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The objective of Statistical Methods, Second Edition, is to provide students
with a working introduction to statistical methods. Courses using this book are
normally taken by advanced undergraduate statistics students and graduate
students from various disciplines.

Statistical Methods is an upper-level requirement for undergraduate de-
grees in disciplines emphasizing quantitative skills, or a requirement for grad-
uate degrees in disciplines where statistics is an important research tool. This
book is intended to be used for this type of course. The material in this book
provides an overview of a wide range of applications and normally requires two
semesters, although a limited knowledge of statistical methods is provided in
the first semester. Many students will continue with several additional courses
in specialized statistics applications.

Traditionally, textbooks used for statistical methods courses have em-
phasized plugging numbers into formulas, with computer usage as an af-
terthought. This approach has led to much mind-numbing drill, which obscures
the real issues. The increased usage of computers and availability of com-
prehensive statistical software packages would seem to imply that statistical
methods should now be taught in terms of implementing such software. This
approach is likely to make the computer appear as a black box into which one
pours data files and automatically receives the correct answers. However, a
computer does not know whether it is doing the correct analysis and is capable
of a beautifully annotated execution of an incorrect analysis. Also a computer
cannot interpret results and write a report.

-l Guiding Principles

This text provides a reasonable compromise between these two extremes. Our
guiding principles are as follows:

® No mathematics beyond algebra is required. However, mathematically ori-
ented students may still find the material in this book challenging, especially
if they are also exposed to courses in statistical theory.
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® Formulas are presented primarily to show the how and why of a particular
statistical analysis. For that reason, there is a minimal number of exercises
that plug numbers into formulas.

® The topics in this book are organized in broad categories to facilitate the
choice of the best-performance methodology for a specific task and there
is considerable cross-referencing to facilitate making this choice.

e All examples containing real data are worked to a logical conclusion, in-
cluding interpretation of results. Where computer printouts are used, the
results are discussed and explained. In general, the emphasis is on conclu-
sions rather than mechanics.

® Throughout the book we stress that certain assumptions about the data
must be fulfilled in order for the statistical analyses to be valid, and we
emphasize that although the assumptions are often fulfilled, they should be
routinely checked.

-I New to This Edition

® Friendlier exposition makes concepts clearer to students without weak-
ening the statistical rigor of the material.

® New, greater emphasis on graphics help students to visualize and under-
stand ideas.

° Examples of contemporary topics, such as analysis of means, are included
at appropriate points in the text.

e FExercises or portions of exercises are identified when material is covered
from specific sections, allowing students to practice the methods without
having to wait until a complete chapter is covered.

°* FExamples and exercises contain both contemporary data and references
to additional data on the Internet or in other published works.

Using This Book

-I Organization

The organization of Statistical Methods, Second Edition, follows the “classi-
cal” order. The formulas in the book are generally the so-called definitional
ones that emphasize concepts rather than computational efficiency. These for-
mulas can be used for a few of the very simplest examples and problems,
but we expect that virtually all exercises will be implemented on computers.
The first seven chapters, which are normally covered in a first semester, cover
data description, probability and sampling distributions, basics of inference
for one and two sample problems, the analysis of variance, and one-variable
regression. The second portion of the book starts with chapters on multiple
regression, factorial experiments, experimental design, and an introduction to
general linear models including the analysis of covariance. We have separated



Preface xix

Coverage

-l Sequencing

-I Exercises

factorial experiments and design of experiments, because they are different
applications of the same numeric methods.

The last three chapters introduce topics in the analysis of categorical data,
nonparametric statistics, and sampling. These chapters provide a brief intro-
duction to these important topics and are intended to round out the statistical
education of those who will learn from this book.

This book contains more material than can be covered in a two-semester
course. We have purposely done this for two reasons:

® Because of the wide variety of audiences for statistical methods, not all
instructors will want to cover the same material. For example, courses with
heavy enrollments of students from the social and behavioral sciences will
want to emphasize nonparametric methods and the analysis of categorical
data with less emphasis on experimental design.

¢ Students who have taken statistical methods courses tend to keep their
statistics books for future reference. We recognize that no single book will
ever serve as a complete reference, but we hope that the broad coverage in
this book will at least lead these students in the proper direction when the
occasion demands.

For the most part, topics are arranged so that each new topic builds on previous
topics, hence course sequencing should follow the book. There are, however,
some exceptions that may appeal to some instructors:

® In some cases it may be preferable to present the material on categorical
data at an early stage. Much of the material in Chapter 12 (Categorical Data)
can be taught anytime after Chapter 5 (Inferences for Two Populations).

® Some instructors prefer to present nonparametric methods along with para-
metric methods. Again, any of the material in Chapter 13 (Nonparametric
Methods) may be taken at any time after Chapter 3 (Principles of Inference).

Properly assigned and executed exercises are an integral part of any course
in statistical methods. We have placed all exercises at the ends of chapters
to emphasize problem solving rather than mechanics for particular methods.
This placement may have the unintended consequence that students may delay
starting these exercises until the chapters have been completed, resulting in
uneven workloads. To alleviate this potential problem we have placed instruc-
tions on initiating work on exercises throughout some of the longer chapters.
Students are also encouraged to do all examples. Data files for all exercises
and examples are available from the publisher.
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-I Computing

For consistency and convenience and because it is the most widely used single
statistical computing package, we have relied heavily on the SAS® System to
illustrate examples in this text. However, because student access to computers
in general, and the SAS System in particular, is not universal, we have provided
generic rather than software specific instructions for performing the analyses
for examples and exercises.

Instructional material is available from specific software vendors and an
increasing amount of independently published material is becoming available.
For those who wish to use the SAS System, data and code for performing the
analyses for examples and exercises are available on ASCII files. The data
portion of these files can be adapted for use with other software.

Data Sets are available on the Web. Please contact the sales representative or
the publisher for further details.
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Data and Statistics

1.1 Introduction

To most people the word statistics conjures up images of vast tables of
confusing numbers, volumes and volumes of figures pertaining to births,
deaths, taxes, populations, and so forth, or figures indicating baseball batting
averages or football yardage gained flashing across television screens. This
is so because in common usage the word statistics is synonymous with the
word data. In a sense this is a reasonably accurate impression because the dis-
cipline of statistics deals largely with principles and procedures for collecting,
describing, and drawing conclusions from data. Therefore it is appropriate for
a text in statistical methods to start by discussing what data are, how data are
characterized, and what tools are used to describe a set of data. The purpose
of this chapter is to

. provide the definition of a set of data,

. define the components of such a data set,

. present tools that are used to describe a data set, and briefly
. discuss methods of data collection.

= WO DO =

DEFINITION 1.1
A set of data is a collection of observed values representing one or more
characteristics of some objects or units.

m A typical data set Every year, the National Opinion Research Center

(NORC) publishes the results of a personal interview survey of U.S. house-
holds. This survey is called the General Social Survey (GSS) and is the basis
for many studies conducted in the social sciences. In the 1996 GSS, a total of

1




Chapter 1 Data and Statistics

2904 households were sampled and asked over 70 questions concerning life-
styles, incomes, religious and political beliefs, and opinions on various topics.
Table 1.1 lists the data for a sample of 50 respondents on four of the questions
asked. This table illustrates a typical mid-sized data set. Each of the rows cor-
responds to a particular respondent (labeled 1 through 50 in the first column).
Each of the columns, starting with column two, are responses to the following
four questions:

1. AGE: The respondent’s age in years
2. SEX: The respondent’s sex coded 1 for male and 2 for female
3. HAPPY: The respondent’s general happiness, coded:
1 for “Not too happy”
2 for “Pretty happy”
3 for “Very happy”
4. TVHOURS: The average number of hours the respondent watched TV during
a day

This data set obviously contains a lot of information about this sample of
50 respondents. Unfortunately this information is hard to interpret when the
data are presented as shown in Table 1.1. There are just too many numbers to
make any sense of the data (and we are only looking at 50 respondents!). By
summarizing some aspects of this data set, we can obtain much more usuable
information and perhaps even answer some specific questions. For example,
what can we say about the overall frequency of the various levels of happiness?
Do some respondents watch a lot of TV? Is there a relationship between the
age of the respondent and his or her general happiness? Is there a relationship
between the age of the respondent and the number of hours of TV watched?

We will return to this data set in Section 1.9 after we have explored some
methods of summarizing and making sense of data sets like this one. As we
develop more sophisticated methods of analysis in later chapters, we will again
refer to this data set.! M

DEFINITION 1.2
A population is a data set representing the entire entity of interest.

For example, the decennial census of the United States yields a data set con-
taining information about all persons in the country at that time (theoretically
all households correctly fill out the census forms). The number of persons per
household as listed in the census data constitutes a population of family sizes
in the United States. Similarly, the weights of all steers brought to an auction
by a particular rancher is a data set that is the population of the weights of
that rancher’s marketable steers.

Note that elements of a population are really measures rather than individ-
uals. This means that there can be many different definitions of populations
that involve the same collection of individuals. For example, the number of

IThe GSS is discussed on the Web page: http:/www.icpsr.umich.edu/GSS/.
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Chapter 1 Data and Statistics

-I Data Sources

school-age children per household as listed in the census data would constitute
a population for another study. As we shall see in discussions about statistical
inference, it is important to define the population that we intend to study very
carefully.

DEFINITION 1.3
A sample is a data set consisting of a portion of a population. Normally a
sample is obtained in such a way as to be representative of the population.

The Census Bureau conducts various activities during the years between each
decennial census, such as the Current Population Survey. This survey sam-
ples a small number of scientifically chosen households to obtain information
on changes in employment, living conditions, and other demographics. The
data obtained constitute a sample from the population of all households in the
country. If two steers were selected from a herd of steers brought to an auction
by a rancher, these two steers would be considered a sample from the herd.

Data come from many different sources, depending on the objective of the
particular study, the limitations of data collection resources, or any number of
other factors. However, in general, data are obtained from two broad categories
of sources:

° Primary data are collected as part of the study.
® Secondary data are obtained from published sources, such as journals,
governmental publications, news media, or almanacs.

There are several ways of obtaining primary data. Data are often obtained from
simple observation of a process, such as characteristics and prices of homes
sold in a particular geographic location, quality of products coming off an as-
sembly line, political opinions of registered voters in the state of Texas, or even
a person standing on a street corner and recording how many cars pass each
hour during the day. This kind of a study is called an observational study. Ob-
servational studies are often used to determine whether an association exists
between two or more characteristics measured in the study. For example, a
study to determine the relationship between high school student performance
and the highest educational level of the student’s parents would be based on
an examination of student performance and a history of the parents’ educa-
tional experiences. No cause-and-effect relationship could be determined, but
a strong association might be the result of such a study. Note that an observa-
tional study does not involve any intervention by the researcher.

Much primary data are obtained through the use of sample surveys such
as Gallup polls or the Nielsen TV ratings. Such surveys normally represent a
particular group of individuals and are intended to provide information on the
characteristics and/or habits of such a group. Chapter 14 provides some basic
principles for planning and conducting sample surveys.
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Often data used in studies involving statistics come from designed
experiments. In a designed experiment researchers impose treatments and
controls on the process and then observe the results and take measurements.
For example, in alaboratory experiment rats may be subjected to various noise
levels and the rapidity of their movements recorded. Designed experiments can
be used to help establish causation between two or more characteristics. For
example, a study could be designed to determine if high school student per-
formance is affected by a nutritious breakfast. By choosing a proper design
and conducting the experiment in a rigorous manner, an actual cause-and-
effect relationship might be established. Data from designed experiments are
considered a sample. For example, a study relating high school student perfor-
mance to breakfast may use as few as 25 typical urban high school students.
The results of the study would then be inferred to the population of all urban
high school students. Chapter 10 provides an introduction to experimental
designs.

-l Using the Computer

Today, comprehensive programs for conducting statistical and data analyses
are available in general-use spreadsheet software, graphing calculators, and
dedicated statistical software. A person rarely needs to write his or her own
programs, since they already exist for almost all aspects of statistics. Because
such a large number of such packages are currently available, it is impossible
to provide specific instructions for such usage in a single book. Although a
few exercises in the beginning of this book, especially those in Chapters 2-5,
can be done manually or with the aid of calculators, most exercises even
in these chapters, and all exercises in Chapters 8-11, will require the use
of a computer. In some examples we have included generic instructions for
effective computer usage.

For reasons of consistency and convenience we have used the SAS System
almost exclusively for examples in this book. The SAS System is a very compre-
hensive software package, of which statistical analysis is only a minor portion.
Because it is such a large system it may not be optimal for students to have
on their personal computers. We assume that additional instructions will be
available for the particular software you will be using. In a few instances, espe-
cially in the earlier chapters, output from several software packages are used
for comparative purposes.

Some general guidelines on using the computer for statistical analyses are,
however, useful. There are two types of statistical programs identified by the
method in which they accept instructions. Instructions are given to packages
either

® Dby submitting, usually on the computer keyboard, a set of statements that
describe the required analysis and options for specific tasks and outputs, or

® by providing menus that describe available analyses and options, which
are chosen by pointing with a mouse and clicking the desired analyses and
options.
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Each of these has advantages and disadvantages. The submitted statements
must usually adhere to a specific syntax and are subject to typographical
errors that cause error messages and aborted analyses. On the other hand
this method of implementing an analysis usually provides more flexibility and
alarger number of options. The “point and click” approach is easier to use but
often lacks flexibility.

The individual components of these packages are usually very comprehen-
sive in that they can perform a wide variety of tasks and the default output from
these components is often exhaustive. For example, this chapter presents vari-
ous graphical presentations for summarizing data, virtually all of which can be
performed by a single such component of most packages. Chapter 6 presents
the “one way” analysis of variance for comparing a set of means. Most soft-
ware not only does this analysis, but also can perform the analyses covered
in Chapters 9 and 10 and additional methods beyond the scope of this book.
For this reason it is important to be precise in specifying analysis and output
options that pertain to a specific problem. Requesting inappropriate options
may cause confusing outputs.

Each software package has its own style of output. However, most will
contain essentially the same results, although they may appear in a different
order and may even have different labels. It is therefore important to study the
documentation of any package being used. We should note that most computer
outputs in this book have been abbreviated because the full default output
often contains information not needed at that particular time, although in a
few instances we have presented the full output for illustration purposes.

If a set of data represents an entire population, the techniques presented
in this chapter can be used to describe various aspects of that population and
a statistical analysis using these descriptors is useful solely for that purpose.
However, as is more often the case, the data to be analyzed come from a
sample. In this case, the descriptive statistics obtained may subsequently be
used as tools for statistical inference. A general introduction to the concept
of statistical inference is presented in Section 1.8, and most of the remainder
of this text is devoted to that subject.

1.2 Observations and Variables

A data set is composed of information from a set of units. Information from
a unit is known as an observation. An observation consists of one or more
pieces of information about the unit; these are called variables. Some
examples:

® In a study of the effectiveness of a new headache remedy, the units are
individual persons, of which 10 are given the new remedy and 10 are given
an aspirin. The resulting data set has 20 observations and two variables: the
medication used and a score indicating the severity of the headache.

® Inasurvey for determining TV viewing habits, the units are families. Usually
there is one observation for each of thousands of families that have been
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contacted to participate in the survey. The variables describe the programs
watched as well as descriptions of the characteristics of the families.

® In a study to determine the effectiveness of a college admissions test
(e.g., SAT) the units are the freshmen at a university. There is one observa-
tion per unit and the variables are the students’ scores on the test and their
first year’s GPA.

Variables that yield nonnumerical information are called qualitative vari-
ables. Qualitative variables are often referred to as categorical variables.
Those that yield numerical measurements are called quantitative variables.
Quantitative variables can be further classified as discrete or continuous. The
diagram below summarizes these definitions:

Variable

Qualitative Quantitative

[\

Discrete Continuous

DEFINITION 1.4

A discrete variable can assume only a countable number of values.
Typically, discrete variables are frequencies of observations having
specific characteristics, but all discrete variables are not necessarily
frequencies.

DEFINITION 1.5

A continuous variable is one that can take any one of an uncountable
number of values in an interval. Continuous variables are usually mea-
sured on a scale and, although they may appear discrete due to imprecise
measurement, they can conceptually take any value in an interval and
cannot therefore be enumerated.

In the field of statistical quality control, the term variable data is used when
referring to data obtained on a continuous variable and attribute data when
referring to data obtained on a discrete variable (usually the number of defec-
tives or nonconformities observed).

In the preceding examples, the names of the headache remedies and names
of TV programs watched are qualitative (categorical) variables. Headache
severity scoresis a discrete numeric variable, incomes of TV-watching families,
and SAT and GPA scores are continuous quantitative variables.

We will use the data set in Example 1.2 to present greater detail on various
concepts and definitions regarding observations and variables.
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In the fall of 2001, John Mode was offered a new job in a mid-sized city
in east Texas. Obviously, the availability and cost of housing will influence
his decision to accept, so he and his wife Marsha go to the Internet, find
www.realtor.com, and after a few clicks find some 500 single-family residences
for sale in that area. In order to make the task of investigating the housing
market more manageable, they arbitrarily record the information provided on
the first home on each page of six. This information results in a data set that
is shown in Table 1.2.

The data set gives information on 69 homes, which comprise the observations
for this data set. In this example, each property is a unit, often called a sample,
experimental, or observational unit.2 The 11 columns of the table provide spe-
cific characteristics information for each home and compose the 11 variables
of this data set. The variable definitions along with brief mnemonic descriptors
commonly used in computers are as follows:

* 0Obs®: asequential number assigned to each observation as it is entered into
the computer. This is useful for identifying individual observations.

® zip:the last digit of the postal service zip code. This variable identifies the

area in which the home is located.

age: the age of the home in years.

bed: the number of bedrooms.

bath: the number of bathrooms.

size: the interior area of the home in square feet.

lot: the size of the lot in square feet.

exter: the exterior siding material.

garage: the capacity of the garage; zero means no garage.

fp: the number of fireplaces.

price: the price of the home, in dollars.

The elements of each row define the observed values of the variables. Note that
some values are represented by “.”. In the SAS System, and other statistical
computing packages, this notation specifies a missing value; that is, no infor-
mation on that variable is available. Such missing values are an unavoidable
feature in many date sets and occasionally cause difficulties in analyzing the
data.

Brief mnemonic identifiers such as these are used by computer programs to
make their outputs easier to interpret and are unique for a given set of data.
However, for use in formulas we will follow mathematics convention, where
variables are generically identified by single letters taken from the latter part

2These different types of units are not always synonymous. For example, an experimental unit may
be an animal subjected to a certain diet while the observational units may be several determinations
of the weight of the animal at different times. Unless otherwise specified, most of the methods
presented in this book are based on the assumption that the three are synonymous and will usually
be referred to as experimental units.

3The term Obs is used by the SAS System. Other computer software may use other notations.
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Table 1.2 Housing Data

Obs zip age bed bath size lot exter garage fp price
1 3 21 3 3.0 951 64904 Other 0 0 30000
2 3 21 3 2.0 1036 217800 Frame 0 0 39900
3 4 7 1 1.0 676 54450 Other 2 0 46500
4 3 6 3 2.0 1456 51836 Other 0 1 48600
5 1 51 3 1.0 1186 10857 Other 1 0 51500
6 2 19 3 2.0 1456 40075 Frame 0 0 56990
7 3 8 3 2.0 1368 . Frame 0 0 59900
8 4 27 3 1.0 994 11016 Frame 1 0 62500
9 1 51 2 1.0 1176 6259 Frame 1 1 65500

10 3 1 3 2.0 1216 11348 Other 0 0 69000
11 4 32 3 2.0 1410 25450 Brick 0 0 76900
12 3 2 3 2.0 1344 . Other 0 1 79000
13 3 25 2 2.0 1064 218671 Other 0 0 79900
14 1 31 3 1.5 1770 19602 Brick 0 1 79950
15 4 29 3 2.0 1524 12720 Brick 2 1 82900
16 3 16 3 2.0 1750 130680 Frame 0 0 84900
17 3 20 3 2.0 1152 104544 Other 2 0 85000
18 3 18 4 2.0 1770 10640 Other 0 0 87900
19 4 28 3 2.0 1624 12700 Brick 2 1 89900

20 2 27 3 2.0 1540 5679 Brick 2 1 89900

21 1 8 3 2.0 1532 6900 Brick 2 1 93500

22 4 19 3 2.0 1647 6900 Brick 2 0 94900

23 2 3 3 2.0 1344 43560 Other 1 0 95800

24 4 5 3 2.0 1550 6575 Brick 2 1 98500

25 4 5 4 2.0 1752 8193 Brick 2 0 99500

26 4 27 3 1.5 1450 11300 Brick 1 1 99900

27 4 33 2 2.0 1312 7150 Brick 0 1 102000

28 1 4 3 2.0 1636 6097 Brick 1 0 106000

29 4 0 3 2.0 1500 . Brick 2 0 108900

30 2 36 3 2.5 1800 83635 Brick 2 1 109900

31 3 5 4 2.5 1972 7667 Brick 2 0 110000

32 3 0 3 2.0 1387 . Brick 2 0 112290

33 4 27 4 2.0 2082 13500 Brick 3 1 114900

34 3 15 3 2.0 . 269549 Frame 0 0 119500

35 4 23 4 2.5 2463 10747 Brick 2 1 119900

36 4 25 3 2.0 2572 7090 Brick 2 1 119900

37 4 24 4 2.0 2113 7200 Brick 2 1 122900

38 4 1 3 2.5 2016 9000 Brick 2 1 123938

39 1 34 3 2.0 1852 13500 Brick 2 0 124900

40 4 26 4 2.0 2670 9158 Brick 2 1 126900

41 2 26 3 2.0 2336 5408 Brick 0 1 129900

42 4 31 3 2.0 1980 8325 Brick 2 1 132900

43 2 24 4 2.5 2483 10295 Brick 2 1 134900

44 2 29 5 2.5 2809 15927 Brick 2 1 135900

45 4 21 3 2.0 2036 16910 Brick 2 1 139500

46 3 10 3 2.0 2298 10950 Brick 2 1 139990

47 4 3 3 2.0 2038 7000 Brick 2 0 144900

48 2 9 3 2.5 2370 10796 Brick 2 1 147600

49 2 29 5 3.5 2921 11992 Brick 2 1 149990

50 2 8 3 2.0 2262 Brick 2 1 152550

(Continued)
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Table 1.2 (continued)

Obs zip age bed bath size lot exter garage fp price
51 4 7 3 3.0 2456 . Brick 2 1 156900
52 4 1 4 2.0 2436 52000 Brick 2 1 164000
53 3 27 3 2.0 1920 226512 Frame 4 1 167500
54 4 5 3 2.5 2949 11950 Brick 2 1 169900
55 2 32 4 3.5 3310 10500 Brick 2 1 175000
56 4 29 3 3.0 2805 16500 Brick 2 1 179000
57 4 1 3 3.0 2553 8610 Brick 2 1 179900
58 4 1 3 2.0 2510 . Other 2 1 189500
59 4 33 3 4.0 3627 17760 Brick 3 1 199000
60 2 25 4 2.5 3056 10400 Other 2 1 216000
61 3 16 3 2.5 3045 168576 Brick 3 1 229900
62 4 2 4 4.5 3253 54362 Brick 3 2 285000
63 2 2 4 3.5 4106 44737 Brick 3 1 328900
64 4 0 3 2.5 2993 . Brick 2 1 313685
65 4 0 3 2.5 2992 14500 Other 3 1 327300
66 4 20 4 3.0 3055 250034 Brick 3 0 349900
67 4 18 5 4.0 3846 23086 Brick 4 3 370000
68 4 3 4 4.5 3314 43734 Brick 3 1 380000
69 4 5 4 3.5 3472 130723 Brick 2 2 395000

of the alphabet. For example the letter ¥ can be used to represent the variable
price. The same lowercase letter, augmented by a subscript identifying the
observation number, is used to represent the value of the variable for a par-
ticular observation. Using this notation, ¥; is the observed price of the ith
house. Thus, y; = 30000, ys =39900, ..., yg = 395000. The set of observed val-
ues of price can be symbolically represented as yi, o, ..., ¥, OF ¥;, T =
1,2, ..., 69. The total number of observations is symbolically represented by
the letter n; for the data in Table 1.2, n = 69. We can generically represent the
values of a variable Y, as y;, 7 = 1, 2, ..., n. We will most frequently use Y as
the variable and y; as observations of the variable of interest. M

1.3 Types of Measurements for Variables

We usually think of data as consisting of numbers, and certainly many data
sets do contain numbers. In Example 1.2, for instance, the variable price is
the asking price of the home, measured in dollars. This measurement indicates
a definite metric or scale in the values of the variable price. Certainly a
$200,000 house costs twice as much as a $100,000 house. As we will see later,
not all variables that measure a quantity have this characteristic. However, not
all data necessarily consist of numbers. For example, the variable exter is
observed as either brick, frame, or other, a measurement that does not
convey any relative value. Further, variables that are recorded as numbers do
not necessarily imply a quantitative measurement. For example, the variable
zip simply locates the home in some specific area and has no quantitative
meaning.
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We can classify observations according to a standard measurement scale
that goes from “strong” to “weak” depending on the amount or precision of
information available in the scale. These measurement scales are discussed
at some length in various publications, including Conover (1998). We present
the characteristics of these scales in some detail since the nature of the data
description and statistical inference is dependent on the type of variable being
studied.

DEFINITION 1.6
The ratio scale of measurement uses the concept of a unit of distance
or measurement and requires a unique definition of a zero value.

Thus, in the ratio scale the difference between any two values can be expressed
as some number of these units. Therefore, the ratio scale is considered the
“strongest” scale since it provides the most precise information on the value
of avariable. Itis appropriate for measurements of heights, weights, birth rates,
and so on. In the data set in Table 1.2, all variables except zip and exter are
measured in the ratio scale.

DEFINITION 1.7

The interval scale of measurement also uses the concept of distance or
measurement and requires a “zero” point, but the definition of zero may
be arbitrary.

The interval scale is the second “strongest” scale of measurement, because
the “zero” is arbitrary. An example of the interval scale is the use of degrees
Fahrenheit or Celsius to measure temperature. Both have a unit of measure-
ment (degree) and a zero point, but the zero point does not in either case
indicate the absence of temperature. Other popular examples of interval vari-
ables are scores on psychological and educational tests, in which a zero score is
often not attainable but some other arbitrary value is used as a reference value.

We will see that many statistical methods are applicable to variables of
either the ratio or interval scales in exactly the same way. We therefore usually
refer to both of these types as numeric variables.

DEFINITION 1.8

The ordinal scale distinguishes between measurements on the basis of
the relative amounts of some characteristic they possess. Usually the
ordinal scale refers to measurements that make only “greater,” “less,” or
“equal” comparisons between consecutive measurements.

In other words, the ordinal scale represents a ranking or ordering of a set
of observed values. Usually these ranks are assigned integer values starting
with “1” for the lowest value, although other representations may be used. The
ordinal scale does not provide as much information on the values of a variable
and is therefore considered “weaker” than the ratio or interval scale.
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Table 1.3 For example, if a person were asked to taste five chocolate pies and rank
E . them according to taste, the result would be a set of observations in the ordinal
xample of Ordinal Data
scale of measurement.
Pie  Rank A set of data illustrating an ordinal variable is given in Table 1.3. In this
_— data set, the “1” stands for the most preferred pie while the worst tasting pie
1 4 receives the rank of “5.” The values are used only as a means of arranging
2 3 the observations in some order. Note that these values would not differ if pie
i ; number 3 were clearly superior or only slightly superior to pie number 4.
5 5 It is sometimes useful to convert a set of observed ratio or interval values to

aset of ordinal values by converting the actual values to ranks. Ranking a set of
actual values induces a loss of information, since we are going from a stronger
to aweaker scale of measurement. Ranks do contain useful information and, as
we will see (especially in Chapter 13), may provide a useful base for statistical
analysis.

DEFINITION 1.9
The nominal scale identifies observed values by name or classification.

A nominally scaled variable is also often called a categorical or qualitative
variable. Although the names of the classifications may be represented by
numbers, these are used merely as a means of identifying the classifications
and are usually arbitrarily assigned and have no quantitative implications. Ex-
amples of nominal variables are sex, breeds of animals, colors, and brand
names of products. Because the nominal scale provides no information on dif-
ferences among the “values” of the variable, it is considered the weakest scale.
In the data in Table 1.2, the variable describing the exterior siding material is
a nominal variable.

We can convert ratio, interval, or ordinal scale measurements into nomi-
nal level variables by arbitrarily assigning “names” to them. For example, we
can convert the ratio-scaled variable size into a nominal-scaled variable, by
defining homes with less than 1000 square feet as “cottages,” those with more
than 1000 but less than 3000 as “family sized,” and those with more than 3000
as “estates.”

Note that the classification of scales is not always completely clear-cut.
For example, the “scores” assigned by judges for track or gymnastic events
are usually treated as possessing the ratio scale but are probably closer to
being ordinal in nature.

1.4 Distributions

Very little information about the characteristics of recently sold houses can be
acquired by casually looking through Table 1.2. We might be able to conclude
that most of the houses have brick exteriors, or that the selling price of houses
ranges from $30,000 to $395,000, but a lot more information about this data set
can be obtained through the use of some rather simple organizational tools.
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Table 1.4

Distribution of exter

exter Frequency

Brick 48

Frame 8

Other 13
Table 1.5

Distribution of zip

To provide more information, we will construct frequency distributions
by grouping the data into categories and counting the number of observations
that fall into each one. Because we want to count each house only once, these
categories (called classes) are constructed so they don’t overlap. Because we
count each observation only once, if we add up the number (called the fre-
quency) of houses in all the classes, we get the total number of houses in
the data set. Nominally scaled variables naturally have these classes or cat-
egories. For example, the variable exter has three values, Brick, Frame,
and Other. Handling ordinal, interval, and ratio scale measurements can be a
little more complicated, but, as subsequent discussion will show, we can easily
handle such data simply by correctly defining the classes.

Once the frequency distribution is constructed, it is usually listed in tabular
form. For the variable exter from Table 1.2 we get the frequency distribution
presented in Table 1.4. Note that one of our first impressions is substantiated by
the fact that 48 of the 69 houses are brick while only 8 have frame exteriors. This
simple summarization shows how the frequency of the exteriors is distributed
over the values of exter.

DEFINITION 1.10
A frequency distribution is a listing of frequencies of all categories of
the observed values of a variable.

We can construct frequency distributions for any variable. For example,
Table 1.5 shows the distribution of the variable zip, which despite having
numeric values, is actually a categorical variable. This frequency distribution is
produced by Proc Freq of the SAS System where the frequency distribution
is shown in the column labeled Frequency. Apparently the area represented
by zip code 4 has the most homes for sale.

DEFINITION 1.11

A relative frequency distribution consists of the relative frequen-
cies, or proportions (percentages), of observations belonging to each
category.

The relative frequencies expressed as percents are provided in Table 1.5 under
the heading Percent and are useful for comparing frequencies among cate-
gories. These relative frequencies have a useful interpretation: They give the

THE FREQ PROCEDURE
Cumulative Cumulative
zip Frequency Percent Frequency Percent
1 6 8.70 6 8.70
2 13 18.84 19 27.54
3 16 23.19 35 50.72
4 34 49.28 69 100.00
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Table 1.6

Distribution of Home
Prices in Intervals of
$50,000

THE FREQ PROCEDURE
Cumulative Cumulative
Range Frequency Percent Frequency Percent
less than 50k 4 5.80 4 5.80
50k to 100k 22 31.88 26 37.68
100k to 150k 23 33.33 49 71.01
150k to 200k 10 14.49 59 85.51
200k to 250k 2 2.90 61 88.41
250k to 300k 1 1.45 62 89.86
300k to 350k 4 5.80 66 95.65
350k to 400k 3 4.35 69 100.00

chance or probability of getting an observation from each category in a blind
or random draw. Thus if we were to randomly draw an observation from the
data in Table 1.5, there is an 18.84% chance that it will be from zip area 2. For
this reason a relative frequency distribution is often referred to as an observed
or empirical probability distribution (Chapter 2).

Constructing a frequency distribution of a numeric variable is a little more
complicated. Defining individual values of the variable as categories will usu-
ally only produce a listing of the original observations since very few, if any,
individual observations will normally have identical values. Therefore, it is
customary to define categories as intervals of values, which are called class
intervals. These intervals must be nonoverlapping and usually each class in-
terval is of equal size with respect to the scale of measurement. A frequency
distribution of the variable price is shown in Table 1.6. The table is produced
by Proc Freq, but because SAS does not automatically generate class inter-
vals, it was necessary to write a short program to produce those shown in the
table. Clearly the preponderance of homes is in the 50- to 150-thousand-dollar
range.

The column labeled Cumulative Frequency in Table 1.6 is the cumula-
tive frequency distribution, which gives the frequency of observed values
less than or equal to the upper limit of that class interval. Thus, for example,
59 of the homes are priced at less than $200,000. The column labeled Cumula-
tive Percent is the cumulative relative frequency distribution, which gives
the proportion (percentage) of observed values less than the upper limit of
that class interval. Thus the 59 homes priced at less than $200,000 represent
85.51% of the number of homes offered. We will see later that cumulative rela-
tive frequencies — especially those near 0 and 100% — can be of considerable
importance.

-I Graphical Representation of Distributions

Using the principle that a picture is worth a thousand words (or numbers),
the information in a frequency distribution is more easily grasped if it is pre-
sented in graphical form. The most common graphical presentation of a fre-
quency distribution for numerical data is a histogram while the most common
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Figure 1.1
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presentation for nominal, categorical, or discrete data is a bar chart. Both
these graphs are constructed in the same way. Heights of vertical rectangles
represent the frequency or the relative frequency. In a histogram, the width
of each rectangle represents the size of the class and the rectangles are usu-
ally contiguous and of equal width so that the areas of the rectangles reflect
the relative frequency. In a bar chart the width of the rectangle has no mean-
ing; however, all the rectangles should be the same width to avoid distortion.
Figure 1.1 shows a frequency bar chart for exter from Table 1.2 which shows
the large proportion of brick homes clearly. Figure 1.2 shows a frequency his-
togram for price, clearly showing the preponderance of homes selling from
50 to 150 thousand dollars.

Another presentation of a distribution is provided by a pie chart which is
simply a circle (pie) divided into a number of slices whose sizes correspond
to the frequency or relative frequency of each class. Figure 1.3 shows a pie
chart for the variable zip. We have produced these graphs with different
programs and options to show that, although there may be slight differences
in appearances, the basic information remains the same.

The use of graphs and charts is pervasive in the news media, business and
economic reports, and governmental reports and publications, mainly due
to the ease of storage, retrieval, manipulation, and summary of large sets of
data using modern computers. Because of this, it is extremely important to
be able to evaluate critically the information contained in a graph or chart.
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Figure 1.2
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After all, a graphical presentation is simply a visual impression, which is quite
easy to distort. In fact, distortion is so easy and commonplace that in 1992
the Canadian Institute of Chartered Accountants deemed it necessary to begin
setting guidelines for financial graphics, after a study of hundreds of the annual
reports of major corporations reported almost 10% of the reports contained at
least one misleading graph that masked unfavorable data.

Whether intentional or by honest mistake, it is very easy to mislead with
an incorrectly presented chart or graph. Darrell Huff, in a book entitled How
to Lie with Statistics (1982) illustrates many such charts and graphs and
discusses various issues concerning misleading graphs. In general, a correctly
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constructed chart or graph should have

. all axes labeled correctly, with clearly identifiable scales,

. be captioned correctly,

. have bars and/or rectangles of equal width to avoid distortion,
. have sizes of figures properly proportioned, and

. contain only relevant information.

U s W DN =

Histograms of numeric variables provide information on the shape of a
distribution, a characteristic that we will later see to be of importance when
performing statistical analyses. The shape is roughly defined by drawing a
reasonably smooth line through the tops of the bars. In such a representation
of a distribution, the center is known as the “peak” and the ends as “tails.” If the
tails are of approximately equal length, the distribution is said to be symmetric.
Ifthe distribution has an elongated tail on toward the right side, the distribution
is skewed to the right and vice versa. Other features may consist of a sharp
peak and long “fat” tails, or a broad peak and short tails. We can see that the
distribution of price is slightly skewed to the right, which, in this case, is due
to a few unusually high prices. We will see later that recognizing the shape of
a distribution can be quite important.

We continue the study of shapes of distributions with another example.

The discipline of forest science is a frequent user of statistics. An important
activity is to gather data on the physical characteristics of a random sample of
trees in a forest. The resulting data may be used to estimate the potential yield
of the forest, to obtain information on the genetic composition of a particular
species, or to investigate the effect of environmental conditions.

Table 1.7 is a listing of such a set of data. This set consists of measurements of
three characteristics of 64 sample trees of a particular species. The researcher
would like to summarize this set of data in graphic form to aid in its interpre-
tation.

As we can see from Table 1.7, the data set consists of 64 observa-
tions of three ratio variables. The three variables are measurements character-
izing each tree and are identified by brief mnemonic identifiers in the column
headings as follows:

1. DFOOT, the diameter of the tree at one foot above ground level, measured
in inches,

HCRN, the height to the base of the crown measured in feet, and

3. HT, the total height of the tree measured in feet.

o

A histogram for the heights (HT) of the 64 trees is shown in Fig. 1.4 as
produced by PROC INSIGHT of the SAS System. Due to space limitations,
not all boundaries of class intervals are shown, but we can deduce that the
default option of PROC INSIGHT yielded a class interval width of 1.5 feet with
the first interval being from 20.25 to 21.75 and the last from 30.75 to 32.25.
In this program the user can adjust the size of class intervals by clicking on an
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Table 1.7 Data on Tree Measurements

OBS DFOOT HCRN HT OBS DFOOT HCRN HT OBS DFOOT HCRN HT
1 4.1 1.5 24.5 23 4.3 2.0 25.6 45 4.7 3.3 29.7
2 3.4 4.7 25.0 24 2.7 3.0 20.4 46 4.6 8.9 26.6
3 4.4 2.8 29.0 25 4.3 2.0 25.0 47 4.8 2.4 28.1
4 3.6 5.1 27.0 26 3.3 1.8 20.6 48 4.5 4.7 28.5
5 4.4 1.6 26.5 27 5.0 1.7 24.6 49 3.9 2.3 26.0
6 3.9 1.9 27.0 28 5.2 1.8 26.9 50 4.4 5.4 28.0
7 3.6 5.3 27.0 29 4.7 1.5 26.7 51 5.0 3.2 30.4
8 4.3 7.6 28.0 30 3.8 3.2 26.3 52 4.6 2.5 30.5
9 4.8 1.1 28.5 31 3.8 2.6 27.6 53 4.1 2.1 26.0

10 3.5 1.2 26.0 32 4.2 1.8 23.5 54 3.9 1.8 29.0

11 4.3 2.3 28.0 33 4.7 2.7 25.0 55 4.9 4.7 29.5

12 4.8 1.7 28.5 34 5.0 3.1 27.3 56 4.9 8.3 29.5

13 4.5 2.0 30.0 35 3.2 2.9 26.2 57 5.1 2.1 28.4

14 4.8 2.0 28.0 36 4.1 1.3 25.8 58 4.4 1.7 29.0

15 2.9 1.1 20.5 37 3.5 3.2 24.0 59 4.2 2.2 28.5

16 5.6 2.2 31.5 38 4.8 1.7 26.5 60 4.6 6.6 28.5

17 4.2 8.0 29.3 39 4.3 6.5 27.0 61 5.1 1.0 26.5

18 3.7 6.3 27.2 40 5.1 1.6 27.0 62 3.8 2.7 28.5

19 4.6 3.0 27.0 41 3.7 1.4 25.9 63 4.8 2.2 27.0

20 4.2 2.4 25.4 42 5.0 3.8 29.5 64 4.0 3.1 26.0

21 4.8 2.9 30.4 43 3.3 2.4 25.8

22 4.3 1.4 24.5 44 4.3 3.0 25.2

Figure 1.4
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arrow at the lower left (not shown in Fig 1.4) which causes a menu to pop
up allowing such changes. For example, by changing the first “tick” to 20,
the last to 32, and the “tick interval” to 2, the histogram will have 6 classes
instead of the 8 shown. Many graphics programs allow this type of interactive
modification. Of course, the basic shape of the distribution is not changed by
such modifications. Also note that in these histograms, the legend gives the
boundaries of the intervals; other graphic programs may give the midpoints.
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Figure 1.5

Histogram of HCRN
Variable

FREQUENCY

06 18 30 42 54 66 78 90
HCRN

The histogram for the variable HCRN is shown in Fig. 1.5. We can now see
that the distribution of HT is slightly skewed to the left while the distribution
of HCRN is quite strongly skewed to the right. M

1.5 Numerical Descriptive Statistics

Although distributions provide useful descriptions of data, they still contain too
much detail for some purposes. Assume, for example, that we have collected
data on tree dimensions from several forests for the purpose of detecting
possible differences in the distribution of tree sizes among these forests. Side-
by-side histograms of the distributions would certainly give some indication
of such differences, but would not produce measures of the differences that
could be used for quantitative comparisons. Numerical measures that provide
descriptions of the characteristics of the distributions, which can then be used
to provide more readily interpretable information on such differences, are
needed. Of course, since these are numerical measures, their use is largely
restricted to numeric variables, that is, variables measured in the ratio or
interval scales (see, however, Chapter 13).

Note that when we first started evaluating the tree measurement data
(Table 1.7) we had 64 observations to contend with. As we attempted to sum-
marize the data using a frequency distribution of heights and the accompanying
histogram (Fig. 1.4) we represented these data with only eight entries (classes).
We can use numerical descriptive statistics to reduce the number of entries
describing a set of data even further, typically using only using two numbers.
This action of reducing the number of items used to describe the distribu-
tion of a set of data is referred to as data reduction, which is unfortunately
accompanied by a progressive loss of information. In order to minimize the
loss of information, we need to determine the most important characteristics
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-I Location

of the distribution and find measures to describe these characteristics. The
two most important aspects are the location and the dispersion of the data.
In other words, we need to find a number that indicates where the observa-
tions are on the measurement scale and another to indicate how widely the
observations vary.

The most useful single characteristic of a distribution is some typical, average,
or representative value that describes the set of values. Such a value is referred
to as adescriptor of location or central tendency. Several different measures
are available to describe this concept. We present two in detail. Other measures
not widely used are briefly noted.

The most frequently used measure of location is the arithmetic mean, usu-
ally referred to simply as the mean.

DEFINITION 1.12
The mean is the sum of all the observed values divided by the number
of values.

Denoteby y;, 7 = 1, ..., n, an observed value of the variable Y, then the sample
mean* denoted by 7, is obtained by the formula
_ Yi
Y= Z_y
n

where the symbol > stands for “the sum of.” For example, the mean for DFOOT

in Table 1.7is 4.301, which is the mean diameter (at one foot above the ground)

of the 64 trees measured. A quick glance at the observed values of DFOOT

reveals that this value is indeed representative of the values of that variable.?
Another useful measure of location is the median.

DEFINITION 1.13

The median of a set of observed values is defined to be the middle value
when the measurements are arranged from lowest to highest; that is, 50%
of the measurements lie above it and 50% fall below it.

The precise definition of the median depends on whether the number of
observations is odd or even as follows:

1. If nis odd, the median is the middle observation; hence, exactly (n — 1)/2
values are greater than and (n — 1)/2 values are less than the median, re-
spectively.

1t is also often called the average. However, this term is often used as a generic term for any
unspecified measure of location and will therefore not be used in this context.

5Some small data sets suitable for practicing computations are available in the following as well
as in exercises at the end of the chapter.
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Data for Comparing
Mean and Median

Table 1.8
X Y
1 1
2 1
3 1
3 2
4 5
5 8

Figure 1.6
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2. If nis even, there are two middle values and the median is the mean of the
two middle values and 7n/2 values are greater than and 7/2 values are less
than the median, respectively.®

Although both mean and median are measures of central tendency, they do

differ in interpretation. For example, consider the following data for two vari-

ables, X and Y, given in Table 1.8:

We first compute the means
r=1/6)1+2+3+3+4+5)=30
and

G=(1/6)1+1+1+2+5+8)=30.

The means are the same for both variables.
Denoting the medians by m, and m,, respectively, and noting that there are
an even number of observations, we find

m, =B +3)/2=30
and
my =(1+2)/2=15.

The medians are different. The reason for the difference is seen by examining
the histograms of the two variables in Fig. 1.6.

The distribution of the variable X is symmetric, while the distribution of
the variable Y is skewed to the right. For symmetric or nearly symmetric

SIf there are some identical values of the variable, the phrase “or equal to” may need to be added
to these statements.



22

Chapter 1 Data and Statistics

distributions, the mean and median will be the same or nearly the same, while
for skewed distributions the value of the mean will tend to be “pulled” toward
the long tail. This phenomenon can be explained by the fact that the mean
can be interpreted as the center of gravity of the distribution. That is, if the
observations are viewed as weights placed on a plane, then the mean is the
position at which the weights on each side balance. It is a well-known fact of
physics that weights placed further from the center of gravity exert a larger
degree of influence (also called leverage); hence the mean must shift toward
those weights in order to achieve balance. However, the median assigns equal
weights to all observations regardless of their actual values; hence the extreme
values have no special leverage.

The difference between the mean and median is also illustrated by the
tree data (Table 1.7). The heights variable (HT) was seen to have a reasonably
symmetric distribution (Fig. 1.4). The mean diameter is 26.96 and its median is
27.0.” The variable HCRN has a highly right-skewed distribution (Fig. 1.5) and
its mean is 3.04, which is quite a bit larger than its median of 2.4.

Now that we have two measures of location, it is logical to ask which is
better? Which one should we use? Note that the mean is calculated using the
value of each observation, so all the information available from the data is
utilized. This is not so for the median. For the median we only need to know
where the “middle” of the data is. Therefore, the mean is the more useful mea-
sure and, in most cases, the mean will give a better measure of the location of
the data. However, as we have seen, the value of the mean is heavily influenced
by extreme values and tends to become a distorted measure of location for a
highly skewed distribution. In this case, the median may be more appropriate.

The choice of the measure to be used may depend on its ultimate interpre-
tation and use. For example, monthly rainfall data often contain a few very
large values corresponding to rare floods. For this variable, the mean does
indicate the total amount of water derived from rain but hardly qualifies as a
typical value for monthly rainfall. On the other hand, the median does qualify
as a typical value, but certainly does not reflect the total amount of water.

In general, we will use the mean as the single measure of location unless
the distribution of the variable is skewed. We will see later (Chapter 4) that
variables with highly skewed distributions can be regarded as not fulfilling the
assumptions required for methods of statistical analysis that are based on the
mean. In Section 1.6 we present some techniques that may be useful for detect-
ing characteristics of distributions that may make the mean an inappropriate
measure of location.

Other occasionally used measures of location are as follows:

1. The mode is the most frequently occurring value. This measure may not
be unique in that two (or more) values may occur with the same greatest

"It is customary to give a mean with one more decimal than the observed values. Computer pro-
grams usually give all decimal places that the space on the output allows. If a median corresponds
to an observed value (n odd), the value is presented as is; if it is the mean of two observations (n
even), the extra decimal may be used.
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-l Dispersion

Figure 1.7

Illustration of Dispersion

frequency. Also, the mode may not be defined if all values occur only once,
which usually happens with continuous numeric variables.

2. The geometric mean is the nth root of the product of the values of the n
observations. This measure is related to the arithmetic mean of the loga-
rithms of the observed values. The geometric mean cannot exist if there are
any values less than or equal to 0.

3. The midrange is the mean of the smallest and largest observed values. This
measure is not frequently used because it ignores most of the information in
the data. (See the following discussion of the range and similar measures.)

Although location is generally considered to be the most important single
characteristic of a distribution, the variability or dispersion of the values is
also very important. For example, it is imperative that the diameters of i—in.
nuts and bolts have virtually no variability, or else the nuts may not match the
bolts. Thus the mean diameter provides an almost complete description of the
size of a set of i-in. nuts and bolts. However, the mean or median incomes
of families in a city provide a very inadequate description of the distribu-
tion of that variable since a listing of incomes would include a wide range of
values.

Figure 1.7 shows histograms of two small data sets. Both have 10 observa-
tions, both have a mean of 5 and, since the distributions are symmetric, both
have a median of 5. However, the two distributions are certainly quite differ-
ent. Data set 2 may be described as having more variability since it has fewer
observations near the mean and more observations at the extremes of the
distribution.

The simplest and intuitively most obvious measure of variability is the
range, which is defined as the difference between the largest and smallest
observed values. Although conceptually simple, the range has one very serious
drawback: It completely ignores any information from all the other values in

FREQUENCY
FREQUENCY

0
1 2 3 45 6 7 8 9 1 2 3 4 5 6 7 8 9
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the data. This characteristic is also illustrated by the two data sets in Fig. 1.7.
Both of these data sets exhibit the same range (eight), but data set 2 exhibits
more variability.

Since greater dispersion means that observations are farther from the
center of the distribution, it is logical to consider distances of observations
from that center as indication of variability. The preferred measure of vari-
ation when the mean is used as the measure of center is based on the set
of distances or differences of the observed values (y;) from the mean (%).
These differences, (y; — ¥),? = 1,2, ..., n, are called the deviations from
the mean. Large magnitudes of deviation imply a high degree of variability,
and small magnitudes of deviation imply a low degree of variability. If all de-
viations are zero, the data set exhibits no variability; that is, all values are
identical.

The mean of these deviations would seem to provide a reasonable measure
of dispersion. However, a relatively simple exercise in algebra shows that the
sum of these deviations, that is, > (y; — @), is always zero. Therefore, this quan-
tity is not useful. The mean absolute deviation (the mean of deviations ignoring
their signs) will certainly be an indicator of variability and is sometimes used
for that purpose. However, this measure turns out not to be very useful as the
absolute values make theoretical development difficult.

Another way to neutralize the effect of opposite signs is to base the mea-
sure of variability on the squared deviations. Squaring each deviation gives a
nonnegative value and summing the squares of the deviations gives a positive
measure of variability. This criterion is the basis for the most frequently used
measure of dispersion, the variance.

DEFINITION 1.14
The sample variance, denoted by s?, of a set of n observed values having
amean ¥ is the sum of the squared deviations divided by n — 1:

&2 >y — 9>

n—1

Note that the variance is actually an average or mean of the squared deviations
and is often referred to as a mean square, a term we will use quite often in
later chapters. Note also that we have divided the sum by (n — 1) rather than
n. While the reason for using (n — 1) may seem confusing at this time, there
is a good reason for it. As we see later in the chapter, one of the uses of the
sample variance is to estimate the population variance. Dividing by » tends
to underestimate the population variance; therefore by dividing by (n — 1) we
get, on average, a more accurate estimate. Recall that we have already noted
that the sum of deviations Y (y; — ) = 0; hence, if we know the values of
any (n — 1) of these values, the last one must have that value that causes the
sum of all deviations to be zero. Thus there are only (n — 1) “free” deviations.
Therefore, the quantity (n — 1) is called the degrees of freedom.
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An equivalent argument is to note that in order to compute s?, we must first
compute 3. Starting with the concept that a set of n observed values of a vari-
able provides nunits of information, when we compute s> we have already used
one piece of information, leaving only (n— 1) “free” units or (n— 1) degrees
of freedom.

Computing the variance using the above formula is straightforward but
somewhat tedious. First we must compute 7, then the individual deviations
(¥; — ¥), square these, and then sum. For the two data sets represented by
Fig. 1.7 we obtain

Data set 1:

s =1/DIA -5+ B =524+ (9 -5
= (1/9) - 40 = 4.44,
Data set 2:
2= /DA =5+ (1 =524+ (9 —-5)?
= (1/9) - 80 = 8.89,

showing the expected larger variance for data set 2.

Calculations similar to that for the numerator of the variance are widely
used in many statistical analyses and if done as shown in Definition 1.15 are
quite tedious. This numerator, called the sum of squares and often denoted
by SS, is more easily calculated by using the equivalence:

ss=Y - =Y~ (Xu) /n

The first portion, > yiz, is simply the sum of squares of the original y values.
The second part, (3 ¥;)?/n, the square of the sum of the y values divided by the
number of observations, is called the correction factor, since it “corrects” the
sum of squared values to become the sum of squared deviations from the mean.
The result, SS, is called the corrected, or centered, sum of squares, or often
simply sum of squares. This sum of squares is divided by the degrees of freedom
to obtain the mean square, which is the variance. In general, then the variance

s? = mean square = (sum of squares) /(degrees of freedom).

For the case of computing a variance from a single set of observed values, the
sum of squares is the sum of squared deviations from the mean of those obser-
vations, and the degrees of freedom are (n— 1). For more complex situations,
which we will encounter in subsequent chapters, we will continue with this
general definition of a variance; however, there will be different methods for
computing sums of squares and degrees of freedom.

The computations are now quite straightforward, especially since many cal-
culators have single-key operations for obtaining sums and sums of squares.®

SMany calculators also automatically obtain the variance (or standard deviation). Some even
provide options for using either n or (n — 1) for the denominator of the variance estimate! We
suggest practice computing a few variances without using this feature.
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For the two data sets we have

Data set 1:
n=10, Y y =50, > y} =290
SS = 290 — 50%/10 = 40
s* =40/9 = 4.44
Data set 2:

n=10, Y y =50, > y}=330
SS = 330 — 50%/10 = 80
s =80/9 = 8.89.

For purposes of interpretation, the variance has one major drawback: It mea-
sures the dispersion in the square of the units of the observed values. In other
words, the numeric value is not descriptive of the variability of the observed
values. This flaw is remedied by using the square root of the variance, which
is called the standard deviation.

DEFINITION 1.15
The standard deviation of a set of observed values is defined to be the
positive square root of the variance.

This measure is denoted by s and does have, as we will see shortly, a very
useful interpretation as a measure of dispersion. For the two example data
sets, the standard deviations are

Dataset 1: s=2.11,
Data set 2: s = 2.98.

Usefulness of the Mean and Standard Deviation Although the mean
and standard deviation (or variance) are only two descriptive measures, to-
gether the two actually provide a great deal of information about the distribu-
tion of an observed set of values. This is illustrated by the empirical rule: If
the shape of the distribution is nearly bell shaped, the following statements
hold:

1. The interval (¥ £ s) contains approximately 68% of the observations.
2. The interval (7 + 2s) contains approximately 95% of the observations.
3. The interval ( + 3s) contains virtually all of the observations.

Note that for each of these intervals the mean is used to describe the location
and the standard deviation is used to describe the dispersion of a given portion
of the data. We illustrate the empirical rule with the tree data (Table 1.7). The



1.5 Numerical Descriptive Statistics 27

Table 1.9

The Empirical Rule
Applied to a
Nonsymmetric
Distribution

height (HT) was seen to have a nearly bell-shaped distribution, so the empirical
rule should hold as a reasonable approximation. For this variable we compute

n==64, §=26.959, s*=5163, s=2272.
According to the empirical rule:

(y £ s), which is 26.959 + 2.272, which defines the interval 24.687 to 29.231
and should include (0.68)(64) = 43 observations,

(7 £ 2s), which is 26.959 + 4.544, which defines the interval from 22.415 to
31.503 and should include (0.95)(64) = 61 observations, and

(7 £ 3s), which defines the interval from 20.143 to 33.775 and should include
all 64 observations.

The effectiveness of the empirical rule is verified using the actual data. This
task may be made easier by obtaining an ordered listing of the observed values
or using a stem and leaf plot (Section 1.6), which we do not reproduce here.
For this variable, 46 values fall between 24.687 and 29.231, 61 fall between
22.415 and 31.503, and all observations fall between 20.143 and 33.775. Thus
the empirical rule appears to work reasonably well for this variable.

The empirical rule furnishes us with a quick method of estimating the
standard deviation of a bell-shaped distribution. Since at least 95% of the
observations fall within 2 standard deviations of the mean in either direc-
tion, the range of the data covers about 4 standard deviations. Thus, we can
estimate the standard deviation (a crude estimate by the way) by taking the
range divided by 4. For example, the range of the data on the HT variable is
31.5 — 20.4 = 11.1. Divided by 4 we get about 2.77. The actual standard de-
viation had a value of 2.272, which is approximately “in the ball park,” so to
speak.

The HCRN variable had a rather skewed distribution (Fig. 1.5); hence the
empirical rule should not work as well. The mean is 3.036 and the standard
deviation is 1.890. The expected and actual frequencies are given in Table 1.9.
As expected, the empirical rule does not work as well. In other words, for
a nonsymmetric distribution the mean and standard deviation (or variance)
do not provide as complete a description of the distribution as they do for a
more nearly bell-shaped one. We may want to include a histogram or general
discussion of the shape of the distribution along with the mean and standard
deviation when describing data with a highly skewed distribution.

Actually the mean and standard deviation provide useful information
about a distribution no matter what the shape. A much more conservative

INTERVAL NUMBER OF OBSERVATIONS
Specified Actual Should Include Does Include
yts 1.146 to 4.926 43 53
7+ 2s —0.744 to 6.816 61 60
y=+3s —2.634 to 8.706 64 63
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-l Other Measures

relation between the distribution and its mean and standard deviation is given
by Tchebysheff’s theorem.

DEFINITION 1.16
Tchebysheff’s theorem For any arbitrary constant k, the interval (y £ ks)
contains a proportion of the values of at least [1 — (1/k?)].”

Note that Tchebysheff’s theorem is more conservative than the empirical rule.
This is because the empirical rule describes distributions that are approxi-
mately “bell” shaped, whereas Tchebysheff’s theorem is applicable for any
shaped distribution. For example, for k¥ = 2, Tchebysheff’s theorem states that
the interval (&£ 2s) will contain at least [1 — (1/4)] = 0.75 of the data. For the
HCRN variable, this interval is from —0.744 to 6.816 (Table 1.9), which actually
contains 60/64 = 0.9375 of the values. Thus we can see that Tchebysheff’s
theorem provides a guarantee of a proportion in an interval but at the cost of
a wider interval.

The empirical rule and Tchebysheff’s theorem have been presented not
because they are quoted in many statistical analyses but because they demon-
strate the power of the mean and standard deviation to describe a set of data.
The wider intervals specified by Tchebysheff’s theorem also show that this
power is diminished if the assumption of a bell-shaped curve is not made.

A measure of dispersion that has uses in some applications is the coefficient
of variation.

DEFINITION 1.17
The coefficient of variation is the ratio of the standard deviation to the
mean, expressed in percentage terms.

Usually denoted by CV, it is
cv =2 . 100.
Y

That is, the CV gives the standard deviation as a proportion of the mean. For
example, a standard deviation of 5 has little meaning unless we can compare
it to something. If ¢ has a value of 100, then this variation would probably be
considered small. If, however, ¥ has a value of 1, a standard deviation of 5
would be quite large relative to the mean. If we were evaluating the precision
of a laboratory measuring device, the first case, CV = 5%, would probably be
acceptable. The second case, CV = 500%, probably would not.

Additional useful descriptive measures are the percentiles of a distri-
bution.

9Tchebysheff’s theorem is usually described in terms of a theoretical distribution rather than for
a set of data. This difference is of no concern at this point.
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DEFINITION 1.18

The pth percentile is defined to be that value for which at most ()% of
the measurements are less and at most (100 — p)% of the measurements
are greater.!”

For example, the 75th percentile of the diameter variable (DFOOT) corresponds
to the 48th (0.75 - 64 = 48) ordered observation, which is 4.8. This means that
75% of the trees have diameters of 4.8 in. or less. By definition, cumulative
relative frequencies define percentiles.

To illustrate how a computer program calculates percentiles, the Frequency
option of SPSS was instructed to find the 30th percentile for the same variable,
DFOOT. The program returned the value 4.05. To find this value we note that
0.3 x 64 = 19.2. Therefore we want the value of DFOOT for which 19.2 of the
observations are smaller and 60.8 are larger. This means that the 30th percentile
falls between the 19th observation, 4.00, and the 20th observation, 4.10. The
computer program simply took the midpoint between these two values and
gave the 30th percentile the value of 4.05.

A special set of percentiles of interest are the quartiles, which are the
25th, 50th, and 75th percentiles. The 50th percentile is, of course, the median.

DEFINITION 1.19

The interquartile range is the length of the interval between the 25th
and 75th percentiles and describes the range of the middle half of the
distribution.

For the tree diameters, the 25th and 75th percentiles correspond to 3.9 and 4.8
inches; hence the interquartile range is 0.9 inches. We will use this measure in
Section 1.6 when we discuss the box plot. We will see later that we are often
interested in the percentiles at the extremes or tails of a distribution, especially
the 1, 2.5, 5, 95, 97.5, and 99th percentiles.

Certain measures may be used to describe other aspects of a distribution.
For example, a measure of skewness is available to indicate the degree of
skewness of a distribution. Similarly, a measure of kurtosis indicates whether
a distribution has a narrow “peak” and fat “tails” or a flat peak and skinny tails.
Generally, a “fat-tailed” distribution is characterized by having an excessive
number of outliers or unusual observations, which is an undesirable charac-
teristic. Although these measures have some theoretical interest, they are not
often used in practice. For additional information, see Snedecor and Cochran
(1980), Sections 5.13 and 5.14.

10Qccasionally the percentile desired falls between two of the measurements in the data set. In
that case interpolation may be used to obtain the value. To avoid becoming unnecessarily pedantic,
most people simply choose the midpoint between the two values involved. Different computer
programs may use different interpolation methods.
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-l Computing the Mean and Standard Deviation from a Frequency Distribution

-I Change of Scale

If a data set is presented as a frequency distribution, a good approximation of
the mean and variance may be obtained directly from that distribution. Let y;
represent the midpoint and f; the frequency of the ith class. Then

g~y S/ Y i

and

Sy S-S

or, using the computational form,

s~ [ D Sk - (Zﬁ%)z/z.ﬁ]/z.ﬁ

Note that these formulas use weighted sums of the observed values!! or
squared deviations. That is, each value is weighted by the number of obser-
vations it represents. If the y; are the actual values (rather than midpoints of
intervals) of a discrete distribution, these formulas provide exactly the same
values as those using the formulas presented previously in this section.
Equivalent formulas may be used for data represented as a relative fre-
quency distribution. Let p; be the relative frequency of the ith class. Then

g~y py and $*~Y piy — P’

or, using the computational form,

§* & Zpiyiz - (szyz)z

Most data sets are available in their original form and since computers readily
perform direct computation of mean and variance these formulas are not often
used. We will, however, find these formulas useful in discussions of theoretical
probability distributions in Chapter 2.

Change of scale is often called coding or linear transformation. Most interval
and ratio variables arise from measurements on a scale such as inches, grams,
or degrees Celsius. The numerical values describing these distributions natu-
rally reflect the scale used. In some circumstances it is useful to change the
scale such as, for example, changing from imperial (inches, pounds, etc.) to
metric units. Scale changes may take many forms, including a change from
ratio to ordinal scales as mentioned in Section 1.3. Other scale changes may
involve the use of functions such as logarithms or square roots (see Chapter 6).

A useful form of scaling is the use of a linear transformation. Let Y rep-
resent a variable in the observed scale, which is transformed to a rescaled or

U These formulas are primarily used for large data sets where n ~ n — 1; hence > fi = n, rather
than (n — 1), is used as the denominator for computing the variance.
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transformed variable X by the equation
X =a+bY,

where a and b are constants. The constant a represents a change in the origin,
while the constant b represents a change in the unit of measurement, or scale
identified with a ratio or interval scale variable (Section 1.3). A well-known
example of such a transformation is the change from degrees Celsius to degrees
Fahrenheit. The formula for the transformation is

X =32+18Y,

where X represents readings in degrees Fahrenheit and Y in degrees Celsius.
Many descriptive measures retain their interpretation through linear
transformation. Specifically, for the mean and variance:
T=a+by and s>= b2s§.

X

A useful application of a linear transformation is that of reducing round-off
errors. For example, consider the following values y;, 1 = 1,2, ..., 6:

10.004 10.002 9.997 10.000 9.996 10.001.
Using the linear transformation
; = —10, 000 + 1000y;
results in the values of x;
4 2 -3 0 -4 1,
from which it is easy to calculate
=0 and s2=92.

Using the above relationships, we see that 4 = 10.000 and 3?2/ = 0.0000092.
The use of the originally observed y; may induce round-off error. Using the
original data,

2
3 4 =60.000, Y y?=600.000046, and (Z yi> / n = 600.000000.
Then
SS = 0.000046 and s* = 0.0000092.

If the calculator we are using has only eight digits of precision, then 3" »* would
be truncated to 600.00004, and we would obtain s = 0.000008. Admittedly this
is a pathological example, but round-off errors in statistical calculations occur
quite frequently, especially when the calculations involve many steps as will
be required later. Therefore, scaling by a linear transformation is sometimes
useful.
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1.6 Exploratory Data Analysis

We have seen that the mean and variance (or standard deviation) can do a
very good job of describing the characteristics of a frequency distribution.
However, we have also seen that these do not work as well when the dis-
tribution is skewed and/or includes some extreme or outlying observations.
Because the vast majority of statistical analyses make use of the mean and
standard deviation, the results of such analyses may prove misleading if the
distribution has such features. Therefore, it is imperative that some prelimi-
nary checks of the data be performed to see if other methods (see Section 4.5
and Chapter 13) may be more appropriate.

Before the widespread use of automatic data recording equipment and
computers, most data were laboriously recorded from laboratory manuals or
similar records and then manually entered into calculators where the calcula-
tions were usually performed in several stages. During this long and laborious
process, it was relatively easy to spot unusual observations and, in general, to
get a “feel” for the data and thus recognize the possible need for altering the
analysis strategy.

Certainly the automatic recording and computing equipment available
today provide greater speed, convenience, and accuracy, as well as more com-
plete and comprehensive analyses. However, these analyses are performed
without the help of human intervention and may consequently result in beau-
tifully executed and handsomely annotated computer output of inappropriate
analyses on faulty data.

Fortunately, the same computers that can so easily produce inappropriate
analyses can just as easily be used to perform preliminary data screening to
provide an overview of the nature of the data and thus provide information
on unusual distributions and/or data anomalies. A variety of such procedures
have been developed and many are available on most popularly used computer
software. These procedures are called exploratory data analysis techniques
or EDA, which was first introduced by Tukey (1977). We present here two of
the most frequently used EDA tools: the stem and leaf plot and the box plot.

-l The Stem and Leaf Plot

The stem and leaf plot is a modification of a histogram for a ratio or inter-
val variable that provides additional information about the distribution of the
variable. The first one or two digits specify the class interval, called the “stem,”
and the next digit (rounded if necessary) is used to construct increments of
the bar, which are called the “leaves.” Usually in a stem and leaf plot, the bars
are arranged horizontally and the leaf values are arranged in ascending order.

We illustrate the construction of a stem and leaf plot using the data on
size for the 69 homes. To make construction easier, we first arrange the
observations from low to high as shown in Table 1.10.

Normally the first or first two digits are used to define stem values, but
in this case using one would result in an inadequate five stems, while using
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Table 1.10

Home Sizes Measured
in Square Feet Arranged
from Low to High

. 1550 2456

676 1624 2463
951 1636 2483
994 1647 2510
1036 1750 2553
1064 1752 2572
1152 1770 2670
1176 1770 2805
1186 1800 2809
1216 1852 2921
1312 1920 2949
1344 1972 2992
1344 1980 2993
1368 2016 3045
1387 2036 3055
1410 2038 3056
1450 2082 3253
1456 2113 3310
1456 2262 3314
1500 2298 3472
1524 2336 3627
1532 2370 3846
1540 2436 4106

two would generate an overwhelming 40 stems. A compromise is to use the
first two digits, in sets of two, a procedure automatically done by computer
programs. In this example, the first stem value (the first “.” corresponds to
the missing value) is 6, which identifies the range of 600 to 799 square feet.
There is one observation in that range, 676, so the leaf value is 8 (76 rounded to
80). The second stem value has two observations, 951 and 994, producing leaf
values of 5 and 9. When there are homes represented by both individual stem
values, the leaf values for the first precede those for the second. For example,
the stem value of 24 represents the range from 2400 to 2599. The first four leaf
values 4, 6, and 8, are in the range 2400 to 2499, while the values 1, 5, and 7 are
in the range 2500 to 2599. The last stem value is 40 with a leaf value of 1. The
resulting plot is shown in Fig. 1.8, produced by PROC UNIVARIATE of the SAS
System, which automatically also provides the box plot discussed later in this
section.!?

At first glance, the stem and leaf plot looks like a histogram, which it is.
However, the stem and leaf plot usually has a larger number of bars (or stems),
18 in this case, which provide greater detail about the nature of the distribu-
tion. In this case the stem and leaf chart does not provide any new information
on this data set. The leaves provide rather little additional information here,
but could, for example, provide evidence of rounding or imprecise measure-
ments by showing an excessive number of zeros and fives. The leaves may

12This provides a good illustration of the fact that computer programs do not always provide only
what is needed.
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Figure 1.8

Stem and Leaf Plot
for size

Figure 1.9
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also provide evidence of bunching of specific values within a stem by showing
disproportionate frequencies of specific digits.

For some data sets minor modifications may be necessary to provide an
informative plot. For example, the first digit of the HCRN variable in the tree
data (Table 1.7) provides for only eight stems (classes) while using the first two
digits creates too many stems. In such cases it is customary to use two lines
for each digit, the first representing leaves with values from 0 through 4, and
a second for values from 5 through 9. Most computer programs automatically
adjust for such situations. This plot is given in Fig. 1.9 (also produced by
PROC UNIVARIATE). The extreme skewness we have previously noted is quite

obvious.
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-l The Box Plot

Figure 1.10
Typical Box Plot
0 0 ———— —— 00 0 -
Q1 M QS
e
d
1
a
n
Scale of observed variable

The box plot!® is used to show distributional shapes and to detect unusual
observations. Figure 1.10 illustrates a typical box plot and the procedure is
illustrated in Fig. 1.8 for the size variable from the housing data set and in
Fig. 1.9 for the HCRN variable from the trees data set.

The scale of the plot is that of the observed variable and may be presented
horizontally as in Fig. 1.10 or vertically as produced by the SAS System in
Figs. 1.8 and 1.9. The features of the plot are as follows:

1. The “box,” representing the interquartile range, has a value we denote by R
and the endpoints @ and Qs.

2. A vertical line inside the box indicates the median. If the median is in the
center of the box, the middle portion of the distribution is symmetric.

3. Horizontal lines extending from the box represent the range of observed
values inside the “inner fences,” which are located 1.5 times the value of
the interquartile range (1.5R) beyond @; to the left and @3 on the right.
The relative lengths of these lines are an indicator of the skewness of the
distribution as a whole.

4. Individual symbols o represent “mild” outliers, which are defined as values
between the inner and outer fences, which are located 3R units beyond @
and Q3.

5. Individual symbols e represent the location of extreme outliers, which are
defined as being beyond the outer fences. Different computer programs
may use different symbols for outliers and may provide options for different
formats.

Symmetric distributions, which can be readily described by the mean and
variance, should have the median line close to the middle of the box and
reasonably equal length lines on both sides, a few mild outliers preferably
equally distributed on both sides, and virtually no extreme outliers.

An ordered listing of the data or a stem and leaf plot can be used to construct
the box plot. We illustrate the procedure for the HCRN variable for which the
stem and leaf and box plots are shown in Fig. 1.9. Note that the box plot is
arranged vertically in that plot. The scale is the same as the stem and leaf plot

13 Also referred to as a “box and whisker plot” by Tukey (1977).
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Comments

on the left. The details of the procedure are as follows:

1. The quartiles @; and @3 are found by counting (n/4) = 16 leaf values from
the top and bottom, respectively. The resulting values of 1.8 and 3.2 define
the box. These values also provide the interquartile range: R = Q3 — @1 =
3.2 — 1.8 = 1.4. The median of 2.4 defines the line in the box.

2. The inner fences are

fi=Qi—15R=18-21=-03 and
fp=Q3+15R=32+21=523.

The lines extend on each side to the nearest actual values inside the inner
fences. In this example the lines extend to 1.0 (the smallest value in the
data set) and 5.3, respectively. The much longer line on the high side clearly
indicates the skewness.

3. The outer fences are F| = —2.4 and F5> = 7.4. The fact that the lower
fence has a negative value that cannot occur is a clear indicator of a skewed
distribution. The four mild outliers lying between the inner and outer fences
are 5.4, 6.3, 6.5, and 6.6, and are indicated by the symbol o. Note that they
are all on the high side, again indicating the skewness.

4. The extreme outliers are beyond the outer fences. They are 7.6, 8.0, 8.3, and
8.9, and are indicated by e. These are also all on the high side.

Thus we see that the box plot clearly shows the lack of symmetry for the
distribution of the HCRN variable. On the other hand, the box plot for the house
sizes (Fig. 1.8) shows little lack of symmetry and also has neither mild nor
extreme outliers. Obviously the box plot provides a good bit of information on
the distribution and outliers, but cannot be considered a complete replacement
for the stem and leaf plot in terms of total information about the observations.

The presence of outliers in a set of data may cause problems in the analysis to
be performed. For example, a single outlier (or several in the same direction)
usually causes a distribution to be skewed, thereby affecting the mean of the
distribution. In the box plot in Fig. 1.9 we see that there are several large
values of the HCRN variable identified as outliers. If the mean is to be used
for the analysis, it may be larger than is representative of the data due to the
presence of these outliers. However, we cannot simply ignore or discard these
observations as the trees do exist and to ignore them would be dishonest. A
closer examination of the larger trees may reveal that they actually belong to
an older grove that represents a different population from that being studied.
In that case we could eliminate these observations from the analysis, but note
that older trees that belonged to a population not included in the study were
present in the data.

Descriptive statistical techniques, and in particular the EDA methods dis-
cussed here, are valuable in identifying outliers; however, the techniques very
rarely furnish guidance as to what should be done with the outliers. In fact,
the concern for “unrepresentative,” “rogue,” or “outlying” observations in sets
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Table 1.11

Cytosol Levels in Cancer
Patients

of data has been voiced by many people for a long time. There is evidence that
concern for outliers predates most of statistical methodology. Treatments of
outliers are discussed in many texts, and in fact a book by Barnett and Lewis
(1994), entitled Outliers in Statistical Data,is completely devoted to the topic.
The sheer volume of literature addressing outliers points to the difficulty of
adjusting the analysis when outliers are present.

All outliers are not deleterious to the analysis. For example, the exper-
imenter may be tempted in some situations not to reject an outlier but to
welcome it as an indication of some unexpectedly useful chemical reaction or
surprisingly successful variety of corn. Often it is not necessary to take either
of the extreme positions — reject the outlier or include the outlier — but in-
stead to use some form of “robust” analysis that minimizes the effect of the
outlier. One such example would be to use the median in the analysis of the
variable HCRN in the tree data instead of the mean.

A biochemical assay for a substance we will abbreviate to cytosol is supposed
to be an indicator of breast cancer. Masood and Johnson (1987) report on the
results of such an assay, which indicates the presence of this material in units
per 5 mg of protein on 42 patients. Also reported are the results of another
cancer detection method, which are simply reported as “yes” or “no.” The data
are given in Table 1.11. We would like to summarize the data on the variable
CYTOSOL.

All the descriptive measures, stem and leaf plot, and box plot
for these observations are given in Fig. 1.11 as provided by the MinitabDES-
CRIBE, STEM-AND-LEAF, and BOXPLOT commands.

OBS CYTOSOL CANCER OBS CYTOSOL CANCER
1 145.00 YES 22 1.00 NO
2 5.00 NO 23 3.00 NO
3 183.00 YES 24 1.00 NO
4 1075.00 YES 25 269.00 YES
5 5.00 NO 26 33.00 YES
6 3.00 NO 27 135.00 YES
7 245.00 YES 28 1.00 NO
8 22.00 YES 29 1.00 NO
9 208.00 YES 30 37.00 YES

10 49.00 YES 31 706.00 YES

11 686.00 YES 32 28.00 YES

12 143.00 YES 33 90.00 YES

13 892.00 YES 34 190.00 YES

14 123.00 YES 35 1.00 YES

15 1.00 NO 36 1.00 NO

16 23.00 YES 37 7.20 NO

17 1.00 NO 38 1.00 NO

18 18.00 NO 39 1.00 NO

19 150.00 YES 40 71.00 YES

20 3.00 NO 41 189.00 YES

21 3.20 YES 42 1.00 NO
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Figure 1.11

Descriptive Measures
of CYTOSOL

N Mean Median Trmean Stdev Semean
Cytosol 42 136.9 25.5 99.5 2485 383
Min Max Q1 Q3
Cytosol 1.0 1075.0 1.0 158.3
Stem-and-Leaf of Cytosol N = 42
@27) 0 000000000000000000122233479
15 1 23445889
7 2 046
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1 9
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Box plot of Cytosol
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The first portion gives the numerical descriptors. The mean is 136.9 and the
standard deviation is 248.5. Note that the standard deviation is greater than the
mean. Since the variable (CYTOSOL) cannot be negative, the empirical rule will
not be applicable, implying that the distribution is skewed. This conclusion is
reinforced by the large difference between the mean and the median. Finally,
the first quartile is the same as the minimum value, indicating that at least 256%
of the values occur at the minimum. The asymmetry is also evident from the
positions of the quartiles, with values of 1.0 and 158.3 respectively. The out-
put also gives the minimum and maximum values, along with two measures
(TRMEAN and SEMEAN), which are not discussed in this chapter.

The stem and leaf and box plots reinforce the extremely skewed nature of
this distribution. It is of interest to note that in this plot the mild outliers are
denoted by * (there are none) and extreme outliers by 0.

A conclusion to be reached here is that the mean and standard deviation are
not particularly useful measures for describing the distribution of this variable.
Instead, the median should be used along with a brief description of the shape
of the distribution. M

1.7 Bivariate Data

So far we have presented methods for describing the distribution of observed
values of a single variable. These methods can be used individually to des-
cribe distributions of each of several variables that may occur in a set of data.
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However, when there are several variables in one data set, we may also be
interested in describing how these variables may be related to or associated
with each other. We present in this section some graphic and tabular methods
for describing the association between two variables. Numeric descriptors of
association are presented in later chapters, especially Chapters 7 and 8.

Specific methods for describing association between two variables depend
on whether the variables are measured in a nominal or numerical scale. (Asso-
ciation between variables measured in the ordinal scale is discussed in Chapter
13.) We illustrate these methods by using the variables on home sales given in
Table 1.2.

-l Categorical Variables

Table 1.12

Home Sales Data
for the Categorical
Variables

Table 1.12 reproduces the home sales data for the two categorical variables
sorted in order of zip and exter. Association between two variables mea-
sured in the nominal scale (categorical variables) can be described by a
two-way frequency distribution, which is a two-dimensional table showing
the frequencies of combinations of the values of the two variables. Table 1.13
is such a table showing the association between the zip and exterior sid-
ing material of the houses. This table has been produced by PROC FREQ of
the SAS System. The table shows the frequencies of the six combinations of
zip and exter. The headings at the top and left indicate the categories of the
two variables. Each of the combinations of the two variables is referred to as

zip exter zip exter zip exter
1 Brick 3 Frame 4 Brick
1 Brick 3 Frame 4 Brick
1 Brick 3 Frame 4 Brick
1 Brick 3 Frame 4 Brick
1 Frame 3 Frame 4 Brick
1 Other 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 4 Brick 4 Brick
2 Brick 4 Brick 4 Brick
2 Brick 4 Brick 4 Brick
2 Brick 4 Brick 4 Brick
2 Frame 4 Brick 4 Brick
2 Other 4 Brick 4 Brick
2 Other 4 Brick 4 Brick
3 Brick 4 Brick 4 Frame
3 Brick 4 Brick 4 Other
3 Brick 4 Brick 4 Other
3 Brick 4 Brick 4 Other
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Table 1.13
The FREQ Procedure
Association between Table of zip by exter
zip and exter ZIP
Frequency EXTER
Row pct Brick Frame Other Total
1 4 1 1 6
66.67 16.67 16.67
2 10 1 2 13
76.92 7.69 15.38
3 4 5 7 16
25.00 31.25 43.75
4 30 1 3 34
88.24 2.94 8.82
Total 48 8 13 69
Figure 1.12
FREQUENCY BLOCK CHART
Block Chart for
ter and zip exter
ex
ove/ 5 S /W @
1 2 7 3
Frame /" = o =
1 1 5 1
Brick 9 9
4 10 4 30
1 2 3 4
Zip

a cell. The last row and column (each labeled Total) are the individual or
marginal frequencies of the two variables. As indicated by the legend at the
top left of the table, the first number in each cell is the frequency.

The second number in each cell is the row percentage, that is, the percent-
age of each row (zip) that is brick, frame, or other. We can now see that brick
homes predominate in all zip areas except 3, which has a mixture of all types.

The relationship between two categorical variables can also be illustrated
with a block chart (athree-dimensional bar chart) with the height of the blocks
being proportional to the frequencies. A block chart of the relationship bet-
ween zip and exter is given in Fig. 1.12. Numeric descriptors for relation-
ships between categorical variables are presented in Chapter 12.

-l Categorical and Interval Variables

The relationship between a categorical and interval (or ratio) variable is usually
described by computing frequency distributions or numerical descriptors for
the interval variables for each value of the nominal variable. For example, the
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Figure 1.13
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mean and standard deviation of sales prices for the four zip areas are
zipareal, ¢ = 86,892, s = 26, 877
ziparea2, §=147,948, s=067,443
ziparea 3, ¥ = 96,455, s = b0, 746
ziparea4, §= 169,624, s =098, 929.

We can now see that zip areas 2 and 4 have the higher priced homes. Graph-
ically side-by-side box plots can illustrate this information as shownin Fig. 1.13
for price by zip. This plot reinforces the information provided by the means
and standard deviations, but additionally shows that all of the very-high-priced
homes are in zip area 4.

Box plots may also be used to illustrate differences among distributions.
We illustrate this method with the cancer data, by showing the side-by-side
box plots of CYTOSOL for the two groups of patients who were diagnosed
for cancer by the other method. The results, produced this time with PROC
INSIGHT of the SAS System in Fig. 1.14, shows that both the location and

Figure 1.14
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dispersion differ markedly between the two groups. Apparently both methods
can detect cancer, although contradictory diagnoses occur for some patients.

-l Interval Variables

The relationship between two interval variables can be graphically illustrated
with a scatterplot. A scatterplot has two axes representing the scales of the
two variables. The choice of variables for the horizontal or vertical axes is im-
material, although if one variable is considered more important it will usually
occupy the vertical axis. Each observation is plotted by a point representing the
two variable values. Special symbols may be needed to show multiple points
with identical values. The pattern of plotted points is an indicator of the na-
ture of the relationship between the two variables. Figure 1.15 is a scatterplot
showing the relationship between price and size for the data in Table 1.2.

Figure 1.15
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The pattern of the plotted data points shows a rather strong association
betweenpriceand size, except for the higher price homes. Apparently these
houses have a wider range of other amenities that affect the price. Numeric
descriptors for this type of association are introduced in Chapter 7.

We should note at this point that the increased sophistication of computer
graphics is rapidly leading to more informative graphs and plots. For example,
some software packages provide a scatterplot with box plots on each axis
describing the distribution of each of the individual variables.

1.8 Populations, Samples, and Statistical Inference — A Preview

In the beginning of this chapter we noted that a set of data may represent either
apopulation or a sample. Using the terminology developed in this chapter, we
can now more precisely define a population as the set of values of one or
more variables for the entire collection of units relevant to a particular study.
Most researchers have at least a conceptual picture of the population for a
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given study. This population is usually called the target population. A target
population may be well defined. For example, the trees in Table 1.7 are asample
from a population of trees in a specified forest. On the other hand, a population
may be only conceptually defined. For example, an experiment measuring
the decrease in blood pressure resulting from a new drug is a sample from
a hypothetical population consisting of all sufferers of high blood pressure
who are potential users of the drug. A population can, in fact, be infinite. For
example, alaboratory experiment can hypothetically be reproduced an infinite
number of times.

We are rarely afforded the opportunity of measuring all the elements of
an entire population. For this reason, most data are normally some portion
or sample of the target population. Obviously a sample provides only par-
tial information on the population. In other words, the characteristics of the
population cannot be completely known from sample data.

We can, however, draw certain parallels between the sample and the pop-
ulation. Both population and sample may be described by measures such as
those presented in this chapter (although we cannot usually calculate them
for a population). To differentiate between a sample and the population from
which it came, the descriptive measures for a sample are called statistics and
are calculated and symbolized as presented in this chapter. Specifically, the
sample mean is 7 and the sample variance is s2. Descriptive measures for the
population are called parameters and are denoted by Greek letters. Specifi-
cally, we denote the mean of a population by 1 and the variance by o2. If the
population consists of a finite number of values, ¥, ¥o, . .., yn, then the mean

is calculated by
=y u/N,
and the variance is found by

o2 Yy — w)?

N

It is logical to assume that the sample statistics provide some informa-
tion on the values of the population parameters. In other words, the sample
statistics may be considered to be estimates of the population parameters.
However, the statistics from a sample cannot exactly reflect the values of the
parameters of the population from which the sample is taken. In fact, two or
more individual samples from the same population will invariably exhibit dif-
ferent values of sample estimates. The magnitude of variation among sample
estimates is referred to as the sampling error of the estimates. Therefore,
the magnitude of this sampling error provides an indication of how closely a
sample estimate approximates the corresponding population parameter. In
other words, if a sample estimate can be shown to have a small sampling er-
ror, that estimate is said to provide a good estimate for the corresponding
population parameter.

We must emphasize that sampling error is not an error in the sense of
making a mistake. It is simply a recognition of the fact that a sample statistic
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does not exactly represent the value of a population parameter. The recogni-
tion and measurement of this sampling error is the cornerstone of statistical
inference.

To control as well as to determine the magnitude of the sampling error,
we must incorporate in our sampling method as much randomization as
is physically possible. A random sample is one where “chance” dominates
the selection of the units of the population to be included in the sample, in
the same sense that chance determines the winners in a properly conducted
lottery. That is, the method of randomization results in a sample drawn in such
amanner that each possible sample of the specified size has an equal chance of
being selected.'* Actually, the ability of statistical analyses to provide reliable
estimates of sampling error is based on the assumption of random samples
and is therefore assumed for all statistical methods presented in this book.

The process of drawing arandom sample is conceptually simple, but may be
difficult to implement in practice. Essentially, a random sample is like drawing
for prizes in a lottery: The population consists of all the lottery tickets and the
sample of winners is drawn “blindly” from a drum containing all the tickets.
The most straightforward method for drawing a random sample is to assign a
unique number (usually sequential) to each unit of the population and select
for the sample those units that correspond to a set of random numbers that
have been picked from a table of random numbers or generated by a computer.
This procedure can be used for relatively small finite populations but may not
be practical for large finite populations and is an obviously impossible task
for infinite populations. Specific instructions for drawing random samples can
be found in books on sampling (for example, Scheaffer et al., 1996) or on
experimental design (for example, Maxwell and Delaney, 2000). The overriding
factor in all types of random sampling is that the actual selection of sample
elements not be subject to personal or other bias.

Inmany cases experimental conditions are such that nonrestricted random-
ization is impossible; hence the sample is not a random sample. For example,
much of the data available for economic research consists of measurements
of economic variables over time. For such data the normal sequencing of the
data cannot be altered and we cannot really claim to have a random sample
of observations. In such situations, however, it is possible to define an appro-
priate model that contains a random element. Models that incorporate such
random elements are introduced in Chapters 6 and 7.

1.9 CHAPTER SUMMARY

[Solution to Example 1.1| We now know that the data listed in Table 1.1
consists of 50 observations on four variables from an observational study. Two
of the variables (AGE and TVHOURS) are numerical and have the ratio level of

14T some special applications the probabilities of selection do not need to be equal, but they must
be known and predetermined before the sample is selected.
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Figure 1.16

Histograms of AGE and
TVHOURS

Figure 1.17

Box Plots of AGE and
TVHOURS
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measurement. The other two are categorical (nominal) level variables. We will
explore the nature of these variables and a few of the relationships between
them.

We start by using SPSS to construct the frequency histograms of AGE and
TVHOURS as shown in Fig. 1.16. From these it appears that the distribution of
age is reasonably symmetric while that of TVHOURS is skewed positively.

To further explore the shape of the distributions of the two variables we
construct the box plots shown in Fig. 1.17. Note the symmetry of the variable
AGE while the obvious positive skewness of TVHOURS is highlighted by
the long whisker on the positive side of the boxplot. Also, note that there
is one potential outlier identified in the TVHOURS box plot. This is the value
10 corresponding to the 20th respondent in the data set. It is also interesting
to see that fully 25% of the respondents reported an average number of hours
watching TV as 0 as indicated by the fact that the lower quartile (the lower
edge of the box) is at the level “0.”

We now examine some of the numerical descriptive statistics for these two
measures as seen in Table 1.14.
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Table 1.14 Age of Hours per Day
Numerical Statistics Respondent Watching TV
on AGE and TVHOURS N
Statistics Valid 50 49
Missing 0 1
Mean 48.26 1.88
Median 46.00 2.00
Mode 53 0
Std. deviation 17.05 2.14
Variance 290.65 4.60
Minimum 23 0
Maximum 89 10
The first two rows of Table 1.14 tell us that all 50 of our sample respondents
answered the question concerning their age while 1 of the respondents did not
answer the question about the number of hours per day watching TV. The
mean age is 48.26 and the ages of respondents ranges from 23 to 89. The mean
number of hours per day watching TV is 1.88 and ranges from 0 to 10. Note that
the standard deviation of the number of hours watching TV is actually larger
than the mean. This is another indication of the extremely skewed distribution
of these values.
Figure 1.18
Bar Chart of HAPPY 0 MALE
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Figure 1.18 shows a relative frequency (percent) bar chart of the variable
HAPPY. From this we can see that only about 12% of the respondents consid-
ered themselves not happy with their lives. Figure 1.18 also shows a pie chart
of the variable SEX. This indicates that 56% of the respondents were female vs
44% male.

To see if there is any noticeable relationship between the variables AGE and
TVHOURS, a scatter diagram is constructed. The graph is shown in Fig. 1.19.
There does not seem to be a strong relationship between these two variables.
There is one respondent who seems to be “separated” from the group, and that
is the respondent who watches TV about 10 hours per day.
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Figure 1.19

Scatter Diagram of
AGE and TVHOURS

Figure 1.20
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To examine the relationship between the two variables SEX and HAPPY,
we will construct side-by-side relative frequency bar charts. These are given
in Fig. 1.20. Note that the patterns of “happiness” seem to be opposite for the
sexes. For example, of those who identified themselves as being “Very Happy,”
67% were female while only 33% were male.

Finally, to see if there is any difference in the relationship between AGE and
TVHOURS over the levels of SEX, we construct a scatter diagram identifying
points by SEX. This graph is given in Fig. 1.21.

The graph does not indicate any systematic difference in the relationship
by sex. The respondent who watches TV about 10 hours per day is male, but

other than that nothing can be concluded by examination of this graph. W
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Summary

Figure 1.21
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Statistics is concerned with the analysis of data. A set of data is defined as a
set of observations on one or more variables. Variables may be measured on
a nominal, ordinal, interval, or ratio scale with the ratio scale providing the
most information. Additionally, interval and ratio scale variables, also called
numerical variables, may be discrete or continuous. The nature of a statistical
analysis is largely dictated by the type of variable being analyzed.

A set of observations on a variable is described by a distribution, which
is a listing of frequencies with which different values of the variable occur.
A relative frequency distribution shows proportions with which values of a
variable occur and is related to a probability distribution, which is extensively
used in statistics.

Graphical representation of distributions is extremely useful for investi-
gating various characteristics of distributions, especially their shape and the
existence of unusual values. Frequently used graphical representations include
bar charts, stem and leaf plots, and box plots.

Numerical measures of various characteristics of distributions provide a
manageable set of numeric values that can readily be used for descriptive
and comparative purposes. The most frequently used measures are those that
describe the location (center) and dispersion (variability) of a distribution.
The most frequently used measure of location is the mean, which is the sum of
observations divided by the number of observations. Also used is the median,
which is the center value.

The most frequently used measure of dispersion is the variance, which is
the average of the squared differences between the observations and the mean.
The square root of the variance, called the standard deviation, describes dis-
persion in the original scale of measurement. Other measures of dispersion
are the range, which is the difference between the largest and smallest obser-
vations, and the mean absolute deviation, which is the average of the absolute
values of the differences between the observations and the mean.



1.10 Chapter Exercises 49

Other numeric descriptors of the characteristics of a distribution include
the percentiles, of which the quartile and interquartile ranges are special cases.

The importance of the mean and standard deviation is underscored by
the empirical rule and Tchebysheff’s theorem, which show that these two
measures provide a very adequate description of data distributions.

The chapter concludes with brief sections on descriptions of relationships
between two variables and a look ahead at the uses of descriptive measures
for statistical inference.

1.10 CHAPTER EXERCISES

CONCEPT The following multiple choice questions are intended to provide practice in
QUESTIONS methods and reinforce some of the concepts presented in this chapter.

1. The scores of eight persons on the Stanford-Binet IQ test were:
95 87 96 110 150 104 112 110

The median is:

(1) 107

(2) 110

3) 112

4) 104

(5) none of the above.

2. The concentration of DDT, in milligrams per liter, is:
(1) anominal variable
(2) an ordinal variable
(3) an interval variable
(4) aratio variable.

3. If the interquartile range is zero, you can conclude that:
(1) the range must also be zero
(2) the mean is also zero
(3) at least 50% of the observations have the same value
(4) all of the observations have the same value
(5) none of the above is correct.

4. The species of each insect found in a plot of cropland is:
(1) anominal variable
(2) an ordinal variable
(3) an interval variable
(4) aratio variable.

5. The “average” type of grass used in Texas lawns is best described by
(1) the mean
(2) the median
(3) the mode.
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6.

10.

A sample of 100 IQ scores produced the following statistics:
mean = 95 lower quartile = 70
median = 100 upper quartile = 120
mode = 75 standard deviation = 30

Which statement(s) is (are) correct?

(1) Half of the scores are less than 95.

(2) The middle 50% of scores are between 100 and 120.
(3) One-quarter of the scores are greater than 120.

(4) The most common score is 95.

. A sample of 100 IQ scores produced the following statistics:
mean = 100 lower quartile = 70
median = 95 upper quartile = 120

mode = 75 standard deviation = 30

Which statement(s) is (are) correct?

(1) Half of the scores are less than 100.

(2) The middle 50% of scores are between 70 and 120.
(3) One-quarter of the scores are greater than 100.
(4) The most common score is 95.

. Identify which of the following is a measure of dispersion:

(1) median
(2) 90th percentile
(3) interquartile range

(4) mean.
. Asample of pounds lost in a given week by individual members of a weight-
reducing clinic produced the following statistics:
mean = 5 pounds first quartile = 2 pounds
median = 7 pounds third quartile = 8.5 pounds

mode = 4 pounds  standard deviation = 2 pounds

Identify the correct statement:

(1) One-fourth of the members lost less than 2 pounds.

(2) The middle 50% of the members lost between 2 and 8.5 pounds.
(3) The most common weight loss was 4 pounds.

(4) All of the above are correct.

(5) None of the above is correct.

A measurable characteristic of a population is:
(1) aparameter
(2) astatistic
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PRACTICE
EXERCISES

11.

12.

13.

14.

15.

(3) asample
(4) an experiment.

What is the primary characteristic of a set of data for which the standard
deviation is zero?

(1) All values of the variable appear with equal frequency.

(2) All values of the variable have the same value.

(3) The mean of the values is also zero.

(4) All of the above are correct.

(5) None of the above is correct.

Let X be the distance in miles from their present homes to residences when
in high school of individuals at a class reunion. Then X is:

(1) a categorical (nominal) variable

(2) a continuous variable

(3) adiscrete variable

(4) aparameter

(5) a statistic.

A subset of a population is:
(1) a parameter

(2) apopulation

(3) a statistic

(4) asample

(5) none of the above.

The median is a better measure of central tendency than the mean if:
(1) the variable is discrete

(2) the distribution is skewed

(3) the variable is continuous

(4) the distribution is symmetric

(5) none of the above is correct.

A small sample of automobile owners at Texas A & M University produced
the following number of parking tickets during a particular year: 4, 0, 3, 2,
5,1, 2, 1, 0. The mean number of tickets (rounded to the nearest tenth) is:
(D 1.7

2) 2.0

3) 2.5

4) 3.0

(5) none of the above.

Most of the exercises in this and subsequent chapters are based on data sets for
which computations are most efficiently done with computers. However, man-
ual computations, although admittedly tedious, provide a feel for how various
results arise and what they may mean. For this reason, we have included a few
exercises with small numbers of simple-valued observations that can be done
manually. The solutions to all these exercises are given in the back of the text.
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1. A university published the following distribution of students enrolled in the
various colleges:

College Enrollment
Agriculture 1250
Business 3675
Earth sciences 850
Liberal arts 2140
Science 1550
Social sciences 2100

Construct a bar chart of these data.

2. On ten days, a bank had 18, 15, 13, 12, 8, 3, 7, 14, 16, and 3 bad checks. Find
the mean, median, variance, and standard deviation of the number of bad
checks.

3. Calculate the mean and standard deviation of the following sample:
-1, 4, 5, 0.
4. The following is the distribution of ages of students in a graduate course:

Age (years) Frequency

20-24 11
25-29 24
30-34 30
35-39 18
40-44 11
45-49 5
50-54 1

(a) Construct a bar chart of the data.
(b) Calculate the mean and standard deviation of the data.

5. Weekly closing prices of Hewlett-Packard stock from October 1995 to
February 1996 are listed below, given in sequential order and rounded to
the nearest dollar:
93, 94, 95, 89, 85, 82, 87, 85, 84, 80, 78, 78, 84, 87, 90.

(a) Using time as the horizontal axis and closing price as the vertical axis,
construct a trend graph showing how the price moved during this period.

(b) Construct a stem and leaf plot.

(c) Calculate the mean and median closing price.

(d) Use the change of scale procedure in Section 1.5 to calculate the stan-
dard deviation of the closing price.

EXERCISES

1. Most of the problems in this and other chapters deal with “real” data
for which computations are most efficiently performed with computers.
Since a little experience in manual computing is healthy, here are 15
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observations of a variable having no particular meaning:
12 18 22 17 20 15 19 13 23 8 14 14 19 11 30.

(a) Compute the mean, median, variance, range, and interquartile range
for these observations.

(b) Produce a stem and leaf plot.

(c) Write a brief description of this data set.

2. Because waterfowl are an important economic resource, wildlife scien-
tists study how waterfowl abundance is related to various environmental
variables. In such a study, the variables shown in Table 1.15 were observed
for a sample of 52 ponds.

WATER: the amount of open water in the pond, in acres.
VEG: the amount of aquatic and wetland vegetation present at and
round the pond, in acres.
FOWL: the number of waterfowl recorded at the pond during a
(random) one-day visit to the pond in January.
The results of some intermediate computations:

WATER: Y y=3705 Y 3 =257359
VEG: Y y=5825 ) y =285.938
FOWL: » y=3933 >y = 2449535

Table 1.15 OBS WATER VEG FOWL OBS WATER VEG FOWL
Waterfowl Data 1 1.00 0.00 0 27 0.25 0.00 0
2 0.25 0.00 10 28 1.50 0.00 240
3 1.00 0.00 125 29 2.00 1.50 2
4 15.00 3.00 30 30 31.00 0.00 0
5 1.00 0.00 0 31 149.00 9.00 1410
6 33.00 0.00 32 32 1.00 2.75 0
7 0.75 0.00 16 33 0.50 0.00 15
8 0.75 0.00 0 34 1.50 0.00 16
9 2.00 0.00 14 35 0.25 0.00 0
10 1.50 0.00 17 36 0.25 0.25 0
11 1.00 0.00 0 37 0.75 0.00 125
12 16.00 1.00 210 38 0.25 0.00 2
13 0.25 0.00 11 39 1.25 0.00 0
14 5.00 1.00 218 40 6.00 0.00 179
15 10.00 2.00 5 41 2.00 0.00 80
16 1.25 0.50 26 42 5.00 8.00 167
17 0.50 0.00 4 43 2.00 0.00 0
18 16.00 2.00 74 44 0.25 0.00 11
19 2.00 0.00 0 45 5.00 1.00 364
20 1.50 0.00 51 46 7.00 2.25 59
21 0.50 0.00 12 47 9.00 7.00 185
22 0.75 0.00 18 48 0.00 1.25 0
23 0.25 0.00 1 49 0.00 4.00 0
24 17.00 5.25 2 50 7.00 0.00 177
25 3.00 0.75 16 51 4.00 2.00 0
26 1.50 1.75 9 52 1.00 2.00 0
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(a) Make a complete summary of one of these variables. (Compute mean,
median, and variance, and construct a bar chart or stem and leaf and
box plots.) Comment on the nature of the distribution.

(b) Construct a frequency distribution for FOWL, and use the frequency
distribution formulas to compute the mean and variance.

(c) Make a scatterplot relating WATER or VEG to FOWL.

3. Someone wants to know whether the direction of price movements of
the general stock market, as measured by the New York Stock Exchange
(NYSE) Composite Index, can be predicted by directional price movements
of the New York Futures Contract for the next month. Data on these
variables have been collected for a 46-day period and are presented in
Table 1.16. The variables are:

INDEX: the percentage change in the NYSE composite index for a
one-day period.
FUTURE: the percentage change in the NYSE futures contract for a
one-day period.

Table 1.16 DAY INDEX FUTURE DAY INDEX FUTURE
Stock Prices 1 0.58 0.70 24 1.13 0.46
2 0.00 —0.79 25 2.96 1.54
3 0.43 0.85 26 —3.19 —1.08
4 —0.14 —0.16 27 1.04 —0.32
5 —1.15 —0.71 28 —1.51 —0.60
6 0.15 —0.02 29 —2.18 —1.13
7 —1.23 —1.10 30 —0.91 —0.36
8 —0.88 —0.77 31 1.83 —0.02
9 —1.26 —0.78 32 2.86 0.91
10 0.08 —0.35 33 2.22 1.56
11 —0.15 0.26 34 —1.48 —0.22
12 0.23 —0.14 35 —0.47 —0.63
13 —0.97 —0.33 36 2.14 0.91
14 —1.36 —1.17 37 —0.08 —0.02
15 —0.84 —0.46 38 —0.62 —0.41
16 —1.01 —0.52 39 —1.33 —0.81
17 —0.86 —0.28 40 —1.34 —2.43
18 0.87 0.28 41 1.12 —0.34
19 —0.78 —0.20 42 —0.16 —0.13
20 —2.36 —1.55 43 1.35 0.18
21 0.48 —0.09 44 1.33 1.18
22 —0.88 —0.44 45 —0.15 0.67
23 0.08 —0.63 46 —0.46 —0.10

(a) Make a complete summary of one of these variables.
(b) Construct a scatterplot relating these variables. Does the plot help to
answer the question posed?

4. The data in Table 1.17 consist of 25 values for four computer-generated
variables called Y1, Y2, Y3, and Y4. Each of these is intended to represent
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Table 1.17

a particular distributional shape. Use a stem and leaf and a box plot to
ascertain the nature of each distribution and then see whether the empirical
rule works for each of these.

Data for Recognizing
Distributional Shapes
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. Climatological records provide a rich source of data suitable for descrip-

tion by statistical methods. The data for this example (Table 1.18) are the
number of January days in London, England, having rain (Days) and the
average January temperature (Temp, in degrees Fahrenheit) for the years
1858 through 1939.

(a) Summarize these two variables.

(b) Draw a scatterplot to see whether the two variables are related.

. Table 1.19 gives data on population (in thousands) and expenditures on

criminal activities (in million $) for the 50 states and the District of

Columbia as obtained from the 1988 Statistical Abstract of the United

States.

(a) Describe the distribution of states’ criminal expenditures with what-
ever measures appear appropriate. Comment on the features and
implications of these data.

(b) Compute the per capita expenditures (EXPEND/POP) for these data.
Repeat part (a). Discuss any differences in the nature of the distribution
you may have stated in part (a).
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Table 1.18

Rain Days and
Temperatures, London
Area, January

Year Days Temp Year Days Temp Year Days Temp
1858 6 40.5 1886 23 35.8 1914 12 39.7
1859 10 40.0 1887 13 37.9 1915 19 459
1860 21 34.0 1888 9 37.2 1916 14 35.5
1861 7 39.3 1889 10 43.6 1917 18 39.6
1862 19 42.2 1890 21 34.1 1918 18 37.8
1863 15 36.6 1891 14 36.6 1919 22 424
1864 8 36.5 1892 13 35.5 1920 21 46.1
1865 13 43.1 1893 17 38.5 1921 20 40.2
1866 23 34.6 1894 25 33.7 1922 20 41.5
1867 17 37.6 1895 16 40.5 1923 15 40.8
1868 19 414 1896 9 35.4 1924 18 41.7
1869 15 385 1897 21 43.7 1925 11 40.5
1870 17 334 1898 9 42.8 1926 18 41.0
1871 17 415 1899 19 404 1927 17 42.1
1872 22 42.3 1900 21 38.8 1928 21 34.8
1873 18 419 1901 12 42.0 1929 12 44.0
1874 17 43.6 1902 11 41.1 1930 17 39.0
1875 23 37.3 1903 17 39.5 1931 20 44.0
1876 11 42.9 1904 22 384 1932 13 374
1877 25 404 1905 8 424 1933 14 39.6
1878 15 31.8 1906 18 38.8 1934 18 40.7
1879 12 33.3 1907 8 36.8 1935 13 40.9
1880 5 31.7 1908 10 38.8 1936 21 41.9
1881 8 40.5 1909 13 40.0 1937 23 43.6
1882 7 414 1910 14 38.2 1938 21 41.7
1883 21 43.9 1911 12 40.2 1939 22 30.8
1884 16 36.6 1912 17 41.1

1885 16 36.3 1913 17 384

(c) Make a scatterplot of total and per capita expenditures on the vertical
axis against population on the horizontal axis. Which of these plots is
more useful?

7. Make scatterplots for all pairwise combinations of the variables from the
tree data (Table 1.7). Which pairs of variables have the strongest relation-

ship? Is your conclusion consistent with prior knowledge?

8. The data set in Table 1.20 lists all cases of Down’s syndrome in Victoria,
Australia, from 1942 through 1957, as well as the number of births classified
by the age of the mother (Andrews and Herzberg, 1985).

(a) Construct a relative frequency histogram for total number of births by
age group.

(b) Construct a relative frequency histogram for number of mothers of
Down’s syndrome patients by age group.

(c) Compare the shape of the two histograms. Does the shape of the
histogram for Down’s syndrome suggest that age alone accounts for
number of Down'’s syndrome patients born?

(d) Construct a scatter diagram of total number of births versus number
of mothers of Down’s syndrome. Does the scatter diagram support the
conclusion in part (¢)?
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Table 1.19

Criminal Expenditures

Table 1.20

Mongoloid Births in
Victoria, Australia®

STATE POP EXPEND STATE POP EXPEND
AK 525 360 MT 809 123
AL 4083 498 NC 6413 821
AR 2388 219 ND 672 75
AZ 3386 728 NE 1594 206
CA 27663 6539 NH 1057 140
cOo 3296 602 NJ 7672 1592
CT 3211 544 NM 1500 296
DC 622 435 NV 1007 256
DE 644 130 NY 17825 5220
FL 12023 2252 OH 10784 1617
GA 6222 835 OK 3272 432
HI 1083 210 OR 2724 463
IA 2834 368 PA 11936 1796
ID 998 120 RI 986 164
IL 11582 2023 SC 3425 427
IN 5531 593 SD 709 79
KS 2476 324 N 4855 568
KY 3727 417 TX 16789 2313
LA 4461 785 uT 1680 244
MA 5855 1024 VA 5904 914
MD 4535 940 VT 548 74
ME 1187 128 WA 4538 838
MI 9200 1788 wWI 4807 863
MN 4246 665 wv 1897 168
MO 5103 660 WYy 490 115
MS 2625 245
Age Group, Total Number Number of Mothers of

Years of Births Down’s Syndrome Patients
20 or less 35,5655 15
20-24 207,931 128
25-29 253,450 208
30-34 170,970 194
35-39 86,046 297
40-44 24,498 240
45 or over 1,707 37

“Reprinted with permission from Andrews and Herzberg (1985).

9. Table 1.21 shows the times in days from remission induction to relapse
for 51 patients with acute nonlymphoblastic leukemia who were treated
on a common protocol at university and private institutions in the Pacific
Northwest. This is a portion of a larger study reported by Glucksberg et al.

(1981).

Since data of this type are notoriously skewed, the distribution of
the times can be examined using the following output from PROC UNI-
VARIATE in SAS as seen in Fig. 1.22.
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Table 1.21 Ordered Remission Durations for 51 Patients with Acute Nonlymphoblastic Leukemia (in days)

24 46 57 57 64 65 82 89 90 90 111 117 128 143 148 152
166 171 186 191 197 209 223 230 247 249 254 258 264 269 270 273
284 294 304 304 332 341 393 395 487 510 516 518 518 534 608 642
697 955 1160
Figure 1.22
Summary Statistics Moments
for Remission Data N 51
Mean 292.392
STD DEV 230.309
Quantiles
100% Max 1160 99% 1160
75% Q3 393 95% 697
50% Med 249 90% 534
25% Q1 128 10% 64.2
0% Min 24 5% 52.6
Range 1136
Q3-Q1 265
Mode 57
Stem Leaf # Boxplot
11 6 1 0
10
9 5 1 0
8
70 1
6 14 2
5 12223 5
49 1
3 003499 6
2 01235556677789 14 E
1 1234557799 10
0 2566668999 10 I
f f f f
Multiply Stem. Leaf by 10°°+02

(a) What is the relation between the mean and the median? What does this
mean about the shape of the distribution? Do the stem and leaf plot
and the box plot support this?

(b) Identify any outliers in this data set. Can you think of any reasons for
these outliers? Can we just “throw them away”’? Note that the mean
time of remission is 292.39 days and the median time is 249.

(c) Approximately what percent of these patients were in remission for
less than one year?

10. The use of placement exams in elementary statistics courses has been a
controversial topic in recent times. Some researchers think that the use
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of a placement exam can help determine whether a student will success-
fully complete a course (or program). A recent study in a large university
resulted in the data listed in Table 1.22. The placement test administered
was an inhouse written general mathematics test. The course was Elemen-
tary Statistics. The students were told that the test would not affect their
course grade. After the semester was over, students were classified accord-
ing to their status. In Table 1.22 are the students’ scores on the placement
test (from 0 to 100), and the status of the student (coded as 0 = passed the
course, 1 =failed the course, and 2 = dropped out before the semester was
over) related?

(a) Construct a frequency histogram for Score. Describe the results.

Table 1.22 Placement Scores for Elementary Statistics

Student Score Status Student Score Status Student Score Status
1 90 2 36 85 0 71 97 2
2 65 2 37 99 1 72 90 0
3 30 1 38 45 0 73 30 0
4 55 0 39 90 0 74 1 0
5 1 0 40 10 1 75 1 0
6 1 41 56 0 76 70 0
7 95 0 42 55 2 77 90 0
8 99 0 43 50 0 78 70 0
9 40 0 44 1 1 79 75 0

10 95 0 45 45 0 80 75 2
11 1 0 46 50 0 81 70 2
12 55 0 47 85 2 82 85 0
13 85 0 48 95 2 83 45 0
14 95 0 49 15 0 84 50 0
15 15 2 50 35 0 85 55 0
16 95 0 51 85 0 86 15 0
17 15 0 52 85 0 87 55 0
18 65 0 53 50 0 88 20 1
19 55 0 54 10 1 89 1 1
20 75 0 55 60 0 90 75 0
21 15 0 56 45 1 91 45 2
22 35 2 57 90 0 92 70 0
23 90 0 58 1 1 93 70 0
24 10 0 59 80 2 94 45 0
25 10 1 60 45 0 95 90 0
26 20 0 61 90 0 96 65 2
27 25 0 62 45 0 97 75 2
28 15 1 63 20 0 98 70 0
29 40 0 64 35 1 99 65 0
30 15 0 65 40 2 100 55 0
31 50 0 66 40 0 101 55 0
32 80 0 67 60 0 102 40 0
33 50 1 68 15 0 103 56 0
34 50 2 69 45 0 104 85 0
35 97 0 70 45 0 105 80 0
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Table 1.23

Net Rate of Investment
Income

Table 1.24

Traits of Salespersons
Considered Most
Important by Sales
Managers

(b) Construct a relative frequency histogram for Score for each value of
Status. Describe the differences among these distributions. Are there
some surprises?

11. The 1988 Life Insurance Fact Book, published by the American Council
of Life Insurance, gives the net rate of investment income for U.S. life
insurance companies from 1968 through 1987 (p. 65). These data are re-
produced in Table 1.23.

Year Percent Year Percent Year Percent Year Percent
68 4.95 73 5.88 78 7.31 83 8.96
69 5.12 74 6.25 79 7.73 84 9.45
70 5.3 75 6.36 80 8.09 85 9.63
71 5.44 76 6.55 81 8.57 86 9.35
72 5.56 77 6.89 82 8.91 87 9.09

(a) Find the mean rate of investment income and the standard deviation.

(b) What is the median rate of investment? When did the median occur?

(c) Plot the rate of investment income versus the year. What happens prior
to 1985? How about after 1985? What would you expect to happen in
19887

12. A study of characteristics of successful salespersons in a certain industry
included a questionnaire given to sales managers of companies in this
industry. In this questionnaire the sales manager had to choose a trait that
the manager thought was most important for salespersons to have. The
results of 120 such responses are given in Table 1.24.

Trait Number of Responses
Reliability 44
Enthusiastic/energetic 30
Self-starter 20
Good grooming habits 18
Eloquent 6
Pushy 2

(a) Convert the number of responses to percents of total. What can be said
about the first two traits?
(b) Draw a bar chart of the data.

13. A measure of the time a drug stays in the blood system is given by the
half-life of the drug. This measure is dependent on the type of drug, the
weight of the patient, and the dose administered. To study the half-life of
aminoglyco sides in trauma patients, a pharmacy researcher recorded the
data in Table 1.25 for patients in a critical care facility. The data consist
of measurements of dosage per kilogram of weight of the patient, type of
drug, either Amikacin or Gentamicin, and the half-life measured 1 hour
after administration.
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Table 1.25 Patient Drug Half-Life Dosage (mg drug/kg patient)
Half-Life 1 G 1.60 2.10
of Aminoglycosides 2 A 2.50 7.90
and Dosage by Drug Type 3 G 1.90 2.00
4 G 2.30 1.60
5 A 2.20 8.00
6 A 1.60 8.30
7 A 1.30 8.10
8 A 1.20 8.60
9 G 1.80 2.00
10 G 2.50 1.90
11 A 1.60 7.60
12 A 2.20 6.50
13 A 2.20 7.60
14 G 1.70 2.86
15 A 2.60 10.00
16 A 1.00 9.88
17 G 2.86 2.89
18 A 1.50 10.00
19 A 3.15 10.29
20 A 1.44 9.76
21 A 1.26 9.69
22 A 1.98 10.00
23 A 1.98 10.00
24 A 1.87 9.87
25 G 2.89 2.96
26 A 2.31 10.00
27 A 1.40 10.00
28 A 2.48 10.50
29 G 1.98 2.86
30 G 1.93 2.86
31 G 1.80 2.86
32 G 1.70 3.00
33 G 1.60 3.00
34 G 2.20 2.86
35 G 2.20 2.86
36 G 2.40 3.00
37 G 1.70 2.86
38 G 2.00 2.86
39 G 1.40 2.82
40 G 1.90 2.93
41 G 2.00 2.95
42 A 2.80 10.00
43 A 0.69 10.00

(a) Draw a scatter diagram of half-life versus dose per kilogram, indexed
by drug type (use A’s and G’s). Does there appear to be a difference in
the prescription of initial doses in types of drugs?

(b) Does there appear to be a relation between half-life and dosage?
Explain.

(c¢) Find 