of H which is not strong, contradicting the hypothesis.



Section 10.2 Unretractivities and lexicographic products 213

Theorem 10.2.7 (E-S unretractive). Take G 2 ¹Kn; C2nC1º. Then End.GŒH�/ D
SEnd.GŒH�/ if and only if End.H/ D SEnd.H/.

Proof. This follows from Lemmas 10.2.6 and 10.2.4.

Here, too, we have some further results under certain conditions; compare again
R. Kaschek, Über das Endomorphismenmonoid des lexikographischen Produktes end-
licher Graphen, Dissertation, Oldenburg 1990.

Remark 10.2.8. End.GŒH�/ D SEnd.GŒH�/ if and only if:

(a) End.G/ D SEnd.G/, under the condition that H D Kn;

(b) End.G/ D Aut.G/ and End.H/ D SEnd.H/ and Idpt.G/ � .End.G/ o
End.H/jG/, under the condition that H ¤ Kn;

(c) End.G/ D Aut.G/ and End.H/ D SEnd.H/, under the condition that G has
no triangles and no isolated vertices.

Note that Theorem 10.2.7 is a special case of (a) and possibly of (b).

Theorem 10.2.9 (S-A unretractive). SEnd.GŒH�/ D Aut.GŒH�/ if and only if:

(a) SEnd.G/ D Aut.G/ and SEnd.H/ D Aut.H/; or

(b) SEnd.H/ D Aut.H/ and H has no isolated vertex.

Proof. For the necessity, we show first that H is S-A unretractive. To do this, we use
(1) in Construction 10.1.7, and we take any � 2 SEnd.H/. Then the constructed f
must be injective, and so � is injective and thus in Aut.H/.

If now H has an isolated vertex y0, then G is S-A unretractive. This is obtained
by using the statement from (2b) in Construction 10.1.7, since for any idempotent

 2 SEnd.G/ the constructed f is injective, and thus 
 is injective and therefore in
Aut.G/.

To prove sufficiency. Take f 2 D f 2 SEnd.GŒH�/, i.e. suppose there exists
.x; y/ ¤ .x0; y0/ 2 V.GŒH�/ with f .x0; y0/ D .x; y/ D f .x; y/.

(a) Let y0 be an isolated vertex of H . If x D x0, take �x 2 SEnd.H/ D Aut.H/
as in (4) of Construction 10.1.7, which is not injective as y ¤ y0. Therefore x ¤ x0.

If y D y0 D y0, take 
 2 SEnd.G/ D Aut.G/ as in (3) of Construction 10.1.7,
which again is not injective.

So let y0 ¤ y0. Then there exists y1 2 V.H/ with ¹y0; y1º 2 E.H/, since an
S-A unretractive graph cannot have more than one isolated vertex. Then we have that
¹.x0; y0/; .x0; y1/º 2 E.GŒH�/. Let f .x0; y1/ D .x2; y2/; then ¹.x; y/.x2; y2/º 2
E.GŒH�/ but ¹x2; x

0º … E.G/ by Lemma 10.1.1. Thus x2 D x0 and ¹.x; y/;
.x0; y2/º 2 E.GŒH�/; but again ¹x; x0º … E.G/ by Lemma 10.1.1. So x D x0
follows, contradicting the assumption that x ¤ x0.
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Now let y ¤ y0. Then there exists y1 2 V.H/ with ¹y; y1º 2 E.H/, and then
¹.x; y/; .x; y1º 2 E.GŒH�/. Consequently, we have that ¹f .x; y/; f .x; y1/º D
¹f .x0; y0/; f .x; y1/º 2 E.GŒH�/ and thus ¹.x0; y0/; .x; y1/ 2 E.GŒH�/º. This is
impossible, as by assumption x ¤ x0 and ¹x; x0º … E.G/, again by Lemma 10.1.1.
This completes the proof of (a).

(b) Now H has no isolated vertex, so there exists y00 2 V.H/ with ¹y0; y00º 2
E.H/. If x ¤ x0, then ¹x; x0º … E.G/ by Lemma 10.1.1. Consequently, we
have ¹.x0; y0/; .x0; y00/º 2 E.GŒH�/ and thus ¹f .x0; y0/; f .x0; y00/º D ¹f .x; y/;
f .x0; y00/º 2 E.GŒH�/. Then ¹.x; y/; .x0; y00/º 2 E.GŒH�/ as f is strong. Since
x ¤ x0, this implies ¹x; x0º 2 E.G/, which is a contradiction.

If x D x0 but y ¤ y0, then take �x from (4a) in Construction 10.1.7, which is not
injective in this case; this contradicts the S-A unretractivity of H .

10.3 Monoids and lexicographic products

Here we consider the question of how End operates on the lexicographic product
End.GŒH�/ of two graphs G and H . It turns out that the appropriate composition of
monoids here is the wreath product; see Definition 9.4.3.

We present the results of U. Nummert, On the monoid of strong endomorphisms of
wreath products of graphs, Mat. Zametki 41 (1987) 844–853 (the English translation
of the journal is called “Mathematical Notes”).

Theorem 10.3.1. End.GŒH�/ D .End.G/ o End.H/jG/ implies SEnd.GŒH�/ �
.SEnd.G/ o SEnd.H/jG/ (where G and H are without loops).

Proof. Take ' 2 SEnd.GŒH�/ � End.GŒH�/ D .End.G/ o End.H/jG/ with ' D
.r; f /, presented as an element of the wreath product, with the notation of Construc-
tion 9.4.1. Consider ¹r.x/; r.x0/º 2E.G/. Then ¹'.x; y/; '.x0; y/º D ¹.r.x/; f .x/.y//,
.r.x0/; f .x0/.y//º 2 E.GŒH�/, which implies that ¹.x; y/; .x0; y/º 2 E.GŒH�/ as '
is strong. This means that ¹x; x0º 2 E.G/.

Suppose now that ¹f .x/.y/; f .x/.y0/º 2 E.H/. Then ¹.r.x/; f .x/.y//; .r.x/;
f .x/.y0//º 2 E.GŒH�/, which implies that ¹.x; y/; .x; y0/º 2 E.GŒH�/ as ' is
strong. Thus ¹y; y0º 2 E.H/.

Theorem 10.3.2. IfG andH are finite, then SEnd.GŒH�/� .SEnd.G/oSEnd.H/jG/
implies Aut.GŒH�/ D .Aut.G/ o Aut.H/jG/.
Proof. Take ' 2 Aut.GŒH�/ � .SEnd.G/ o SEnd.H/jG/ with ' D .r; f /, which
is bijective. We show that r and f .x/ are bijective for all x 2 G. This implies that
.r; f / 2 .Aut.G/ o Aut.H/jG/. The converse is true by Exerceorem 10.1.5. Then for
all .x0; y0/ 2 GŒH� there exists .x; y/ 2 GŒH�with .r; f /.x; y/D .r.x/; f .x/.y//D
.x0; y0/. Thus r is surjective and therefore bijective if G is finite.
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Suppose now that .r; f /.x; y/ D .r; f /.x; y0/; then f .x/.y/ D f .x/.y0/. Now
injectivity of .r; f / implies y D y0. Therefore f .x/ is injective for all x 2 G and
thus bijective if H is finite.

Remark 10.3.3. It can be seen that the previous theorem is also true if only one of G
or H is finite.

Theorem 10.3.4. Take arbitrary (i.e. not necessarily finite) graphs G and H , where
G is without loops. Then .SEnd.G/ o SEnd.H/jG/ � SEnd.GŒH�/ if and only if
H D K jH j or �G D �, i.e. ¹x; x0º … E.G/ and NG.x/ D NG.x

0/ implies x D x0
for x; x0 2 G.

Proof. To prove necessity, suppose there exists r 2 SEnd.G/ n Aut.G/, i.e. there
exist x ¤ x0 2 G with r.x/ D r.x0/; then ¹x; x0º … E.G/ since G has no loops.
Consider .r; id/ 2 .SEnd.G/ o SEnd.H/jG/, where id.x/ D idH for all x 2 G.
Then ¹.r; id/.x; y/; .r; id/.x0; y0/º D ¹.r.x/; y/; .r.x0/; y0/º … E.GŒH�/, and thus
¹y; y0º … E.H/ for any y; y0 2 H . Consequently, H D K jH j.

To prove sufficiency, consider .r; f / 2 .SEnd.G/ o SEnd.H/jG/ � End.GŒH�, by
Exerceorem 10.1.5. Suppose that ¹.r.x/; f .x/.y//; .r.x0/; f .x0/.y0//º 2 E.GŒH�/.
If ¹r.x/; r.x0/º 2 E.G/, then ¹x; x0º 2 E.G/ since r is strong, and thus we have
¹.x; y/; .x0; y0/º 2 E.GŒH�. If r.x/ D r.x0/ and ¹f .x/.y/; f .x0/.y0/º 2 E.H/, i.e.
H ¤ K jH j, we have that �G D � implies x D x0. Moreover, we get that ¹y; y0º 2
E.H/ and thus ¹.x; y/; .x; y0/º 2 E.GŒH�/, using the fact that f .x/ D f .x0/ is
strong.

The following result is due to G. Sabidussi, The composition of graphs, Duke Math.
J. 26 (1959) 693–696. It uses the relations �G and �G from Definition 10.2.2. As
usual,� denotes the diagonal ofG�G. A nice proof can be found in [Imrich/Klavžar
2000].

Theorem 10.3.5. .Aut.G/ oAut.H/jG/ Š Aut.GŒH�/ if and only if �G ¤ � implies
that H is connected and �G ¤ � implies that H is connected.

In words, this theorem says that H must be connected if G has two non-adjacent
vertices with the same neighborhood, i.e. G is not S-A unretractive, and H must be
connected if G has two adjacent vertices with the same neighborhoud.

We illustrate the necessity of the conditions with examples.

Example 10.3.6. Consider P2ŒK2� D ¹0a; 0b; 1a; 1b; 2a; 2bº with P2 D ¹0; 1; 2º
and K2 D ¹a; bº. Then the permutation of 0a and 2a, for example, is an automor-
phism which does not belong to .Aut.P2/ o Aut.K2/jP2/ since it does not preserve
layers, see Lemma 10.3.8, and, indeed, �P2

¤ � and K2 is not connected.
Now consider K3ŒK2� D ¹1a; 1b; 2a; 2b; 3a; 3bº Š K6 with K3 D ¹1; 2; 3º and

K2 D ¹a; bº. Then the permutation of 1a and 3a, for example, is an automorphism
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which does not belong to .Aut.K3/ o Aut.K2/jK3/ since it does not preserve layers,
see Lemma 10.3.8, and, indeed, �K3

¤ � and K2 is not connected.

Corollary 10.3.7. Aut.GŒH�/ D ¹1º if and only if Aut.G/ D Aut.H/ D ¹1º; that
is, GŒH� is asymmetric if and only if G and H are asymmetric.

Proof. First, Aut.GŒH�/ D ¹1º implies that �G D �G D �. Then Aut.G/ D
Aut.H/ D ¹1º by Theorem 10.3.5, and vice versa.

Lemma 10.3.8. Aut.GŒH�/ Š .Aut.G/ o Aut.H/jG/ if and only if for every x 2 G
and ' 2 Aut.GŒH�/ there exists x0 2 G such that '.Hx/ � Hx0; SEnd.GŒH�/ Š
.SEnd.G/ o SEnd.H/jG/ if and only if for every x 2 G and ' 2 SEnd.GŒH�/ there
exists x0 2 G such that '.Hx/ � Hx0 . So in both cases ' preserves H -layers.

Proof. Necessity is obvious.
To prove sufficiency, take ' 2 SEnd.GŒH�/. Then, by the hypothesis, ' D .r; f /

and it is easy to see that f .x/ W H ! H is a strong endomorphism for every x 2 G.
We show that r.x/ ¤ r.x0/ if ¹x; x0º 2 E.G/. The strong subgraph with vertex set
Hx

S

Hx0 is K2ŒH �. In the case of r.x/ D r.x0/, we would get '.K2ŒH �/ � Hr.x/,
which is impossible. Consequently r is a strong endomorphism of G.

For ' 2 Aut.GŒH�/, the bijectivities of r and f follow from finiteness and the
bijectivity of '.

Corollary 10.3.9. SEnd.GŒH�/ � .SEnd.G/ o SEnd.H/jG/ if and only if
Aut.GŒH�/ Š .Aut.G/ o Aut.H/jG/.
Proof. The necessity comes from part (b) of Theorem 10.3.1.

For sufficiency, note that from Theorem 10.3.5 we get two conditions on H

which are inherited by the canonical strong factor graph H=�H . This implies that
.Aut.G/ o Aut.H=�H /jG/ Š Aut.GŒH=�H �/ by Theorem 10.3.5. Moreover, the
structure of the lexicographic product implies thatGŒH=�H � D .GŒH�/=�GŒH
. Thus
SEnd.GŒH=�H �/ D Aut.GŒH=�H �/.

By Lemma 10.3.8, for every x 2 G and ' 2 Aut.GŒH=�H �/ there exists x0 2 G
with '..H=�H /x/ � .H=�H /x0 for the respective H=�H -layers and, consequently,
'.Hx/ � Hx0 for the respective H -layers.

Now, by Lemma 10.3.8, this is equivalent to SEnd.GŒH�/ � .SEnd.G/ o
SEnd.H/jG/.

Theorem 10.3.10. We have .SEnd.G/ o SEnd.H/jG/ Š SEnd.GŒH�/ if and only if
�G D � and �G ¤ � implies that H is connected.

Proof. Necessity: .SEnd.G/ o SEnd.H/jG/ Š SEnd.GŒH�/ implies first that �G D
� or H D K jH j by Theorem 10.3.4, and second that .Aut.G/ o Aut.H/jG/ Š



Section 10.4 The union and the join 217

Aut.GŒH�/ by Theorem 10.3.1. So we can apply Theorem 10.3.5 and get that �G D
�. Applying Theorem 10.3.5 again gives the rest of the statement.

Sufficiency: by Theorem 10.3.5 we get .Aut.G/ o Aut.H/jG/ Š Aut.GŒH�/ and
thus .SEnd.G/oSEnd.H/jG/ � SEnd.GŒH�/ by Corollary 10.3.9. Moreover, � D �
implies the converse implication by Theorem 10.3.4.

Again, we illustrate the necessity of the conditions as in Example 10.3.6.

Example 10.3.11. Consider P2ŒH � for an arbitrary graph H with at least one edge
and with P2 D ¹0; 1; 2º. Then, mapping the layer H1 identically onto the layer H3

and fixing the rest is an element in .SEnd.G/ o SEnd.H/jG/ which is not strong, i.e.
does not belong to SEnd.GŒH�/.

For the second condition we can use the same graphs as in Example 10.3.6.

Remark 10.3.12. Under the assumptions that G is connected, has odd girth, i.e. its
shortest cycle has odd length, and does not contain triangles, End.GŒH�/ is regular,
orthodox, left inverse, right inverse, inverse or completely regular if End.H/ has the
same property.

Moreover, under the assumptions that both G and H do not have triangles and
either one of them has odd girth, we have End.GŒH�/ Š .End.G/ o End.H/jG/
– which is along the same lines as the results of Sabidussi (Theorem 10.3.5) and
Nummert (Theorem 10.3.10).

In this case, End.GŒH�/ is regular if and only if End.G/ is a group and End.H ) is
regular or vice versa.

All of this was proved by Suohai Fan in his dissertation in 1993.

10.4 The union and the join

Most of the results in this section come from Apirat Wanichsombat, Algebraic Struc-
ture of Endomorphism Monoids of Finite Graphs, PhD Thesis, Oldenburg 2011. I
suggest that the reader considers the proofs of the results and the open questions as
exercises, which are at various levels of difficulty.

The sum of monoids

For unions and also for joins of graphs, we introduce another composition of monoids,
which looks like the Cartesian product but differs from it when we consider their
actions on sets (such as vertices of graphs); cf. Definition 7.6.1.

Definition 10.4.1. Take monoids M and N and left acts .M;X/ and .N; Y /. The
sum of the monoids M CN D ¹mC n j m 2 M;n 2 N º has multiplication defined
by .mC n/.m0 C n0/ WD mm0 C nn0 and the identity element 1C 1.
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Remark 10.4.2. The sum M C N operates on X
S

Y by .m C n/x WD mx and
.mC n/y WD ny for x 2 X , y 2 Y , m 2 M and n 2 N . In this way we get the left
.M CN/-act X

S

Y . This construction is slightly different from the product M �N
of the monoids M and N , which is used for the operation on the product X � Y . So
although the monoids M C N and M � N are isomorphic, the left .M C N/-act
X
S

Y and the left .M �N/-act X � Y are not semilinearly isomorphic.

Lemma 10.4.3. An element h D hX C hY 2 M.X/ CM.Y / is idempotent if and
only if hX and hY are idempotent.

The sum of endomorphism monoids

Lemma 10.4.4. If f 2 D f 2 End.G CH/, then f 2 End.G/C End.H/, where G
has no loops.

Theorem 10.4.5. Let G and H be graphs and consider M 2 ¹End;HEnd;LEnd;
QEnd; SEnd;Autº. Then M.G/ C M.H/ � M.G C H/ and M.G/ C M.H/ �
M.G

S

H/, but not conversely. Moreover, the right-hand sides may be incomparable.

Project 10.4.6. Construct examples for all possibleM , showing incomparability and
that converses are not true.

To start, we have examples for some of the M : End.K2 C K3/ D End.K5/ D
Aut.K5/Š S5, which is not a subset of End.K2/CEnd.K3/D Aut.K2/CAut.K3/Š
S2 � S3; nor is End.K2

S

K3/ D HEnd.K2

S

K3/, which is not a group. Note that
LEnd.K2

S

K3/ D Aut.K2

S

K3/ D Aut.K2/C Aut.K3/ Š S2 � S3.
For “moreover”, we see that End.K2 C K2/ D Aut.K2 C K2/ Š S4 but

End.K2

S

K2/ is not a group.
All of these examples will be positive and negative examples to Theorem 10.4.9, so

they can help one to understand and possibly improve the results.

Corollary 10.4.7. IfM.G/ is not closed as a monoid, thenM.GCH/ andM.G
S

H/

are not closed for M 2 ¹HEnd;LEnd;QEndº.

Corollary 10.4.8. IfM.G/ ¤M 0.G/, thenM.G
S

H/ ¤M 0.GCH/ forM;M 0 2
¹HEnd;LEnd;QEndº.

The earliest and famous results of [Harary 1969] are hidden in (6) of the following
theorem. Some of the other results were also in M. Frenzel, Strong Endomorphisms
and Compositions of Graphs, Diplomarbeit, Oldenburg 1986.
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Theorem 10.4.9. Let the graphs be connected, finite and without loops.

(1) End.G/
S

End.H/ Š End.G C H/ if and only if Hom.G;H/ D ; and
Hom.H;G/ D ;.

(2) HEnd.G/
S

HEnd.H/ Š HEnd.G CH/ if and only if HHom.G;H/ D ; and
HHom.H;G/ D ;.

(3) LEnd.G/
S

LEnd.H/ Š LEnd.G CH/ if and only if LHom.G;H/ D ; and
LHom.H;G/ D ; and h.H/

T

NGg.G/ ¤ ; and h.H/ ¤ g.G/ for h 2
LHom.H;G/ and g 2 LEnd.G/, or vice versa.

(4) QEnd.G/
S

QEnd.H/ Š QEnd.G CH/ if and only if QHom.G;H/ D ; and
h.H/

T

NGg.G/ ¤ ; for h 2 QHom.H;G/ and g 2 QEnd.G/, or vice versa.

(5) SEnd.G/
S

SEnd.H/ Š SEnd.G C H/ if and only if for all components
SHom.G;H/ D ; or SHom.HG;G/ D ;

(6) Aut.G/
S

Aut.H/ Š Aut.G CH/ if and only if G 6Š H .

The situation for the join is much easier, as one might expect. The following should
be rather easy to prove.

Exerceorem 10.4.10. Let the graphs be finite without loops, and take M 2 ¹End;
HEnd;LEnd;QEnd; SEnd;Autº. Then M.G/CM.H/ Š M.G CH/ if and only if
f .G/ � G and f .H/ � H for all f 2M.G CH/.

Unretractivities

We repeat some known facts first.

Lemma 10.4.11.

(1) Idempotent endomorphisms of G are in HEnd.G/, i.e. Idpt.G/ � HEnd.G/.

(2) If G is finite with End.G/ ¤ HEnd.G/, then HEnd.G/ ¤ SEnd.G/.

Proof. (1) follows from direct calculation; cf. Remark 1.5.9.
(2) follows from the fact that endotypes 1 and 17 do not exist; cf. Proposition 1.7.2.

We consider E-A unretractivites, E-S unretractivites and S-A unretractivites, i.e.
graphs of endotypes 0, 16 and less than 16. Some of the results in the following
theorem can be found in U. Knauer, Unretractive and S unretractive joins and lex-
icographic products of graphs, J. Graph Theory 11 (1987) 429–440 (parts (2a) and
(3a)), and U. Knauer, Endomorphisms of graphs II. Various unretractive graphs, Arch.
Math. 55 (1990) 193–203 (part (1a)). Some more were also in M. Stamer, Endomor-
phismen von Koprodukten endlicher Graphen, Diplomarbeit, Oldenburg 1993.
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Theorem 10.4.12. Let G;H be finite graphs without loops, not both K1. Then

(1a) End.G
S

H/ D Aut.G
S

H/ if and only if End.G/ D Aut.G/ and End.H/ D
Aut.H/ and Hom.G;H/ D Hom.H;G/ D ;.

(1b) End.G
S

H/ D SEnd.G
S

H/ if and only if End.G/ D SEnd.G/ and
End.H/ D SEnd.H/ and Hom.G;H/ D Hom.H;G/ D ;.

(2a) HEnd.G
S

H/ D Aut.G
S

H/ if and only if HEnd.G/ D Aut.G/ and
HEnd.H/ D Aut.H/ and HHom.G;H/ D HHom.H;G/ D ;.

(2b) End.G
S

H/ D SEnd.G
S

H/ if and only if End.G/ D SEnd.G/ and
End.H/ D SEnd.H/ and Hom.G;H/ D Hom.H;G/ D ;.

(3a) (Hypothesis) LEnd.G
S

H/ D Aut.G
S

H/ if and only if LEnd.G/ D Aut.G/
and LEnd.H/ D Aut.H/ and LHom.G;H/ D LHom.H;G/ D ;.

(4a) QEnd.G
S

H/ D Aut.G
S

H/ if and only if QEnd.G/ D Aut.G/ and
QEnd.H/ D Aut.H/.

(4b) (Hypothesis) QEnd.G
S

H/ D SEnd.G
S

H/ if and only if QEnd.G/ D
SEnd.G/ and QEnd.H/ D SEnd.H/.

(5) SEnd.G
S

H/ D Aut.G
S

H/ if and only if SEnd.G/ D Aut.G/ and
SEnd.H/ D Aut.H/.

Question. Can you find a statement (3b)?
Can you simplify the conditions in (2a) and (2b) by dropping all occurrences of

“H” after the “if and only if”, in view of the fact that endotypes 1 and 17 do not exist?
If you consider C9 and C3, it becomes clear that in (3a), emptiness of only one of

the two LEnd sets is not sufficient.

Theorem 10.4.13. Let G and H be finite graphs without loops, not both K1.

(1a) End.G CH/ D Aut.G CH/ if and only if End.G/ D Aut.G/ and End.H/ D
Aut.H/.

(1b) End.GCH/D SEnd.GCH/ if and only if End.G/D SEnd.G/ and End.H/D
SEnd.H/.

(2a) HEnd.G C H/ D Aut.G C H/ if and only if HEnd.G/ D Aut.G/ and
HEnd.H/ D Aut.H/.

(2b) HEnd.G C H/ D SEnd.G C H/ if and only if HEnd.G/ D SEnd.G/ and
HEnd.H/ D SEnd.H/.

(3a) LEnd.G C H/ D Aut.G C H/ if and only if LEnd.G/ D Aut.G/ and
LEnd.H/ D Aut.H/.

(4a) QEnd.G C H/ D Aut.G C H/ if and only if QEnd.G/ D Aut.G/ and
QEnd.H/ D Aut.H/.

(5) SEnd.G C H/ D Aut.G C H/ if and only if SEnd.G/ D Aut.G/ and
SEnd.H/ D Aut.H/.
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Question. Can you find statements (3b) and (4b)?
Can you simplify the conditions in (2a) and (2b) by dropping all occurrences of

“H” after the “if and only if”, in view of the fact that endotypes 1 and 17 do not exist?

Project 10.4.14. From the inner logic the cases (1c), (2c), (3c), (1d), (2d) and (1e)
are missing from Theorems 10.4.12 and 10.4.13. Can you formulate them and try to
state and prove theorems?

To begin with, you may find it helpful to represent the general situation of this
section by a “fish bone” diagram similar to the one at the beginning of the next section.
Using the diagram, associate the results obtained with the appropriate arrows.

10.5 The box product and the cross product

Most of the results in this section have not, as far as I know, been proved in easily ac-
cessible publications. Again, I propose that they be considered as exercises at various
different levels.

The results and questions in this section are concerned with the following diagram
of implications (some of which may not always be valid). Note that in each of the three
columns, the upper vertical arrows can be subdivided twice with LEnd and HEnd.
This subdivision will produce slanted arrows to both sides.

The “multiplicativity” of forming endomorphism sets is symbolized by equalities
along the slanted lines; unretractivities are equalities in the vertical directions.

Equalities or implications in the horizontal direction (e.g. whether Aut.G � H/

contains or is contained in Aut.G �H/) are, as far as I know, open questions.

End.G�H/ End.G �H/

End.G/ � End.H/

QEnd.G�H/ QEnd.G �H/

SEnd.G�H/ SEnd.G �H/

Aut.G�H/ Aut.G �H/

QEnd.G/ � QEnd.H/

SEnd.G/ � SEnd.H/

Aut.G/ � Aut.H/

� �

� �

� �

�

�

�

�����
�����

�����
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Unretractivities

Again, we consider E-A unretractivities, E-S unretractivities and S-A unretractivities,
i.e. graphs of endotypes 0, 16 and less than 16. These correspond to the vertical lines
in the above diagram.

For one of the E-S retractivities we have the following result.

Proposition 10.5.1. Let � denote the chromatic number. Suppose that for the graphs
G and H one of the following conditions holds:

(a) Kn D G and �.H/ � n, and not both are K2;

(b) G D C2mC1 and H D C2nC1;

(c) G is r-cyclically connected (i.e. all points from a cycle and all points with dis-
tance r on this cycle are connected by an additional edge) and �.H/ � �.G/.

Then End.G �H/ ¤ SEnd.G �H/.

For E-A unretractivity, we have a set of sufficient conditions that are weaker than
those in Proposition 10.5.1.

Proposition 10.5.2. Let �.H/ denote the chromatic number of H . Suppose that one
of the following conditions holds:

(a) Kn is a subgraph of G and �.H/ � n;

(b) G D C2mC1 and C2nC1 is a strong subgraph of H ;

(c) H is a strong subgraph of G.

Then End.G �H/ ¤ Aut.G �H/.

Theorem 10.5.3. Assume that the graphs are connected, finite and without loops.

(1a) SEnd.G �H/ D Aut.G �H/ if and only if G ¤ K2 or H ¤ K2.

(1b) SEnd.G�H/D Aut.G�H/ if and only if SEnd.G/D Aut.G/ and SEnd.H/D
Aut.H/.

(2a) End.G � H/ D SEnd.G � H/ implies End.G/ D Aut.G/ and End.H/ D
Aut.H/. One has End.G � H/ ¤ SEnd.G � H/ under the conditions of
Proposition 10:5:1.

(2b) End.G � H/ D SEnd.G � H/ implies End.G/ D SEnd.G/ and End.H/ D
SEnd.M/.

(3) End.G � H/ D Aut.G � H/ implies End.G/ D Aut.G/ and End.H/ D
Aut.M/ and jG �H j � 42. One has End.G �H/ ¤ Aut.G �H/ under the
conditions of Proposition 10:5:2.
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Question. Can you deduce conditions for non-equality in (1b) and (2b) from the
respective conditions in (3)?

Find conditions for the other unretractivities.
Can you find similar results for the boxcross product, the disjunction and the com-

plete product?

The product of endomorphism monoids

For the monoids of box products as well as of cross products of graphs the suitable
composition of monoids is the cross product of monoids, i.e. categorically speaking
the product of monoids. The first result in this direction is hidden in (3a) of Theo-
rem 10.5.5. All of these results concern the slanted arrows in the “fish bone” diagram
at the beginning of this section.

Graphs G and H are said to be relatively box prime if G and H do not admit
decompositions as box products with isomorphic box factors not equal to K1.

Theorem 10.5.4. We have the following inclusions of products of monoids in the
monoids of graph products:

(1a) End.G/ � End.H/ � End.G �H/.

(1b) End.G/ � End.H/ � End.G �H/.
(2a) QEnd.G/�QEnd.H/ � QEnd.G�H/ if and only if QEnd.G/ D Aut.G/ and

QEnd.H/ D Aut.H/.

(3a) SEnd.G/ � SEnd.H/ � SEnd.G �H/ if and only if SEnd.G/ D Aut.G/ and
SEnd.H/ D Aut.H/.

(3b) SEnd.G/ � SEnd.H/ � SEnd.G �H/.
(4a) Aut.G/ � Aut.H/ � Aut.G �H/.

(4b) Aut.G/ � Aut.H/ � Aut.G �H/.

Question. What can be said about (2b) and the missing sets of endomorphisms HEnd
and LEnd?

Theorem 10.5.5. Here we sharpen the inclusions in the previous theorem.

(1a) Under Condition (a), (b) or (c) of Proposition 10:5:1 or if G and H have ver-
tices of degree 1, one has End.G/ � End.H/ ¦ End.G �H/.

(1b) Condition (a), (b) or (c) of Proposition 10:5:2 implies that End.G/�End.H/ ¦
End.G �H/.

(2a) SEnd.G/ � SEnd.M/ Š SEnd.G � H/ if and only if G and H are relatively
box prime and SEnd.G/ D Aut.G/, SEnd.H/ D Aut.H/.
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(2b) SEnd.G/ � SEnd.H/ D SEnd.G � H/ implies G 6Š H and SEnd.G/ D
Aut.G/ and SEnd.H/ D Aut.H/ and is implied by G D Km and H D Kn for
m; n � 1, m ¤ n.

(3a) Aut.G/ � Aut.H/ Š Aut.G � H/ if and only if G and H are relatively box
prime.

(3b) Aut.G/�Aut.H/ D Aut.G�H/ impliesG 6Š H and SEnd.G/ D Aut.G/ and
SEnd.H/ D Aut.H/ and is implied by G D Km and H D Kn for m; n � 1,
m ¤ n.

Statements (1a), (1b), (2b) and (3b) are also in: P. Heidemann, Automorphismen-
gruppen und Endomorphismenmonoide von Box- und Kreuzprodukten endlicher Gra-
phen, Diplomarbeit, Oldenburg 1993; (2a) was also in: M. Frenzel, Starke Endomor-
phismen und Komposition von Graphen, Diplomarbeit, Oldenburg 1986.

For (3a), see G. Sabidussi, Graph multiplication, Math. Z. 72 (1956) 446–457.

Questions. Find characterizations for the situations in (1a), (1b), (2b) and (3b). What
can be said about the “missing” statements between (1) and (2) concerning HEnd,
LEnd and QEnd (which in general are only sets and not monoids)?

What can be said if on the right-hand sides we take the boxcross product, the dis-
junction or the complete product?

10.6 Comments

In this chapter, and especially in the last section, there are many open questions worthy
of investigation. Constructing proofs of the stated results might also be a worthwhile
exercise. It may be possible to improve some of the results as well. Moreover, one
could attempt to find results where End, SEnd or Aut is replaced by HEnd, LEnd or
QEnd.

We have two types of questions.

1. In which cases do End etc. “preserve” or “reflect” compositions of graphs or of
monoids, respectively? There are many compositions of graphs but only a few
of monoids, which makes things complicated.

2. How do unretractivities of composed graphs depend on unretractivities of the
factors?

Furthermore, it will be interesting to study the structure ofX -Y unretractive graphs
for X; Y 2 ¹End;HEnd;LEnd;QEnd; SEnd;Autº. This is related to the concept of
endotypes of graphs; see Section 1.7. For general graphs this does not seem very
promising, but the situation may be better for special types of graphs such as paths,
trees (cf. Theorem 1.7.5), bipartite graphs (cf. Theorem 1.5.4), split graphs, and so on.
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Cayley graphs of semigroups

Arthur Cayley (1821–1895) introduced graphs of groups in 1878. One of the first
investigations of these – later so-called – Cayley graphs of algebraic structures can be
found in Maschke’s work from 1896 about groups of genus zero, that is, groups which
possess a generating system such that the Cayley graph is planar; see the reference in
Theorem 13.1.6.

Cayley graphs of groups have been extensively studied and many interesting results
have been obtained – a very fruitful interconnection between algebra and graph theory.
Cayley graphs of semigroups have also been considered by many authors. A selec-
tion of results on Cayley graphs of semigroups will be the subject of the rest of the
book.

First we will touch on the categorical question of how to interpret the Cayley con-
struction as a functor and which properties this functor enjoys. The first two sections
consist mostly of applied category theory.

Preservation of products under the Cay functor, presented in Section 11.2, has im-
portant applications for the construction of Cayley graphs, especially Cayley graphs
of certain completely regular semigroups; see Remark 11.2.4. Most of this section is
taken from Ulrich Knauer, Yamning Wang and Xia Zhang, Functorial properties of
Cayley constructions, Acta et Commentationes Universitatis Tartuensis de Mathemat-
ica, 10 (2006) 17–29. Both sections are mainly exercises in category theory.

Section 11.3 is an application; we construct Cayley graphs of right and left groups.
After this, we investigate strong semilattices of semigroups and specialize the re-

sults to strong semilattices of groups, i.e. Clifford semigroups, and to strong semilat-
tices of right or left groups.

Section 11.5 contains applications that illustrate these results.
We use the language of category theory, as introduced in Chapter 3, and the cate-

gorical definitions of various graph products as given in Chapter 4.

11.1 The Cay functor

We present some elementary results which describe the construction of Cayley graphs
starting from semigroups with given connection sets. As usual, we will use set nota-
tion also for proper classes.

Define a category SgC of semigroups with connection sets, where Ob SgC D
¹.S; C / j S is a semigroup, C � Sº. For .S; C /; .T;D/ 2 SgC, we consider the
morphism set SgC..S; C /; .T;D// D ¹f j f W S ! T is a semigroup homomor-
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phism with f jC W C ! Dº. Then Ob SgC together with Morph SgC is a category,
where Morph SgC denotes the class of all morphism sets in SgC.

Let D be the category of digraphs, which may have loops and multiple edges, with
graph homomorphisms.

As usual, we define the (uncolored) Cayley graph of a semigroup S with connection
set C � S , using right action, as Cay.S; C / D .S;E/, where .s; sc/ are the arcs, i.e.
the elements of E D E.Cay.S; C // for all s 2 S and c 2 C .

Theorem 11.1.1. Let S and T be semigroups, and letC andD be subsets of S and T ,
respectively. Then Cay W SgC! D given by

� � �

7�!

7�!

7�!

.S; C /

f Cay.f /

Cay.S; C / s 2 S

f .s/ 2 T.T;D/ Cay.T;D/

for any f 2 SgC..S; C /; .T;D// and s 2 S is a covariant functor.

Proof. We show first that Cay produces homomorphisms in D. Suppose .s; sc/ is an
arc in Cay.S; C /, where s 2 S; c 2 C . Then .f .s/; f .sc// D .f .s/; f .s/f .c// is
an arc in Cay.T;D/ for each f 2 SgC..S; C /; .T;D//. It follows that Cay.f / is a
homomorphism from Cay.S; C / to Cay.T;D/.

Now we verify (1) and (2) of Definition 3.3.1.
(1) We have

Cay.id.S;C // D idCay.S;C /;

since Cay.idS /.s/ D id.s/ D s D idCay.S;C /.s/.
(2) For f 2 SgC..S; C /; .T;D// and g 2 SgC..T;D/; .U;E/, we have

Cay.gf /.s/ D gf .s/ D g.f .s// D Cay.g/Cay.f /.s/;

for any s 2 S . So Cay.gf / D Cay.g/Cay.f /.

The following statement is straightforward; the second part is proved by the subse-
quent example.

Corollary 11.1.2. The functor Cay W SgC ! D is faithful. It is full if we consider
only right zero semigroups, but not in general.

Proof. Note that for right zero semigroups S and T , the functor Cay is full. The rea-
son is that in this case every mapping f from S to T is a semigroup homomorphism.
Moreover, every element in a connection set produces a loop in the respective Cayley
graph, and these are the only loops, which we can easily deduce from the results on
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right or left groups in Chapter 12. Since graph homomorphisms map loops onto loops,
the condition f .C / � D is automatically satisfied in SgC.

In general, however, a morphism in D between two Cayley graphs which come
from semigroups is not a semigroup homomorphism; see the following example. A
similar situation shows up in Example 11.1.7.

Example 11.1.3. Take the semigroup Z3 D ¹0; 1; 2º with addition, and let C D
¹2º. Define a mapping f W Z3 ! Z3 with f .0/ D 2; f .1/ D 0 and f .2/ D 1.
Then f is a morphism in D from the directed triangle Cay.Z3; ¹2º/ to Cay.Z3; ¹2º/,
but obviously f is not a semigroup homomorphism. Moreover, the example also
shows that the condition f 2 D.Cay.S; C /;Cay.T;D// does not imply that f jC is
a mapping from C to D. For a picture of Cay.Z3; ¹2º/, see Example 7.3.3.

Reflection and preservation of morphisms

From the definition of the Cay functor and the fact that Cay is covariant and faithful,
we get, as usual (see, for example, [Kilp et al. 2000]), the following result.

Corollary 11.1.4. The functor Cay preserves and reflects injective mappings and sur-
jective mappings. It preserves retractions and coretractions.

Note that in the category SgC of semigroups with connection sets, monomorphisms
are injective and as always surjective mappings are epimorphisms. The converse of the
latter is not true for infinite semigroups. Then there exist non-surjective epimorphisms
in the category of semigroups, but they will not turn into epimorphisms in the category
of digraphs, since they are not surjective. So by an infinite example we can show that
the functor Cay does not preserve epimorphisms.

Example 11.1.5. Let i W .Z; 
/ ,! .Q; 
/ denote the natural embedding, which of
course is not surjective but is an epimorphism. This is easy to see, as every homo-
morphism starting in Q is uniquely determined by its value on 1. Then Cay.i/ W
Cay.Z;Z/! Cay.Q;Z/ is not surjective.

To see that Cay.i/ is not an epimorphism, we have to find a graph G and different
graph homomorphisms g; h W Cay.Q;Z/ ! G such that g Cay.i/ D hCay.i/. Take
the digraph .Q;Z�Z/, with vertex set Q and edge set Z�Z. Consider the mappings
g; h W Cay.Q;Z/ ! .Q;Z � Z/ such that g.z/ D h.z/ if z 2 Z but g.m/ D 1 and
h.m/ D 0 if m … Z. Clearly, g ¤ h are graph homomorphisms with g Cay.i/ D
hCay.i/. So Cay.i/ is not an epimorphism in D.

Corollary 11.1.6. The functor Cay preserves epimorphisms only in the category of
finite semigroups with connection sets.

The following examples show that the functor Cay does not reflect retractions and
coretractions. In the first case we also use an infinite semigroup.
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Example 11.1.7. Let � W .N0; 
/ ! .Z6; 
/ D .¹0; 1; : : : ; 5º; 
/ be the canonical
surjection .mod 6/. Take C D ¹0º � N0 and C D ¹0º � Z6. Then � is a not a
retraction in SgC but Cay.�/ is a retraction in D.

Indeed, SgC.Z6;N0/ D ¹c0º, the constant mapping onto 0. Therefore � cannot
be a retraction in SgC. But consider g0 W Cay.Z6; C / ! Cay.N0; C / defined by
g0.n/ D n. Then g0 is a morphism in D satisfying Cay.�/g0 D idCay.Z6;C /. So
Cay.�/ is a retraction in D.

Example 11.1.8. Take S D .¹2; 4º; 
/ � .Z6; 
/ D .¹0; 1; : : : ; 5º; 
/ and the natural
embedding i W S ! Z6. Then i 2 SgC..S; S/; .Z6; S//, and i is not a coretraction
in SgC. Note that S Š .Z2;C/.

Otherwise, we would have g W Z6 ! S such that gi D idS , the identity mapping
of S in SgC. No such g exists, since there exists no zero in S . Now define f W
Z6 ! S with f .2/ D 2 and f .n/ D 4 for all 2 ¤ n 2 Z6. Then Cay.f / 2
D.Cay.Z6; S/;Cay.S; S// and Cay.f /Cay.i/ D idCay.S;S/ implies that Cay.i/ is a
coretraction in D.

Corollary 11.1.9. The functor Cay does not reflect retractions or coretractions.

Does Cay produce strong homomorphisms?

The above question seems quite natural; however, it has not been answered defini-
tively. Recall that comorphisms reflect edges and that strong homomorphisms pre-
serve and reflect edges, i.e. they are comorphisms which are also homomorphisms.

Proposition 11.1.10. Suppose that f 2 SgC..S; C /; .T;D// is injective. Then
Cay.f / is a strong homomorphism in D if and only if .f .s/; f .s0// 2 Cay.T;D/
implies f .s0/ D f .s/f .c/ for some c 2 C .

Proof. By the definition of a strong homomorphism, if .f .s/; f .s0//2E.Cay.T;D//,
then .s; s0/ 2 E.Cay.S; C //. Thus there exists c 2 C such that s0 D sc, and so
f .s0/ D f .s/f .c/, which gives the necessity.

Assume to the contrary that .f .s/; f .s0//2E.Cay.T;D//. Then f .s0/Df .s/f .c/
for some c 2 C by hypothesis, and hence s0 D sc since f is injective.

Corollary 11.1.11. Take f 2 SgC..S; C /; .T;D//. If f is injective and f .C / D D,
then Cay.f / is a strong homomorphism in D.

Let f 2 SgC..S; C /; .T;D//. The following examples show that the condi-
tions “f is injective”, “f is surjective” and “f .C / D D” are not necessary, while
“f .C / D D” and “f �1.D/ D C ” are not sufficient, for Cay.f / to be a strong
homomorphism in D.
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Example 11.1.12. Take S D .Z6; 
/ D .¹0; 1; : : : ; 5º; 
/ and define f W S ! S by

f .0/ D 0; f .1/ D f .5/ D 1; f .2/ D f .4/ D 4; f .3/ D 3:
Take the subsetsC D ¹1; 5º andD D ¹1º of S . Then f 2 SgC..S; C /; .S;D//. Now
E.Cay.S; C // contains all loops and the edges ¹.1; 5/; .2; 4/; .4; 2/; .5; 1/º, while
E.Cay.S;D// contains all loops only. It is easy to check that Cay.f / is a strong
homomorphism. But clearly f is neither injective nor surjective.

Example 11.1.13. Let T be a three-element set with the following multiplication
table:

1 2 3

1 2 2

2 1 1

2 1 1

1

2

3

Clearly this is a semigroup. Take the subsemigroup S D ¹1; 2º of T and let C D
¹2º; D D ¹2; 3º. Then i W S ,! T , the natural embedding of S into T , belongs to
SgC..S; C /; .T;D//. Now we get the following edge sets for the respective Cayley
graphs:

E.Cay.S; C // D ¹.1; 2/; .2; 1/º; E.Cay.T;D// D ¹.1; 2/; .2; 1/; .3; 1/º
and Cay.i/ is a strong homomorphism in D. But f .C / ¤ D.

Example 11.1.14. Consider C D L2 D ¹a; bº � L0
2 D S , i.e. S is the two-element

left zero semigroup with zero adjoint. Then

E.Cay.S; C // D ¹.0; 0/; .a; a/; .b; b/º:
Take D D ¹aº and the mapping f W S ! S defined by f .0/ D 0 and f .a/ D
f .b/ D a. Then f 2 SgC..S; C /; .S;D//.

It is clear that f .C / D D and f �1.D/ D C . However, Cay.f / is not a strong
homomorphism in D since .Cay.f .a//;Cay.f .b/// D .a; a/ 2 E.Cay.S;D// but
.a; b/ … E.Cay.S; C //.

11.2 Products and equalizers

Categorical products

Now we turn to the categorical product (the cross product in the category D of di-
rected graphs) and equalizers (see Chapters 3 and 4). Observe that equalizers are
special pullbacks; cf. Remark 3.2.9.

To be precise, we should identify products and other categorical concepts in the
category SgC.



230 Chapter 11 Cayley graphs of semigroups

Lemma 11.2.1. Let ¹.Si ; Ci /ºi2I be a family of objects in category SgC. Then
..
Q

i2I Si ;
Q

i2I Ci /; .pi /i2I / is the product of ¹.Si ; Ci /ºi2I in SgC, where
Q

i2I Si

and
Q

i2I Ci are Cartesian products of .Si /i2I and .Ci /i2I , respectively, and pi W
.
Q

i2I Si ;
Q

i2I Ci /! .Si ; Ci /; i 2 I , are the canonical projections.

Proof. Clearly the pi ; i 2 I , are morphisms in SgC. For any .T;D/ 2 C and any
family .qi / 2 C ..T;D/; .Si ; Ci //i2I , define q W .T;D/ ! .

Q

i2I Si ;
Q

i2I Ci / by
q.t/ D .qi .t//i2I ; t 2 T . Then q is the unique morphism in SgC such that piq D qi

for all i 2 I .

Theorem 11.2.2. The functor Cay preserves and reflects (multiple) products, i.e. for
.S; C /; .T;D/ 2 SgC we have

Cay.S � T; C �D/ D Cay.S; C / � Cay.T;D/;

where � on the right-hand side denotes the cross product in D.

Proof.

Cay.S; C / � Cay.T;D/

D ®¹.x; y/; .x0; y0/º j .x; x0/ 2 Cay.S; C /; .y; y0/ 2 Cay.T;D/
¯

D ®.s; t/; .sc; td/ j .s; t/ 2 S � T; .c; d/ 2 C �D¯

D Cay.S � T; C �D/:
It is clear that this can be generalized to multiple products.

Application 11.2.3. We can use this result to determine the Cayley graphs of right
groups and left groups, which in the category SgC have the form of a product be-
tween a group and an n-element right zero semigroup Rn D ¹r1; : : : ; rnº or left zero
semigroup Ln D ¹l1; : : : ; lnº.

Consider the right group S D Z2 � R2 D ¹.0; r1/; .0; r2/; .1; r1/; .1; r2/º.
Then Cay.Z2 � R2; ¹1; r2º/ has the following form, which is the cross product
Cay.Z2; ¹1º/ � Cay.R2; ¹r2º/ in the category D. (Here and in later pictures we will
write vertices in Cartesian products as xy instead of as .x; y/.)

� �

� �

0r1 1r1

0r2 1r2

�
�

�
�
��

�
�

�
�

�� ��

���

�

�

r2

r1

0 1

��
���
�
��
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Consider the left group S D L2 � Z2 D ¹.l1; 0/; .l2; 0/; .l1; 1/; .l2; 1/º. Then
Cay.L2 � Z2; ¹l2; 1º/ has the form Cay.Z2; ¹1º/ � Cay.L2; ¹l2º/ D Cay.Z2; ¹1º/ �
Cay.L2; ¹l1º/, which is the cross product in the category D. It is depicted below:

��
�����
�l1

��
�����
�l2

� �

� �

0l1 1l1

0l2 1l2

��

��

��� �
0 1

We will resume our discussion of Cayley graphs of left and right groups in Sec-
tions 11.3 and 13.2.

Project 11.2.4. Observe that the preservation of products together with the preserva-
tion of injective and surjective mappings leads to the preservation of so-called subdi-
rect products; see, for example, [Petrich/Reilly 1999]. This, in turn, opens up many
possible avenues of characterizing Cayley graphs of completely regular semigroups.
Some steps in this direction are presented in what follows.

Remark 11.2.5. Note that the reflection of products under Cay is not in the strict
sense for any of the possible connection sets producing the same product graph.
Take L2 D ¹l1; l2º, the two-element left zero semigroup, and C D ¹l1º. By Theo-
rem 11.2.2 we have Cay.L2�L2; ¹.l1; l1/; .l2; l2/º/ Š Cay.L2; ¹l1º/�Cay.L2; ¹l1º/
which is the discrete graph with 4 vertices and a loop at each of them. Now, by
Lemma 11.2.1, .L2 � L2; ¹l1º � ¹l1º/ is the product of two copies of .L2; ¹l1º/ in
SgC. But .L2�L2; ¹.l1; l1/; .l2; l2/º/ ¤ .L2�L2; ¹l1º�¹l1º/ D .L2�L2; ¹l1; l1º/
in SgC.

Equalizers

Now we identify equalizers in the category SgC which also are not a surprise.

Lemma 11.2.6. Consider a situation f; g W .S; C / � .S 0; C 0/ in SgC, which we
called an equalizer situation. If T D ¹s 2 S j f .s/ D g.s/º and D D ¹c 2
C j f .c/ D g.c/º ¤ ;, then .T;D/ � .S; C / with the natural embedding i is the
equalizer of f and g in SgC; that is, f i D gi , and whenever f h D gh, there exists
a unique h0 with ih0 D h.

Proof. Suppose that D D ¹c 2 C j f .c/ D g.c/º ¤ ;. If ..E;A/; h/ satisfies
f h D gh, then h.E/ � T; h.A/ � D and h0 D h W .E;A/ ! .T;D/ is the unique
morphism such that ih0 D h, where i is the natural embedding.
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Now we show that the functor Cay does not preserve equalizers.

Example 11.2.7. Consider again the semigroup .Z6; 
/ D .¹0; 1; : : : ; 5º; 
/ from Ex-
amples 11.1.12 and 11.1.8, and define f W Z6 ! Z6 by f .z/ D z2 for all z 2 Z. Let
C D ¹0; 5º andC 0 D ¹0; 1; 5º, both subsets of Z6. Then f 2 SgC..Z6; C /; .Z6; C

0//
and .T;D/ D .¹0; 1; 3; 4º; ¹0º/with the natural embedding i is the equalizer of f and
id.Z6;C / in SgC by Lemma 11.2.6.

Let V D ¹vº be the one-point digraph in D with one loop, i.e. E D ¹.v; v/º.
Define h W V ! Z6 with h.v/ D 3. Then h is a morphism in D such that Cay.f /h D
idCay.Z6;C / h. Now every morphism from V to Cay.T;D/ in D must map v onto 0,
and thus there exists only one such morphism h�. But h� ¤ h. Hence Cay.T;D/with
the embedding is not the equalizer of f and idZ6

in D, i.e. .Cay.T;D/;Cay.i// ¤
EqD.Cay.f /; idCay.Z6;C //.

The following can be proved; however, rather than go into details here, we refer to
the original literature mentioned in the introduction to this chapter.

Exerceorem 11.2.8. In general, the functor Cay does not preserve or reflect equaliz-
ers, and consequently it does not preserve nor reflect pullbacks.

Other product constructions

We now consider box products, boxcross products and lexicographic products of
graphs. Remember that in the literature these products have many alternative names.

The box product is, categorically speaking, the tensor product in the category D;
see Theorem 4.3.5. Since relatively little is known about the tensor product in the
category of semigroups, it does not make sense to talk about preservation of tensor
products in this context.

Because of the structure of the coproduct in the category of semigroups (cf. Theo-
rem 4.1.2), we cannot say anything about the preservation of coproducts by the Cay
functor either.

Overall, the results in this section cannot be seen as preservation properties in the
categorical sense.

Remark 11.2.9. It is easy to see that Cay.S; C / ˚ Cay.S; C 0/ D Cay.S; C
S

C 0/,
where˚ is the edge sum.

Theorem 11.2.10. Let � and � denote the box product and boxcross product, re-
spectively. Then for monoids S and T with subsets C and D and identities 1S and
1T , we have

(1) Cay.S � T; .¹1Sº �D/
S

.C � ¹1T º// D Cay.S; C /� Cay.T;D/;

(2) Cay.S � T; .¹1Sº �D/
S

.C � ¹1T º/
S

.C �D// D Cay.S; C /� Cay.T;D/.
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Proof. (1) We have

Cay
�

S � T; .¹1Sº �D/
S

.C � ¹1T º/
�

D ®¹.s; t/; .s; td/º j .s; t/ 2 S � T; d 2 D¯
S

®¹.s; t/; .sc; t/º j .s; t/ 2 S � T; c 2 C ¯

D Cay.S; C /� Cay.T;D/:

(2) Denote by ˚ the edge sum of graphs. Then

Cay.S; C /� Cay.T;D/

D .Cay.S; C /� Cay.T;D//˚ .Cay.S; C / � Cay.T;D//

D Cay.S � T; .¹1Sº �D/
S

.C � ¹1T º//˚ Cay.S � T; C �D/
D Cay.S � T; .¹1Sº �D/

S

.C � ¹1T º/
S

.C �D//:
In the article Cayley graphs and interconnection networks by M.-C. Heydemann in

[Hahn/Sabidussi 1997] pp. 167–224, the statements of Theorems 11.2.2 and 11.2.10
are contained in the case where S and T are groups. Moreover, as regards the
lexicographic product of graphs, it is stated there, also for groups A and A0, that
Cay.A; C /ŒCay.A0; C 0/� Š Cay.A�A0; .C �A0/

S

.1A�C 0//, where 1A is the iden-
tity of A. Generalized to the situation of semigroups, we have the following:

Theorem 11.2.11. Let S be a monoid, T a semigroup, and C and D subsets of S
and T , respectively. Then

Cay.S � T; .C � T /S.¹1Sº �D// D Cay.S; C /ŒCay.T;D/�

if and only if tT D T for any t 2 T , i.e. if and only if T is right simple.

Proof. Since

Cay
�

S � T; .C � T /S.¹1Sº �D/
�

D ®¹.s; t/; .s; t/.c; t 0/º j .s; t/ 2 S � T; .c; t 0/ 2 C � T ¯
S

®¹.s; t/; .s; t/.¹1Sº; d /º j .s; t/ 2 S � T; .¹1Sº; d / 2 ¹1Sº �D
¯

;

we get

Cay.S; C /ŒCay.T;D/� D ®¹.s; t/; .sc; t 0/º j .s; sc/ 2 Cay.S; C /; t; t 0 2 T ¯
S

®¹.s; t/; .s; td/º j s 2 S; .t; td / 2 Cay.T;D/
¯

:

If Cay.S � T; .C � T /S.¹1Sº � D// D Cay.S; C /ŒCay.T;D/�, then for any
t; t 0 2 T and ¹.s; t/; .sc; t 0/º 2 Cay.S; C /ŒCay.T;D/�, where .s; sc/ 2 Cay.S; C /;
we have t 0 D tx for some x 2 T . So T � tT and then T D tT for any t 2 T .
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For the converse, suppose that tTDT for any t 2T . Then for any arc ¹.s; t/; .s0; t 0/º
in Cay.S; C /ŒCay.T;D/�, either s D s0 and t 0 D td for some d 2 D or s0 D sc for
some c 2 C and t; t 0 2 T . But for any t; t 0 2 T , there is a y 2 T such that t 0 D ty by
assumption. Therefore ¹.s; t/; .s0; t 0/º is an arc of Cay.S �T; .C �T /S.¹1Sº�D//,
and so

Cay.S; C /ŒCay.T;D/� � Cay.S � T; .C � T /S.¹1Sº �D//:

The reverse inclusion is obvious.

Remark 11.2.12. A formal description of the relation between graphs and subgraphs
which are subdivisions, with the help of the Cay functor on semigroups with genera-
tors, seems to be difficult.

In Cay.Z6; ¹1º/, for example, we find a subdivision of K3 corresponding to
Cay.¹0; 2; 4º; ¹2º/ as a subgraph. But subdivision is not a categorical concept. And
there is no inclusion between ¹0; 2; 4º � ¹2º and Z6 � ¹1º.

11.3 Cayley graphs of right and left groups

In this section we characterize Cayley graphs of so-called right and left groups, fol-
lowing S. Arworn, U. Knauer and N. N. Chiangmai, Characterization of digraphs of
right (left) zero unions of groups, Thai Journal of Mathematics, 1 (2003) 131–140.

Recall Definition 7.3.1, which defines an uncolored Cayley graph Cay.S; C / for a
semigroup S and the connection set C � S . Recall that Cay.S; C / has the vertex set
S and that .u; v/, with u; v 2 S , is an arc if there exists an element a 2 C such that
ua D v.

Remark 11.3.1. Every Cayley graph is what we call out-regular; that is, all vertices
have the same outdegree, counting multiple arcs with their multiplicities.

A digraph .V;E/ is called a semigroup digraph or digraph of a semigroup if there
exists a semigroup S and a connection set C � S such that .V;E/ is isomorphic to
the Cayley graph Cay.S; C /.

We speak of S semigroup digraphs if we want to consider various subsets C � S
and the corresponding Cayley graphs Cay.S; C /.

Group digraphs have been characterized by several authors, one of the first being
G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964) 426–438. (Recall
Definition 7.7.7 and also Theorem 7.7.13.) We state the result here in the following
form.

Theorem 11.3.2. A digraph D D .V;E/ is a group digraph with right action of
generating elements if and only if there exists a subgroup U � Aut.D/ with regular
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left action onD, i.e. for any two vertices x; y 2 V there exists exactly one s 2 U such
that s.x/ D y.

Proof. To prove sufficiency, take a subgroup U of Aut.D/ such that for all x; y 2 V
there exists a unique s 2 U with s.x/ D y. We show that there exists C � U such
thatG Š Cay.U; C /. First choose x 2 V and identify it with 1U . Now identify s 2 U
with s.1U / D y 2 V , and write s as sy . Take C WD ¹sy 2 U j .x; y/ 2 Eº; we shall
show that .u;w/ 2 E if and only if there exists c 2 C such that suc D sw . Indeed,
.u;w/ 2 E means that .su; sw/ 2 E, which is equivalent to .1S ; s

�1
u sw/ 2 E. This

means that s�1
u sw 2 C or, in other words, c D s�1

u sw .
Necessity is clear since the left action of U on Cay.U; C / is regular, i.e. it is strictly

fixed-point-free and vertex transitive.

Question. What chances do we have of generalizing this result to (certain) monoids?
According to an oral communication from Kolja Knauer, every finite digraph with
outdegree 1 is a Cayley graph.

We continue with a characterization of right (left) group digraphs. The results fol-
low quite easily from the fact that Cay preserves and reflects products; see Theo-
rem 11.2.2 and Application 11.2.3. We will use Remark 11.2.9 in the following form.

Lemma 11.3.3. Let S be a semigroup, and let C be a subset of S . Then Cay.S; C / D
L

a2C Cay.S; ¹aº/.
Here we will not give proofs, as the results follow in a straightforward manner from

the structures of the semigroups under consideration and the preservation of products.
They will be illustrated by examples later.

First, we describe the structure of the Cayley graph of a given right group with a
given connection set.

Theorem 11.3.4. Let .V;E/ D Cay.A�Rk; C / be a right group digraph with group
A, right zero semigroup Rk D ¹r1; : : : ; rkº, and C � A �Rk , where 2 � k 2 N.

Then .V;E/ D Sk
iD1.Vi ; Ei / is the vertex disjoint union of k group subgraphs

.V1; E1/; : : : ; .Vk; Ek/ with Vi D A � ¹riº and

.uj ; vi / 2 Ei , .ui ; vi / 2 E;
.ui ; vi / D ..u; ri /.v; ri // 2 Ei if 9 a D .g; ri / 2 C with ug D v

for ui ; vi 2 Vi and i; j 2 ¹1; : : : ; kº.
So in particular, Ei may be empty.

Conversely, we start with a vertex disjoint union of k group graphs and show when
it is a right group digraph, that is, we determine the connection set.
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Theorem 11.3.5. Take an out-regular digraph .V;E/ D Sk
iD1.Vi ; Ei /, 2 � k 2 N,

which is the vertex disjoint union of k group graphs .V1; E1/; : : : ; .Vk; Ek/ for some
group A.

Then .V;E/ Š Cay.A �Rk; C / for C DSk
iD1.Ci � ¹riº/ � A �Rk; where

.Vi ; Ei / Š Cay.A; Ci /; with a D .g; ri / 2 Ci � ¹riº if ..1A; ri /; .g; ri // 2 Ei

and .uj ; vi / 2 E , .ui ; vi / 2 Ei

for i; j 2 ¹1; : : : ; kº and ui ; vi 2 Vi D G � ¹riº.

Example 11.3.6. In Application 11.2.3 we saw that

Cay.Z2 �R2; ¹.1; r2/º/ D Cay.Z2; ¹1º/ � Cay.R2; ¹r2º/:
Below we have

Cay.Z3 �R2; ¹.1; r1/º/ D Cay.Z3; ¹1º/ � Cay.R2; ¹r1º/:
In both cases, the cross product of the Cayley graphs of the group and the right zero
semigroup is visible.

� � �

� � �

0r1 1r1 2r1

0r2 1r2 2r2

� �
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�
�

�
�	

�
�

�
�	

���������

The left analogues of Theorems 11.3.4 and 11.3.5 are the following.

Theorem 11.3.7. Let .V;E/ D Cay.Lk � A;C / be a left group digraph with group
A, left zero semigroup Lk D ¹l1; : : : ; lkº, and C � Lk � A, where 2 � k 2 N.

Then .V;E/ D Sk
iD1.Vi ; Ei / is the vertex disjoint union of k group subgraphs

.V1; E1/; : : : ; .Vk; Ek/ with Vi D ¹liº � A and

.ui ; vj / … E if i ¤ j;

.ui ; vi / 2 Ei , 9 q 2 ¹1; : : : ; kº with .uq; vq/ 2 Eq;

where .uq; vq/ D ..lq; u/.lq; v// 2 Eq if 9 a D .lq; g/ 2 C with ug D v;
for ui ; vi 2 Vi and i; j 2 ¹1; : : : ; kº.

Theorem 11.3.8. Take an out-regular digraph .V;E/ D Sk
iD1.Vi ; Ei /, 2 � k 2 N,

which is the vertex disjoint union of k group graphs .V1; E1/; : : : ; .Vk; Ek/ for some
group A.
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Then .V;E/ Š Cay.Lk � A;C / for C DSk
iD1.¹liº � Ci / � Lk � A, where

.Vi ; Ei / Š Cay.A; Ci /;

with a D .li ; g/ 2 ¹liº � Ci if ..li ; 1A/; .li ; g// 2 Ei ;

and .ui ; vj / 2 E , i D j and 9 q 2 ¹1; : : : ; kº with .uq; vq/ 2 Eq

for i; j 2 ¹1; : : : ; kº and ui ; vi 2 Vi D ¹liº � Vi .

Example 11.3.9. In Application 11.2.3 we also saw that

Cay.L2 � Z2; ¹.l2; 1/º/ D Cay.L2; ¹l2º/ � Cay.Z2; ¹1º/:
Below we have

Cay.L2 � Z3; ¹.l1; 1/º/ D Cay.L2; ¹l1º/ � Cay.Z3; ¹1º/:
In both cases the cross product of the Cayley graphs of the group and the left zero
semigroup is visible.
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11.4 Cayley graphs of strong semilattices of semigroups

In this section we investigate strong semilattices of semigroups and specialize the
results to strong semilattices of groups, i.e. Clifford semigroups, and of right or left
groups. For this we use the results of Section 11.3.

We will illustrate the results with an applications section.
For a finite strong semilattice of semigroups .S� I ı�/, 
 2 Y , where Y is the semi-

lattice, we will use the notation .
S

�2Y S� I 	/, or simply
S

�2Y S� , keeping in mind
that the defining homomorphisms are part of the definition. This notation is practical
here, but be aware that it differs from the notation introduced in Theorem 9.1.6.

In the first result, to be used in Proposition 11.4.2 and Theorem 11.4.4 later, we
restrict our attention to a one-element connection set ¹aº.

This proposition says that in a strong semilattice Y of semigroups, no arcs go from
a lower to a higher semigroup, where “higher” and “lower” are with respect to the
partial order in Y . Furthermore, if there exists one arc from a higher to a lower
semigroup, then there are arcs from every point of the higher semigroup to the lower
semigroup.
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Proposition 11.4.1. Consider .
S

�2Y S� I 	/, and take a 2 Sˇ �
S

�2Y S� . Then the
Cayley graph Cay.

S

�2Y S� ; ¹aº/ contains jY j disjoint strong semigroup subdigraphs
.S˛; E˛/ Š Cay.S˛; C˛/, ˛ 2 Y , with C˛ WD ¹fˇ;˛.a/º for ˇ � ˛ and C˛ WD ; if
ˇ  ˛.

Proof. Take an a 2 Sˇ �
S

�2Y S� , and consider the strong semigroup subdi-
graph .S˛; E˛/ of Cay.

S

�2Y S� ; ¹aº/ for ˛ 2 Y . We shall show that .S˛; E˛/ Š
Cay.S˛; ¹fˇ;˛.a/º/. For x˛; y˛ 2 S˛, we show that .x˛; y˛/ 2 E˛ if and only
if .x˛; y˛/ is an arc in Cay.S˛; C˛/. Since .S˛; E˛/ is the strong subgraph of
Cay.

S

�2Y S� ; ¹aº/, .x˛; y˛/ is an arc in Cay.
S

�2Y S� ; ¹aº/. Therefore we have
y˛ D x˛ 	 a for the given a 2 Sˇ , ˇ 2 Y . Hence

y˛ D x˛ 	 a D f˛;˛^ˇ .x˛/ ı˛^ˇ fˇ;˛^ˇ .a/;

and thus ˛ ^ ˇ D ˛. Therefore ˛ � ˇ, and so y˛ D x˛ ı˛ fˇ;˛.a/. Hence .x˛; y˛/

is an arc in Cay.S˛; C˛/. The other direction is clear.
In particular, this implies that E˛ D ;, i.e. C˛ D ;, if ˛ — ˇ.

Now we extend Proposition 11.4.1 to any finite connection set.

Proposition 11.4.2. Consider .
S

�2Y S� I 	/, and take C � S

�2Y S� . Then the
Cayley graph Cay.

S

�2Y S� ; C / contains jY j disjoint strong semigroup subdigraphs
.S˛; E˛/ Š Cay.S˛; C˛/, ˛ 2 Y , where C˛ WD ¹fˇ;˛.a/ j ˇ � ˛ and a 2 C TSˇ º
if there exist elements ˇ � ˛ with C

T

Sˇ ¤ ;, and C˛ WD ; otherwise.

Proof. Take a2CTSˇ . By Proposition 11.4.1, the Cayley graph Cay.
S

�2Y S� ; ¹aº/
contains jY j disjoint strong semigroup subdigraphs .S˛; E

a
˛/, ˛ 2 Y , where

.S˛; E
a
˛/ Š Cay.S˛; ¹fˇ;˛.a/º/ if ˛ � ˇ, and .S˛; E

a
˛/ Š Cay.S˛;;/ if ˛ 6� ˇ.

Since Cay.
S

�2Y S� ; C / D
L

a2C Cay.
S

�2Y S� ; ¹aº/ by Lemma 11.3.3, we get
that the Cayley graph Cay.

S

�2Y S� ; C / contains jY j disjoint strong semigroup sub-
digraphs

.S˛; E˛/ Š
M

a2C

.S˛; E
a
˛/ Š

M

a2C

Cay.S˛; ¹fˇ;˛.a/º/ D Cay.S˛; C˛/

if there exist ˇ � ˛ with a 2 C TSˇ , and .S˛; E˛/ Š Cay.S˛;;/ otherwise.

For Cayley graphs of strong semilattices of semigroups, the following lemma de-
scribes the arcs between the Cayley graphs of the single semigroups.

Lemma 11.4.3. Consider .
S

�2Y S� I 	/ and C � S�2Y S� . If .x0
ˇ
; y0

ı
/ is an arc in

Cay.
S

�2Y S� ; C / for x0
ˇ
2 Sˇ and y0

ı
2 Sı , then ˇ � ı, and for any xˇ 2 Sˇ there

exists yı 2 Sı such that .xˇ ; yı/ is an arc in Cay.
S

�2Y S� ; C /.
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Proof. For x0
ˇ
2 Sˇ and y0

ı
2 Sı let .x0

ˇ
; y0

ı
/ be an arc in Cay.

S

�2Y S� ; C /. Then
there exists a 2 C such that y0

ı
D x0

ˇ
	 a with a 2 S� for some � 2 Y . Hence

y0
ı
D x0

ˇ
	 a D fˇ;ˇ^� .x

0
ˇ
/ ıˇ^� f�;ˇ^� .a/, and thus ˇ ^ � D ı and ˇ � ı.

Moreover, for any xˇ 2 Sˇ we get

xˇ 	 a D fˇ;ˇ^� .xˇ / ıˇ^� f�;ˇ^� .a/ D fˇ;ı.xˇ / ıı f�;ı.a/:

Hence we have yı D xˇ 	 a 2 Sı , and .xˇ ; yı/ is an arc in Cay.
S

�2Y S� ; C /.

We now describe the structure of Cayley graphs of a strong semilattice of semi-
groups with a given one-element connection set. We illustrate the results in Exam-
ple 11.5.5 for strong semilattices of right groups.

Theorem 11.4.4. Consider the strong semilattice of semigroups .
S

�2Y S� I 	/, and
take a� 2 S� for some � 2 Y . Then:

(1) the Cayley graph Cay.
S

�2Y S� ; ¹a�º/ contains jY j disjoint strong semigroup
subdigraphs .S˛; E˛/ Š Cay.S˛; C˛/; ˛ 2 Y , with C˛ WD ¹f�;˛.a� /º for
� � ˛ and C˛ WD ;, if �  ˛;

(2) for �  ˇ, with ˛ WD ˇ ^ � , xˇ 2 Sˇ and y˛ 2 S˛ we have that .xˇ ; y˛/

is an arc in Cay.
S

�2Y S� ; ¹a�º/ if and only if .fˇ;˛.xˇ /; y˛/ is an arc in
Cay.S˛; ¹f�;˛.a� /º/ for the given a� 2 S� .

Note that for � D ˇ, the condition in .2/ is not satisfied since ˇ ^ � ¤ ˛.
If � D ˛, i.e. if � < ˇ, we have that .xˇ ; y� / is an arc in Cay.

S

�2Y S� ; ¹a�º/ if
and only if .fˇ;� .xˇ /; y� / is an arc in Cay.S� ; ¹a�º/.

Proof. By Proposition 11.4.1, we get (1).
For (2), let �  ˇ and ˛ D ˇ ^ � , and take y˛ 2 S˛ and xˇ 2 Sˇ .
For “)”, suppose that .xˇ ; y˛/ is an arc in Cay.

S

�2Y S� ; ¹a�º/; then y˛ D
fˇ;˛.xˇ / ı˛ f�;˛.a� /. Thus .fˇ;˛.xˇ /; y˛/ is an arc in Cay.S˛; ¹f�;˛.a� /º/.

For “(”, suppose that .fˇ;˛.xˇ /; y˛/ is an arc in Cay.S˛; ¹f�;˛.a� /º/, i.e. y˛ D
fˇ;˛.xˇ / ı˛ f�;˛.a� / D xˇ 	 a� for the given a� 2 S� . Then we have that .xˇ ; y˛/

is an arc in Cay.
S

�2Y S� ; ¹a�º/.

If in Example 11.5.5 we take chains, then we get examples of the following.

Remark 11.4.5. If
S

�2Y S� is a strong chain of semigroups with a� 2 S� , then
assertion (2) in Theorem 11.4.4 becomes the following:

.20/ For � < ˇ we have that .xˇ ; y� / is an arc in Cay.
S

�2Y S� ; ¹a�º/ if and only if
.fˇ;� .xˇ /; y� / is an arc in Cay.S� ; a� /.
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11.5 Application: strong semilattices of (right or left)
groups

Now we apply Theorem 11.4.4. We describe when a digraph, whose vertex set can
be associated with the elements of a strong semilattice of right (or left) groups, is a
strong semilattice (or strong chain) of right (or left) groups digraph, by constructing
the appropriate connection set.

After that we give several examples.
Recall that for any semigroup S and connection set C we have Cay.S; C / D

L

a2C Cay.S; ¹aº/ by Lemma 11.3.3.

Theorem 11.5.1. Consider a digraph .
S

�2Y S� ; E/, where
S

�2Y S� is a strong
semilattice of right groups S� D A� � Rn�

. Here the A� are groups with elements

x� 2 A� , and the Rn�
D ¹r�

1 ; r
�
2 ; : : : ; r

�
n�
º are right zero semigroups.

Then .
S

�2Y S� ; E/ D Cay.
S

�2Y S� ; C / if:

(1) .
S

�2Y S� ; E/ contains jY j disjoint strong right group subdigraphs .S� ; E�/ D
Cay.S� ; C�/; 
 2 Y ;

(2) C D S

�2Y C� where a� D .g� ; r
�
i�
/ 2 C� , ..1A�

; r
�
i�
/; .g� ; r

�
i�
// 2 E� and

the following hold:

(a) for � � 
; .y� ; x�/ 2 E , f�;�.y� /a� D x�;

(b) for ˇ < 
; .yˇ ; xˇ / 2 Eˇ , yˇf�;ˇ .a�/ D xˇ ;

(c) for ˇk
 (i.e. ˇ and 
 incomparable),

.yˇ ; zˇ^�/ 2 E , zˇ^� D fˇ;ˇ^�.yˇ /f�;ˇ^�.a�/:

Remark 11.5.2. Note that Conditions (b) and (c) can be unified as

for ˇ  
; .yˇ ; zˇ^�/ 2 E , zˇ^� D fˇ;ˇ^�.yˇ /f�;ˇ^�.a�/:

For a strong chain
S

�2Y S� of right groups, Condition (c) is empty.

We apply this to the Cayley graphs of Clifford semigroups; see Example 11.5.5.
In Section 13.5 we give many examples of Cayley graphs of Clifford semigroups

that are of the form .Aˇ

S

A˛I fˇ;˛/. Under (1) we obtain the upper and lower
graphs, under (2)(a) the in-between graph, and under (2)(b) the new lower graph,
according to the terminology of Construction 13.4.1.

Corollary 11.5.3. Consider a digraph .
S

�2Y A� ; E/, where
S

�2Y A� is a strong
semilattice of groups A� with elements x� 2 A� .

Then .
S

�2Y A� ; E/ D Cay.
S

�2Y A� ; C / if:

(1) .
S

�2Y A� ; E/ contains jY j disjoint strong group subdigraphs .A� ; E�/ D
Cay.A� ; C�/; 
 2 Y ;



Section 11.5 Application: strong semilattices of (right or left) groups 241

(2) C D S

�2Y C� with a� 2 A� belongs to C� , .1A�
; a�/ 2 E� and the follow-

ing hold:

(a) for � � 
; .y� ; x�/ 2 E , f�;�.y� /a� D x�;

(b) for ˇ < 
; .yˇ ; xˇ / 2 Eˇ , yˇf�;ˇ .a�/ D xˇ ;

(c) for ˇk
; .yˇ ; zˇ^�/ 2 E , zˇ^� D fˇ;ˇ^�.yˇ /f�;ˇ^�.a�/.

Remark 11.5.4. For strong semilattices or chains
S

�2Y S� of left groups, we get
analogous results. They are illustrated in Example 11.5.7.

Example 11.5.5. Now consider the semilattice Y D ¹˛ < ˇ; �º and the strong semi-
lattice of groups S D S

�2Y S� . The defining homomorphisms are the identity map-
ping (from top right) and the constant mapping c0 onto the identity 0˛ (from top left),
as indicated. We give the Cayley graphs Cay.S; C / for all six different one-element
connection sets C , as shown in the Diagrams (a)–(g) below.

Sˇ D Z2 S� D Z2

S˛ D Z2

�
�

���

�
�

���
c0 idZ2

S W

Diagram (a).

� � � �

� �

1ˇ 0ˇ 1� 0�

1˛
0˛

��
�

�
�

�
���

�
�

�
�

���

��
��� ��

��
��� ��

Diagram (b). Cay.S; ¹1ˇ º/

� � � �

� �

1ˇ 0ˇ 1� 0�

1˛
0˛

�
�

�
�

���

�
�

�
�

���

��
��� ��

��
��� ��

��
��� ��

��
��� ��

Diagram (c). Cay.S; ¹0ˇ º/

� � � �

� �

1ˇ 0ˇ 1� 0�

1˛ 0˛

�
�

�
�

���

�
�
�
���

��

��

Diagram (d). Cay.S; ¹1�º/

� � � �

� �

1ˇ 0ˇ 1� 0�

0˛

�
�

�
�

���

����������

��
��� ��

1˛

��
��� ��

��
��� ��

��
��� ��

Diagram (e). Cay.S; ¹0�º/
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� � � �

� �

1ˇ 0ˇ 1� 0�

1˛ 0˛

�
�

�
�

���

�
�
�
���

�
�

�
���

���������� ��

Diagram (f). Cay.S; ¹1˛º/

� � � �

� �

1ˇ 0ˇ 1� 0�

1˛
0˛

�
�

�
�

���

����������

�
�

�
�

���

�
�

�
�

���

��
��� ��

��
��� ��

Diagram (g). Cay.S; ¹0˛º/
In the next diagrams we again write xy for the pair .x; y/.

Example 11.5.6. For 
 D ˛; ˇ, let

S� D Z2 �R2 D ¹.0� ; r1/; .0� ; r2/; .1� ; r1/; .1� ; r2/º;
S� D Z3 �R2 D ¹.0� ; r1/; .0� ; r2/; .1� ; r1/; .1� ; r2/; .2� ; r1/; .2� ; r2/º:

As defining homomorphisms, take

fˇ;˛ D idZ2
� idR2

W Sˇ ! S˛; in particular, fˇ;˛..1ˇ ; r2// D .1˛; r2/I
f�;˛ D c0˛

� idR2
W S� ! S˛; in particular, f�;˛..1� ; r1// D .0˛; r1/:

Then S D S

�2Y S� is a strong semilattice of right groups; see the figures (a)–(c)
below.

Sˇ D Z2 �R2 S� D Z3 �R2

S˛ D Z2 �R2

�
�

���

�
�

���
idZ2
� idR2

c0 � idR2

Diagram (a).

� �

� �

0ˇ r1 1ˇ r1

0ˇ r2 1ˇ r2

�
�

�
��

�
�

�
�� ��

� � �

� � �

0�r1 1�r1 2�r1

0�r2

1�r2 2�r2

�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�
�
�
�

�
� 

�
�

�
�

�
�

�
��

!
!

!
!

!
!

!
!

!
!

!!"

� �

� �

0˛r1

1˛r1

0˛r2 1˛r2

�
�

�
��

�
�

�
�� ��

Diagram (b). Cay.S; ¹.1ˇ ; r2/º/
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� �

� �

0ˇ r1 1ˇ r1

0ˇ r2 1ˇ r2

�
�
�
�
�
�
�#

�
�
�
�
�
�
�#

�
�

���

�
�

���

� � �

� � �

0�r1 1�r1 2�r1

0�r2 1�r2 2�r2

� �
� �


�
�

��	

�
�

��	

��������

� �

� �

0˛r1 1˛r1

0˛r2 1˛r2

	
� 	
�� �

Diagram (c). Cay.S; ¹.1� ; r1/º/

Example 11.5.7. For 
 D ˛; ˇ let

S� D L2 � Z2 D ¹.l1; 0�/; .l2; 0�/; .l1; 1�/; .l2; 1�/º;
S� D L2 � Z3 D ¹.l1; 0� /; .l2; 0� /; .l1; 1� /; .l2; 1� /; .l1; 2� /; .l2; 2� /º:

As defining homomorphisms take

fˇ;˛ D idL2
� idZ2

W Sˇ ! S˛; fˇ;˛..l2; 1ˇ // D .l2; 1˛/I
f�;˛ D idL2

�c0 W S� ! S˛; f�;˛..l1; 1� // D .l1; 0˛/:

See the Diagrams (a)–(c) below.

Sˇ D L2 � Z2 S� D L2 � Z3

S˛ D L2 � Z2

�
�
��

�
�

��
idL2
� idZ2

idL2
�c0

Diagram (a).

� �

� �

0ˇ l1 1ˇ l1

0ˇ l2 1ˇ l2

��

��

� � �

� � �

0� l1 1� l1 2� l1
0� l2

1� l2 2� l2

�
�
�

�
�
�
� 

�
�

�
�

�
�

��

!
!

!
!

!
!

!
!

!
!!"

�
�

�
�
�
�
�
� 

�
�

�
�

�
�

��

!
!

!
!

!
!

!
!

!
!!"

� �

� �

0˛l1 1˛l1

0˛l2 1˛l2

��

��

Diagram (b). Cay.S; ¹.1ˇ ; l2/º/
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� �

� �

0ˇ l1 1ˇ l1

0ˇ l2 1ˇ l2

�
�
�
�
�
�
�#

�
�
�
�
�
�
�#

�
�
�
�
�
�
�#

�
�
�
�
�
�
�#

� � �

� � �

0� l1 1� l1 2� l1

0� l2 1� l2 2� l2

� �
� �


� �
 � �

� �

� �
0˛l1 1˛l1

0˛l2 1˛l2

	
� 	
�

	
� 	
�

Diagram (c). Cay.S; ¹.1� ; l1/º/

11.6 Comments

In this chapter we started with the categorical viewpoint and discussed the Cayley
construction as a functor, namely the Cay functor. For this it was necessary to consider
a new category, the category SgC of semigroups with connection sets.

Here several known categorical constructions have to be identified; they do not
differ much from the category Sgr of semigroups with semigroup homomorphisms.

The so-called preservation properties of the Cay functor we applied only to the
categorical products, i.e. the Cartesian product in the new category SgC and the cross
product in the category D of digraphs.

As noted in Remark 11.2.4, the Cayley graphs of certain completely regular semi-
groups could be conveniently constructed from the Cayley graphs of their components
when using the preservation of subdirect products by the functor Cay.

Besides the completely regular semigroups and their semilattices studied in this
chapter, it would be interesting to investigate other completely regular semigroups; cf.
[Petrich/Reilly 1999]. Without further preparation, several semigroups are accessible
in a straightforward manner from what we have already discussed. For example, one
could consider Cayley graphs of so-called rectangular bands, which have the form
Lm � Rn, or Cayley graphs of semigroups of the form Lm � S � Rn, provided we
know Cay.S/; here S is a group or semigroup, Lm is a left zero semigroup and Rn

is a right zero semigroup. Then we can consider Cayley graphs of strong semilattices
of these, and so on. In these situations it seems possible to characterize the Cayley
graphs.



Chapter 12

Vertex transitive Cayley graphs

In this chapter we take up the problem of automorphism vertex transitivity from Sec-
tions 7.7 and 8.7; we also touch briefly on endomorphism vertex transitivity. Again,
results will be applied to special semigroups, and we calculate and present pictures
for many examples.

Recall Theorem 11.3.2, which says that a group digraph D D .V;E/ has the prop-
erty that there exists a subgroup U � Aut.D/ with regular left action on D; that is,
for any two vertices x; y 2 V there exists exactly one s 2 U such that s.x/ D y. This
means that D is U -vertex transitive, with strictly fixed-point-free action of U on D,
compare Definition 7.7.7. These properties will have to be interpreted in the context
of semigroups if we have only semigroup digraphs. So, for instance, End-vertex tran-
sitive, where the endomorphisms act from the left, means that the semigroup is left
simple or, in other words, left solvable.

The reader may consult the following references on this topic:
� Characterization of transitive Cayley graphs of semigroups: A. V. Kelarev and

C. E. Preager, On transitive Cayley graphs of groups and semigroups, European
Journal of Combinatorics, 24 (2003) 59–72.

� Conditions for ColAut.S; C /-vertex transitive Cayley graphs of bands and of
completely simple semigroups: Z. Jiang, An answer to a question of Kelarev
and Praeger on Cayley graphs of semigroups, Semigroup Forum, 69 (2004)
457–461.

� Conditions for Aut.S; C /-vertex transitive Cayley graphs of bands and for
ColAut.S; C /-vertex transitive Cayley graphs of rectangular bands: S. Fan and
Y. Zeng, On Cayley graphs of bands, Semigroup Forum 74 (2007) 99–105.

The presentation in this chapter mainly follows Sayan Panma, On Transitive Cayley
Graphs of Strong Semilattices of some Completely Regular Semigroups, PhD thesis,
Chiang Mai 2007.

12.1 Aut-vertex transitivity

Recall that a digraphD D .V;E/ is said to be Aut.D/-vertex transitive if for any two
vertices x; y 2 V , there exists an automorphism ' 2 Aut.D/ such that '.x/ D y.
More generally, a subset A � End.D/ is said to act vertex transitively on D (or we
say that D is A-vertex transitive) if for any two vertices x; y 2 V there exists an
endomorphism ' 2 A such that '.x/ D y. Compare Definition 7.7.5.
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Now let S be a semigroup and let C � S . We denote the automorphism group and
the endomorphism monoid of Cay.S; C / by Aut.S; C / and End.S; C /, respectively.
Recall that an element ' 2 End.S; C / is said to be color-preserving if xa D y implies
'.x/a D '.y/ for x; y 2 S and a 2 C ; see Definition 7.3.5. We write ColEnd.S; C /
and ColAut.S; C / for the color-preserving endomorphisms and automorphisms of
Cay.S; C /, respectively.

We set

End0.S; C / WD End.S; C / n Aut.S; C /;

ColEnd0.S; C / WD ColEnd.S; C / n ColAut.S; C /:

Evidently, ColAut.S; C / � Aut.S; C /� End.S; C /, ColEnd0.S; C /� End0.S; C /�
End.S; C /, and ColEnd.S; C / � End.S; C /.

The following facts are well known and quite obvious.

Lemma 12.1.1. Let D D .V;E/ be a finite Aut.D/-vertex transitive digraph. Then

the indegree
�!
d .v/ is the same for each vertex v and is equal to the outdegree

 �
d .v/

of v.

Lemma 12.1.2. Let D D .V;E/ be a finite digraph and let D1;D2; : : : ;Dn be the
connected components of D. Then D is Aut.D/-vertex transitive if and only if the
following conditions hold:

(a) D1;D2; : : : ;Dn are isomorphic; and

(b) Di is Aut.Di /-vertex transitive for all i 2 ¹1; 2; : : : ; nº.
In this part, we first obtain results on transitivity properties of strong semilattices

of semigroups. We take up the discussion from Section 7.7; refer, in particular, to
Definition 7.7.5.

Lemma 12.1.3. Denote by S D .
S

�2Y S� ; ˇ/ a finite strong semilattice of semi-
groups with a maximal element ˇ 2 Y , and take ; ¤ C � S . Then, for all v 2 Sˇ ,
the indegrees of v in Cay.Sˇ ; C

T

Sˇ / and in Cay.S; C / are equal.

Proof. Take v 2 Sˇ . Then by Lemma 11.4.3 there is no ˛ ¤ ˇ such that .x˛; v/

is an arc in Cay.S; C /. Therefore, the indegrees of v in Cay.Sˇ ; C
T

Sˇ / and in
Cay.S; C / are equal.

An immediate consequence is the following.

Lemma 12.1.4. Let S D .S�2Y S� ; ˇ/ with a maximal element ˇ 2 Y , and take ; ¤
C � S . If Cay.S; C / is Aut.S; C /-vertex transitive, then C � Sˇ D ¹v1; : : : ; vnº.
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Proof. Suppose that C
T

Sˇ ¤ C . Consider the following two cases.

Case 1. If C
T

Sˇ D ;, then in Cay.Sˇ ; C
T

Sˇ / we have
�!
d .v/ D 0 for all

v 2 Sˇ . Since ˇ is maximal in Y , in Cay.S; C / we get
�!
d .v/ D 0 for all v 2 Sˇ

by Lemma 12.1.3. Because C ¤ ;, in Cay.S; C / we get
 �
d .v/ � 1 for all v 2 Sˇ .

Hence Cay.S; C / cannot be Aut.S; C /-vertex transitive by Lemma 12.1.1.

Case 2. If C
T

Sˇ ¤ ;, then in Cay.Sˇ ; C
T

Sˇ / we have
Pn

iD1

�!
d .vi / D

Pn
iD1

 �
d .vi /. By Lemma 12.1.3,

Pn
iD1

�!
d .vi / in Cay.Sˇ ; C

T

Sˇ / and
Pn

iD1

�!
d .vi /

in Cay.S; C / are equal. Since C
T

Sˇ ¤ ; and C
T

Sˇ ¤ C , there exists a 2
C n .C TSˇ /, say a 2 S� for some � 2 Y and � ¤ ˇ. Therefore, .vi ; via/

is an arc in Cay.S; C / where vi 2 Sˇ and via 2 S�^ˇ , and thus
Pn

iD1

 �
d .vi /

in Cay.Sˇ ; C
T

Sˇ / is less than
Pn

iD1

 �
d .vi / in Cay.S; C /. Hence, in Cay.S; C /,

Pn
iD1

�!
d .vi / <

Pn
iD1

 �
d .vi /. Then there exists v 2 Sˇ such that

�!
d .v/ ¤ �d .v/. By

Lemma 12.1.1, Cay.S; C / is not Aut.S; C /-vertex transitive.

The following lemma is an immediate consequence of the above; it gives a neces-
sary condition for Aut.S; C /-vertex transitive Cayley graphs of strong semilattices of
semigroups.

Lemma 12.1.5. Let S D S

�2Y S� and ; ¤ C � S . If Cay.S; C / is Aut.S; C /-
vertex transitive, then Y has the maximum m with C � Sm.

The first example in the next section shows that the conditions of Lemma 12.1.5
are not sufficient for Cay.S; C / to be Aut.S; C /-vertex transitive.

12.2 Application to strong semilattices of right groups

We now study strong semilattices of right groups with automorphism vertex transitive
Cayley graphs. We start with an example which illustrates Lemma 12.1.5.

Theorem 12.2.4 in this section shows that the Cayley graph of a strong semilattice
of right groups is ColAut.S; C /-vertex transitive only if it is a strong semilattice of
groups.

For the most part, we do not give proofs but rather illustrate the result with some
examples.

Example 12.2.1. Let S˛ D R3 D ¹r1; r2; r3º, Sˇ D Z2 � R2 D ¹.0ˇ ; r1/; .0ˇ ; r2/;

.1ˇ ; r1/; .1ˇ ; r2/º and S� D R2 D ¹r 0
1; r

0
2º. Let the defining homomorphism be as

shown in figure (a) below, i.e. fˇ;˛ D p2 and f�;˛ is the inclusion with f�;˛.r
0
1/ D r1

and f�;˛.r
0
2/ D r2.

Then S DS�2Y S� is a strong semilattice of right groups.
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Sˇ D Z2 �R2 S� D R2

p2

S˛ D R3

�
�

���

�
�

���
inclusion

Diagram (a).

� � � � � �

� � �

0ˇ r1 0ˇ r2 1ˇ r1 1ˇ r2 r 0
1 r 0

2

r1 r3r2

�
�

�
�
��

�
�

�
�
��� 

�
�

�
�

��

�
�

�
�

��

��
��� ��� �
�

Diagram (b). Cay.S; ¹r1º/

� � � �

� � �

0ˇ r1 0ˇ r2 1ˇ r1 1ˇ r2

r1 r3 r2

� �

��
��� ��

�

��
��� ��

�

��
��� ��� �
�

Diagram (c). Cay.S˛

S

Sˇ ; ¹.0ˇ ; r1/º/

In Diagram (b) above, the semilattice does not have a maximum, and we see that
Cay.S; C / is not Aut.S; C /-vertex transitive.

If we take Y D ¹˛; ˇº, i.e. remove r 0
1; r

0
2 and the corresponding arcs from Dia-

gram (b), then Y has a maximum but C D ¹r1º 6� Sˇ . The resulting picture shows
that Cay.S; C / is not Aut.S; C /-vertex transitive either.

In Diagram (c), the conditions of Lemma 12.1.5 are satisfied, but we see that
Cay.S˛

S

Sˇ ; C / is still not Aut.S˛

S

Sˇ ; C /-vertex transitive. Here Condition (c)
of Theorem 12.2.8 is not fulfilled.

Lemma 12.2.2. Take a finite right group A � Rr , and take ; ¤ C � A � Rr . Then
hC i D hp1.C /i�p2.C / � A�Rr , where p1 and p2 are the projections fromA�Rr .

Proof. It is clear that hp2.C /i D p2.C / and thus hC i � hp1.C /i � p2.C /. For the
converse implication, take .g; ri / 2 hp1.C /i � p2.C /. Then because of finiteness,
.g; ri /

s D .1A; ri / for some power s, and g D g1 : : : gt 2 hp1.C /i. Then .g1; ri / 2
C and thus .g; ri / 2 hC i.

Lemma 12.2.3. Take a finite strong semilattice Y with maximum m of right groups

[

�2Y

S� D
[

�2Y

.A� �Rn�
; m/;

with groups A� and right zero semigroups Rn�
D ¹r�

1 ; : : : ; r
�
n�
º. Let ; ¤ C � Sm.

Then, for all s 2 S� , we have jshC ij D jfm;�.hC i/j.
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Proof. Take s˛ D .g; r˛
i / 2 S˛. Since hC i is a right group and a subsemigroup

of Sm, we have fm;˛.hC i/ D hA0̨ i � R0
n˛

, where A0̨ � A˛ and R0
n˛
� Rn˛

, by
Lemma 12.2.2. Then js˛hC ij D j.g; r˛

i /fm;˛.hC i/j D j.g; r˛
i /.hA0̨ i � R0

n˛
/j D

jghA0̨ i � r˛
i R

0
n˛
j D jhA0̨ i �R0

n˛
j D jfm;˛.hC i/j.

ColAut.S; C /-vertex transitivity

The following result is clear from the structure of Cayley graphs of right groups;
compare with Theorem 11.3.4 and also Cay.Sˇ ; ¹.0ˇ ; r1/º/ in Diagram (b) of Exam-
ple 12.2.6.

Theorem 12.2.4. Take a finite right group S D A � Rr , and let ; ¤ C � S . If
Cay.S; C / is ColAut.S; C /-vertex transitive, then it is Aut.S; ¹aº/-vertex transitive
for any ¹aº 2 C , and S is a group, i.e. jRr j D 1.

Corollary 12.2.5. Take a finite strong semilattice Y , with maximumm, of right groups

S D
[

�2Y

S� D
[

�2Y

.A� �Rn�
; m/;

with groups A� and right zero semigroups Rn�
D ¹r�

1 ; : : : ; r
�
n�
º.

If the Cayley graph Cay.S; C / is ColAut.S; C /-vertex transitive, then jRn�
j D 1

for all 
 2 Y , i.e. S� is a group for all 
 2 Y ; in other words, S is a Clifford semigroup
with identity 1S D 1Sm

.

Diagram (b) of the following example illustrates the situation.

Example 12.2.6. Take

S˛ D Z2 D ¹0˛; 1˛º;
Sˇ D Z2 �R2 D ¹.0ˇ ; r1/; .0ˇ ; r2/; .1ˇ ; r1/; .1ˇ ; r2/º;
S� D Z2 � Z2 D ¹.0; 0/� ; .0; 1/� .1; 0/� ; .1; 1/�º

with defining homomorphisms

fˇ;˛ D p1 W Sˇ ! S˛;

f�;˛ D p2 W S� ! S˛;

as shown in Diagram (a) below.
Then S DS�2Y S� is a strong semilattice of right groups.
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Sˇ D Z2 �R2 S� D Z2 � Z2

S˛ D Z2

�
�

���
p2p1

�
�

���

Diagram (a).

� � � �

� �

0ˇ r1 0ˇ r2 1ˇ r1 1ˇ r2

0˛ 1˛

� �

��
��� ��

��
��� ��

��
��� ��

��
��� ��

Diagram (b).
Cay.S˛

S

Sˇ ; ¹.0ˇ ; r1/º/

� � � �

� �

.00/� .01/� .10/� .11/�

0˛ 1˛

� � ��

��

�

����� �
�

����� �
�

����� �
�

����� �
�

����� �
�

����� �
�

Diagram (c).
Cay.S˛

S

S� ; ¹.0; 0/� ; .0; 1/�º/
.0; 1/� : thick line; .0; 0/� : thin line

In Diagram (b) we have S˛

S

Sˇ with Sˇ D Z2 � R2 such that jR2j > 1, and
we see that Cay.S˛

S

Sˇ ; C / is not Aut.S˛

S

Sˇ ; C /-vertex transitive and thus not
ColAut.S˛

S

Sˇ ; C /-vertex transitive.
Diagram (c) satisfies the conditions of Theorem 12.2.8 for right groups, which ac-

tually are groups in the present case. Note that p2 has different domains here and
there. We see that Cay.S˛

S

S� ; C / is Aut.S˛

S

S� ; C /-vertex transitive.
This example will be used again for Theorem 12.2.8, whose Conditions (a) and (b)

are fulfilled here. We see that Cay.S˛

S

S� ; C / is also ColAut.S˛

S

S� ; C /-vertex
transitive.

The following result is also clear.

Corollary 12.2.7. Take a finite strong semilattice with maximumm of right zero semi-
groups S D S

�2Y S� D
S

�2Y Rn�
, and let ; ¤ C � Sm. If the Cayley graph

Cay.S; C / is ColAut.S; C /-vertex transitive, then it is ColAut.S; C /-vertex transi-
tive, and we have jRn�

j D 1 for all 
 2 Y , i.e. S D Y .

Aut.S; C /-vertex transitivity

Now we consider Aut.S; C /-vertex transitive Cayley graphs of a strong semilattice of
right groups.

In the next theorem, we characterize Aut.S; C /-vertex transitive Cayley graphs
of strong semilattices of right groups. Note that Aut.S; C /-vertex transitivity is a
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weaker requirement than ColAut.S; C /-vertex transitivity and, indeed, non-trivial
ColAut.S; C /-vertex transitive right groups are possible.

Theorem 12.2.8. Take a finite strong semilattice Y of right groups

S D
[

�2Y

S� D
[

�2Y

.A� �Rn�
/;

with groups A� and right zero semigroups Rn�
D ¹r�

1 ; : : : ; r
�
n�
º, and let ; ¤ C � S .

Then the Cayley graph Cay.S; C / is Aut.S; C /-vertex transitive if and only if the
following conditions hold:

(a) Y has the maximum m with C � Sm;

(b) jp2.fm;�.C //j D jRn�
j for all 
 2 Y , where p2 is the second projection;

(c) the restrictions of fm;� to hC i are injections for all 
 2 Y ;

(d) the Cayley graph Cay.hC i; C / is Aut.hC i; C /-vertex transitive.

Proof. Necessity of Condition (a) comes from Lemma 12.1.5; necessity of (d) is ob-
vious. For (b) and (c) use Lemmas 12.2.2 and 12.2.3. Example 12.2.9 will illustrate
the situation, so we omit the rest of the proof. Compare also the Diagrams (c) in
Examples 12.2.1 and 12.2.6.

It is clear that Condition (d) is not really satisfactory since it still requires the proof
of Aut-vertex transitivity.

Example 12.2.9. For Y D ¹˛; ˇ; �º and 
 2 Y , take

S� D ¹.0� ; r1/; .0� ; r2/; .1� ; r1/; .1� ; r2/º Š Z2 �R2;

with the defining homomorphisms as indicated in Diagram (a) below.
Then S DS�2Y S� is a strong semilattice of right groups.

Sˇ D Z2 �R2 S� D Z2 �R2

S˛ D Z2 �R2

�
�

���

�
�

���
c0 � idR2

idZ2
� idR2

Diagram (a).

� � � �

� � � �

0ˇ r1 0ˇ r2 1ˇ r1 1ˇ r2

0˛r1 0˛r2 1˛r1 1˛r2
��
��� ��

��
��� ��

��
��� ��

��
��� ��

��
��� ��

��
��� ��

��
��� ��

��
��� ��

� �� �

� �
 

� �
 

� �
 �� �� ��

Diagram (b). Cay.S˛

S

Sˇ ; Sˇ /
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� � � �

� � � �

0�r1 0�r2 1�r1 1�r2

0˛r1 0˛r2 1˛r1 1˛r2
��
��� ��

��
��� ��

��
��� ��

��
��� ��

� �

� �
 

� �

� �
 � � �

� � �

Diagram (c).
Cay.S˛

S

S� ; ¹.0� ; r2/; .1� ; r1/º/

� � � �

� � � �

0�r1 0�r2 1�r1 1�r2
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�

	 

�

	 

�

����� �
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�

0˛r1 0˛r2 1˛r1 1˛r2
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��� ��
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��� ��
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��� ��

��
��� ��

� �

Diagram (d).
Cay.S˛

S

S� ; ¹.0� ; r1/; .0� ; r2/º/
.0� ; r1/ W thick line; .0� ; r2/ W thin line

In Diagram (b) above, Conditions (a), (b) and (d) from Theorem 12.2.8 are satisfied,
but not Condition (c), and we see that Cay.S˛

S

Sˇ ; C / is not Aut.S˛

S

Sˇ ; C /-
vertex transitive. The upper component is the Cayley graph from Condition (d).

In Diagram (c), Conditions (a), (b) and (c) from Theorem 12.2.8 are satisfied, but
not Condition (d), and we see that Cay.S˛

S

S� ; C / is not Aut.S˛

S

S� ; C /-vertex
transitive. The upper component is the Cayley graph from Condition (d).

In Diagram (d), Conditions (a), (b), (c) and (d) from Theorem 12.2.8 are satis-
fied, and we see that Cay.S˛

S

S� ; C / is Aut.S˛

S

S� ; C /-vertex transitive but not
ColAut.S˛

S

S� ; C /-vertex transitive. The upper left component is the Cayley graph
from Condition (d).

Parallel to Lemma 12.2.4 and Corollaries 12.2.5 and 12.2.7, we specialize the pre-
ceding theorem.

Corollary 12.2.10. Take S D S

�2Y Rn�
, a strong semilattice of right zero semi-

groups, and ; ¤ C � S .
Then the Cayley graph Cay.S; C / is Aut.S; C /-vertex transitive if and only if the

following conditions hold:

(a) Y has the maximum m, with C D Rnm
;

(b) the defining homomorphisms fm;� are isomorphisms for all 
 2 Y ; in particu-
lar, n� D nm for all 
 2 Y .

Corollary 12.2.11. Let Rr be a finite right zero semigroup and ; ¤ C � Rr . Then
Cay.Rr ; C / is Aut.Rr ; C /-vertex transitive if and only if C D Rr .

Corollary 12.2.12. Let S D A � Rr be a finite right group, take ; ¤ C � S , and
let p2 be the second projection. Then Cay.S; C / is Aut.S; C /-vertex transitive if and
only if the following conditions hold:

(a) p2.C / D Rr ;

(b) the Cayley graph Cay.hC i; C / is Aut.hC i; C /-vertex transitive.

Proof. This is a direct consequence of Theorem 12.2.8.
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12.3 Application to strong semilattices of left groups

Here we consider left groups instead of right groups. In Theorem 12.3.4, we charac-
terize Aut.S; C /-vertex transitive and ColAut.S; C /-vertex transitive Cayley graphs
of strong semilattices of left groups.

As a left dual of Lemma 12.2.2, we have the following:

Lemma 12.3.1. Let S D Ll � A be a finite left group, where A is a group, Ll D
¹l1; : : : ; llº a left zero semigroup, and ; ¤ C � S . Then hC i D p1.C /� hp2.C /i is
a left group contained in S .

Note that the result of the following lemma is not left dual to Lemma 12.2.3 in the
direct sense.

Lemma 12.3.2. Take a finite strong semilattice Y with maximum m of left groups

[

�2Y

S� D
[

�2Y

.Ln�
� A� ; m/;

with groups A� and left zero semigroups Ln�
D ¹l�1 ; : : : ; l�n�

º. Let ; ¤ C � Sm and
denote by p2 the second projection.

Then, for all s 2 S� , we have jshC ij D jp2.fm;�.hC i//j.

Proof. Let s D .l˛i ; g˛/ 2 S˛ . Since hC i is a left subgroup of Sm, we have
fm;˛.hC i/ D hL0

n˛
� A0̨ i where A0̨ � A˛ and L0

n˛
� Ln˛

, by Lemma 12.3.1.
Therefore jshC ij D j.l˛i ; g˛/fm;˛.hC i/j D j.l˛i ; g˛/.L

0
n˛
� hA0̨ i/j D jl˛i L0

n˛
�

g˛hA0̨ ij D j¹l˛i º � hA0̨ ij D jhA0̨ ij D jp2.fm;˛.hC i//j.

We state without proof Theorem 2.1 from A. V. Kelarev and C. E. Praeger, On tran-
sitive Cayley graphs of groups and semigroups, European J. Combinatorics 24 (2003)
59–72. Note that the original paper uses left action for the construction of the Cay-
ley graph. For our purpose, we have changed this to right action and specialized the
statement to finite semigroups.

Theorem 12.3.3. Take a semigroup S and a subset C . Then Cay.S; C / is
ColAut.S; C /-vertex transitive if and only if:

(1) Sa D S for all a 2 C ;

(2) hC i is a left group; and

(3) jshC ij is independent of the choice of s 2 S .

Note that Condition (1) means that S is left simple if hC i D S .
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Theorem 12.3.4. Take a finite strong semilattice Y of left groups

S D
[

�2Y

S� D
[

�2Y

.Ln�
� A�/;

with groups A� and left zero semigroups Ln�
D ¹l�1 ; : : : ; l�n�

º. Let ; ¤ C � S and
denote by p2 the second projection.

Then the following conditions are equivalent:

(i) (a) Y has the maximum m with C � Sm; and

(b) jp2.hC i/j D jp2.fm;�.hC i//j for all 
 2 Y .

(ii) Cay.S; C / is ColAut.S; C /-vertex transitive.

(iii) Cay.S; C / is Aut.S; C /-vertex transitive.

Proof. (i) ) (ii): Assuming (i), we prove Statements (1), (2) and (3) of Theorem
12.3.3; Assertion (ii) then follows.

(1) Take a 2 C and ˛ 2 Y . Since C � Sm, we have that fm;˛.a/ D .l; g/ 2 S˛

for some g 2 A˛ and l 2 Ln˛
. Thus

S˛a D .Ln˛
� A˛/fm;˛..a// D .Ln˛

� A˛/.l; g/

D Ln˛
l � A˛g D Ln˛

� A˛ D S˛:

Therefore Sa D .S˛2Y S˛/a DS˛2Y .S˛a/ DS˛2Y S˛ D S .

(2) Since C � Sm, we obtain from Lemma 12.3.1 that hC i is a left group.

(3) Let s; s0 2 S . Then s 2 S˛ and s0 2 Sˇ for some ˛; ˇ 2 Y . By Lemma 12.3.2,
we have jshC ij D jp2.fm;˛.hC i//j and js0hC ij D jp2.fm;ˇ .hC i//j. From .b/

we then obtain jshC ij D js0hC ij.
(ii)) (iii) is obvious.
(iii) ) (i): We know from Lemma 12.1.5 that (a) is necessary. So it remains

to prove that the Cayley graph Cay.S; C / is not Aut.S; C /-vertex transitive if there
exists ˇ 2 Y such that jp2.hC i/j ¤ jp2.fm;ˇ .hC i//j. We leave this as an exercise.

Example 12.3.5 will illustrate the situation; see also Example 12.4.11.

Example 12.3.5. For Y D ¹˛; ˇ; �º and 
 2 Y take S� D ¹.l1; 0�/; .l2; 0�/; .l1; 1�/;

.l2; 1�/º Š L2 � Z2, with defining homomorphisms fˇ;˛ WD idL2
�c0 W Sˇ ! S˛

and f�;˛ WD idL2
� idZ2

W S� ! S˛.
Then S DS�2Y S� is a strong semilattice of left groups.



Section 12.3 Application to strong semilattices of left groups 255

Sˇ D L2 � Z2 S� D L2 � Z2

S˛ D L2 � Z2

�
�

���

�
�

���

Diagram (a).

idL2
�c0 idL2

� idZ2

� � � �

� � � �

l10� l20� l11� l21�

l10˛ l20˛ l11˛ l21˛
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Diagram (c).
Cay.S˛

S

S� ; ¹.l1; 0� /; .l1; 1� /º/
.l1; 0� /: thick line; .l1; 1� /: thin line

� � � �

� � � �

l10ˇ l20ˇ l11ˇ l21ˇ

l10˛ l20˛ l11˛ l21˛
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Diagram (b).
Cay.S˛

S

Sˇ ; ¹.l1; 0ˇ /; .l2; 1ˇ /º/

In Diagram (b), Condition (a) from Theorem 12.3.4 is satisfied but not Condition
(b), and we see that Cay.S˛

S

Sˇ ; C / is not Aut.S˛

S

Sˇ ; C /-vertex transitive.
In Diagram (c), Conditions (a) and (b) from Theorem 12.3.4 are both satisfied, and

we see that Cay.S˛

S

S� ; C / is ColAut.S˛

S

S� ; C /-vertex transitive and thus also
Aut.S˛

S

S� ; C /-vertex transitive.
Again, we specialize the preceding result to strong semilattices of left zero semi-

groups.

Corollary 12.3.6. Take a finite strong semilattice of left zero semigroups S D
S

�2Y S� D
S

�2Y Ln�
, with ; ¤ C � S . Then the following conditions are equiva-

lent:

(i) Y has the maximum m with C � Lnm
.

(ii) Cay.S; C / is ColAut.S; C /-vertex transitive.

(iii) Cay.S; C / is Aut.S; C /-vertex transitive.

Proof. (i) ) (ii): Since jp2.hC i/j D jp2.fm;�.hC i//j D 1, we get from Theo-
rem 12.3.4 that Cay.S; C / is ColAut.S; C /-vertex transitive, if we interpret S� as
Ln�
� ¹eº.

(ii)) (iii) is obvious.
(iii)) (i) follows from Theorem 12.3.4.
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Corollary 12.3.7. Let S D Ll � G be a finite left group, and ; ¤ C � S .
Then the Cayley graph Cay.S; C / is always ColAut.S; C /-vertex transitive and thus
Aut.S; C /-vertex transitive.

Application to strong semilattices of groups

Here we treat groups as a special case of right groups; of course, they could also be
considered as special left groups.

Theorem 12.3.8. Take the finite strong semilattice S D S

�2Y A� of groups A� , and
let ; ¤ C � S . Then the following conditions are equivalent:

(i) (a) Y has the maximum m, with C � Am; and

(b) the restrictions of fm;� to hC i are injections for all 
 2 Y .

(ii) Cay.S; C / is ColAut.S; C /-vertex transitive.

(iii) Cay.S; C / is Aut.S; C /-vertex transitive.

Proof. We know that a right group S˛ D A˛ � Rn˛
is a group if jRn˛

j D 1, and for
all C � A˛ we know that Cay.hC i; C / is Aut.hC i; C /-vertex transitive because hC i
is a subgroup of the group A˛. By Theorem 12.2.8, we have the equivalence between
(i) and (iii). By Theorem 12.3.4 specialized to groups, we get everything.

As an example consider Diagram (c) in Example 12.2.6.

12.4 End0.S; C /-vertex transitive Cayley graphs

In this section we give some preliminary results on strong semilattices of semigroups
with End0.D/-vertex transitive Cayley graphs or with ColEnd0.D/-vertex transitive
Cayley graphs.

Recall that

End0.S; C / WD End.S; C / n Aut.S; C /

and ColEnd0.S; C / WD ColEnd.S; C / n ColAut.S; C /:

Evidently,

ColAut.S; C / � Aut.S; C / � End.S; C /;

ColEnd0.S; C / � End0.S; C / � End.S; C /;

and ColEnd.S; C / � End.S; C /:

Example 12.4.11 will show that End0-vertex transitivity is really different from Aut-
vertex transitivity, which, in spite of Theorem 12.4.10, is not surprising.
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First, we state and prove a lemma from A. V. Kelarev and C. E. Praeger, On transi-
tive Cayley graphs of groups and semigroups, European J. Combinatorics 24 (2003)
59–72.

Lemma 12.4.1. Let S be a semigroup and C a subset of S .
If Cay.S; C / is ColEnd.S; C /-vertex transitive, then Sa D S for every a 2 C .
If Cay.S; C / is End.S; C /-vertex transitive, then SC D S .

Proof. Take s 2 S and a 2 C . Then here exists f 2 End.S; C / with f .sa/ D s.
Since .s; sa/ is an edge, .f .s/; f .sa/ is also an edge. Hence f .sa/ D f .s/a0 for
some a0 2 C . Thus s D f .s/a0 2 SC ; so SC D S and the second statement holds.
In the first case, we may assume that f 2 ColEnd.S; C /, whence a0 D a, and so
Sa D S , i.e. the first statement holds.

Lemma 12.4.2. Let S D .
S

�2Y S� ; ˇ/ be a finite strong semilattice of semigroups,
ˇ 2 Y a maximal element of Y , and ; ¤ C � S . If Cay.S; C / is ColEnd.S; C /-
vertex transitive, then C � Sˇ .

Proof. Suppose there exists a 2 C n Sˇ , say a 2 S� , with � ¤ ˇ. As ˇ is maximal,
we have ˛^� ¤ ˇ for all ˛ 2 Y . Now S˛a D f˛;˛^� .S˛/f�;˛^� .a/ � S˛^� ¤ Sˇ ,
and thus S˛a

T

Sˇ D ; for all ˛ 2 Y . This implies that Sa
T

Sˇ D
S

˛2Y S˛ D ;
and hence Sa ¤ S . Now Lemma 12.4.1 implies that Cay.S; C / is not ColEnd.S; C /-
vertex transitive.

Lemma 12.4.3 is an immediate consequence; it gives two necessary conditions for
ColEnd.S; C /-vertex transitive Cayley graphs of strong semilattices of semigroups.
The conditions are identical to those in Lemma 12.1.5, but the proofs of the lemmas
used, namely Lemmas 12.4.2 and 12.1.4, are different.

Lemma 12.4.3. Let S DS�2Y S� be a finite strong semilattice of finite semigroups,
and let ; ¤ C � S . If Cay.S; C / is ColEnd.S; C /-vertex transitive, then Y has the
maximum m with C � Sm.

The following observations are relatively straightforward for non-connected
Aut.D/-vertex transitive graphs.

Lemma 12.4.4. Let D D .V;E/ be a finite digraph, let f 2 Aut.D/, and let D1

and D2 be components of D. If f .x/ D y for some x 2 D1 and y 2 D2, then
f .D1/ D D2.

Lemma 12.4.5. LetD be a non-connected digraph. IfD is Aut.D/-vertex transitive,
then it is End0.D/-vertex transitive.
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Lemma 12.4.6. Let S be a semigroup, let C be a non-empty subset of S , and let
D1;D2; : : : ;Dn be components of Cay.S; C /. Then Cay.S; C / is ColAut.S; C /-
vertex transitive if and only if the components of Cay.S; C / are color isomorphic and
each component is color automorphism vertex transitive.

Lemma 12.4.7. Let S be a semigroup and C a non-empty subset of S . If Cay.S; C /
is a non-connected digraph and is ColAut.S; C /-vertex transitive, then it is
ColEnd0.S; C /-vertex transitive.

The next theorem gives some descriptions of End0.S; C /-vertex transitive Cayley
graphs and of ColEnd0.S; C /-vertex transitive Cayley graphs.

Theorem 12.4.8. Let S DS�2Y S� be a finite strong semilattice of semigroups, with
jY j > 1, and let ; ¤ C � S .

(1) If Cay.S; C / is Aut.S; C /-vertex transitive, then it is End0.S; C /-vertex transi-
tive. In this case, C

T

Sˇ ¤ ; for all maximal ˇ 2 Y .

(2) If Cay.S; C / is ColAut.S; C /-vertex transitive, then it is ColEnd0.S; C /-vertex
transitive. In this case, Y has the maximum m and C � Sm.

Proof. (1) Let Cay.S; C / be Aut.S; C /-vertex transitive. By Lemma 12.1.5, we ob-
tain that Y has the maximum m and C � Sm.

It is clear that Cay.S; C / D PS�2Y Cay.S� ; fm;�.C //. Now jY j > 1 implies that
D is not connected. Therefore D is End0.S; C /-vertex transitive by Lemma 12.4.5.

Suppose now that Cay.S; C / is End0.S; C /-vertex transitive. Assume that C
T

Sˇ D ; for some maximal element ˇ 2 Y . Choose s 2 Sˇ . We will show that
s … SC . If s 2 SC , then s D ta for some t 2 S and a 2 C . Hence t 2 S� and
a 2 S� for some � and 
 ¤ ˇ in Y . Therefore, s D ta D f�;�^�.t/f�;�^�.a/. Since
s 2 Sˇ , we get � ^ 
 D ˇ, and hence ˇ < 
 . Thus we obtain a contradiction, because
ˇ is a maximal element in Y . Hence s … SC and so SC ¤ S . By Lemma 12.4.1, we
get that Cay.S; C / is not End.S; C /-vertex transitive and thus also not End0.S; C /-
vertex transitive.

(2) The proof is similar to that for (1), but using Lemma 12.4.7. The second part
follows from Lemma 12.4.3.

In Diagram (d) of Example 12.2.9, we have that Cay.S; C / is Aut.S; C /-vertex
transitive, so now we see that it is End0.S; C /-vertex transitive.

In Diagram (c) of Example 12.3.5, we have Cay.S; C / is ColAut.S; C /-vertex tran-
sitive, so now we see that it is ColEnd0.S; C /-vertex transitive, Y has the maximum
m, C � Sm, and C˛ ¤ ; for all ˛ 2 Y .

From Example 12.4.11 Diagram (b), Cay.S; C / is End0.S; C /-vertex transitive,
and we see that C

T

Sˇ ¤ ; for all maximal ˇ 2 Y .
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Corollary 12.4.9. Let S D S

�2Y .A� � ¹r�
1 ; : : : ; r

�
n�
º/ be a finite strong semilattice

of right groups, and take ; ¤ C � S . Then the following hold:

(1) If Cay.S; C / is ColEnd0.S; C /-vertex transitive, then:

(a) Y has the maximum m with C � Sm; and

(b) n� D 1 for all 
 2 Y , i.e. S is a Clifford semigroup.

(2) If Cay.S; C / is End0.S; C /-vertex transitive, then p2.C
T

Sˇ /D ¹rˇ
1 ; : : : ; r

ˇ
nˇ
º

for all maximal ˇ 2 Y .

In the next theorem, we consider Cayley graphs of strong semilattices of left groups
with a one-element connection set.

Theorem 12.4.10. Let S D S

�2Y .Ln�
� A�/ be a finite strong semilattice of left

groups, where the A� are groups and the Ln�
left zero semigroups. Take C D ¹aº �

S . Then Cay.S; ¹aº/ is End0.S; ¹aº/-vertex transitive if and only if it is Aut.S; ¹aº/-
vertex transitive.

Example 12.4.11 will illustrate the situation. We present the Cayley graph of a
strong semilattice of semigroups which is End0.S; C /-vertex transitive but not
Aut.S; C /-vertex transitive. Note that the connection set has more than one element.

Example 12.4.11. Consider the semilattice Y D ¹˛ < ˇ; �º. For 
 D ˛; ˇ, take
S� D Z2 D ¹0� ; 1�º, S� D ¹.l1; 0� /; .l2; 0� /; .l1; 1� /; .l2; 1� /º Š L2 � Z2 and
the defining homomorphisms fˇ;˛ D idZ2

and f�;˛ D p1 as indicated. Then S D
S

�2Y S� is a strong semilattice of semigroups.

Sˇ D Z2 S� D L2 � Z2

S˛ D Z2

�
�
��

�
�

��

Diagram (a).

idZ2
p2

� � � � � �

� �

0ˇ 1ˇ l10� l11� l20� l21�

0˛ 1˛

�� �� ��

��

$
$

$
$

$
$

$
$

$
$$%

�
�
�
�
�
�
�# 

�
�

�
�

�
�

��

�
�

�
�

�
�

��

���������������

Diagram (b). Cay.S; ¹1ˇ ; .l2; 1� /º/
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In Diagram (b), we see that Cay.S; C / is End0.S; C /-vertex transitive but not
Aut.S; C /-vertex transitive.

Example 12.4.12. Consider again the strong semilattice from Example 12.3.5, with
one-element connection sets, which is Aut.S; C /-vertex transitive and End0.S; C /-
vertex transitive for both chains of left groups contained but not overall.

Sˇ D L2 � Z2 S� D L2 � Z2

S˛ D L2 � Z2

�
�

���

�
�

���

Diagram (a).

idL2
�c0 idL2

� idZ2

� � � �

� � � �

l10� l20� l11� l21�

l10˛ l20˛ l11˛ l21˛

� �� �� �� �

� �� �� �� �

Diagram (c).

Cay.S˛

S

S� ; ¹.l1; 1� /º/

� � � �

� � � �

l10ˇ l20ˇ l11ˇ l21ˇ

l10˛ l20˛ l11˛ l21˛

��
��� ��

��
��� ��

��
��� ��

��
��� ��

��
��� ��

��
��� ��

��
��� ��

��
��� ��

Diagram (c).

Cay.S˛

S

Sˇ ; ¹.l1; 0ˇ /º/

12.5 Comments

Much can be done on End0-vertex transitivity. One can get started by considering
examples and proceed by trial and error. Then one can develop hypotheses and go on
to construct proofs. The problems arrising range in difficulty from exercises to thesis
projects on various levels.

As was already mentioned in Section 11.6, besides the completely regular semi-
groups and their semilattices studied in this chapter, also here it would be interesting
to study other completely regular semigroups; cf. [Petrich/Reilly 1999], starting with
those mentioned in Section 11.6. And then we can consider Cayley graphs of strong
semilattices of these, and so on.

The different transitivities supply many challenging questions to investigate. The
investigation of vertex transitive Cayley graphs of semigroups ahould be very chal-
lenging.



Chapter 13

Embeddings of Cayley graphs – genus of
semigroups

A graph is said to be (2-cell) embedded in a surface M if it is “drawn” in M in such
a way that edges intersect only at their common vertices and, moreover, the surface
decomposes into open discs after removal of vertices and edges of the graph. A graph
is said to be planar if it can be embedded in the plane or equivalently, on the sphere.
By the genus of a graph G we mean the minimum genus among all surfaces in which
G can be embedded. So if G is planar, then the genus of G is zero. A graph is said
to be outer planar if it has an embedding in the plane such that one face is incident to
every vertex.

It is known that each group can be defined in terms of generators and relations, and
that corresponding to each such (non-unique) presentation there is a unique graph,
called the Cayley graph of the presentation. A “drawing” of this graph gives a “pic-
ture” of the group from which certain properties of the group can be determined. The
same principle can be used for other algebraic systems. So we will say that algebraic
systems with a given system of generators are planar or toroidal if the respective
Cayley graphs can be embedded in the plane or on the torus.

If Cay.S; C / is planar, for some generating set C of S , we call S a planar semi-
group. If a non-planar graph can be embedded on the torus, i.e. on the orientable
surface of genus 1, it is said to be toroidal.

It is clear that when considering embeddings, directions, colors and multiplicities
of the edges in the Cayley graph are not important. This means we can consider
the Cay functor as going from the category SgC to the category Gra; more formally,
we apply a suitable forgetful functor after Cay. In this chapter we investigate the
genus of semigroups, we concentrate on genus 0 and 1. An investigation of arbitrary
semigroups seems hopeless, since their number is growing rapidly with the number
of elements (Theorem 9.1.7). As there are only few types of planar groups, we focus
on semigroups which are close to groups, namely on right groups and special Clifford
semigroups.

13.1 The genus of a group

We need the following definitions and results.

Definition 13.1.1. For a finite group A, the genus of A is defined to be the minimum
of all genera of Cayley graphs Cay.A; C / with generating sets C � A. We will call
such C a genus-minimal generating set.



262 Chapter 13 Embeddings of Cayley graphs – genus of semigroups

This amounts to finding a generating set C for a given group A such that the genus
of Cay.A; C / is minimal. Note that this does not mean that the generating set is
minimal in the number of elements (an example is Z2 � A5); nor does it mean that
the generating set (and thus the Cayley graph) is unique. Both remarks are illustrated
in Exerceorem 13.1.8 below.

The same procedure applies to semigroups and gives the following definition.

Definition 13.1.2. For a finite semigroup S , the genus of a semigroup S is defined
to be the genus of a Cayley graph of S with a genus-minimal generating set.

Theorem 13.1.3. Let G be a connected graph. If a subgroup U � Aut.G/ acts
strictly fixed-point-free on G, then G can be contracted to Cay.U; C / for some gen-
erating set C of U .

Proof. See L. Babai, Groups of graphs on given surfaces, Acta Mathematica Acade-
mia Scientiarum Hungaricae, 24 (1973) 215–221, compare also Remark 1.4.5.

Corollary 13.1.4. The genus of a subgroup U of a semigroup S is less than or equal
to the genus of S itself, if Cay.S; C / is strongly connected.

Proof. Here U is a subgroup of Aut.Cay.S; C 0//, where Cay.S; C 0/ is a connected
Cayley graph of S . Now, by Theorem 13.1.3, the graph Cay.S; C 0/ can be contracted
to Cay.U; C / for some generating set C � U . So the genus of Cay.U; C / is no
greater than the genus of Cay.S; C 0/.

Remark 13.1.5. The above result justifies the following approach. If we are inter-
ested in planar right groups (or, more generally, planar unions of groups, i.e. planar
completely regular semigroups), we need to consider only planar groups. Or, if we are
interested in toroidal right groups, we need only consider planar or toroidal groups.
However, we do not know whether planarity of Cay.A � Rr ; C /, with C � A � Rr ,
implies planarity of Cay.A; p1.C //, where p1 is the first projection.

Theorem 13.1.6 (Maschke 1896). The finite group A is planar (i.e. has genus 0) if
and only if A D B1 � B2 with B1 D Z1 or Z2 and B2 2 ¹Zn;Dn; S4; A4; A5 j n 2
Nº; here S4 is the symmetric group on four elements, A4 and A5 are the respective
alternating groups, and Dn are the dihedral groups.

Proof. This is due to H. Maschke, The representation of finite groups, especially of
the rotation groups of the regular bodies of three- and four-dimensional space, by
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Cayley’s color diagrams, Amer. J. Math. 18 (Apr 1896) 156–194; see also [Halin
1980], [Gross/Tucker 1987] and [White 2001].

Remark 13.1.7. The cyclic planar groups are exactly Zn. It is clear that planarity
depends on the set of generators C chosen for the Cayley graph.

For example, Cay.Z6; ¹1º/ D C6 and also Cay.Z6; ¹2; 3º/, which is the box prod-
uct C3 �K2, are planar, but Cay.Z6; ¹1; 2; 3º/ D K6 is not.

It is natural to use one cyclic generator, say ¹1º, for the cyclic group .Zn;C/ D
.¹0; : : : ; n � 1º;C/, which gives the Cayley graph Cn.

Exerceorem 13.1.8. For the planar groups Dn, S4, A4 and A5, we get various Ar-
chimedean solids as Cayley graph representations, with two or three generators. We
observe that A4 is the rotation group of the tetrahedron, the automorphism group
is S4, and that A5 is the rotation group of the dodecahedron and the icosahedron, their
automorphism group has 120 elements. The automorphism group of the cube (and
octahedron) has 48 elements.

(1) ForDn, two generators ¹a; bº, both of order 2, give the planar Cayley graph C2n.
One generator of order 2 and one of order n also give a planar Cayley graph, namely
the box product Cn�K2, usually called the prism. We can get an antiprism if we take
Cay.Z2n; ¹1; 2º/. Recall that D1 D Z2, D2 D Z2 � Z2, and D3 D S3.

(2) For A4 take, for example, a D .123/ of order 3 and b D .12/.34/ of order
2; the Cayley graph is the truncated tetrahedron (compare, for instance, Figure 8 in
the proof of Lemma 13.5.2). With two generators of order 3, for example .123/ and
.234/, we get the cuboctahedron as the Cayley graph.

(3) For S4 take, for example, a D .123/ of order 3 and b D .34/ of order 2; then
the Cayley graph is the truncated cube. Alternatively, take a; b and c to be of order
2 (three neighboring transpositions); then the Cayley graph consists of 4-gons and
6-gons, i.e. it is the truncated octahedron, also called permutahedron.

(4) For A5 take, for example, a D .124/ of order 3 and b D .23/.45/ of order 2;
then the Cayley graph is the truncated dodecahedron. Or, take a D .12345/ of order
5 and b D .23/.45/ of order 2; then the Cayley graph is the truncated icosahedron
(compare, for example, [Grossmann/Magnus 1964], Appendix). Another alternative
it to take a; b; c of order 2 (three suitable rotations of the dodecahedron); then the
Cayley graph consists of 4-gons, 6-gons and 8-gons.

(5) For Z2 �A4 take, for example, the generator set C D ¹.0; .123//; .1; .12/.34//º.
This gives the truncated cube as Cayley graph consisting of eight directed triangles
and six semicycles with eight edges, which are not cycles as the following figure
shows.
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(6) For Z2 �Zn, take the set of generators to be C D ¹.1; 0/; .0; 1/º. Of course, this
is useful only for even n since Z2 �Zn Š Z2n if n is odd. This gives a Cayley graph
consisting of two directed n-gons and n semicycles with four edges, which are not
cycles. The structure of the semicycles is .1; 0/; .0; 1/; .1; 0/; .0; 1/�1.

(7) For Z2�Dn, useC D ¹.1; 1Dn
/; .0; a/; .0; b/ºwith the two generators a; b 2 Dn

of order 2. For completeness, we recall that Z2 �Dn Š D2n.

(8) For Z2 � S4 we get the rhombitruncated cuboctahedron and for Z2 � A5 the
rhombitruncated icosidodecahedron as Cayley graphs. In both cases we take a gener-
ating set C D ¹.1; a/; .0; b/; .0; c/º, with each element being of order 2 in each case.
Note that a planar representation of Z2 �A5 cannot be obtained with two generators,
although Z2 � A5 can be generated by two elements; cf. [Gross/Tucker 1987].

(9) If we have four generators all of order 2, the Cayley graph may be non-planar.
Take the four-dimensional cube, which is the graph Cay.Z2 � Z2 � Z2 � Z2;

¹.1; 0; 0; 0/; .0; 1; 0; 0/; .0; 0; 1; 0/; .0; 0; 0; 1/º/, and this is non-planar.

Some of these results can be found in the following references:

� http://garsia.math.yorku.ca/�zabrocki/posets/phedron4/per4outlinec.jpg.

� http://www.antiquark.com/math/permutahedron_4.gif (picture of S4 generated
by the transpositions .12/; .23/; .34/).

� http://www.jaapsch.net/puzzles/cayley.htm (pictures of solids for all planar
groups with all possible generator sets except for Z2 � A).

� T. Roman, Reguläre und halbreguläre Körper, Deutsch Verlag, Frankfurt 1987.

� I. Grossman, W. Magnus, Groups and their Graphs, Random House, 1964.
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Question. What can be said about genus 1 or groups on the projective plane (non-
orientable genus 1)? In [White 2001] there are several results on the genus of non-
planar groups. How can these be transferred to the genus of right or left groups?

The scope of the questions can be extended to include infinite groups. See, for
example, Agelos Georgakopoulos, The planar cubic Cayley graphs (Preprint 2001),
arXiv:1102.2087v2 [math.GR], in which a complete description of the planar cubic
Cayley graphs is given.

In [White 2001], Chapter 14, there is an interesting discussion of the genus of field
graphs, along with many questions. Since finite fieldsGF.pr / have the additive group
Zpr for a prime p, they are considered to have one additive and one multiplicative
generator. This suggests a definition of their genus. We quote some of the results
here:

The finite field GF.pr / is planar if and only if pr D 2; 3; 4; 5; 7; 11.
The finite field GF.pr / is toroidal if and only if pr D 8; 9; 13; 17.
The first field with unknown genus has 16 elements.

Question. Study planar and toroidal rings Zn, starting with n D 6; 10; 12; 14; 15; 16.

Theorem 13.1.9 (Kuratowski). A finite graph G is planar if and only if it does not
contain a subgraph that is a subdivision of K5 or K3;3 or, equivalently, if neither K5

nor K3;3 are contractions of G (cf. Remark 1:4:5).

Theorem 13.1.10 (Chartrand, Harary 1967). A finite graph is outer planar if and only
if it does not contain a subgraph that is a subdivision of K4 or K2;3.

Theorem 13.1.11 (Euler 1758, Poincaré, 1895). A finite graph that has n vertices
and m edges and is 2-cell embedded on an orientable surface M of genus g with f
faces satisfies the Euler–Poincaré formula; that is, n �mC f D 2 � 2g.

13.2 Toroidal right groups

We recall that a right group is a semigroup of the form A�Rr where A is a group and
Rr is a right zero semigroup, i.e. Rr D ¹r1; : : : ; rrº with the multiplication rirj D rj
for ri ; rj 2 Rr .

We now consider the following question: when does the Cay functor produce a
graph which can be embedded on the torus, i.e. is toroidal?

We study this question for right groups in the following sense: we determine the
minimal genus among the Cayley graphs Cay.A�Rr ; C�Rr/ taken over all minimum
generating sets C of the groups A.

Note that the results will be quite different for left groups Ll � A, because of the
right action of the generating sets, which we use for the Cayley graph construction.
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We do not claim that an embedding of this graph gives the (minimal) genus of the
right group considered. In general,A�Rr may have a generating systemC 0 ¤ C�Rr

which yields a Cayley graph with fewer edges; consequently, it tends to have a smaller
genus.

As before, we denote by � the cross product for graphs as well as the direct product
for semigroups and sets. We denote by XŒY � the lexicographic product of the graph
X with the graph Y .

As far as I know, there do not exist general formulas relating the genus of a cross
product or lexicographic product of two graphs to the genera of the factors; see, for
example, [Gross/Tucker 1987], [Imrich/Klavžar 2000] or [White 2001]. Some of the
difficulties that arise with lexicographic product can be seen in Example 13.2.10.

The results in this section come mainly from Kolja Knauer and Ulrich Knauer, On
toroidal right groups, Thai J. Math. 8 (2010) 483–490.

Remark 13.2.1. Note that if in the formula

Cay.S � T; .C � T /S.¹1Sº �D// D Cay.S; C /ŒCay.T;D/�

of Theorem 11.2.11 we have .T;D/ D .Rr ; Rr/, the Cayley graph Cay.Rr ; Rr/ has
to be considered as K.r/

r , i.e. the complete graph with r loops.

Lemma 13.2.2. Denote by Cay.A; C /ŒKr � the lexicographic product of Cay.A; C /
with the graph consisting of r isolated vertices. Then we have Cay.A�Rr ; C�Rr/ D
Cay.A; C /ŒKr �.

Proof. A straightforward calculation yields the result; compare also Remark 13.2.1
in the form Cay.A �Rr ; .C �Rr/

S

.¹1Aº � ;// D Cay.A; C /ŒCay.Rr ;;/�.
Note that this lexicographic product can be obtained by replacing every vertex

of Cay.G; C / by r independent vertices and every edge by a Kr;r . In particular,
Kk;kŒKr � D Kkr;kr .

Lemma 13.2.3. If Cay.A; C / is not planar, then Cay.A � Rr ; C � Rr/ with r � 2
cannot be embedded on the torus.

Proof. Note thatK3;3ŒK2� Š K6;6 already has genus 4; see [White 2001]. Moreover,
the graph K5ŒK2� has 10 vertices and 40 edges. An embedding on the torus would
have 30 faces by the Euler–Poincaré formula (Theorem 13.1.11). Even if all faces
were triangles in this graph, this would require 45 edges. So the graph cannot be
toroidal.

Lemma 13.2.4. If r � 5, then Cay.A � Rr ; C � Rr/ cannot be embedded on the
torus.
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Proof. The resulting graph contains K5;5, which has genus 3; see [White 2001].

Lemma 13.2.5. If Cay.A; C / contains a K2;2 subdivision and r � 3, then Cay.A �
Rr ; C �Rr/ cannot be embedded on the torus.

Proof. The resulting graph contains K6;6, which has genus 4; see [White 2001].

Hence, for the rest of the section we have to check that Cay.A � Rr ; C � Rr/ for
all planar groups G and 1 � r � 4.

Lemma 13.2.6. If a planar Cayley graph Cay.A;AC/ is at least 3-regular, then
Cay.A �R2; C �R2/ cannot be embedded on the torus.

Proof. Since Cay.A; C / is at least 3-regular, Cay.A�R2; C�R2/ is at least 6-regular.
Assume that Cay.A � R2; C � R2/ is embedded on the torus; then the Euler–

Poincaré Formula (Theorem 13.1.11) tells us that all faces are triangular. This implies
that every edge of Cay.A�R2; C �R2/ lies in at least two triangles, and hence every
edge of Cay.A; C / lies in at least one triangle.

Let c1; c2; c3 2 C be the generators corresponding to a triangle a1; a2; a3. Then
c˙1

1 c˙1
2 c˙1

3 D eA for some signing, where eA is the identity in A. If any two of the
ci are distinct, then one of the two is redundant; hence C was not inclusion minimal.
Thus every c 2 C must be of order 3. Since A is not cyclic, we obtain that Cay.A; C /
is at least 4-regular. Then Cay.A � R2; C � R2/ is at least 8-regular, and the Euler–
Poincaré formula yields that it cannot be embedded on the torus.

Theorem 13.2.7. Let A � Rr be a finite right group with r � 2. The minimal genus
of Cay.A � Rr ; C � Rr/ among all generating sets C � A of A is 1 if and only if
A �Rr is isomorphic to one of the following right groups:

� Zn �Rr with .n; r/ 2 ¹.2; 3/; .2; 4/; .3; 3/; .i; 2/º for i � 4;

� Dn �R2 for all n � 2.

Note that this list includes Z2�Dn�R2 Š D2n�R2 and Z2�Zn�R2 Š Z2n�R2

for odd n � 3.

Proof. By Lemma 13.2.6, the group A has to be generated either by one element or
by two elements of order 2 to be embeddable on the torus. This necessary condition is
equivalent to .A; C / being .Zn; ¹1º/ or .Dn; ¹g1; g2º/, where g2

1 D g2
2 D .g1g2/

n D
1Dn

.
First, we consider the cyclic case. For n D 2we have Cay.Z2�Rr ; C�Rr/ D Kr;r

which exactly for r 2 ¹3; 4º has genus 1.
Take n D 3. If r D 2, we obtain the planar graph Cay.Z3 � R2; ¹1º � R2/ shown

in the first figure of Example 13.2.8. If r D 3, the resulting graph Cay.Z3�R3; ¹1º�
R3/ contains K3;3, so it cannot be planar. In Example 13.2.8 there is an embedding
as a triangular grid on the torus. If r D 4, we have the complete tripartite graph
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K4;4;4. Delete the entire set of 16 edges between two of the three partitioning sets.
The remaining (non-planar) graph has 12 vertices, 32 edges and, assuming a toroidal
embedding, 20 faces. A simple count shows that this cannot be realized without
triangular faces. So for r � 4 the graph Cay.Z3 �Rr ; C �Rr/ is not toroidal.

Take n � 4. Then the graph Cay.Zn; ¹1º/ contains a C4 D K2;2 subdivision. If
r � 3, then Cay.Zn � Rr ; ¹1º � Rr/ is not toroidal by Lemma 13.2.5. If r D 2,
an embedding of Cay.Z4 � R2; ¹1º � R2/ as a square grid on the torus is shown in
the last figure of Example 13.2.8. This is instructive for the cases n � 5. Moreover,
we see that the vertices ¹0; 00; 2º and ¹1; 10; 3º induce a K3;3 subgraph of Cay.Z4 �
R2; ¹1º �R2/. Generally, for n � 4 we have that Cay.Zn �R2; ¹1º �R2/ contains a
K3;3 subdivision, so it is not planar.

Second, if A is a dihedral group and C consists of two generators g1 and g2 of
order 2, the graph Cay.Dn; C / is isomorphic to Cay.Z2n; ¹1º/. Thus Cay.Dn �
R2; ¹g1; g2º �Rr/ has genus 1 if and only if r D 2, by the cyclic case. Any different
generating systemC forDn would have a generator of degree greater than 2 and hence
would yield Cay.Dn �R2; C �R2/ with genus greater than 1, by Lemma 13.2.6.

Example 13.2.8. Here we draw some of the graphs from the theorem.

dcba

a’b’ c’ d’

a b c d

b

c’

a’b’

a

c

b’

b’’

a’c’

c

c’’

a b

a’’

a b c

From left to right, the graphs are Cay.Z3�R2; ¹1º�R2/ (planar), Cay.Z3�R3; ¹1º�
R3/ and Cay.Z4 �R2; ¹1º �R2/ Š K4;4 (toroidal).

Remark 13.2.9. For r D 1 we have A � Rr Š A. Hence the characterization of
toroidal groups due to V. K. Proulx, Classification of the toroidal groups, J. Graph
Theory 2 (1978) 269–273, is the above above theorem for r D 1.

In the above proofs we make strong use of Lemma 13.2.6, which tells us that 3-
regular planar Cayley graphs will not be embeddable on the torus after taking the
Cartesian product with R2. The following small example from the next theorem
shows that this operation can increase the genus from 0 to 3.

Theorem 13.2.10. The genus of Cay.Z6�R2; ¹2; 3º�R2/ is 3. Note that Cay.Z6�
R2; ¹2; 3º �R2/ Š .C3 �K2/ŒK2�.
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Proof. We observe that Cay.Z6 � R2; ¹2; 3º � R2/ consist of two disjoint copies
C3 � K2 and .C3 � K2/

0 of Cay.Z6; ¹2; 3º/ with vertex sets ¹0; 1; 2; 3; 4; 5º and
¹00; 10; 20; 30; 40; 50º, respectively. Every vertex v of C3 � K2 is adjacent to every
neighbor of its copy v0 in .C3 �K2/

0. The picture shows an embedding of Cay.Z6 �
R2; ¹2; 3º �R2/ into the orientable surface of genus 3, the triple torus.

0 4'

0'

A

BC

2'

24

3

1
3'

A

1'
B

5'

5

C

Cay.Z6 �R2; ¹2; 3º �R2/ in the triple torus with handles A, B and C .

This graph is 6-regular with 12 vertices, so it has 36 edges.
Using Lemma 13.2.6, we will show that Cay.Z6 � R2; ¹2; 3º � R2/ cannot be

embedded on the double torus.
Assume that Cay.Z6 � R2; ¹2; 3º � R2/ is 2-cell-embedded on the double torus.

Delete the four edges connecting 1 and 10 with 5 and 50 and also the four edges con-
necting 0 and 00 with 4 and 40. The resulting graphH has 28 edges. It consists of two
graphs X and Y which are copies of K4;4, where X has the bipartition .¹0; 00; 5; 50º,
¹2; 20; 3; 30º/ and Y has the bipartition .¹0; 00; 1; 10º, ¹3; 30; 4; 40º/. They are glued at
the four vertices with the same numbers, and the corresponding four edges are iden-
tified. Although H is no longer bipartite, it still is triangle-free. By the assumption it
is 2-cell-embedded on the double torus.

By the Euler–Poincaré formula, this gives 14 faces, all of which are quadrangular.
So the edges between 1; 10 and 5; 50 and between 0; 00 and 4; 40, which we have to
put back in, have to be diagonals of these quadrangular faces. But then ¹20; 4; 2; 0º
and ¹20; 4; 2; 00º are the only 4-cycles in H which contain, respectively, the vertices
4; 0 and 4; 00; they form faces of H . Since they have the common edges ¹20; 4º and
¹2; 4º, we obtain a K2;3 with bipartition .¹2; 20º; ¹0; 00; 4º/. We know from Theo-
rem 13.1.10 that K2;3 is not outer planar. Thus the region consisting of the glued
4-cycles ¹20; 4; 2; 0º and ¹20; 4; 2; 00º must contain one of the vertices 0; 00 or 4 in its
interior. Hence this vertex has only degree 2, which is a contradiction.
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13.3 The genus of .A � Rr/

It turns out that generating sets of the form C � Rr of right groups A � Rr , as con-
sidered in the previous section, do not necessarily give the genus of A �Rr .

In the following we will sketch one possible different approach by taking generating
sets which are proper subsets of C �Rr . We recall from Corollary 13.1.4 that we have
to consider only planar groups G.

Cayley graphs of A � R4

We concentrate on planar right groups A � Rr<4, since otherwise we have the trivial
right group R4 with Cayley graph K4, or we can show that A �Rr>3 is not planar.

Exerceorem 13.3.1. The Cayley graph of A�Rr is not planar for r > 3 and jAj > 1.

Proof. Derive a formula for the number of arcs depending on the connection set, and
use the fact that a planar graph has at most 3n � 6 arcs.

For a generating set of Zn � R4, we take the elements .1; r1/; .0; r2/; : : : ; .0; r4/.
Then the points .0; r1/; : : : ; .0; r4/; .1; r1/ form a K5, neglecting the directions of the
arcs, if n D 2. If n > 2 these points form a subgraph which is a subdivision of K5.
If we take the generators .1; r1/; : : : ; .1; r4/, the Cayley graph is K4;4 for n D 2, and
other “mixtures” correspondingly.

Constructions of Cayley graphs for A � R2 and A � R3

We shall sketch constructions with generating sets of the forms .a; r1/, .1A; r2/,
.1A; r3/ and .a; r1/, .b; r2/, .1A; r3/ etc., where a and b are generators of A. A
complete list of the generators studied can be taken from the table at the end of this
section.

Example 13.3.2. The following figure represents Cay.Z4 � R3; ¹.1; r1/; .0; r2/;
.0; r3/º/. We omit commas and brackets in the vertex labels.

We start with the inner quadrangle
�!
C4 with the vertices .0; r1/; .1; r1/; .2; r1/;

.3; r1/, i.e. with Cay..Z4 �R1; ¹.1; r1/º/.
The first step on the way to Cay.Z4 �R2; ¹.1; r1/; .0; r2/º/ is as follows.
Consider the arc ..1; r1/; .2; r1//.
Adding a second generator .0; r2/ means to insert ..1; r1/; .1; r2// and ..1; r2/;

.2; r1//. This procedure has to be applied to all arcs of Cay..Z4 �R1; ¹.1; r1/º/.
Adding a third generator .0; r3/ means to insert the arcs ..1; r1/; .1; r3//; ..1; r3/;

.2; r1// and the edge ¹.1; r2/; .1; r3/º.
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This procedure works for all groups Zn.
In principle, the same method can be applied if we have Dn. In the next picture

we have Cay.D2 � R2; ¹.1; 0; r1/; .0; 1; r1/; .0; 0; r2/º/. We start from an undirected
Cay.Z2 �Z2; ¹.1; 0/; .0; 1/º D C4. To add the generator .0; 0; r2/, we insert the first
point inside the C4, the second point outside, and so on. Note that a third generator
.0; 0; r2/ will not preserve the genus in this case.
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Example 13.3.3. In the picture below we start from the Cayley graph Cay.Z2 �
Z4; ¹.1; 0/; .0; 1/º/, which is K2 � �!C4. This is the graph without the two points
and the leftmost quadrangle.

The first step on the way to Cay.Z2 � Z4 � R2; ¹.1; 0; r1/; .0; 1; r1/; .0; 0; r2/º/ is
as follows. We start with the edge ¹.0; 0; r1/; .1; 0; r1/º. Then we insert the arcs

..0; 0; r1/; .0; 0; r2//; ..0; 0; r2/; .1; 0; r1//; ..0; 0; r2/; .0; 1; r1//

and ..1; 0; r1/; .1; 0; r2//; ..1; 0; r2/; .0; 0; r1//; ..1; 0; r2/; .1; 1; r1//:

Since in this graph the inner
�!
C4 and the outer

�!
C4 are directed in the same way, i.e.

clockwise, it follows that the 4-cycles formed with the help of the generator .1; 0/ of
Z2 � Z4 is not directed.



272 Chapter 13 Embeddings of Cayley graphs – genus of semigroups

00r
2

01r
2

00r
1

01r
1 02r

1

03r
1

10r
1

11r
1

12r
1

13r
1

To obtain the Cayley graph Cay.Z2�Z4�R2; ¹.1; 0; r1/; .0; 1; r1/; .0; 0; r2/º/, this
construction has to be applied to each of the four edges corresponding to the generator

.1; 0; r1/ of order 2, surrounding the inner
�!
C4.

It is clear that already after the first step the graph contains K3;3 with the partition
¹.0; 0; r1/; .1; 0; r1/; .0; 1; r1/º; ¹.0; 0; r2/; .1; 0; r2/; .0; 2; r1/º, for example.

This procedure applies to all groups Z2 �Z2n and, similarly, to the group Z2 �A4

also. In this case, instead of two
��!
C2n we have several

�!
C3; see Exerceorem 13.1.8.

Example 13.3.4. If the inner cycle is directed in the opposite direction, i.e. counter-
clockwise, then the two new points .0; 0; r2/ and .1; 0; r2/ lie on different sides of the
edge ¹.0; 0; r1/; .1; 0; r1/º, and the continuation of the procedure for all edges gives
no intersections, so we will get a planar graph.

This applies correspondingly to the groups Dn; A4; S4 and S5.
Now consider the generators .a; r1/; .b; r1/; .1;r2/ and .1A; r3/, where b is of or-

der 2.
Consider the undirected edge ¹.1A; r1/; .b; r1/º and the arc ..1A; r1/; .a; r1//. In

the face generated by these, insert two new points .1A; r2/ and .1A; r3/ and the edge
¹.1A; r2/; .1A; r3/º; then connect the new points by arcs or edges with the three points
.1A; r1/; .a; r1/; .b; r1/. The resulting graph is K5 with two missing arcs, which
can then be contracted from paths of the whole graph. So these Cayley graphs
Cay.A; ¹.a; r1/; .b; r1/; .1A; r2/; .1A; r3/º/ are not planar.

Example 13.3.5. The following three figures represent Cay.Z2 � Z2 � R2; ¹.a; r1/;
.b; r2/º with a D .1; 0/ and b D .0; 1/, Cay.D3 � R2; ¹.a; r1/; .b; r2/º, and the first
step on the way from Cay.Z4�Z2; ¹.a; r1/; .b; r1/º to Cay.Z4�Z2; ¹.a; r1/; .b; r2/º
(with a D .1; 0/ and b D .0; 1/), which is of order 2.
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It is clear that the figure on the right again containsK3;3. This shows that the graph
will again not be planar, although the first and the second graphs are. This applies to
any Z2n � Z2 correspondingly.

The left graph is planar and the construction applies to any Dn.

Example 13.3.6. Now we consider ¹.a; r1/; .b; r2/; .1A; r3/º for Cay.D2 � R3;

¹.a; r1/; .b; r2/; .1A; r3/º. The first step of adding the generator .1A; r3/ to the left-
most figure in Example 13.3.5 gives the following:
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This shows that the right groups Dn � R3 with these generators have planar Cayley
graphs. This applies correspondingly to A4; S4 and A5.

Example 13.3.7. Here we start from a Cayley graph with outdegree 3 and generators
.a; r1/; .b; r1/; .c; r1/, i.e. Z2 � S4, Z2 � A5 and Z2 �D2n.

Consider the generators .a; r1/; .b; r2/; .c; r1/. After the first step, which gives the
left figure in Example 13.3.5, we have to insert the additional arcs ..b; r2/; .bc; r1//
and ..1A; r2/; .c; r1//. We now get a K3;3 with two missing arcs, which can be con-
tracted from paths in the whole graph.

Now construct a Cayley graph with generators .a; r1/; .b; r1/; .c; r1/; .1A; r2/.
Consider the 3-star formed with the vertices .1A; r1/; .a; r1/; .b; r1/; .c; r1/. We add
the edge ¹.1A; r1/; .1A; r2/º and draw arcs from .1A; r2/ to the other three vertices of
the star. This gives K5 from which three arcs are missing, namely ..a; r1/; .b; r1//;
..b; r1/; .c; r1// and ..c; r1/; .a; r1//.
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Question. The problem mentioned in Remark 13.1.5 might suggest the following dif-
ferent method. Use two generators a and b for Z2 � A5, which do not give a planar
Cayley graph; cf. Exerceorem 13.1.8. Is it possible that Cay.Z2�A5; ¹.a; r1/; .b; r2/º/
is planar?

Example 13.3.8. We know that the Cayley graph Cay.Z2 � Z4 � R2; ¹.1; 0; r1/;
.0; 1; r1/; .0; 0; r2/º/ is not planar.

The following picture shows a representation of Cay.Z3 � Z3 � R2/ on the torus;
points with the same label in the square are identified. Clearly, this can be generalized
to any Cay.Zm � Zn �R2; ¹.1; 0; r1/; .0; 1; r1/; .0; 0; r2/º/.

12r
2

22r
2

00r
2

10r
2

20r
2

01r
2

11r
2

21r
2

02r
2

00r
1

10r
1

20r
1

00r
1

00r
1

01r
1

11r
1

21r
1

02r
1

12r
1

22r
1

10r
1

20r
1

00r
1

01r
1

02r
1

0 1 2 0

0

0

1

2

Question. What is the genus of Cay.Z2 � A4 �R2/?

Example 13.3.9. The genus of Cay.Z2 � D2n � R2; ¹.1; 1D2n
; r1/; .0; a; r2/;

.0; b; r2/º/ is less than or equal to 4n.
Consider Z2 �D2 �R2:

100 110

101

000 010

001 011

111

Theorem 13.3.10. The following table shows our results for A 2 ¹Dn; A4; S4; A5º.
Here a; b and c are the respective group generators, as described in the previous
examples, and b is of order 2. For the elements of A4 we use the cycle notation. In
particular, this means that .1/ D 1A4

. Note that Zm � Zn has genus 1 for m; n > 2.
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Group Group-genus preserving Group-genus raising

Zn .1; r1/; .0; r2/

.1; r1/; .0; r2/; .0; r3/ .1; r1/; .0; r2/; .0; r3/; .0; r4/

Dn; A4; S4; A5 .a; r1/; .b; r1/; .1A; r2/ or

.a; r1/; .b; r2/

.a; r1/; .b; r2/; .1A; r3/ .a; r1/; .b; r1/; .1A; r2/; .1A; r3/

Z2 � Z2n .1; 0; r1/; .0; 1; r2/ or

.1; 0; r1/; .0; 1; r1/; .0; 0; r2/

Z2 �D2n .1; 1D2n
; r1/; .0; a; r2/; .0; b; r2/

Z2 � A4 .0; .123/; r1/; .1; .12/.34/; r2/ or

.0; .123/; r1/; .1; .12/.34/; r1/; .0; .1/; r2/

Z2 � S4;Z2 � A5 .a; r1/; .b; r2/; .c; r2/

Zm � Zn .1; 0; r1/; .0; 1; r1/; .0; 0; r2/ .1; 0; r1/; .0; 1; r1/; .0; 0; r2/; .0; 0; r3/

13.4 Non-planar Clifford semigroups

In this and the next section we consider the following question: when does the Cay
functor take an object .S; C / 2 SgC to a planar graph where S is a two-component
Clifford semigroup?

They are of the form S D Aˇ

S

A˛ where the semilattice Y D ¹˛; ˇº; ˇ < ˛, is
a two-element chain. In this case, only one defining homomorphism fˇ;˛ has to be
specified. Consequently, we will also use the notation .Aˇ

S

A˛I fˇ;˛/ for this type
of Clifford semigroup.

Again, we work on the basis of Maschke’s Theorem (Theorem 13.1.6) using planar
groups A˛ and Aˇ .

Parts of the following are taken from X. Zhang, Clifford semigroups with genus
zero, in V. Laan, S. Bulman-Fleming and R. Kaschek (eds.), Semigroups, Acts and
Categories with Applications to Graphs (Proceedings of the Conference 2007), Esto-
nian Mathematical Society, Tartu 2008, pp. 151–160.

Construction 13.4.1. The Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/ with connec-
tion set Cˇ

S

C˛ produces two planar graphs, the upper graph Cay.Aˇ ; Cˇ / of the
upper group Aˇ and the lower graph Cay.A˛; C˛/ of the lower group A˛; their edges
will be represented by solid lines.

After that we get two more Cayley graphs. The first is the Cayley graph Cay.A˛;

fˇ;˛.Cˇ // of the lower group, with the homomorphic image of the generating set from
the upper group as connection set; this we call the new lower graph, and its edges will
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be represented by dotted lines. The second is the Cayley graph Cay.Aˇ ; C˛/ (with
some abuse of notation) of the upper group, with the generating set from the lower
group as connection set. Here .aˇ ; a˛/ is an arc if fˇ;˛.aˇ ; a˛/c˛ D a˛ for some
c˛ 2 C˛. This graph we call the in-between graph, and its arcs are also represented
by dotted lines, they go from the upper graph to the lower graph.

Now we form the generalized edge sum (see Definition 4.1.10) of these four Cayley
graphs to get Cay.S; Cˇ

S

C˛/.

Lemma 13.4.2. Take the Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/. If the upper
graph Cay.Aˇ ; Cˇ / is not outer planar, then Cay.S; Cˇ

S

C˛/ is not planar.

Proof. The following figures illustrate the situation for Aˇ D A4, where the gen-
erators of A4 are a; b, a of order 2, and we set c WD bbab. Here the edges in the
triangles carry the label b, and the other edges carry the label a. We take A˛ D ¹1A˛

º
and draw Cay.S; ¹a; b; 1A˛

º/. ThenK5 is contained in this graph, as the figure on the
right shows.
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Figure 1 Figure 2

If the lower graph comes from an arbitrary group A˛ , then in Cay.S; C / it can be
contracted to K1, and so the Cayley graph would also contain Cay.Aˇ /CK1, which
is non-planar, if Cay.Aˇ / is not outer planar.

Corollary 13.4.3. Take the Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/ where the up-
per group is A4, S4, A5, Z2 � A4, Z2 � S4, Z2 � A5, Z2 � Z2n or Z2 � D2n for
n > 1. Then S is not planar.

Note that if a group has an outer planar Cayley graph then this is a cycle.

Questions. What is the genus of the above Clifford semigroups with jA˛j D 1?
Is the genus of ..Z2 � Z4/ˇ

S¹1º˛I fˇ;˛/ one?
Is the genus of ..Z2 � A4/ˇ

S¹1º˛I fˇ;˛/ three?
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For any of the above Clifford semigroups S D .Aˇ

S

A˛I fˇ;˛/ with jA˛j D 1, is
it true that the genus is one less than the minimal number of “vertex spanning faces”
of Aˇ ?

Lemma 13.4.4. Take the Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/. If the outdegree
of the lower graph Cay.A˛; C˛/ is greater than 2, then Cay.S; C / is not planar.

Proof. In this case, the lower groupA˛ has more than two generating elements, and S
is not planar even if the upper groupAˇ has only one element 0. For instance, ifA˛ D
Z2 � D2 with generators a; b; c, then there is a subdivision of Cay.S; ¹0; a; b; cº/,
homeomorphic to K3;3, as the following figures show.
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For the next corollary, recall that a planar representation of Z2 � A5 cannot be
obtained with two generators, even though Z2�A5 can be generated by two elements
(Exerceorem 13.1.8).

Corollary 13.4.5. Take the Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/ where the
lower group A˛ is planar with at least three generators, i.e. A˛ is Z2 � S4, Z2 � A5

or Z2 �D2n for n > 1. Then S is not planar.

Lemma 13.4.6. Take the Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/ where fˇ;˛ is
constant. If the outdegree of the lower graph Cay.A˛; C˛/ is 2 and jAˇ j > 2, then
Cay.S; C / is not planar.

Proof. From the following figure of Cay.Z2

S

A4; ¹1; a; bº/, where the upper group
Z2 is generated by ¹1º, the lower group A4 is generated by ¹a; bº, and fˇ;˛ is con-
stant, it becomes clear that the whole graph will not be planar if the upper graph has
one more point. Here e D 1A4

.
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Corollary 13.4.7. Take the Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/ where fˇ;˛ is
constant and A˛ ¤ Zn for n > 2. If jAˇ j > 2, then S is not planar.

Lemma 13.4.8. Take the Clifford semigroup S D .D2

S

ZnI fˇ;˛/, D2 D Z2 �Z2,
with generators .1; 0/ and .0; 1/ and fˇ;˛ ¤ 0. Then Cay..Z2 � Z2/

S

Zn; ¹.1; 0/;
.0; 1/; 1º/ is not planar if fˇ;˛..1; 0// D fˇ;˛..0; 1// ¤ 0.

Proof. The image fˇ;˛.Z2 � Z2/ can only be Z2.
(1) If the image is equal to A˛ D Z2 and fˇ;˛..1; 0// D fˇ;˛..0; 1// D 1, we get

a Cayley graph similar to that in Figure 11, which is not planar as Figure 12 shows;
see Theorem 13.5.3 for both figures.

(2) If the image Z2 is isomorphic to a subgroup ofA˛, thenA˛ has the condensation
Z2 and we have the same situation as before.

Lemma 13.4.9. Take the Clifford semigroup S D .Dm

S

A˛I fˇ;˛/ where m > 2

and fˇ;˛ is not constant. Then Cay.S; C / is not planar.

Proof. It is sufficient to look at all possible factor groups of Dm, i.e. at B D Dm=N

where N is a normal subgroup of Dm. The smallest case is D3 Š S3 D ¹1S3
; a; ab;

aba D bab; ba; bº where the elements in this order correspond to the vertices of
the upper graph which is an undirected cycle C6. This group has only one normal
subgroup, namely A3 Š Z3 D ¹1S3

; ab; baº. The corresponding factor group B is
isomorphic to Z2 D ¹0; 1º, its points are in the lower graph.

This leads to the following situation. The in-between graph has arcs from the points
1S3

, ab, ba to 1 and from the points a, aba D bab, b to 0. It is clear that this graph
is not planar.

We have essentially the same situation for Dm with m > 3, although there may be
more normal subgroups. The in-between graph produces at least two arcs ending in
those points of the lower graph which correspond to the factor graph. These (at least)
two arcs start in the upper graph C2m at two points which are not neighbors, but are
separated in both directions by points with arcs to a different point in the lower graph.
A similar graph is shown in Figure 11 in the proof of Theorem 13.5.3.
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Lemma 13.4.10. Take the Clifford semigroup S D .Zn

S

ZnI fˇ;˛/. If for the gen-
erator 1ˇ 2 Zm one has 0; 1; 2 … hfˇ;˛.1ˇ /i � Zn, then S is not planar.

Proof. It is clear that the smallest generator r 2 hf˛;ˇ .1ˇ /i divides n. Now the lower
graph Cn, n � 6, gets additional edges from the new lower graph namely r � 3 copies
of .n=r/-gons whose points are, in turn, ¹0; r; : : : ; n � rº, ¹1; r C 1; : : : ; n � r C 1º,
: : : , ¹r � 1; 2r � 1; : : : ; n� 1º. Now 0 is adjacent to 1; r; n� r; n� 1; 1 is adjacent to
0; rC 1; n� rC 1; 2; and n� 1 is adjacent to 0; r � 1; n� r � 1; n� 2. Consequently,
we get a subdivision of the lower graph together with the new lower graph which is
homeomorphic to K3;3. So by Theorem 13.1.9, S is not planar.

The simplest example is for n D 6 and fˇ;˛.1ˇ / D r D 3, shown below. We get
the subgraph on the left, with the vertices of Z6 of the respective Cayley graph (the
lower and the new lower graph), which is homeomorphic to K3;3 (on the right). Thus
the whole Cayley graph is not planar.
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2

4

1

3

5

Figure 6 Figure 7

13.5 Planar Clifford semigroups

After excluding many Clifford semigroups which cannot be planar, we now turn to
positive cases.

Lemma 13.5.1. Take the Clifford semigroup S D .Aˇ

S

ZnI fˇ;˛/ with Aˇ 2
¹Dm;Zmº, m 2 N. Then S is planar if fˇ;˛ D c0 is the constant mapping onto
0 2 Zn.

Proof. The upper and lower graphs are planar. If fˇ;˛ is the constant mapping, then
each point of Zn gets a loop (the new lower graph) and each point from the upper
graph corresponding to Aˇ , which is C2m or Cm, gets a line to the generating element
of Zn (the in-between graph).
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Lemma 13.5.2. Take the Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/ with jAˇ j � 2

and A˛ planar with at most two generators. Then S is planar if fˇ;˛ D c1A˛
is the

constant mapping onto e D 1A˛
2 A˛.

Proof. Now the at most two elements of Aˇ are adjacent to the two generating ele-
ments of A˛. Clearly the new lines don’t destroy the planarity. First we give a figure
for Cay.¹1ºˇ

S

.A4/˛; ¹1; a; bº/, with the notation from Lemma 13.4.2; here again
e D 1A4

.

bb b

bba babbac

bbc

bc

c ac

bac

e

a

0

Figure 8

Figure 5 in the proof of Lemma 13.4.6 is Cay..Z2/ˇ
S

.A4/˛; ¹1; a; bº/.

Theorem 13.5.3. Take the Clifford semigroup S D .Zm

S

ZnI fˇ;˛/, where fˇ;˛ is
not the constant mapping. Then S is planar if and only if one of the following holds:

(1) fˇ;˛ is bijective;

(2) fˇ;˛ is injective and n D 2m.

Proof. First, we prove sufficiency of each of the two conditions.
(1) We can assume that Zm D h1ˇ i, m D n and fˇ;˛.aˇ / D 1˛, since fˇ;˛ is

bijective. It turns out that the new lower graph does not add new edges and that the
new edges between Zm and Zn are parallel (the in-between graph).

(2) If fˇ;˛ is injective and n D 2m, then fˇ;˛.aˇ / D 2˛. Let ¹1ˇ ; 1˛º be the
generating set of S . The upper graph is an m-gon and the lower graph is a 2m-
gon. By suitably choosing the order of points the new lower graph is the m-gon
0˛; 2˛; : : : ; .2m�2/˛ together with them-gon 1˛; 3˛; : : : ; .2m�1/˛ . The in-between
graph has the edges .lˇ ; .2l C 1/˛/; l � n, that is, .0ˇ ; 1˛/; .1ˇ ; 3˛/; : : : ; ..m �
2/ˇ ; .2m� 3/˛/; ..m� 1/ˇ ; .2m� 1/˛/. Below we show figures of the Cayley graph
Cay.Z3

S

Z6; ¹1ˇ ; 1˛º/ (on the left) and a plane representation (on the right).
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To prove necessity, we show that S is not planar if it does not satisfy (1) or (2).
First, consider the case where m < n and take r 2 Zn as in Lemma 13.4.10. Then

this lemma gives that the subgraph with the vertices of Zn of Cay.S; ¹1ˇ ; 1˛º/ is
non-planar. Thus r D 2, i.e. n D 2m, which is the condition of (2).

Next, assume that m � n and fˇ;˛ is not injective. Let 1ˇ and 1˛ be generating
elements of Zm and Zn, respectively. We may assume that m > n and fˇ;˛.1ˇ / D
1˛ , since otherwise we could consider the subgroup of Zn generated by fˇ;˛.1ˇ /.
Then 0ˇ is adjacent to 1ˇ ; 1˛; .m�1/ˇ ; 1ˇ is adjacent to 0ˇ ; 2ˇ ; 2˛; and, finally, .m�
1/ˇ is adjacent to .n � 2/ˇ ; 0ˇ ; 0˛. Again, we get a subdivision of Cay.S; ¹1ˇ ; 1˛º/
that is homeomorphic to K3;3. So fˇ;˛ must be injective and thus m D n.

The smallest example is Cay.Z4

S

Z2; ¹1ˇ ; 1˛º/ where the defining homomor-
phism is the canonical epimorphism of Z4 onto Z2, i.e. fˇ;˛.0ˇ / D fˇ;˛.2ˇ / D 0˛

and fˇ;˛.1ˇ / D fˇ;˛.3ˇ / D 1˛ , see Figures 11 and 12.
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1β0β

3β 2β
0α 1α

2β 1β

0β 3β

Figure 11 Figure 12

In the following result, we replace the upper group of S in Theorem 13.5.3 by

Z2 � Z2. The defining homomorphism fˇ;˛ is a pair Aˇ

.f;f 0/����! A˛ where f and
f 0 are the restrictions of fˇ;˛ to the factors of Aˇ . As usual, c0 denotes the constant
mapping. We denote by inj an injective homomorphism, which in the cases below is
obviously unique.
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Theorem 13.5.4. Take the Clifford semigroup S D ..Z2 � Z2/
S

ZnI fˇ;˛/, where
Aˇ has generators .1; 0/ and .0; 1/, and fˇ;˛ ¤ c0. Then Cay..Z2 � Z2/

S

Zn;

¹.1; 0/; .0; 1/; 1º/ is planar if and only if

(1) Z2 � Z2

.id;c0/����! Z2 or Z2 � Z2

.c0;id/����! Z2; or

(2) Z2 � Z2

.inj;c0/����! Z4 or Z2 � Z2

.c0;inj/����! Z4.

Proof. We prove sufficiency of the two conditions first.
For (1), the Cayley graph has the solid lines of the graph in Figure 11, the upper

and lower graphs and, additionally loops at 0˛ and 1˛ from the new lower graph. The
in-between graph gives edges from two adjacent points of the upper graph to one point
of the lower graph and also from the other two adjacent points of the upper graph to
the other point of the lower graph. The result is K3 �K2.

For (2), the Cayley graph consists of two squares inside each other (the solid lines),
whereK2 in Figure 11 is replaced by C4 in a suitable way. With the new lower graph,
the inner square becomes K4 with all loops. The in-between graph gives edges as in
(1), but now to 0˛ and 2˛.

So in both cases we get a planar graph.

To prove necessity, note that the situations like Z2 � Z2

.inj;c0/����! Z2n, n > 2, are
excluded by Lemma 13.4.10. The rest comes from Lemma 13.4.8.

Next we turn to the Clifford semigroup S with Dn as lower group.

Theorem 13.5.5. Take the Clifford semigroup S D .Aˇ

S

DnI fˇ;˛/ with n � 2.
Then S is planar if and only if jAˇ j � 2.

Proof. To show sufficiency, take generating elements a and b of Dn, both of order
2, and jAˇ j D 1 or Aˇ D Z2. With the constant defining homomorphism, the arcs
of the in-between graph are .0; a/; .0; b/ or .0; a/; .1; a/; .0; b/; .1; b/, which provide
planar drawings.

With the injective defining homomorphism fˇ;˛ WZ2!DnD ¹1Dn
; a; b; ab; : : : º,

we may assume that fˇ;˛.1/ D c where c 2 Dn is the third element of order 2.
Then the in-between graph in Cay.Z2

S

Dn; ¹1; a; bº/ has the arcs .0; a/; .0; b/ and
.1; ca/; .1; cb/, which provides a planar drawing. Note that inD3 D S3, for instance,
we have c D aba D bab and thus ca D ab and cb D ba.

To prove necessity, suppose that jAˇ j > 2; then we get from Lemma 13.4.6 that
the Cayley graph is not planar for the constant defining homomorphism.

Suppose now that fˇ;˛ ¤ c0. Again, we set Dn D h¹a; bºi. We may assume that
fˇ;˛.e

0/ D d for some element d 2 Dn which has suitable order, where e0 is an ele-
ment in a genus-minimal generating set Cˇ of Aˇ . To see that Cay.Aˇ

S

Dn; Cˇ

S

¹a; bº/ is not planar, we look atD2 Š Z2 �Z2 consisting of the elements e D .0; 0/,
11 D .1; 0/, 12 D .0; 1/ and 1112 D .1; 1/, and Aˇ D Z4 D ¹0; 1; 2; 3º, e0 D 1.
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Then we get K3;3 with the vertex set partition ¹0; e; 1112/ºS¹e0; 11; 12/º. Figures 13
and 14 show Cay.Z4

S

D2; ¹1; 11; 12º/ and its subdivision homeomorphic to K3;3.
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Now we collect the previous results and classify planar Clifford semigroups of the
form S D Aˇ

S

A˛ with ˇ > ˛.

Corollary 13.5.6. Take the Clifford semigroup S D .Aˇ

S

A˛I fˇ;˛/. Then S is
planar if and only if Aˇ and A˛ are planar groups and one of the following cases
occurs:

Case 1. Aˇ D ¹0º or Aˇ D Z2 and:

(a) ¹0º �! Dn; A4; S4; A5;Z2 � Z2n; or

(b) Z2
c0�! Dn; A4; S4; A5;Z2 � Z2n; or

(c) Z2

inj�! Dn.

Case 2. Aˇ D Zm and:

(a) Zm
c0�! Zn; or

(b) Zm
id�! Zm; or

(c) Zm

inj�! Z2m.

Case 3. Aˇ D Dm and:

(a) Dm
c0�! Zn; or

(b) Z2 � Z2

.id;c0/����! Z2 or Z2 � Z2

.c0;id/����! Z2; or

(c) Z2 � Z2

.inj;c0/����! Z4 or Z2 � Z2

.c0;inj/����! Z4.

Proof. Sufficiencies come from the results in this section.
Necessities, in addition, use some results come from Section 13.4.
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Project 13.5.7.
(1) Take the semilattice Y in the form of K1;n with minimum ˛ D K1. Then

S D S

�2Y A� is planar if A˛ is cyclic and jAˇi
j D 1 for i D 1; : : : ; n. Show

that n can be infinite. Moreover, S D S

�2Y A� is planar for planar A˛ with
two generators if jAˇi

j D 1 and i D 1; 2.

(2) Take the semilattice Y in the form of a three-element chain ˛ < ˇ < � . Then
S D S

�2Y A� with planar A˛ is planar if (and only if?) A˛ has at most two
(planar) generators and jAˇ j D jA� j D 1. But S is non-planar if the chain has
more than three elements.

(3) Are there other planar Clifford semigroups consisting of more than two groups?

(4) Are there toroidal Clifford semigroups consisting of toroidal groups?

13.6 Comments

I see an opportunity to catalogue all planar Clifford semigroups.
Moreover, besides the genus of strong semilattices of groups and the genus of right

and left groups, one might want to consider the genus of strong semilattices of right
or left groups. Here the results and examples of Section 11.5 will be quite useful.

The question of planar semigroups which are direct product of cyclic semigroups,
has been brought up by D. V. Solomatin, for example in Direct products of cyclic semi-
groups admitting a planar Cayley graph, Siberian Electronic Mathematical Reports 3
(2006) 238–252, http://semr.math.nsc.ru (in Russian).

The question at the end of Section 13.2 leads in another direction, namely the non-
orientable genus of semigroups. Note that – in analogy to Kuratowski’s theorem (The-
orem 13.1.9) – the list of forbidden subgraphs for graphs of non-orientable genus 1,
which could be called Möbius graphs or projective graphs, contains 103 graphs;
compare Theorem 11-31 in [White 2001].

Recall also Remark 11.2.4: A study of semigroups which are subdirect products, as
presented in [Petrich/Reilly 1999], will lead to many interesting questions concerning
the interaction between semigroups and graphs, among them the questions of their
genus.

The recently published book by A. K. Zvonkin and S. K. Lando, Graphs on Sur-
faces and their Embedding, Moskva 2010 (in Russian), is related to the subject of this
chapter, but goes far beyond of what we have discussed here. The authors of this book
cite Grothendieck with the words “the objects are so simple that a child will discover
them when playing”, I suppose that in the first line planar graphs are meant.

This leads me to another book (in Russian), which cares about this aspect and
starts with planar graphs: Larisa. Ju. Berezina, Graphs and their Applications, a
popular book for pupils and teachers, URSS Moskva 2009. I just mention quantum
field theory and Galois theory in connection with Grothendieck’s program, precise
references can be found in the book.
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