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Preface

The objective of Statistical Methods, Second Edition, is to provide students
with a working introduction to statistical methods. Courses using this book are
normally taken by advanced undergraduate statistics students and graduate
students from various disciplines.

Statistical Methods is an upper-level requirement for undergraduate de-
grees in disciplines emphasizing quantitative skills, or a requirement for grad-
uate degrees in disciplines where statistics is an important research tool. This
book is intended to be used for this type of course. The material in this book
provides an overview of a wide range of applications and normally requires two
semesters, although a limited knowledge of statistical methods is provided in
the first semester. Many students will continue with several additional courses
in specialized statistics applications.

Traditionally, textbooks used for statistical methods courses have em-
phasized plugging numbers into formulas, with computer usage as an af-
terthought. This approach has led to much mind-numbing drill, which obscures
the real issues. The increased usage of computers and availability of com-
prehensive statistical software packages would seem to imply that statistical
methods should now be taught in terms of implementing such software. This
approach is likely to make the computer appear as a black box into which one
pours data files and automatically receives the correct answers. However, a
computer does not know whether it is doing the correct analysis and is capable
of a beautifully annotated execution of an incorrect analysis. Also a computer
cannot interpret results and write a report.

Guiding Principles

This text provides a reasonable compromise between these two extremes. Our
guiding principles are as follows:
• No mathematics beyond algebra is required. However, mathematically ori-

ented students may still find the material in this book challenging, especially
if they are also exposed to courses in statistical theory.

xvii
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• Formulas are presented primarily to show the how and why of a particular
statistical analysis. For that reason, there is a minimal number of exercises
that plug numbers into formulas.

• The topics in this book are organized in broad categories to facilitate the
choice of the best-performance methodology for a specific task and there
is considerable cross-referencing to facilitate making this choice.

• All examples containing real data are worked to a logical conclusion, in-
cluding interpretation of results. Where computer printouts are used, the
results are discussed and explained. In general, the emphasis is on conclu-
sions rather than mechanics.

• Throughout the book we stress that certain assumptions about the data
must be fulfilled in order for the statistical analyses to be valid, and we
emphasize that although the assumptions are often fulfilled, they should be
routinely checked.

New to This Edition
• Friendlier exposition makes concepts clearer to students without weak-

ening the statistical rigor of the material.
• New, greater emphasis on graphics help students to visualize and under-

stand ideas.
• Examples of contemporary topics, such as analysis of means, are included

at appropriate points in the text.
• Exercises or portions of exercises are identified when material is covered

from specific sections, allowing students to practice the methods without
having to wait until a complete chapter is covered.

• Examples and exercises contain both contemporary data and references
to additional data on the Internet or in other published works.

Using This Book

Organization

The organization of Statistical Methods, Second Edition, follows the “classi-
cal” order. The formulas in the book are generally the so-called definitional
ones that emphasize concepts rather than computational efficiency. These for-
mulas can be used for a few of the very simplest examples and problems,
but we expect that virtually all exercises will be implemented on computers.
The first seven chapters, which are normally covered in a first semester, cover
data description, probability and sampling distributions, basics of inference
for one and two sample problems, the analysis of variance, and one-variable
regression. The second portion of the book starts with chapters on multiple
regression, factorial experiments, experimental design, and an introduction to
general linear models including the analysis of covariance. We have separated
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factorial experiments and design of experiments, because they are different
applications of the same numeric methods.

The last three chapters introduce topics in the analysis of categorical data,
nonparametric statistics, and sampling. These chapters provide a brief intro-
duction to these important topics and are intended to round out the statistical
education of those who will learn from this book.

Coverage

This book contains more material than can be covered in a two-semester
course. We have purposely done this for two reasons:

• Because of the wide variety of audiences for statistical methods, not all
instructors will want to cover the same material. For example, courses with
heavy enrollments of students from the social and behavioral sciences will
want to emphasize nonparametric methods and the analysis of categorical
data with less emphasis on experimental design.

• Students who have taken statistical methods courses tend to keep their
statistics books for future reference. We recognize that no single book will
ever serve as a complete reference, but we hope that the broad coverage in
this book will at least lead these students in the proper direction when the
occasion demands.

Sequencing

For the most part, topics are arranged so that each new topic builds on previous
topics, hence course sequencing should follow the book. There are, however,
some exceptions that may appeal to some instructors:

• In some cases it may be preferable to present the material on categorical
data at an early stage. Much of the material in Chapter 12 (Categorical Data)
can be taught anytime after Chapter 5 (Inferences for Two Populations).

• Some instructors prefer to present nonparametric methods along with para-
metric methods. Again, any of the material in Chapter 13 (Nonparametric
Methods) may be taken at any time after Chapter 3 (Principles of Inference).

Exercises

Properly assigned and executed exercises are an integral part of any course
in statistical methods. We have placed all exercises at the ends of chapters
to emphasize problem solving rather than mechanics for particular methods.
This placement may have the unintended consequence that students may delay
starting these exercises until the chapters have been completed, resulting in
uneven workloads. To alleviate this potential problem we have placed instruc-
tions on initiating work on exercises throughout some of the longer chapters.
Students are also encouraged to do all examples. Data files for all exercises
and examples are available from the publisher.
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Computing

For consistency and convenience and because it is the most widely used single
statistical computing package, we have relied heavily on the SAS® System to
illustrate examples in this text. However, because student access to computers
in general, and the SAS System in particular, is not universal, we have provided
generic rather than software specific instructions for performing the analyses
for examples and exercises.

Instructional material is available from specific software vendors and an
increasing amount of independently published material is becoming available.
For those who wish to use the SAS System, data and code for performing the
analyses for examples and exercises are available on ASCII files. The data
portion of these files can be adapted for use with other software.

Data Sets are available on the Web. Please contact the sales representative or
the publisher for further details.
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Chapter 1

Data and Statistics

1.1 Introduction

To most people the word statistics conjures up images of vast tables of
confusing numbers, volumes and volumes of figures pertaining to births,
deaths, taxes, populations, and so forth, or figures indicating baseball batting
averages or football yardage gained flashing across television screens. This
is so because in common usage the word statistics is synonymous with the
word data. In a sense this is a reasonably accurate impression because the dis-
cipline of statistics deals largely with principles and procedures for collecting,
describing, and drawing conclusions from data. Therefore it is appropriate for
a text in statistical methods to start by discussing what data are, how data are
characterized, and what tools are used to describe a set of data. The purpose
of this chapter is to

1. provide the definition of a set of data,
2. define the components of such a data set,
3. present tools that are used to describe a data set, and briefly
4. discuss methods of data collection.

DEFINITION 1.1
A set of data is a collection of observed values representing one or more
characteristics of some objects or units.

EXAMPLE 1.1 A typical data set Every year, the National Opinion Research Center
(NORC) publishes the results of a personal interview survey of U.S. house-
holds. This survey is called the General Social Survey (GSS) and is the basis
for many studies conducted in the social sciences. In the 1996 GSS, a total of

1



2 Chapter 1 Data and Statistics

2904 households were sampled and asked over 70 questions concerning life-
styles, incomes, religious and political beliefs, and opinions on various topics.
Table 1.1 lists the data for a sample of 50 respondents on four of the questions
asked. This table illustrates a typical mid-sized data set. Each of the rows cor-
responds to a particular respondent (labeled 1 through 50 in the first column).
Each of the columns, starting with column two, are responses to the following
four questions:

1. AGE: The respondent’s age in years
2. SEX: The respondent’s sex coded 1 for male and 2 for female
3. HAPPY: The respondent’s general happiness, coded:

1 for “Not too happy”
2 for “Pretty happy”
3 for “Very happy”

4. TVHOURS: The average number of hours the respondent watched TV during
a day

This data set obviously contains a lot of information about this sample of
50 respondents. Unfortunately this information is hard to interpret when the
data are presented as shown in Table 1.1. There are just too many numbers to
make any sense of the data (and we are only looking at 50 respondents!). By
summarizing some aspects of this data set, we can obtain much more usuable
information and perhaps even answer some specific questions. For example,
what can we say about the overall frequency of the various levels of happiness?
Do some respondents watch a lot of TV? Is there a relationship between the
age of the respondent and his or her general happiness? Is there a relationship
between the age of the respondent and the number of hours of TV watched?

We will return to this data set in Section 1.9 after we have explored some
methods of summarizing and making sense of data sets like this one. As we
develop more sophisticated methods of analysis in later chapters, we will again
refer to this data set.1 ■

DEFINITION 1.2
A population is a data set representing the entire entity of interest.

For example, the decennial census of the United States yields a data set con-
taining information about all persons in the country at that time (theoretically
all households correctly fill out the census forms). The number of persons per
household as listed in the census data constitutes a population of family sizes
in the United States. Similarly, the weights of all steers brought to an auction
by a particular rancher is a data set that is the population of the weights of
that rancher’s marketable steers.

Note that elements of a population are really measures rather than individ-
uals. This means that there can be many different definitions of populations
that involve the same collection of individuals. For example, the number of

1The GSS is discussed on the Web page: http://www.icpsr.umich.edu/GSS/.
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Table 1.1

Sample of 50 Responses
to the 1996 GSS

Respondent AGE SEX HAPPY TVHOURS

1 41 1 2 0
2 25 2 1 0
3 43 1 2 4
4 38 1 2 2
5 53 2 3 2
6 43 2 2 5
7 56 2 2 2
8 53 1 2 2
9 31 2 1 0

10 69 1 3 3
11 53 1 2 0
12 47 1 2 2
13 40 1 3 3
14 25 1 2 0
15 60 1 2 2
16 42 1 2 3
17 24 2 2 0
18 70 1 1 0
19 23 2 3 0
20 64 1 1 10
21 54 1 2 6
22 64 2 3 0
23 63 1 3 0
24 33 2 2 4
25 36 2 3 0
26 53 1 1 2
27 26 2 2 0
28 89 2 2 0
29 65 1 1 0
30 45 2 2 3
31 64 2 3 5
32 30 2 2 2
33 75 2 2 0
34 53 2 2 3
35 38 1 2 0
36 26 1 2 2
37 25 2 3 1
38 56 2 3 3
39 26 2 2 1
40 54 2 2 5
41 31 2 2 0
42 44 1 2 0
43 36 2 2 3
44 74 2 2 0
45 74 2 2 3
46 37 2 3 0
47 48 1 2 3
48 42 2 2 6
49 77 2 2 2
50 75 1 3 0
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school-age children per household as listed in the census data would constitute
a population for another study. As we shall see in discussions about statistical
inference, it is important to define the population that we intend to study very
carefully.

DEFINITION 1.3
A sample is a data set consisting of a portion of a population. Normally a
sample is obtained in such a way as to be representative of the population.

The Census Bureau conducts various activities during the years between each
decennial census, such as the Current Population Survey. This survey sam-
ples a small number of scientifically chosen households to obtain information
on changes in employment, living conditions, and other demographics. The
data obtained constitute a sample from the population of all households in the
country. If two steers were selected from a herd of steers brought to an auction
by a rancher, these two steers would be considered a sample from the herd.

Data Sources

Data come from many different sources, depending on the objective of the
particular study, the limitations of data collection resources, or any number of
other factors. However, in general, data are obtained from two broad categories
of sources:

• Primary data are collected as part of the study.
• Secondary data are obtained from published sources, such as journals,

governmental publications, news media, or almanacs.

There are several ways of obtaining primary data. Data are often obtained from
simple observation of a process, such as characteristics and prices of homes
sold in a particular geographic location, quality of products coming off an as-
sembly line, political opinions of registered voters in the state of Texas, or even
a person standing on a street corner and recording how many cars pass each
hour during the day. This kind of a study is called an observational study. Ob-
servational studies are often used to determine whether an association exists
between two or more characteristics measured in the study. For example, a
study to determine the relationship between high school student performance
and the highest educational level of the student’s parents would be based on
an examination of student performance and a history of the parents’ educa-
tional experiences. No cause-and-effect relationship could be determined, but
a strong association might be the result of such a study. Note that an observa-
tional study does not involve any intervention by the researcher.

Much primary data are obtained through the use of sample surveys such
as Gallup polls or the Nielsen TV ratings. Such surveys normally represent a
particular group of individuals and are intended to provide information on the
characteristics and/or habits of such a group. Chapter 14 provides some basic
principles for planning and conducting sample surveys.
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Often data used in studies involving statistics come from designed

experiments. In a designed experiment researchers impose treatments and
controls on the process and then observe the results and take measurements.
For example, in a laboratory experiment rats may be subjected to various noise
levels and the rapidity of their movements recorded. Designed experiments can
be used to help establish causation between two or more characteristics. For
example, a study could be designed to determine if high school student per-
formance is affected by a nutritious breakfast. By choosing a proper design
and conducting the experiment in a rigorous manner, an actual cause-and-
effect relationship might be established. Data from designed experiments are
considered a sample. For example, a study relating high school student perfor-
mance to breakfast may use as few as 25 typical urban high school students.
The results of the study would then be inferred to the population of all urban
high school students. Chapter 10 provides an introduction to experimental
designs.

Using the Computer

Today, comprehensive programs for conducting statistical and data analyses
are available in general-use spreadsheet software, graphing calculators, and
dedicated statistical software. A person rarely needs to write his or her own
programs, since they already exist for almost all aspects of statistics. Because
such a large number of such packages are currently available, it is impossible
to provide specific instructions for such usage in a single book. Although a
few exercises in the beginning of this book, especially those in Chapters 2–5,
can be done manually or with the aid of calculators, most exercises even
in these chapters, and all exercises in Chapters 8–11, will require the use
of a computer. In some examples we have included generic instructions for
effective computer usage.

For reasons of consistency and convenience we have used the SAS System
almost exclusively for examples in this book. The SAS System is a very compre-
hensive software package, of which statistical analysis is only a minor portion.
Because it is such a large system it may not be optimal for students to have
on their personal computers. We assume that additional instructions will be
available for the particular software you will be using. In a few instances, espe-
cially in the earlier chapters, output from several software packages are used
for comparative purposes.

Some general guidelines on using the computer for statistical analyses are,
however, useful. There are two types of statistical programs identified by the
method in which they accept instructions. Instructions are given to packages
either

• by submitting, usually on the computer keyboard, a set of statements that
describe the required analysis and options for specific tasks and outputs, or

• by providing menus that describe available analyses and options, which
are chosen by pointing with a mouse and clicking the desired analyses and
options.
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Each of these has advantages and disadvantages. The submitted statements
must usually adhere to a specific syntax and are subject to typographical
errors that cause error messages and aborted analyses. On the other hand
this method of implementing an analysis usually provides more flexibility and
a larger number of options. The “point and click” approach is easier to use but
often lacks flexibility.

The individual components of these packages are usually very comprehen-
sive in that they can perform a wide variety of tasks and the default output from
these components is often exhaustive. For example, this chapter presents vari-
ous graphical presentations for summarizing data, virtually all of which can be
performed by a single such component of most packages. Chapter 6 presents
the “one way” analysis of variance for comparing a set of means. Most soft-
ware not only does this analysis, but also can perform the analyses covered
in Chapters 9 and 10 and additional methods beyond the scope of this book.
For this reason it is important to be precise in specifying analysis and output
options that pertain to a specific problem. Requesting inappropriate options
may cause confusing outputs.

Each software package has its own style of output. However, most will
contain essentially the same results, although they may appear in a different
order and may even have different labels. It is therefore important to study the
documentation of any package being used. We should note that most computer
outputs in this book have been abbreviated because the full default output
often contains information not needed at that particular time, although in a
few instances we have presented the full output for illustration purposes.

If a set of data represents an entire population, the techniques presented
in this chapter can be used to describe various aspects of that population and
a statistical analysis using these descriptors is useful solely for that purpose.
However, as is more often the case, the data to be analyzed come from a
sample. In this case, the descriptive statistics obtained may subsequently be
used as tools for statistical inference. A general introduction to the concept
of statistical inference is presented in Section 1.8, and most of the remainder
of this text is devoted to that subject.

1.2 Observations and Variables

A data set is composed of information from a set of units. Information from
a unit is known as an observation. An observation consists of one or more
pieces of information about the unit; these are called variables. Some
examples:

• In a study of the effectiveness of a new headache remedy, the units are
individual persons, of which 10 are given the new remedy and 10 are given
an aspirin. The resulting data set has 20 observations and two variables: the
medication used and a score indicating the severity of the headache.

• In a survey for determining TV viewing habits, the units are families. Usually
there is one observation for each of thousands of families that have been

ses
summarizing
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contacted to participate in the survey. The variables describe the programs
watched as well as descriptions of the characteristics of the families.

• In a study to determine the effectiveness of a college admissions test
(e.g., SAT) the units are the freshmen at a university. There is one observa-
tion per unit and the variables are the students’ scores on the test and their
first year’s GPA.

Variables that yield nonnumerical information are called qualitative vari-
ables. Qualitative variables are often referred to as categorical variables.
Those that yield numerical measurements are called quantitative variables.
Quantitative variables can be further classified as discrete or continuous. The
diagram below summarizes these definitions:

Variable/ ∖
Qualitative Quantitative/ ∖

Discrete Continuous

DEFINITION 1.4
A discrete variable can assume only a countable number of values.
Typically, discrete variables are frequencies of observations having
specific characteristics, but all discrete variables are not necessarily
frequencies.

DEFINITION 1.5
A continuous variable is one that can take any one of an uncountable
number of values in an interval. Continuous variables are usually mea-
sured on a scale and, although they may appear discrete due to imprecise
measurement, they can conceptually take any value in an interval and
cannot therefore be enumerated.

In the field of statistical quality control, the term variable data is used when
referring to data obtained on a continuous variable and attribute data when
referring to data obtained on a discrete variable (usually the number of defec-
tives or nonconformities observed).

In the preceding examples, the names of the headache remedies and names
of TV programs watched are qualitative (categorical) variables. Headache
severity scores is a discrete numeric variable, incomes of TV-watching families,
and SAT and GPA scores are continuous quantitative variables.

We will use the data set in Example 1.2 to present greater detail on various
concepts and definitions regarding observations and variables.



8 Chapter 1 Data and Statistics

EXAMPLE 1.2 In the fall of 2001, John Mode was offered a new job in a mid-sized city
in east Texas. Obviously, the availability and cost of housing will influence
his decision to accept, so he and his wife Marsha go to the Internet, find
www.realtor.com, and after a few clicks find some 500 single-family residences
for sale in that area. In order to make the task of investigating the housing
market more manageable, they arbitrarily record the information provided on
the first home on each page of six. This information results in a data set that
is shown in Table 1.2.

The data set gives information on 69 homes, which comprise the observations

for this data set. In this example, each property is a unit, often called a sample,
experimental, or observational unit.2 The 11 columns of the table provide spe-
cific characteristics information for each home and compose the 11 variables

of this data set. The variable definitions along with brief mnemonic descriptors
commonly used in computers are as follows:

• Obs3: a sequential number assigned to each observation as it is entered into
the computer. This is useful for identifying individual observations.

• zip: the last digit of the postal service zip code. This variable identifies the
area in which the home is located.

• age: the age of the home in years.
• bed: the number of bedrooms.
• bath: the number of bathrooms.
• size: the interior area of the home in square feet.
• lot: the size of the lot in square feet.
• exter: the exterior siding material.
• garage: the capacity of the garage; zero means no garage.
• fp: the number of fireplaces.
• price: the price of the home, in dollars.

The elements of each row define the observed values of the variables. Note that
some values are represented by “.”. In the SAS System, and other statistical
computing packages, this notation specifies a missing value; that is, no infor-
mation on that variable is available. Such missing values are an unavoidable
feature in many date sets and occasionally cause difficulties in analyzing the
data.

Brief mnemonic identifiers such as these are used by computer programs to
make their outputs easier to interpret and are unique for a given set of data.
However, for use in formulas we will follow mathematics convention, where
variables are generically identified by single letters taken from the latter part

2These different types of units are not always synonymous. For example, an experimental unit may
be an animal subjected to a certain diet while the observational units may be several determinations
of the weight of the animal at different times. Unless otherwise specified, most of the methods
presented in this book are based on the assumption that the three are synonymous and will usually
be referred to as experimental units.
3The term Obs is used by the SAS System. Other computer software may use other notations.
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Table 1.2 Housing Data

Obs zip age bed bath size lot exter garage fp price

1 3 21 3 3.0 951 64904 Other 0 0 30000
2 3 21 3 2.0 1036 217800 Frame 0 0 39900
3 4 7 1 1.0 676 54450 Other 2 0 46500
4 3 6 3 2.0 1456 51836 Other 0 1 48600
5 1 51 3 1.0 1186 10857 Other 1 0 51500
6 2 19 3 2.0 1456 40075 Frame 0 0 56990
7 3 8 3 2.0 1368 . Frame 0 0 59900
8 4 27 3 1.0 994 11016 Frame 1 0 62500
9 1 51 2 1.0 1176 6259 Frame 1 1 65500
10 3 1 3 2.0 1216 11348 Other 0 0 69000
11 4 32 3 2.0 1410 25450 Brick 0 0 76900
12 3 2 3 2.0 1344 . Other 0 1 79000
13 3 25 2 2.0 1064 218671 Other 0 0 79900
14 1 31 3 1.5 1770 19602 Brick 0 1 79950
15 4 29 3 2.0 1524 12720 Brick 2 1 82900
16 3 16 3 2.0 1750 130680 Frame 0 0 84900
17 3 20 3 2.0 1152 104544 Other 2 0 85000
18 3 18 4 2.0 1770 10640 Other 0 0 87900
19 4 28 3 2.0 1624 12700 Brick 2 1 89900
20 2 27 3 2.0 1540 5679 Brick 2 1 89900
21 1 8 3 2.0 1532 6900 Brick 2 1 93500
22 4 19 3 2.0 1647 6900 Brick 2 0 94900
23 2 3 3 2.0 1344 43560 Other 1 0 95800
24 4 5 3 2.0 1550 6575 Brick 2 1 98500
25 4 5 4 2.0 1752 8193 Brick 2 0 99500
26 4 27 3 1.5 1450 11300 Brick 1 1 99900
27 4 33 2 2.0 1312 7150 Brick 0 1 102000
28 1 4 3 2.0 1636 6097 Brick 1 0 106000
29 4 0 3 2.0 1500 . Brick 2 0 108900
30 2 36 3 2.5 1800 83635 Brick 2 1 109900
31 3 5 4 2.5 1972 7667 Brick 2 0 110000
32 3 0 3 2.0 1387 . Brick 2 0 112290
33 4 27 4 2.0 2082 13500 Brick 3 1 114900
34 3 15 3 2.0 . 269549 Frame 0 0 119500
35 4 23 4 2.5 2463 10747 Brick 2 1 119900
36 4 25 3 2.0 2572 7090 Brick 2 1 119900
37 4 24 4 2.0 2113 7200 Brick 2 1 122900
38 4 1 3 2.5 2016 9000 Brick 2 1 123938
39 1 34 3 2.0 1852 13500 Brick 2 0 124900
40 4 26 4 2.0 2670 9158 Brick 2 1 126900
41 2 26 3 2.0 2336 5408 Brick 0 1 129900
42 4 31 3 2.0 1980 8325 Brick 2 1 132900
43 2 24 4 2.5 2483 10295 Brick 2 1 134900
44 2 29 5 2.5 2809 15927 Brick 2 1 135900
45 4 21 3 2.0 2036 16910 Brick 2 1 139500
46 3 10 3 2.0 2298 10950 Brick 2 1 139990
47 4 3 3 2.0 2038 7000 Brick 2 0 144900
48 2 9 3 2.5 2370 10796 Brick 2 1 147600
49 2 29 5 3.5 2921 11992 Brick 2 1 149990
50 2 8 3 2.0 2262 . Brick 2 1 152550

(Continued)
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Table 1.2 (continued)

Obs zip age bed bath size lot exter garage fp price

51 4 7 3 3.0 2456 . Brick 2 1 156900
52 4 1 4 2.0 2436 52000 Brick 2 1 164000
53 3 27 3 2.0 1920 226512 Frame 4 1 167500
54 4 5 3 2.5 2949 11950 Brick 2 1 169900
55 2 32 4 3.5 3310 10500 Brick 2 1 175000
56 4 29 3 3.0 2805 16500 Brick 2 1 179000
57 4 1 3 3.0 2553 8610 Brick 2 1 179900
58 4 1 3 2.0 2510 . Other 2 1 189500
59 4 33 3 4.0 3627 17760 Brick 3 1 199000
60 2 25 4 2.5 3056 10400 Other 2 1 216000
61 3 16 3 2.5 3045 168576 Brick 3 1 229900
62 4 2 4 4.5 3253 54362 Brick 3 2 285000
63 2 2 4 3.5 4106 44737 Brick 3 1 328900
64 4 0 3 2.5 2993 . Brick 2 1 313685
65 4 0 3 2.5 2992 14500 Other 3 1 327300
66 4 20 4 3.0 3055 250034 Brick 3 0 349900
67 4 18 5 4.0 3846 23086 Brick 4 3 370000
68 4 3 4 4.5 3314 43734 Brick 3 1 380000
69 4 5 4 3.5 3472 130723 Brick 2 2 395000

of the alphabet. For example the letter Y can be used to represent the variable
price. The same lowercase letter, augmented by a subscript identifying the
observation number, is used to represent the value of the variable for a par-
ticular observation. Using this notation, yi is the observed price of the ith
house. Thus, y1 = 30000, y2 = 39900, . . . , y69 = 395000. The set of observed val-
ues of price can be symbolically represented as y1, y2, . . . , y69, or yi, i =
1, 2, . . . , 69. The total number of observations is symbolically represented by
the letter n; for the data in Table 1.2, n = 69. We can generically represent the
values of a variable Y , as yi, i = 1, 2, . . . , n. We will most frequently use Y as
the variable and yi as observations of the variable of interest. ■

1.3 Types of Measurements for Variables

We usually think of data as consisting of numbers, and certainly many data
sets do contain numbers. In Example 1.2, for instance, the variable price is
the asking price of the home, measured in dollars. This measurement indicates
a definite metric or scale in the values of the variable price. Certainly a
$200,000 house costs twice as much as a $100,000 house. As we will see later,
not all variables that measure a quantity have this characteristic. However, not
all data necessarily consist of numbers. For example, the variable exter is
observed as either brick,frame, or other, a measurement that does not
convey any relative value. Further, variables that are recorded as numbers do
not necessarily imply a quantitative measurement. For example, the variable
zip simply locates the home in some specific area and has no quantitative
meaning.
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We can classify observations according to a standard measurement scale
that goes from “strong” to “weak” depending on the amount or precision of
information available in the scale. These measurement scales are discussed
at some length in various publications, including Conover (1998). We present
the characteristics of these scales in some detail since the nature of the data
description and statistical inference is dependent on the type of variable being
studied.

DEFINITION 1.6
The ratio scale of measurement uses the concept of a unit of distance
or measurement and requires a unique definition of a zero value.

Thus, in the ratio scale the difference between any two values can be expressed
as some number of these units. Therefore, the ratio scale is considered the
“strongest” scale since it provides the most precise information on the value
of a variable. It is appropriate for measurements of heights, weights, birth rates,
and so on. In the data set in Table 1.2, all variables except zip and exter are
measured in the ratio scale.

DEFINITION 1.7
The interval scale of measurement also uses the concept of distance or
measurement and requires a “zero” point, but the definition of zero may
be arbitrary.

The interval scale is the second “strongest” scale of measurement, because
the “zero” is arbitrary. An example of the interval scale is the use of degrees
Fahrenheit or Celsius to measure temperature. Both have a unit of measure-
ment (degree) and a zero point, but the zero point does not in either case
indicate the absence of temperature. Other popular examples of interval vari-
ables are scores on psychological and educational tests, in which a zero score is
often not attainable but some other arbitrary value is used as a reference value.

We will see that many statistical methods are applicable to variables of
either the ratio or interval scales in exactly the same way. We therefore usually
refer to both of these types as numeric variables.

DEFINITION 1.8
The ordinal scale distinguishes between measurements on the basis of
the relative amounts of some characteristic they possess. Usually the
ordinal scale refers to measurements that make only “greater,” “less,” or
“equal” comparisons between consecutive measurements.

In other words, the ordinal scale represents a ranking or ordering of a set
of observed values. Usually these ranks are assigned integer values starting
with “1” for the lowest value, although other representations may be used. The
ordinal scale does not provide as much information on the values of a variable
and is therefore considered “weaker” than the ratio or interval scale.
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Table 1.3

Example of Ordinal Data

Pie Rank

1 4
2 3
3 1
4 2
5 5

For example, if a person were asked to taste five chocolate pies and rank
them according to taste, the result would be a set of observations in the ordinal
scale of measurement.

A set of data illustrating an ordinal variable is given in Table 1.3. In this
data set, the “1” stands for the most preferred pie while the worst tasting pie
receives the rank of “5.” The values are used only as a means of arranging
the observations in some order. Note that these values would not differ if pie
number 3 were clearly superior or only slightly superior to pie number 4.

It is sometimes useful to convert a set of observed ratio or interval values to
a set of ordinal values by converting the actual values to ranks. Ranking a set of
actual values induces a loss of information, since we are going from a stronger
to a weaker scale of measurement. Ranks do contain useful information and, as
we will see (especially in Chapter 13), may provide a useful base for statistical
analysis.

DEFINITION 1.9
The nominal scale identifies observed values by name or classification.

A nominally scaled variable is also often called a categorical or qualitative
variable. Although the names of the classifications may be represented by
numbers, these are used merely as a means of identifying the classifications
and are usually arbitrarily assigned and have no quantitative implications. Ex-
amples of nominal variables are sex, breeds of animals, colors, and brand
names of products. Because the nominal scale provides no information on dif-
ferences among the “values” of the variable, it is considered the weakest scale.
In the data in Table 1.2, the variable describing the exterior siding material is
a nominal variable.

We can convert ratio, interval, or ordinal scale measurements into nomi-
nal level variables by arbitrarily assigning “names” to them. For example, we
can convert the ratio-scaled variable size into a nominal-scaled variable, by
defining homes with less than 1000 square feet as “cottages,” those with more
than 1000 but less than 3000 as “family sized,” and those with more than 3000
as “estates.”

Note that the classification of scales is not always completely clear-cut.
For example, the “scores” assigned by judges for track or gymnastic events
are usually treated as possessing the ratio scale but are probably closer to
being ordinal in nature.

1.4 Distributions

Very little information about the characteristics of recently sold houses can be
acquired by casually looking through Table 1.2. We might be able to conclude
that most of the houses have brick exteriors, or that the selling price of houses
ranges from $30,000 to $395,000, but a lot more information about this data set
can be obtained through the use of some rather simple organizational tools.
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Table 1.4

Distribution of exter

exter Frequency

Brick 48
Frame 8
Other 13

To provide more information, we will construct frequency distributions

by grouping the data into categories and counting the number of observations
that fall into each one. Because we want to count each house only once, these
categories (called classes) are constructed so they don’t overlap. Because we
count each observation only once, if we add up the number (called the fre-
quency) of houses in all the classes, we get the total number of houses in
the data set. Nominally scaled variables naturally have these classes or cat-
egories. For example, the variable exter has three values, Brick, Frame,
and Other. Handling ordinal, interval, and ratio scale measurements can be a
little more complicated, but, as subsequent discussion will show, we can easily
handle such data simply by correctly defining the classes.

Once the frequency distribution is constructed, it is usually listed in tabular
form. For the variable exter from Table 1.2 we get the frequency distribution
presented in Table 1.4. Note that one of our first impressions is substantiated by
the fact that 48 of the 69 houses are brick while only 8 have frame exteriors. This
simple summarization shows how the frequency of the exteriors is distributed
over the values of exter.

DEFINITION 1.10
A frequency distribution is a listing of frequencies of all categories of
the observed values of a variable.

We can construct frequency distributions for any variable. For example,
Table 1.5 shows the distribution of the variable zip, which despite having
numeric values, is actually a categorical variable. This frequency distribution is
produced by Proc Freq of the SAS System where the frequency distribution
is shown in the column labeled Frequency. Apparently the area represented
by zip code 4 has the most homes for sale.

DEFINITION 1.11
A relative frequency distribution consists of the relative frequen-
cies, or proportions (percentages), of observations belonging to each
category.

The relative frequencies expressed as percents are provided in Table 1.5 under
the heading Percent and are useful for comparing frequencies among cate-
gories. These relative frequencies have a useful interpretation: They give the

Table 1.5

Distribution of zip

THE FREQ PROCEDURE
Cumulative Cumulative

zip Frequency Percent Frequency Percent

1 6 8.70 6 8.70
2 13 18.84 19 27.54
3 16 23.19 35 50.72
4 34 49.28 69 100.00
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Table 1.6

Distribution of Home
Prices in Intervals of
$50,000

THE FREQ PROCEDURE
Cumulative Cumulative

Range Frequency Percent Frequency Percent

less than 50k 4 5.80 4 5.80
50k to 100k 22 31.88 26 37.68
100k to 150k 23 33.33 49 71.01
150k to 200k 10 14.49 59 85.51
200k to 250k 2 2.90 61 88.41
250k to 300k 1 1.45 62 89.86
300k to 350k 4 5.80 66 95.65
350k to 400k 3 4.35 69 100.00

chance or probability of getting an observation from each category in a blind
or random draw. Thus if we were to randomly draw an observation from the
data in Table 1.5, there is an 18.84% chance that it will be from zip area 2. For
this reason a relative frequency distribution is often referred to as an observed
or empirical probability distribution (Chapter 2).

Constructing a frequency distribution of a numeric variable is a little more
complicated. Defining individual values of the variable as categories will usu-
ally only produce a listing of the original observations since very few, if any,
individual observations will normally have identical values. Therefore, it is
customary to define categories as intervals of values, which are called class

intervals. These intervals must be nonoverlapping and usually each class in-
terval is of equal size with respect to the scale of measurement. A frequency
distribution of the variable price is shown in Table 1.6. The table is produced
by Proc Freq, but because SAS does not automatically generate class inter-
vals, it was necessary to write a short program to produce those shown in the
table. Clearly the preponderance of homes is in the 50- to 150-thousand-dollar
range.

The column labeled Cumulative Frequency in Table 1.6 is the cumula-

tive frequency distribution, which gives the frequency of observed values
less than or equal to the upper limit of that class interval. Thus, for example,
59 of the homes are priced at less than $200,000. The column labeled Cumula-
tive Percent is the cumulative relative frequency distribution, which gives
the proportion (percentage) of observed values less than the upper limit of
that class interval. Thus the 59 homes priced at less than $200,000 represent
85.51% of the number of homes offered. We will see later that cumulative rela-
tive frequencies — especially those near 0 and 100% — can be of considerable
importance.

Graphical Representation of Distributions

Using the principle that a picture is worth a thousand words (or numbers),
the information in a frequency distribution is more easily grasped if it is pre-
sented in graphical form. The most common graphical presentation of a fre-
quency distribution for numerical data is a histogram while the most common
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presentation for nominal, categorical, or discrete data is a bar chart. Both
these graphs are constructed in the same way. Heights of vertical rectangles
represent the frequency or the relative frequency. In a histogram, the width
of each rectangle represents the size of the class and the rectangles are usu-
ally contiguous and of equal width so that the areas of the rectangles reflect
the relative frequency. In a bar chart the width of the rectangle has no mean-
ing; however, all the rectangles should be the same width to avoid distortion.
Figure 1.1 shows a frequency bar chart for exter from Table 1.2 which shows
the large proportion of brick homes clearly. Figure 1.2 shows a frequency his-
togram for price, clearly showing the preponderance of homes selling from
50 to 150 thousand dollars.

Another presentation of a distribution is provided by a pie chart which is
simply a circle (pie) divided into a number of slices whose sizes correspond
to the frequency or relative frequency of each class. Figure 1.3 shows a pie
chart for the variable zip. We have produced these graphs with different
programs and options to show that, although there may be slight differences
in appearances, the basic information remains the same.

The use of graphs and charts is pervasive in the news media, business and
economic reports, and governmental reports and publications, mainly due
to the ease of storage, retrieval, manipulation, and summary of large sets of
data using modern computers. Because of this, it is extremely important to
be able to evaluate critically the information contained in a graph or chart.
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After all, a graphical presentation is simply a visual impression, which is quite
easy to distort. In fact, distortion is so easy and commonplace that in 1992
the Canadian Institute of Chartered Accountants deemed it necessary to begin
setting guidelines for financial graphics, after a study of hundreds of the annual
reports of major corporations reported almost 10% of the reports contained at
least one misleading graph that masked unfavorable data.

Whether intentional or by honest mistake, it is very easy to mislead with
an incorrectly presented chart or graph. Darrell Huff, in a book entitled How

to Lie with Statistics (1982) illustrates many such charts and graphs and
discusses various issues concerning misleading graphs. In general, a correctly
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constructed chart or graph should have

1. all axes labeled correctly, with clearly identifiable scales,
2. be captioned correctly,
3. have bars and/or rectangles of equal width to avoid distortion,
4. have sizes of figures properly proportioned, and
5. contain only relevant information.

Histograms of numeric variables provide information on the shape of a
distribution, a characteristic that we will later see to be of importance when
performing statistical analyses. The shape is roughly defined by drawing a
reasonably smooth line through the tops of the bars. In such a representation
of a distribution, the center is known as the “peak” and the ends as “tails.” If the
tails are of approximately equal length, the distribution is said to be symmetric.
If the distribution has an elongated tail on toward the right side, the distribution
is skewed to the right and vice versa. Other features may consist of a sharp
peak and long “fat” tails, or a broad peak and short tails. We can see that the
distribution of price is slightly skewed to the right, which, in this case, is due
to a few unusually high prices. We will see later that recognizing the shape of
a distribution can be quite important.

We continue the study of shapes of distributions with another example.

EXAMPLE 1.3 The discipline of forest science is a frequent user of statistics. An important
activity is to gather data on the physical characteristics of a random sample of
trees in a forest. The resulting data may be used to estimate the potential yield
of the forest, to obtain information on the genetic composition of a particular
species, or to investigate the effect of environmental conditions.

Table 1.7 is a listing of such a set of data. This set consists of measurements of
three characteristics of 64 sample trees of a particular species. The researcher
would like to summarize this set of data in graphic form to aid in its interpre-
tation.

Solution As we can see from Table 1.7, the data set consists of 64 observa-
tions of three ratio variables. The three variables are measurements character-
izing each tree and are identified by brief mnemonic identifiers in the column
headings as follows:

1. DFOOT, the diameter of the tree at one foot above ground level, measured
in inches,

2. HCRN, the height to the base of the crown measured in feet, and
3. HT, the total height of the tree measured in feet.

A histogram for the heights (HT) of the 64 trees is shown in Fig. 1.4 as
produced by PROC INSIGHT of the SAS System. Due to space limitations,
not all boundaries of class intervals are shown, but we can deduce that the
default option of PROC INSIGHT yielded a class interval width of 1.5 feet with
the first interval being from 20.25 to 21.75 and the last from 30.75 to 32.25.
In this program the user can adjust the size of class intervals by clicking on an
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Table 1.7 Data on Tree Measurements

OBS DFOOT HCRN HT OBS DFOOT HCRN HT OBS DFOOT HCRN HT

1 4.1 1.5 24.5 23 4.3 2.0 25.6 45 4.7 3.3 29.7
2 3.4 4.7 25.0 24 2.7 3.0 20.4 46 4.6 8.9 26.6
3 4.4 2.8 29.0 25 4.3 2.0 25.0 47 4.8 2.4 28.1
4 3.6 5.1 27.0 26 3.3 1.8 20.6 48 4.5 4.7 28.5
5 4.4 1.6 26.5 27 5.0 1.7 24.6 49 3.9 2.3 26.0
6 3.9 1.9 27.0 28 5.2 1.8 26.9 50 4.4 5.4 28.0
7 3.6 5.3 27.0 29 4.7 1.5 26.7 51 5.0 3.2 30.4
8 4.3 7.6 28.0 30 3.8 3.2 26.3 52 4.6 2.5 30.5
9 4.8 1.1 28.5 31 3.8 2.6 27.6 53 4.1 2.1 26.0
10 3.5 1.2 26.0 32 4.2 1.8 23.5 54 3.9 1.8 29.0
11 4.3 2.3 28.0 33 4.7 2.7 25.0 55 4.9 4.7 29.5
12 4.8 1.7 28.5 34 5.0 3.1 27.3 56 4.9 8.3 29.5
13 4.5 2.0 30.0 35 3.2 2.9 26.2 57 5.1 2.1 28.4
14 4.8 2.0 28.0 36 4.1 1.3 25.8 58 4.4 1.7 29.0
15 2.9 1.1 20.5 37 3.5 3.2 24.0 59 4.2 2.2 28.5
16 5.6 2.2 31.5 38 4.8 1.7 26.5 60 4.6 6.6 28.5
17 4.2 8.0 29.3 39 4.3 6.5 27.0 61 5.1 1.0 26.5
18 3.7 6.3 27.2 40 5.1 1.6 27.0 62 3.8 2.7 28.5
19 4.6 3.0 27.0 41 3.7 1.4 25.9 63 4.8 2.2 27.0
20 4.2 2.4 25.4 42 5.0 3.8 29.5 64 4.0 3.1 26.0
21 4.8 2.9 30.4 43 3.3 2.4 25.8
22 4.3 1.4 24.5 44 4.3 3.0 25.2
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Histogram of Tree
Height

arrow at the lower left (not shown in Fig 1.4) which causes a menu to pop
up allowing such changes. For example, by changing the first “tick” to 20,
the last to 32, and the “tick interval” to 2, the histogram will have 6 classes
instead of the 8 shown. Many graphics programs allow this type of interactive
modification. Of course, the basic shape of the distribution is not changed by
such modifications. Also note that in these histograms, the legend gives the
boundaries of the intervals; other graphic programs may give the midpoints.
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Histogram of HCRN
Variable

The histogram for the variable HCRN is shown in Fig. 1.5. We can now see
that the distribution of HT is slightly skewed to the left while the distribution
of HCRN is quite strongly skewed to the right. ■

1.5 Numerical Descriptive Statistics

Although distributions provide useful descriptions of data, they still contain too
much detail for some purposes. Assume, for example, that we have collected
data on tree dimensions from several forests for the purpose of detecting
possible differences in the distribution of tree sizes among these forests. Side-
by-side histograms of the distributions would certainly give some indication
of such differences, but would not produce measures of the differences that
could be used for quantitative comparisons. Numerical measures that provide
descriptions of the characteristics of the distributions, which can then be used
to provide more readily interpretable information on such differences, are
needed. Of course, since these are numerical measures, their use is largely
restricted to numeric variables, that is, variables measured in the ratio or
interval scales (see, however, Chapter 13).

Note that when we first started evaluating the tree measurement data
(Table 1.7) we had 64 observations to contend with. As we attempted to sum-
marize the data using a frequency distribution of heights and the accompanying
histogram (Fig. 1.4) we represented these data with only eight entries (classes).
We can use numerical descriptive statistics to reduce the number of entries
describing a set of data even further, typically using only using two numbers.
This action of reducing the number of items used to describe the distribu-
tion of a set of data is referred to as data reduction, which is unfortunately
accompanied by a progressive loss of information. In order to minimize the
loss of information, we need to determine the most important characteristics
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of the distribution and find measures to describe these characteristics. The
two most important aspects are the location and the dispersion of the data.
In other words, we need to find a number that indicates where the observa-
tions are on the measurement scale and another to indicate how widely the
observations vary.

Location

The most useful single characteristic of a distribution is some typical, average,
or representative value that describes the set of values. Such a value is referred
to as a descriptor of location or central tendency. Several different measures
are available to describe this concept. We present two in detail. Other measures
not widely used are briefly noted.

The most frequently used measure of location is the arithmetic mean, usu-
ally referred to simply as the mean.

DEFINITION 1.12
The mean is the sum of all the observed values divided by the number
of values.

Denote by yi, i = 1, . . . , n, an observed value of the variable Y , then the sample
mean4 denoted by ȳ, is obtained by the formula

ȳ =
∑

yi

n
,

where the symbol
∑

stands for “the sum of.” For example, the mean forDFOOT
in Table 1.7 is 4.301, which is the mean diameter (at one foot above the ground)
of the 64 trees measured. A quick glance at the observed values of DFOOT
reveals that this value is indeed representative of the values of that variable.5

Another useful measure of location is the median.

DEFINITION 1.13
The median of a set of observed values is defined to be the middle value
when the measurements are arranged from lowest to highest; that is, 50%
of the measurements lie above it and 50% fall below it.

The precise definition of the median depends on whether the number of
observations is odd or even as follows:

1. If n is odd, the median is the middle observation; hence, exactly (n − 1)/2
values are greater than and (n − 1)/2 values are less than the median, re-
spectively.

4It is also often called the average. However, this term is often used as a generic term for any
unspecified measure of location and will therefore not be used in this context.
5Some small data sets suitable for practicing computations are available in the following as well
as in exercises at the end of the chapter.
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Data for Comparing
Mean and Median

2. If n is even, there are two middle values and the median is the mean of the
two middle values and n/2 values are greater than and n/2 values are less
than the median, respectively.6

Although both mean and median are measures of central tendency, they do
differ in interpretation. For example, consider the following data for two vari-
ables, X and Y , given in Table 1.8:

We first compute the means

x̄ = (1/6)(1 + 2 + 3 + 3 + 4 + 5) = 3.0

and

ȳ = (1/6)(1 + 1 + 1 + 2 + 5 + 8) = 3.0.

Table 1.8

Data for Comparing
Mean and Median

X Y

1 1
2 1
3 1
3 2
4 5
5 8

The means are the same for both variables.
Denoting the medians by mx and my, respectively, and noting that there are

an even number of observations, we find

mx = (3 + 3)/2 = 3.0

and

my = (1 + 2)/2 = 1.5.

The medians are different. The reason for the difference is seen by examining
the histograms of the two variables in Fig. 1.6.

The distribution of the variable X is symmetric, while the distribution of
the variable Y is skewed to the right. For symmetric or nearly symmetric

6If there are some identical values of the variable, the phrase “or equal to” may need to be added
to these statements.
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distributions, the mean and median will be the same or nearly the same, while
for skewed distributions the value of the mean will tend to be “pulled” toward
the long tail. This phenomenon can be explained by the fact that the mean
can be interpreted as the center of gravity of the distribution. That is, if the
observations are viewed as weights placed on a plane, then the mean is the
position at which the weights on each side balance. It is a well-known fact of
physics that weights placed further from the center of gravity exert a larger
degree of influence (also called leverage); hence the mean must shift toward
those weights in order to achieve balance. However, the median assigns equal
weights to all observations regardless of their actual values; hence the extreme
values have no special leverage.

The difference between the mean and median is also illustrated by the
tree data (Table 1.7). The heights variable (HT) was seen to have a reasonably
symmetric distribution (Fig. 1.4). The mean diameter is 26.96 and its median is
27.0.7 The variable HCRN has a highly right-skewed distribution (Fig. 1.5) and
its mean is 3.04, which is quite a bit larger than its median of 2.4.

Now that we have two measures of location, it is logical to ask which is
better? Which one should we use? Note that the mean is calculated using the
value of each observation, so all the information available from the data is
utilized. This is not so for the median. For the median we only need to know
where the “middle” of the data is. Therefore, the mean is the more useful mea-
sure and, in most cases, the mean will give a better measure of the location of
the data. However, as we have seen, the value of the mean is heavily influenced
by extreme values and tends to become a distorted measure of location for a
highly skewed distribution. In this case, the median may be more appropriate.

The choice of the measure to be used may depend on its ultimate interpre-
tation and use. For example, monthly rainfall data often contain a few very
large values corresponding to rare floods. For this variable, the mean does
indicate the total amount of water derived from rain but hardly qualifies as a
typical value for monthly rainfall. On the other hand, the median does qualify
as a typical value, but certainly does not reflect the total amount of water.

In general, we will use the mean as the single measure of location unless
the distribution of the variable is skewed. We will see later (Chapter 4) that
variables with highly skewed distributions can be regarded as not fulfilling the
assumptions required for methods of statistical analysis that are based on the
mean. In Section 1.6 we present some techniques that may be useful for detect-
ing characteristics of distributions that may make the mean an inappropriate
measure of location.

Other occasionally used measures of location are as follows:

1. The mode is the most frequently occurring value. This measure may not
be unique in that two (or more) values may occur with the same greatest

7It is customary to give a mean with one more decimal than the observed values. Computer pro-
grams usually give all decimal places that the space on the output allows. If a median corresponds
to an observed value (n odd), the value is presented as is; if it is the mean of two observations (n
even), the extra decimal may be used.
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frequency. Also, the mode may not be defined if all values occur only once,
which usually happens with continuous numeric variables.

2. The geometric mean is the nth root of the product of the values of the n

observations. This measure is related to the arithmetic mean of the loga-
rithms of the observed values. The geometric mean cannot exist if there are
any values less than or equal to 0.

3. The midrange is the mean of the smallest and largest observed values. This
measure is not frequently used because it ignores most of the information in
the data. (See the following discussion of the range and similar measures.)

Dispersion

Although location is generally considered to be the most important single
characteristic of a distribution, the variability or dispersion of the values is
also very important. For example, it is imperative that the diameters of 1

4 -in.
nuts and bolts have virtually no variability, or else the nuts may not match the
bolts. Thus the mean diameter provides an almost complete description of the
size of a set of 1

4 -in. nuts and bolts. However, the mean or median incomes
of families in a city provide a very inadequate description of the distribu-
tion of that variable since a listing of incomes would include a wide range of
values.

Figure 1.7 shows histograms of two small data sets. Both have 10 observa-
tions, both have a mean of 5 and, since the distributions are symmetric, both
have a median of 5. However, the two distributions are certainly quite differ-
ent. Data set 2 may be described as having more variability since it has fewer
observations near the mean and more observations at the extremes of the
distribution.

The simplest and intuitively most obvious measure of variability is the
range, which is defined as the difference between the largest and smallest
observed values. Although conceptually simple, the range has one very serious
drawback: It completely ignores any information from all the other values in
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the data. This characteristic is also illustrated by the two data sets in Fig. 1.7.
Both of these data sets exhibit the same range (eight), but data set 2 exhibits
more variability.

Since greater dispersion means that observations are farther from the
center of the distribution, it is logical to consider distances of observations
from that center as indication of variability. The preferred measure of vari-
ation when the mean is used as the measure of center is based on the set
of distances or differences of the observed values (yi) from the mean (ȳ).
These differences, (yi − ȳ), i = 1, 2, . . . , n, are called the deviations from
the mean. Large magnitudes of deviation imply a high degree of variability,
and small magnitudes of deviation imply a low degree of variability. If all de-
viations are zero, the data set exhibits no variability; that is, all values are
identical.

The mean of these deviations would seem to provide a reasonable measure
of dispersion. However, a relatively simple exercise in algebra shows that the
sum of these deviations, that is,

∑
(yi − ȳ), is always zero. Therefore, this quan-

tity is not useful. The mean absolute deviation (the mean of deviations ignoring
their signs) will certainly be an indicator of variability and is sometimes used
for that purpose. However, this measure turns out not to be very useful as the
absolute values make theoretical development difficult.

Another way to neutralize the effect of opposite signs is to base the mea-
sure of variability on the squared deviations. Squaring each deviation gives a
nonnegative value and summing the squares of the deviations gives a positive
measure of variability. This criterion is the basis for the most frequently used
measure of dispersion, the variance.

DEFINITION 1.14
The sample variance, denoted by s2, of a set of nobserved values having
a mean ȳ is the sum of the squared deviations divided by n − 1:

s2 =
∑

(yi − ȳ)2

n − 1
.

Note that the variance is actually an average or mean of the squared deviations
and is often referred to as a mean square, a term we will use quite often in
later chapters. Note also that we have divided the sum by (n − 1) rather than
n. While the reason for using (n − 1) may seem confusing at this time, there
is a good reason for it. As we see later in the chapter, one of the uses of the
sample variance is to estimate the population variance. Dividing by n tends
to underestimate the population variance; therefore by dividing by (n− 1) we
get, on average, a more accurate estimate. Recall that we have already noted
that the sum of deviations

∑
(yi − ȳ) = 0; hence, if we know the values of

any (n − 1) of these values, the last one must have that value that causes the
sum of all deviations to be zero. Thus there are only (n − 1) “free” deviations.
Therefore, the quantity (n − 1) is called the degrees of freedom.
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An equivalent argument is to note that in order to compute s2, we must first
compute ȳ. Starting with the concept that a set of n observed values of a vari-
able provides nunits of information, when we compute s2 we have already used
one piece of information, leaving only (n− 1) “free” units or (n− 1) degrees
of freedom.

Computing the variance using the above formula is straightforward but
somewhat tedious. First we must compute ȳ, then the individual deviations
(yi − ȳ), square these, and then sum. For the two data sets represented by
Fig. 1.7 we obtain

Data set 1:

s2 = (1/9)[(1 − 5)2 + (3 − 5)2 + · · · + (9 − 5)2]

= (1/9) · 40 = 4.44,

Data set 2:

s2 = (1/9)[(1 − 5)2 + (1 − 5)2 + · · · + (9 − 5)2]

= (1/9) · 80 = 8.89,

showing the expected larger variance for data set 2.
Calculations similar to that for the numerator of the variance are widely

used in many statistical analyses and if done as shown in Definition 1.15 are
quite tedious. This numerator, called the sum of squares and often denoted
by SS, is more easily calculated by using the equivalence:

SS =
∑

(yi − ȳ)2 =
∑

y2
i −

(∑
yi

)2/
n.

The first portion,
∑

y2
i , is simply the sum of squares of the original y values.

The second part, (
∑

yi)2/n, the square of the sum of the y values divided by the
number of observations, is called the correction factor, since it “corrects” the
sum of squared values to become the sum of squared deviations from the mean.
The result, SS, is called the corrected, or centered, sum of squares, or often
simply sum of squares. This sum of squares is divided by the degrees of freedom
to obtain the mean square, which is the variance. In general, then the variance

s2 = mean square = (sum of squares)/(degrees of freedom).

For the case of computing a variance from a single set of observed values, the
sum of squares is the sum of squared deviations from the mean of those obser-
vations, and the degrees of freedom are (n− 1). For more complex situations,
which we will encounter in subsequent chapters, we will continue with this
general definition of a variance; however, there will be different methods for
computing sums of squares and degrees of freedom.

The computations are now quite straightforward, especially since many cal-
culators have single-key operations for obtaining sums and sums of squares.8

8Many calculators also automatically obtain the variance (or standard deviation). Some even
provide options for using either n or (n − 1) for the denominator of the variance estimate! We
suggest practice computing a few variances without using this feature.
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For the two data sets we have
Data set 1:

n = 10,
∑

yi = 50,
∑

y2
i = 290

SS = 290 − 502/10 = 40

s2 = 40/9 = 4.44

Data set 2:

n = 10,
∑

yi = 50,
∑

y2
i = 330

SS = 330 − 502/10 = 80

s2 = 80/9 = 8.89.

For purposes of interpretation, the variance has one major drawback: It mea-
sures the dispersion in the square of the units of the observed values. In other
words, the numeric value is not descriptive of the variability of the observed
values. This flaw is remedied by using the square root of the variance, which
is called the standard deviation.

DEFINITION 1.15
The standard deviation of a set of observed values is defined to be the
positive square root of the variance.

This measure is denoted by s and does have, as we will see shortly, a very
useful interpretation as a measure of dispersion. For the two example data
sets, the standard deviations are

Data set 1: s = 2.11,

Data set 2: s = 2.98.

Usefulness of the Mean and Standard Deviation Although the mean
and standard deviation (or variance) are only two descriptive measures, to-
gether the two actually provide a great deal of information about the distribu-
tion of an observed set of values. This is illustrated by the empirical rule: If
the shape of the distribution is nearly bell shaped, the following statements
hold:

1. The interval (ȳ ± s) contains approximately 68% of the observations.
2. The interval (ȳ ± 2s) contains approximately 95% of the observations.
3. The interval (ȳ ± 3s) contains virtually all of the observations.

Note that for each of these intervals the mean is used to describe the location
and the standard deviation is used to describe the dispersion of a given portion
of the data. We illustrate the empirical rule with the tree data (Table 1.7). The
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height (HT) was seen to have a nearly bell-shaped distribution, so the empirical
rule should hold as a reasonable approximation. For this variable we compute

n = 64, ȳ = 26.959, s2 = 5.163, s = 2.272.

According to the empirical rule:

(ȳ ± s), which is 26.959 ± 2.272, which defines the interval 24.687 to 29.231
and should include (0.68)(64) = 43 observations,

(ȳ ± 2s), which is 26.959 ± 4.544, which defines the interval from 22.415 to
31.503 and should include (0.95)(64) = 61 observations, and

(ȳ ± 3s), which defines the interval from 20.143 to 33.775 and should include
all 64 observations.

The effectiveness of the empirical rule is verified using the actual data. This
task may be made easier by obtaining an ordered listing of the observed values
or using a stem and leaf plot (Section 1.6), which we do not reproduce here.
For this variable, 46 values fall between 24.687 and 29.231, 61 fall between
22.415 and 31.503, and all observations fall between 20.143 and 33.775. Thus
the empirical rule appears to work reasonably well for this variable.

The empirical rule furnishes us with a quick method of estimating the
standard deviation of a bell-shaped distribution. Since at least 95% of the
observations fall within 2 standard deviations of the mean in either direc-
tion, the range of the data covers about 4 standard deviations. Thus, we can
estimate the standard deviation (a crude estimate by the way) by taking the
range divided by 4. For example, the range of the data on the HT variable is
31.5 − 20.4 = 11.1. Divided by 4 we get about 2.77. The actual standard de-
viation had a value of 2.272, which is approximately “in the ball park,” so to
speak.

The HCRN variable had a rather skewed distribution (Fig. 1.5); hence the
empirical rule should not work as well. The mean is 3.036 and the standard
deviation is 1.890. The expected and actual frequencies are given in Table 1.9.
As expected, the empirical rule does not work as well. In other words, for
a nonsymmetric distribution the mean and standard deviation (or variance)
do not provide as complete a description of the distribution as they do for a
more nearly bell-shaped one. We may want to include a histogram or general
discussion of the shape of the distribution along with the mean and standard
deviation when describing data with a highly skewed distribution.

Actually the mean and standard deviation provide useful information
about a distribution no matter what the shape. A much more conservative

Table 1.9

The Empirical Rule
Applied to a
Nonsymmetric
Distribution

INTERVAL NUMBER OF OBSERVATIONS

Specified Actual Should Include Does Include

ȳ ± s 1.146 to 4.926 43 53
ȳ ± 2s −0.744 to 6.816 61 60
ȳ ± 3s −2.634 to 8.706 64 63
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relation between the distribution and its mean and standard deviation is given
by Tchebysheff ’s theorem.

DEFINITION 1.16
Tchebysheff’s theorem For any arbitrary constant k, the interval (ȳ± ks)
contains a proportion of the values of at least [1 − (1/k2)].9

Note that Tchebysheff’s theorem is more conservative than the empirical rule.
This is because the empirical rule describes distributions that are approxi-
mately “bell” shaped, whereas Tchebysheff’s theorem is applicable for any
shaped distribution. For example, for k = 2, Tchebysheff’s theorem states that
the interval (ȳ± 2s) will contain at least [1 − (1/4)] = 0.75 of the data. For the
HCRN variable, this interval is from −0.744 to 6.816 (Table 1.9), which actually
contains 60/64 = 0.9375 of the values. Thus we can see that Tchebysheff’s
theorem provides a guarantee of a proportion in an interval but at the cost of
a wider interval.

The empirical rule and Tchebysheff’s theorem have been presented not
because they are quoted in many statistical analyses but because they demon-
strate the power of the mean and standard deviation to describe a set of data.
The wider intervals specified by Tchebysheff’s theorem also show that this
power is diminished if the assumption of a bell-shaped curve is not made.

Other Measures

A measure of dispersion that has uses in some applications is the coefficient

of variation.

DEFINITION 1.17
The coefficient of variation is the ratio of the standard deviation to the
mean, expressed in percentage terms.

Usually denoted by CV, it is

CV = s

ȳ
· 100.

That is, the CV gives the standard deviation as a proportion of the mean. For
example, a standard deviation of 5 has little meaning unless we can compare
it to something. If ȳ has a value of 100, then this variation would probably be
considered small. If, however, ȳ has a value of 1, a standard deviation of 5
would be quite large relative to the mean. If we were evaluating the precision
of a laboratory measuring device, the first case, CV = 5%, would probably be
acceptable. The second case, CV = 500%, probably would not.

Additional useful descriptive measures are the percentiles of a distri-
bution.

9Tchebysheff’s theorem is usually described in terms of a theoretical distribution rather than for
a set of data. This difference is of no concern at this point.
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DEFINITION 1.18
The pth percentile is defined to be that value for which at most (p)% of
the measurements are less and at most (100 − p)% of the measurements
are greater.10

For example, the 75th percentile of the diameter variable (DFOOT) corresponds
to the 48th (0.75 · 64 = 48) ordered observation, which is 4.8. This means that
75% of the trees have diameters of 4.8 in. or less. By definition, cumulative
relative frequencies define percentiles.

To illustrate how a computer program calculates percentiles, the Frequency
option of SPSS was instructed to find the 30th percentile for the same variable,
DFOOT. The program returned the value 4.05. To find this value we note that
0.3 × 64 = 19.2. Therefore we want the value of DFOOT for which 19.2 of the
observations are smaller and 60.8 are larger. This means that the 30th percentile
falls between the 19th observation, 4.00, and the 20th observation, 4.10. The
computer program simply took the midpoint between these two values and
gave the 30th percentile the value of 4.05.

A special set of percentiles of interest are the quartiles, which are the
25th, 50th, and 75th percentiles. The 50th percentile is, of course, the median.

DEFINITION 1.19
The interquartile range is the length of the interval between the 25th
and 75th percentiles and describes the range of the middle half of the
distribution.

For the tree diameters, the 25th and 75th percentiles correspond to 3.9 and 4.8
inches; hence the interquartile range is 0.9 inches. We will use this measure in
Section 1.6 when we discuss the box plot. We will see later that we are often
interested in the percentiles at the extremes or tails of a distribution, especially
the 1, 2.5, 5, 95, 97.5, and 99th percentiles.

Certain measures may be used to describe other aspects of a distribution.
For example, a measure of skewness is available to indicate the degree of
skewness of a distribution. Similarly, a measure of kurtosis indicates whether
a distribution has a narrow “peak” and fat “tails” or a flat peak and skinny tails.
Generally, a “fat-tailed” distribution is characterized by having an excessive
number of outliers or unusual observations, which is an undesirable charac-
teristic. Although these measures have some theoretical interest, they are not
often used in practice. For additional information, see Snedecor and Cochran
(1980), Sections 5.13 and 5.14.

10Occasionally the percentile desired falls between two of the measurements in the data set. In
that case interpolation may be used to obtain the value. To avoid becoming unnecessarily pedantic,
most people simply choose the midpoint between the two values involved. Different computer
programs may use different interpolation methods.
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Computing the Mean and Standard Deviation from a Frequency Distribution

If a data set is presented as a frequency distribution, a good approximation of
the mean and variance may be obtained directly from that distribution. Let yi

represent the midpoint and fi the frequency of the ith class. Then

ȳ ≈
∑

fiyi

/∑
fi

and

s2 ≈
∑

fi(yi − ȳ)2
/∑

fi

or, using the computational form,

s2 ≈
[∑

fiy
2
i −

(∑
fiyi

)2/∑
fi

]/∑
fi.

Note that these formulas use weighted sums of the observed values11 or
squared deviations. That is, each value is weighted by the number of obser-
vations it represents. If the yi are the actual values (rather than midpoints of
intervals) of a discrete distribution, these formulas provide exactly the same
values as those using the formulas presented previously in this section.

Equivalent formulas may be used for data represented as a relative fre-
quency distribution. Let pi be the relative frequency of the ith class. Then

ȳ ≈
∑

piyi and s2 ≈
∑

pi(yi − ȳ)2

or, using the computational form,

s2 ≈
∑

piy
2
i −

(∑
piyi

)2
.

Most data sets are available in their original form and since computers readily
perform direct computation of mean and variance these formulas are not often
used. We will, however, find these formulas useful in discussions of theoretical
probability distributions in Chapter 2.

Change of Scale

Change of scale is often called coding or linear transformation. Most interval
and ratio variables arise from measurements on a scale such as inches, grams,
or degrees Celsius. The numerical values describing these distributions natu-
rally reflect the scale used. In some circumstances it is useful to change the
scale such as, for example, changing from imperial (inches, pounds, etc.) to
metric units. Scale changes may take many forms, including a change from
ratio to ordinal scales as mentioned in Section 1.3. Other scale changes may
involve the use of functions such as logarithms or square roots (see Chapter 6).

A useful form of scaling is the use of a linear transformation. Let Y rep-
resent a variable in the observed scale, which is transformed to a rescaled or

11These formulas are primarily used for large data sets where n ≈ n − 1; hence
∑

fi = n, rather
than (n − 1), is used as the denominator for computing the variance.
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transformed variable X by the equation

X = a + bY,

where a and b are constants. The constant a represents a change in the origin,
while the constant b represents a change in the unit of measurement, or scale

identified with a ratio or interval scale variable (Section 1.3). A well-known
example of such a transformation is the change from degrees Celsius to degrees
Fahrenheit. The formula for the transformation is

X = 32 + 1.8Y,

where X represents readings in degrees Fahrenheit and Y in degrees Celsius.
Many descriptive measures retain their interpretation through linear

transformation. Specifically, for the mean and variance:

x̄ = a + bȳ and s2
x = b2s2

y.

A useful application of a linear transformation is that of reducing round-off
errors. For example, consider the following values yi, i = 1, 2, . . . , 6:

10.004 10.002 9.997 10.000 9.996 10.001.

Using the linear transformation

xi = −10, 000 + 1000yi

results in the values of xi

4 2 −3 0 −4 1,

from which it is easy to calculate

x̄ = 0 and s2
x = 9.2.

Using the above relationships, we see that ȳ = 10.000 and s2
y = 0.0000092.

The use of the originally observed yi may induce round-off error. Using the
original data,∑

yi = 60.000,
∑

y2
i = 600.000046, and

(∑
yi

)2/
n = 600.000000.

Then

SS = 0.000046 and s2 = 0.0000092.

If the calculator we are using has only eight digits of precision, then
∑

y2 would
be truncated to 600.00004, and we would obtain s2 = 0.000008. Admittedly this
is a pathological example, but round-off errors in statistical calculations occur
quite frequently, especially when the calculations involve many steps as will
be required later. Therefore, scaling by a linear transformation is sometimes
useful.
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1.6 Exploratory Data Analysis

We have seen that the mean and variance (or standard deviation) can do a
very good job of describing the characteristics of a frequency distribution.
However, we have also seen that these do not work as well when the dis-
tribution is skewed and/or includes some extreme or outlying observations.
Because the vast majority of statistical analyses make use of the mean and
standard deviation, the results of such analyses may prove misleading if the
distribution has such features. Therefore, it is imperative that some prelimi-
nary checks of the data be performed to see if other methods (see Section 4.5
and Chapter 13) may be more appropriate.

Before the widespread use of automatic data recording equipment and
computers, most data were laboriously recorded from laboratory manuals or
similar records and then manually entered into calculators where the calcula-
tions were usually performed in several stages. During this long and laborious
process, it was relatively easy to spot unusual observations and, in general, to
get a “feel” for the data and thus recognize the possible need for altering the
analysis strategy.

Certainly the automatic recording and computing equipment available
today provide greater speed, convenience, and accuracy, as well as more com-
plete and comprehensive analyses. However, these analyses are performed
without the help of human intervention and may consequently result in beau-
tifully executed and handsomely annotated computer output of inappropriate
analyses on faulty data.

Fortunately, the same computers that can so easily produce inappropriate
analyses can just as easily be used to perform preliminary data screening to
provide an overview of the nature of the data and thus provide information
on unusual distributions and/or data anomalies. A variety of such procedures
have been developed and many are available on most popularly used computer
software. These procedures are called exploratory data analysis techniques
or EDA, which was first introduced by Tukey (1977). We present here two of
the most frequently used EDA tools: the stem and leaf plot and the box plot.

The Stem and Leaf Plot

The stem and leaf plot is a modification of a histogram for a ratio or inter-
val variable that provides additional information about the distribution of the
variable. The first one or two digits specify the class interval, called the “stem,”
and the next digit (rounded if necessary) is used to construct increments of
the bar, which are called the “leaves.” Usually in a stem and leaf plot, the bars
are arranged horizontally and the leaf values are arranged in ascending order.

We illustrate the construction of a stem and leaf plot using the data on
size for the 69 homes. To make construction easier, we first arrange the
observations from low to high as shown in Table 1.10.

Normally the first or first two digits are used to define stem values, but
in this case using one would result in an inadequate five stems, while using
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Table 1.10

Home Sizes Measured
in Square Feet Arranged
from Low to High

. 1550 2456
676 1624 2463
951 1636 2483
994 1647 2510

1036 1750 2553
1064 1752 2572
1152 1770 2670
1176 1770 2805
1186 1800 2809
1216 1852 2921
1312 1920 2949
1344 1972 2992
1344 1980 2993
1368 2016 3045
1387 2036 3055
1410 2038 3056
1450 2082 3253
1456 2113 3310
1456 2262 3314
1500 2298 3472
1524 2336 3627
1532 2370 3846
1540 2436 4106

two would generate an overwhelming 40 stems. A compromise is to use the
first two digits, in sets of two, a procedure automatically done by computer
programs. In this example, the first stem value (the first “.” corresponds to
the missing value) is 6, which identifies the range of 600 to 799 square feet.
There is one observation in that range, 676, so the leaf value is 8 (76 rounded to
80). The second stem value has two observations, 951 and 994, producing leaf
values of 5 and 9. When there are homes represented by both individual stem
values, the leaf values for the first precede those for the second. For example,
the stem value of 24 represents the range from 2400 to 2599. The first four leaf
values 4, 6, and 8, are in the range 2400 to 2499, while the values 1, 5, and 7 are
in the range 2500 to 2599. The last stem value is 40 with a leaf value of 1. The
resulting plot is shown in Fig. 1.8, produced by PROC UNIVARIATE of the SAS
System, which automatically also provides the box plot discussed later in this
section.12

At first glance, the stem and leaf plot looks like a histogram, which it is.
However, the stem and leaf plot usually has a larger number of bars (or stems),
18 in this case, which provide greater detail about the nature of the distribu-
tion. In this case the stem and leaf chart does not provide any new information
on this data set. The leaves provide rather little additional information here,
but could, for example, provide evidence of rounding or imprecise measure-
ments by showing an excessive number of zeros and fives. The leaves may

12This provides a good illustration of the fact that computer programs do not always provide only
what is needed.
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Stem   Leaf Boxplot#
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Figure 1.9

Stem and Leaf Plot
and Box Plot for
HCRN Variable

also provide evidence of bunching of specific values within a stem by showing
disproportionate frequencies of specific digits.

For some data sets minor modifications may be necessary to provide an
informative plot. For example, the first digit of the HCRN variable in the tree
data (Table 1.7) provides for only eight stems (classes) while using the first two
digits creates too many stems. In such cases it is customary to use two lines
for each digit, the first representing leaves with values from 0 through 4, and
a second for values from 5 through 9. Most computer programs automatically
adjust for such situations. This plot is given in Fig. 1.9 (also produced by
PROCUNIVARIATE). The extreme skewness we have previously noted is quite
obvious.
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The Box Plot

The box plot13 is used to show distributional shapes and to detect unusual
observations. Figure 1.10 illustrates a typical box plot and the procedure is
illustrated in Fig. 1.8 for the size variable from the housing data set and in
Fig. 1.9 for the HCRN variable from the trees data set.

The scale of the plot is that of the observed variable and may be presented
horizontally as in Fig. 1.10 or vertically as produced by the SAS System in
Figs. 1.8 and 1.9. The features of the plot are as follows:

1. The “box,” representing the interquartile range, has a value we denote by R

and the endpoints Q1 and Q3.
2. A vertical line inside the box indicates the median. If the median is in the

center of the box, the middle portion of the distribution is symmetric.
3. Horizontal lines extending from the box represent the range of observed

values inside the “inner fences,” which are located 1.5 times the value of
the interquartile range (1.5R) beyond Q1 to the left and Q3 on the right.
The relative lengths of these lines are an indicator of the skewness of the
distribution as a whole.

4. Individual symbols ◦ represent “mild” outliers, which are defined as values
between the inner and outer fences, which are located 3R units beyond Q1

and Q3.
5. Individual symbols • represent the location of extreme outliers, which are

defined as being beyond the outer fences. Different computer programs
may use different symbols for outliers and may provide options for different
formats.

Symmetric distributions, which can be readily described by the mean and
variance, should have the median line close to the middle of the box and
reasonably equal length lines on both sides, a few mild outliers preferably
equally distributed on both sides, and virtually no extreme outliers.

An ordered listing of the data or a stem and leaf plot can be used to construct
the box plot. We illustrate the procedure for the HCRN variable for which the
stem and leaf and box plots are shown in Fig. 1.9. Note that the box plot is
arranged vertically in that plot. The scale is the same as the stem and leaf plot

13Also referred to as a “box and whisker plot” by Tukey (1977).
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on the left. The details of the procedure are as follows:

1. The quartiles Q1 and Q3 are found by counting (n/4) = 16 leaf values from
the top and bottom, respectively. The resulting values of 1.8 and 3.2 define
the box. These values also provide the interquartile range: R = Q3 − Q1 =
3.2 − 1.8 = 1.4. The median of 2.4 defines the line in the box.

2. The inner fences are

f1 = Q1 − 1.5R = 1.8 − 2.1 = −0.3 and

f2 = Q3 + 1.5R = 3.2 + 2.1 = 5.3.

The lines extend on each side to the nearest actual values inside the inner
fences. In this example the lines extend to 1.0 (the smallest value in the
data set) and 5.3, respectively. The much longer line on the high side clearly
indicates the skewness.

3. The outer fences are F1 = −2.4 and F2 = 7.4. The fact that the lower
fence has a negative value that cannot occur is a clear indicator of a skewed
distribution. The four mild outliers lying between the inner and outer fences
are 5.4, 6.3, 6.5, and 6.6, and are indicated by the symbol ◦. Note that they
are all on the high side, again indicating the skewness.

4. The extreme outliers are beyond the outer fences. They are 7.6, 8.0, 8.3, and
8.9, and are indicated by •. These are also all on the high side.

Thus we see that the box plot clearly shows the lack of symmetry for the
distribution of the HCRN variable. On the other hand, the box plot for the house
sizes (Fig. 1.8) shows little lack of symmetry and also has neither mild nor
extreme outliers. Obviously the box plot provides a good bit of information on
the distribution and outliers, but cannot be considered a complete replacement
for the stem and leaf plot in terms of total information about the observations.

Comments

The presence of outliers in a set of data may cause problems in the analysis to
be performed. For example, a single outlier (or several in the same direction)
usually causes a distribution to be skewed, thereby affecting the mean of the
distribution. In the box plot in Fig. 1.9 we see that there are several large
values of the HCRN variable identified as outliers. If the mean is to be used
for the analysis, it may be larger than is representative of the data due to the
presence of these outliers. However, we cannot simply ignore or discard these
observations as the trees do exist and to ignore them would be dishonest. A
closer examination of the larger trees may reveal that they actually belong to
an older grove that represents a different population from that being studied.
In that case we could eliminate these observations from the analysis, but note
that older trees that belonged to a population not included in the study were
present in the data.

Descriptive statistical techniques, and in particular the EDA methods dis-
cussed here, are valuable in identifying outliers; however, the techniques very
rarely furnish guidance as to what should be done with the outliers. In fact,
the concern for “unrepresentative,” “rogue,” or “outlying” observations in sets
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of data has been voiced by many people for a long time. There is evidence that
concern for outliers predates most of statistical methodology. Treatments of
outliers are discussed in many texts, and in fact a book by Barnett and Lewis
(1994), entitled Outliers in Statistical Data, is completely devoted to the topic.
The sheer volume of literature addressing outliers points to the difficulty of
adjusting the analysis when outliers are present.

All outliers are not deleterious to the analysis. For example, the exper-
imenter may be tempted in some situations not to reject an outlier but to
welcome it as an indication of some unexpectedly useful chemical reaction or
surprisingly successful variety of corn. Often it is not necessary to take either
of the extreme positions — reject the outlier or include the outlier — but in-
stead to use some form of “robust” analysis that minimizes the effect of the
outlier. One such example would be to use the median in the analysis of the
variable HCRN in the tree data instead of the mean.

EXAMPLE 1.4 A biochemical assay for a substance we will abbreviate to cytosol is supposed
to be an indicator of breast cancer. Masood and Johnson (1987) report on the
results of such an assay, which indicates the presence of this material in units
per 5 mg of protein on 42 patients. Also reported are the results of another
cancer detection method, which are simply reported as “yes” or “no.” The data
are given in Table 1.11. We would like to summarize the data on the variable
CYTOSOL.

Solution All the descriptive measures, stem and leaf plot, and box plot
for these observations are given in Fig. 1.11 as provided by the MinitabDES-
CRIBE, STEM-AND-LEAF, and BOXPLOT commands.

Table 1.11

Cytosol Levels in Cancer
Patients

OBS CYTOSOL CANCER OBS CYTOSOL CANCER

1 145.00 YES 22 1.00 NO
2 5.00 NO 23 3.00 NO
3 183.00 YES 24 1.00 NO
4 1075.00 YES 25 269.00 YES
5 5.00 NO 26 33.00 YES
6 3.00 NO 27 135.00 YES
7 245.00 YES 28 1.00 NO
8 22.00 YES 29 1.00 NO
9 208.00 YES 30 37.00 YES
10 49.00 YES 31 706.00 YES
11 686.00 YES 32 28.00 YES
12 143.00 YES 33 90.00 YES
13 892.00 YES 34 190.00 YES
14 123.00 YES 35 1.00 YES
15 1.00 NO 36 1.00 NO
16 23.00 YES 37 7.20 NO
17 1.00 NO 38 1.00 NO
18 18.00 NO 39 1.00 NO
19 150.00 YES 40 71.00 YES
20 3.00 NO 41 189.00 YES
21 3.20 YES 42 1.00 NO
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Cytosol
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Figure 1.11

Descriptive Measures
of CYTOSOL

The first portion gives the numerical descriptors. The mean is 136.9 and the
standard deviation is 248.5. Note that the standard deviation is greater than the
mean. Since the variable (CYTOSOL) cannot be negative, the empirical rule will
not be applicable, implying that the distribution is skewed. This conclusion is
reinforced by the large difference between the mean and the median. Finally,
the first quartile is the same as the minimum value, indicating that at least 25%
of the values occur at the minimum. The asymmetry is also evident from the
positions of the quartiles, with values of 1.0 and 158.3 respectively. The out-
put also gives the minimum and maximum values, along with two measures
(TRMEAN and SEMEAN), which are not discussed in this chapter.

The stem and leaf and box plots reinforce the extremely skewed nature of
this distribution. It is of interest to note that in this plot the mild outliers are
denoted by ∗ (there are none) and extreme outliers by 0.

A conclusion to be reached here is that the mean and standard deviation are
not particularly useful measures for describing the distribution of this variable.
Instead, the median should be used along with a brief description of the shape
of the distribution. ■

1.7 Bivariate Data

So far we have presented methods for describing the distribution of observed
values of a single variable. These methods can be used individually to des-
cribe distributions of each of several variables that may occur in a set of data.
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However, when there are several variables in one data set, we may also be
interested in describing how these variables may be related to or associated
with each other. We present in this section some graphic and tabular methods
for describing the association between two variables. Numeric descriptors of
association are presented in later chapters, especially Chapters 7 and 8.

Specific methods for describing association between two variables depend
on whether the variables are measured in a nominal or numerical scale. (Asso-
ciation between variables measured in the ordinal scale is discussed in Chapter
13.) We illustrate these methods by using the variables on home sales given in
Table 1.2.

Categorical Variables

Table 1.12 reproduces the home sales data for the two categorical variables
sorted in order of zip and exter. Association between two variables mea-
sured in the nominal scale (categorical variables) can be described by a
two-way frequency distribution, which is a two-dimensional table showing
the frequencies of combinations of the values of the two variables. Table 1.13
is such a table showing the association between the zip and exterior sid-
ing material of the houses. This table has been produced by PROC FREQ of
the SAS System. The table shows the frequencies of the six combinations of
zip and exter. The headings at the top and left indicate the categories of the
two variables. Each of the combinations of the two variables is referred to as

Table 1.12

Home Sales Data
for the Categorical
Variables

zip exter zip exter zip exter

1 Brick 3 Frame 4 Brick
1 Brick 3 Frame 4 Brick
1 Brick 3 Frame 4 Brick
1 Brick 3 Frame 4 Brick
1 Frame 3 Frame 4 Brick
1 Other 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 3 Other 4 Brick
2 Brick 4 Brick 4 Brick
2 Brick 4 Brick 4 Brick
2 Brick 4 Brick 4 Brick
2 Brick 4 Brick 4 Brick
2 Frame 4 Brick 4 Brick
2 Other 4 Brick 4 Brick
2 Other 4 Brick 4 Brick
3 Brick 4 Brick 4 Frame
3 Brick 4 Brick 4 Other
3 Brick 4 Brick 4 Other
3 Brick 4 Brick 4 Other
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Table 1.13

Association between
zip and exter

The FREQ Procedure
Table of zip by exter

ZIP
EXTERFrequency

Row pct Brick Frame Other Total

1 4 1 1 6
66.67 16.67 16.67

2 10 1 2 13
76.92 7.69 15.38

3 4 5 7 16
25.00 31.25 43.75

4 30 1 3 34
88.24 2.94 8.82

Total 48 8 13 69

exter

Other

Frame

Brick

FREQUENCY BLOCK CHART

zip
1 2 3 4

2 7 3

151

1

1

4 10 4 30

Figure 1.12

Block Chart for
exter and zip

a cell. The last row and column (each labeled Total) are the individual or
marginal frequencies of the two variables. As indicated by the legend at the
top left of the table, the first number in each cell is the frequency.

The second number in each cell is the row percentage, that is, the percent-
age of each row (zip) that is brick, frame, or other. We can now see that brick
homes predominate in all zip areas except 3, which has a mixture of all types.

The relationship between two categorical variables can also be illustrated
with a block chart (a three-dimensional bar chart) with the height of the blocks
being proportional to the frequencies. A block chart of the relationship bet-
ween zip and exter is given in Fig. 1.12. Numeric descriptors for relation-
ships between categorical variables are presented in Chapter 12.

Categorical and Interval Variables

The relationship between a categorical and interval (or ratio) variable is usually
described by computing frequency distributions or numerical descriptors for
the interval variables for each value of the nominal variable. For example, the
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mean and standard deviation of sales prices for the four zip areas are

zip area 1, ȳ = 86, 892, s = 26, 877

zip area 2, ȳ = 147, 948, s = 67, 443

zip area 3, ȳ = 96, 455, s = 50, 746

zip area 4, ȳ = 169, 624, s = 98, 929.

We can now see that zip areas 2 and 4 have the higher priced homes. Graph-
ically side-by-side box plots can illustrate this information as shown in Fig. 1.13
for price by zip. This plot reinforces the information provided by the means
and standard deviations, but additionally shows that all of the very-high-priced
homes are in zip area 4.

Box plots may also be used to illustrate differences among distributions.
We illustrate this method with the cancer data, by showing the side-by-side
box plots of CYTOSOL for the two groups of patients who were diagnosed
for cancer by the other method. The results, produced this time with PROC
INSIGHT of the SAS System in Fig. 1.14, shows that both the location and
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Side-by-Side Box
Plots for Cancer
Data
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dispersion differ markedly between the two groups. Apparently both methods
can detect cancer, although contradictory diagnoses occur for some patients.

Interval Variables

The relationship between two interval variables can be graphically illustrated
with a scatterplot. A scatterplot has two axes representing the scales of the
two variables. The choice of variables for the horizontal or vertical axes is im-
material, although if one variable is considered more important it will usually
occupy the vertical axis. Each observation is plotted by a point representing the
two variable values. Special symbols may be needed to show multiple points
with identical values. The pattern of plotted points is an indicator of the na-
ture of the relationship between the two variables. Figure 1.15 is a scatterplot
showing the relationship between price and size for the data in Table 1.2.

5000

400000

300000

200000

100000

0
0 1000 2000 3000 4000
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price
Figure 1.15

Scatter Plot of
price against
size

The pattern of the plotted data points shows a rather strong association
betweenprice andsize, except for the higher price homes. Apparently these
houses have a wider range of other amenities that affect the price. Numeric
descriptors for this type of association are introduced in Chapter 7.

We should note at this point that the increased sophistication of computer
graphics is rapidly leading to more informative graphs and plots. For example,
some software packages provide a scatterplot with box plots on each axis
describing the distribution of each of the individual variables.

1.8 Populations, Samples, and Statistical Inference --- A Preview

In the beginning of this chapter we noted that a set of data may represent either
a population or a sample. Using the terminology developed in this chapter, we
can now more precisely define a population as the set of values of one or
more variables for the entire collection of units relevant to a particular study.
Most researchers have at least a conceptual picture of the population for a
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given study. This population is usually called the target population. A target
population may be well defined. For example, the trees in Table 1.7 are a sample
from a population of trees in a specified forest. On the other hand, a population
may be only conceptually defined. For example, an experiment measuring
the decrease in blood pressure resulting from a new drug is a sample from
a hypothetical population consisting of all sufferers of high blood pressure
who are potential users of the drug. A population can, in fact, be infinite. For
example, a laboratory experiment can hypothetically be reproduced an infinite
number of times.

We are rarely afforded the opportunity of measuring all the elements of
an entire population. For this reason, most data are normally some portion
or sample of the target population. Obviously a sample provides only par-
tial information on the population. In other words, the characteristics of the
population cannot be completely known from sample data.

We can, however, draw certain parallels between the sample and the pop-
ulation. Both population and sample may be described by measures such as
those presented in this chapter (although we cannot usually calculate them
for a population). To differentiate between a sample and the population from
which it came, the descriptive measures for a sample are called statistics and
are calculated and symbolized as presented in this chapter. Specifically, the
sample mean is ȳ and the sample variance is s2. Descriptive measures for the
population are called parameters and are denoted by Greek letters. Specifi-
cally, we denote the mean of a population by μ and the variance by σ 2. If the
population consists of a finite number of values, y1, y2, . . . , yN , then the mean
is calculated by

μ =
∑

yi/N,

and the variance is found by

σ 2 =
∑

(yi − μ)2

N
.

It is logical to assume that the sample statistics provide some informa-
tion on the values of the population parameters. In other words, the sample
statistics may be considered to be estimates of the population parameters.
However, the statistics from a sample cannot exactly reflect the values of the
parameters of the population from which the sample is taken. In fact, two or
more individual samples from the same population will invariably exhibit dif-
ferent values of sample estimates. The magnitude of variation among sample
estimates is referred to as the sampling error of the estimates. Therefore,
the magnitude of this sampling error provides an indication of how closely a
sample estimate approximates the corresponding population parameter. In
other words, if a sample estimate can be shown to have a small sampling er-
ror, that estimate is said to provide a good estimate for the corresponding
population parameter.

We must emphasize that sampling error is not an error in the sense of
making a mistake. It is simply a recognition of the fact that a sample statistic
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does not exactly represent the value of a population parameter. The recogni-
tion and measurement of this sampling error is the cornerstone of statistical
inference.

To control as well as to determine the magnitude of the sampling error,
we must incorporate in our sampling method as much randomization as
is physically possible. A random sample is one where “chance” dominates
the selection of the units of the population to be included in the sample, in
the same sense that chance determines the winners in a properly conducted
lottery. That is, the method of randomization results in a sample drawn in such
a manner that each possible sample of the specified size has an equal chance of
being selected.14 Actually, the ability of statistical analyses to provide reliable
estimates of sampling error is based on the assumption of random samples
and is therefore assumed for all statistical methods presented in this book.

The process of drawing a random sample is conceptually simple, but may be
difficult to implement in practice. Essentially, a random sample is like drawing
for prizes in a lottery: The population consists of all the lottery tickets and the
sample of winners is drawn “blindly” from a drum containing all the tickets.
The most straightforward method for drawing a random sample is to assign a
unique number (usually sequential) to each unit of the population and select
for the sample those units that correspond to a set of random numbers that
have been picked from a table of random numbers or generated by a computer.
This procedure can be used for relatively small finite populations but may not
be practical for large finite populations and is an obviously impossible task
for infinite populations. Specific instructions for drawing random samples can
be found in books on sampling (for example, Scheaffer et al., 1996) or on
experimental design (for example, Maxwell and Delaney, 2000). The overriding
factor in all types of random sampling is that the actual selection of sample
elements not be subject to personal or other bias.

In many cases experimental conditions are such that nonrestricted random-
ization is impossible; hence the sample is not a random sample. For example,
much of the data available for economic research consists of measurements
of economic variables over time. For such data the normal sequencing of the
data cannot be altered and we cannot really claim to have a random sample
of observations. In such situations, however, it is possible to define an appro-
priate model that contains a random element. Models that incorporate such
random elements are introduced in Chapters 6 and 7.

1.9 CHAPTER SUMMARY

Solution to Example 1.1 We now know that the data listed in Table 1.1
consists of 50 observations on four variables from an observational study. Two
of the variables (AGE and TVHOURS) are numerical and have the ratio level of

14In some special applications the probabilities of selection do not need to be equal, but they must
be known and predetermined before the sample is selected.
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Histogram of Hours per day Watching TV
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Histograms of AGE and
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Box Plots of AGE and
TVHOURS

measurement. The other two are categorical (nominal) level variables. We will
explore the nature of these variables and a few of the relationships between
them.

We start by using SPSS to construct the frequency histograms of AGE and
TVHOURS as shown in Fig. 1.16. From these it appears that the distribution of
age is reasonably symmetric while that of TVHOURS is skewed positively.

To further explore the shape of the distributions of the two variables we
construct the box plots shown in Fig. 1.17. Note the symmetry of the variable
AGE while the obvious positive skewness of TVHOURS is highlighted by
the long whisker on the positive side of the boxplot. Also, note that there
is one potential outlier identified in the TVHOURS box plot. This is the value
10 corresponding to the 20th respondent in the data set. It is also interesting
to see that fully 25% of the respondents reported an average number of hours
watching TV as 0 as indicated by the fact that the lower quartile (the lower
edge of the box) is at the level “0.”

We now examine some of the numerical descriptive statistics for these two
measures as seen in Table 1.14.
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Table 1.14

Numerical Statistics
on AGE and TVHOURS
Statistics

Age of Hours per Day

Respondent Watching TV

N

Valid 50 49
Missing 0 1

Mean 48.26 1.88
Median 46.00 2.00
Mode 53 0
Std. deviation 17.05 2.14
Variance 290.65 4.60
Minimum 23 0
Maximum 89 10

The first two rows of Table 1.14 tell us that all 50 of our sample respondents
answered the question concerning their age while 1 of the respondents did not
answer the question about the number of hours per day watching TV. The
mean age is 48.26 and the ages of respondents ranges from 23 to 89. The mean
number of hours per day watching TV is 1.88 and ranges from 0 to 10. Note that
the standard deviation of the number of hours watching TV is actually larger
than the mean. This is another indication of the extremely skewed distribution
of these values.
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Bar Chart of HAPPY
and Pie Chart of SEX

Figure 1.18 shows a relative frequency (percent) bar chart of the variable
HAPPY. From this we can see that only about 12% of the respondents consid-
ered themselves not happy with their lives. Figure 1.18 also shows a pie chart
of the variable SEX. This indicates that 56% of the respondents were female vs
44% male.

To see if there is any noticeable relationship between the variables AGE and
TVHOURS, a scatter diagram is constructed. The graph is shown in Fig. 1.19.
There does not seem to be a strong relationship between these two variables.
There is one respondent who seems to be “separated” from the group, and that
is the respondent who watches TV about 10 hours per day.
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Scatter Diagram of
AGE and TVHOURS
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Side-by-Side Bar
Charts for HAPPY
by SEX

To examine the relationship between the two variables SEX and HAPPY,
we will construct side-by-side relative frequency bar charts. These are given
in Fig. 1.20. Note that the patterns of “happiness” seem to be opposite for the
sexes. For example, of those who identified themselves as being “Very Happy,”
67% were female while only 33% were male.

Finally, to see if there is any difference in the relationship between AGE and
TVHOURS over the levels of SEX, we construct a scatter diagram identifying
points by SEX. This graph is given in Fig. 1.21.

The graph does not indicate any systematic difference in the relationship
by sex. The respondent who watches TV about 10 hours per day is male, but
other than that nothing can be concluded by examination of this graph. ■
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Summary

Statistics is concerned with the analysis of data. A set of data is defined as a
set of observations on one or more variables. Variables may be measured on
a nominal, ordinal, interval, or ratio scale with the ratio scale providing the
most information. Additionally, interval and ratio scale variables, also called
numerical variables, may be discrete or continuous. The nature of a statistical
analysis is largely dictated by the type of variable being analyzed.

A set of observations on a variable is described by a distribution, which
is a listing of frequencies with which different values of the variable occur.
A relative frequency distribution shows proportions with which values of a
variable occur and is related to a probability distribution, which is extensively
used in statistics.

Graphical representation of distributions is extremely useful for investi-
gating various characteristics of distributions, especially their shape and the
existence of unusual values. Frequently used graphical representations include
bar charts, stem and leaf plots, and box plots.

Numerical measures of various characteristics of distributions provide a
manageable set of numeric values that can readily be used for descriptive
and comparative purposes. The most frequently used measures are those that
describe the location (center) and dispersion (variability) of a distribution.
The most frequently used measure of location is the mean, which is the sum of
observations divided by the number of observations. Also used is the median,
which is the center value.

The most frequently used measure of dispersion is the variance, which is
the average of the squared differences between the observations and the mean.
The square root of the variance, called the standard deviation, describes dis-
persion in the original scale of measurement. Other measures of dispersion
are the range, which is the difference between the largest and smallest obser-
vations, and the mean absolute deviation, which is the average of the absolute
values of the differences between the observations and the mean.
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Other numeric descriptors of the characteristics of a distribution include
the percentiles, of which the quartile and interquartile ranges are special cases.

The importance of the mean and standard deviation is underscored by
the empirical rule and Tchebysheff’s theorem, which show that these two
measures provide a very adequate description of data distributions.

The chapter concludes with brief sections on descriptions of relationships
between two variables and a look ahead at the uses of descriptive measures
for statistical inference.

1.10 CHAPTER EXERCISES

CONCEPT

QUESTIONS

The following multiple choice questions are intended to provide practice in
methods and reinforce some of the concepts presented in this chapter.

1. The scores of eight persons on the Stanford–Binet IQ test were:

95 87 96 110 150 104 112 110

The median is:
(1) 107
(2) 110
(3) 112
(4) 104
(5) none of the above.

2. The concentration of DDT, in milligrams per liter, is:
(1) a nominal variable
(2) an ordinal variable
(3) an interval variable
(4) a ratio variable.

3. If the interquartile range is zero, you can conclude that:
(1) the range must also be zero
(2) the mean is also zero
(3) at least 50% of the observations have the same value
(4) all of the observations have the same value
(5) none of the above is correct.

4. The species of each insect found in a plot of cropland is:
(1) a nominal variable
(2) an ordinal variable
(3) an interval variable
(4) a ratio variable.

5. The “average” type of grass used in Texas lawns is best described by
(1) the mean
(2) the median
(3) the mode.
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6. A sample of 100 IQ scores produced the following statistics:

mean = 95 lower quartile = 70

median = 100 upper quartile = 120

mode = 75 standard deviation = 30

Which statement(s) is (are) correct?
(1) Half of the scores are less than 95.
(2) The middle 50% of scores are between 100 and 120.
(3) One-quarter of the scores are greater than 120.
(4) The most common score is 95.

7. A sample of 100 IQ scores produced the following statistics:

mean = 100 lower quartile = 70

median = 95 upper quartile = 120

mode = 75 standard deviation = 30

Which statement(s) is (are) correct?
(1) Half of the scores are less than 100.
(2) The middle 50% of scores are between 70 and 120.
(3) One-quarter of the scores are greater than 100.
(4) The most common score is 95.

8. Identify which of the following is a measure of dispersion:
(1) median
(2) 90th percentile
(3) interquartile range
(4) mean.

9. A sample of pounds lost in a given week by individual members of a weight-
reducing clinic produced the following statistics:

mean = 5 pounds first quartile = 2 pounds

median = 7 pounds third quartile = 8.5 pounds

mode = 4 pounds standard deviation = 2 pounds

Identify the correct statement:
(1) One-fourth of the members lost less than 2 pounds.
(2) The middle 50% of the members lost between 2 and 8.5 pounds.
(3) The most common weight loss was 4 pounds.
(4) All of the above are correct.
(5) None of the above is correct.

10. A measurable characteristic of a population is:
(1) a parameter
(2) a statistic
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(3) a sample
(4) an experiment.

11. What is the primary characteristic of a set of data for which the standard
deviation is zero?
(1) All values of the variable appear with equal frequency.
(2) All values of the variable have the same value.
(3) The mean of the values is also zero.
(4) All of the above are correct.
(5) None of the above is correct.

12. Let X be the distance in miles from their present homes to residences when
in high school of individuals at a class reunion. Then X is:
(1) a categorical (nominal) variable
(2) a continuous variable
(3) a discrete variable
(4) a parameter
(5) a statistic.

13. A subset of a population is:
(1) a parameter
(2) a population
(3) a statistic
(4) a sample
(5) none of the above.

14. The median is a better measure of central tendency than the mean if:
(1) the variable is discrete
(2) the distribution is skewed
(3) the variable is continuous
(4) the distribution is symmetric
(5) none of the above is correct.

15. A small sample of automobile owners at Texas A & M University produced
the following number of parking tickets during a particular year: 4, 0, 3, 2,
5, 1, 2, 1, 0. The mean number of tickets (rounded to the nearest tenth) is:
(1) 1.7
(2) 2.0
(3) 2.5
(4) 3.0
(5) none of the above.

PRACTICE

EXERCISES

Most of the exercises in this and subsequent chapters are based on data sets for
which computations are most efficiently done with computers. However, man-
ual computations, although admittedly tedious, provide a feel for how various
results arise and what they may mean. For this reason, we have included a few
exercises with small numbers of simple-valued observations that can be done
manually. The solutions to all these exercises are given in the back of the text.
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1. A university published the following distribution of students enrolled in the
various colleges:

College Enrollment

Agriculture 1250
Business 3675
Earth sciences 850
Liberal arts 2140
Science 1550
Social sciences 2100

Construct a bar chart of these data.

2. On ten days, a bank had 18, 15, 13, 12, 8, 3, 7, 14, 16, and 3 bad checks. Find
the mean, median, variance, and standard deviation of the number of bad
checks.

3. Calculate the mean and standard deviation of the following sample:

−1, 4, 5, 0.

4. The following is the distribution of ages of students in a graduate course:

Age (years) Frequency

20–24 11
25–29 24
30–34 30
35–39 18
40–44 11
45–49 5
50–54 1

(a) Construct a bar chart of the data.
(b) Calculate the mean and standard deviation of the data.

5. Weekly closing prices of Hewlett–Packard stock from October 1995 to
February 1996 are listed below, given in sequential order and rounded to
the nearest dollar:

93, 94, 95, 89, 85, 82, 87, 85, 84, 80, 78, 78, 84, 87, 90.

(a) Using time as the horizontal axis and closing price as the vertical axis,
construct a trend graph showing how the price moved during this period.

(b) Construct a stem and leaf plot.
(c) Calculate the mean and median closing price.
(d) Use the change of scale procedure in Section 1.5 to calculate the stan-

dard deviation of the closing price.

EXERCISES

1. Most of the problems in this and other chapters deal with “real” data
for which computations are most efficiently performed with computers.
Since a little experience in manual computing is healthy, here are 15
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observations of a variable having no particular meaning:

12 18 22 17 20 15 19 13 23 8 14 14 19 11 30.

(a) Compute the mean, median, variance, range, and interquartile range
for these observations.

(b) Produce a stem and leaf plot.
(c) Write a brief description of this data set.

2. Because waterfowl are an important economic resource, wildlife scien-
tists study how waterfowl abundance is related to various environmental
variables. In such a study, the variables shown in Table 1.15 were observed
for a sample of 52 ponds.

WATER: the amount of open water in the pond, in acres.
VEG: the amount of aquatic and wetland vegetation present at and

round the pond, in acres.
FOWL: the number of waterfowl recorded at the pond during a

(random) one-day visit to the pond in January.
The results of some intermediate computations:

WATER:
∑

y = 370.5
∑

y2 = 25735.9

VEG:
∑

y = 58.25
∑

y2 = 285.938

FOWL:
∑

y = 3933
∑

y2 = 2449535

Table 1.15

Waterfowl Data

OBS WATER VEG FOWL OBS WATER VEG FOWL

1 1.00 0.00 0 27 0.25 0.00 0
2 0.25 0.00 10 28 1.50 0.00 240
3 1.00 0.00 125 29 2.00 1.50 2
4 15.00 3.00 30 30 31.00 0.00 0
5 1.00 0.00 0 31 149.00 9.00 1410
6 33.00 0.00 32 32 1.00 2.75 0
7 0.75 0.00 16 33 0.50 0.00 15
8 0.75 0.00 0 34 1.50 0.00 16
9 2.00 0.00 14 35 0.25 0.00 0
10 1.50 0.00 17 36 0.25 0.25 0
11 1.00 0.00 0 37 0.75 0.00 125
12 16.00 1.00 210 38 0.25 0.00 2
13 0.25 0.00 11 39 1.25 0.00 0
14 5.00 1.00 218 40 6.00 0.00 179
15 10.00 2.00 5 41 2.00 0.00 80
16 1.25 0.50 26 42 5.00 8.00 167
17 0.50 0.00 4 43 2.00 0.00 0
18 16.00 2.00 74 44 0.25 0.00 11
19 2.00 0.00 0 45 5.00 1.00 364
20 1.50 0.00 51 46 7.00 2.25 59
21 0.50 0.00 12 47 9.00 7.00 185
22 0.75 0.00 18 48 0.00 1.25 0
23 0.25 0.00 1 49 0.00 4.00 0
24 17.00 5.25 2 50 7.00 0.00 177
25 3.00 0.75 16 51 4.00 2.00 0
26 1.50 1.75 9 52 1.00 2.00 0
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(a) Make a complete summary of one of these variables. (Compute mean,
median, and variance, and construct a bar chart or stem and leaf and
box plots.) Comment on the nature of the distribution.

(b) Construct a frequency distribution for FOWL, and use the frequency
distribution formulas to compute the mean and variance.

(c) Make a scatterplot relating WATER or VEG to FOWL.

3. Someone wants to know whether the direction of price movements of
the general stock market, as measured by the New York Stock Exchange
(NYSE) Composite Index, can be predicted by directional price movements
of the New York Futures Contract for the next month. Data on these
variables have been collected for a 46-day period and are presented in
Table 1.16. The variables are:

INDEX: the percentage change in the NYSE composite index for a
one-day period.

FUTURE: the percentage change in the NYSE futures contract for a
one-day period.

Table 1.16

Stock Prices

DAY INDEX FUTURE DAY INDEX FUTURE

1 0.58 0.70 24 1.13 0.46
2 0.00 −0.79 25 2.96 1.54
3 0.43 0.85 26 −3.19 −1.08
4 −0.14 −0.16 27 1.04 −0.32
5 −1.15 −0.71 28 −1.51 −0.60
6 0.15 −0.02 29 −2.18 −1.13
7 −1.23 −1.10 30 −0.91 −0.36
8 −0.88 −0.77 31 1.83 −0.02
9 −1.26 −0.78 32 2.86 0.91
10 0.08 −0.35 33 2.22 1.56
11 −0.15 0.26 34 −1.48 −0.22
12 0.23 −0.14 35 −0.47 −0.63
13 −0.97 −0.33 36 2.14 0.91
14 −1.36 −1.17 37 −0.08 −0.02
15 −0.84 −0.46 38 −0.62 −0.41
16 −1.01 −0.52 39 −1.33 −0.81
17 −0.86 −0.28 40 −1.34 −2.43
18 0.87 0.28 41 1.12 −0.34
19 −0.78 −0.20 42 −0.16 −0.13
20 −2.36 −1.55 43 1.35 0.18
21 0.48 −0.09 44 1.33 1.18
22 −0.88 −0.44 45 −0.15 0.67
23 0.08 −0.63 46 −0.46 −0.10

(a) Make a complete summary of one of these variables.
(b) Construct a scatterplot relating these variables. Does the plot help to

answer the question posed?

4. The data in Table 1.17 consist of 25 values for four computer-generated
variables called Y1, Y2, Y3, and Y4. Each of these is intended to represent
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a particular distributional shape. Use a stem and leaf and a box plot to
ascertain the nature of each distribution and then see whether the empirical
rule works for each of these.

Table 1.17

Data for Recognizing
Distributional Shapes

Y1 Y2 Y3 Y4

4.0 3.5 1.3 5.0
6.7 6.4 6.7 1.0
6.2 3.3 1.3 0.6
2.4 4.0 2.7 4.5
1.6 3.5 1.3 1.8
5.3 4.8 4.0 0.3
6.8 3.2 1.3 0.1
6.8 6.9 9.4 4.7
2.8 6.5 6.7 2.7
7.3 6.6 6.7 1.1
5.8 4.4 2.7 2.1
6.1 4.2 2.7 2.3
3.1 4.6 2.7 2.5
8.1 4.7 2.7 2.3
6.3 3.3 1.3 0.1
6.9 3.9 2.7 3.9
8.4 5.7 5.4 1.4
3.1 3.3 1.3 2.2
4.5 5.2 4.0 0.9
1.6 4.0 2.7 4.8
1.8 6.7 8.0 1.6
5.3 5.2 4.0 0.1
2.7 5.8 5.4 3.9
3.2 5.9 5.4 0.9
4.2 3.1 0.0 7.4

5. Climatological records provide a rich source of data suitable for descrip-
tion by statistical methods. The data for this example (Table 1.18) are the
number of January days in London, England, having rain (Days) and the
average January temperature (Temp, in degrees Fahrenheit) for the years
1858 through 1939.
(a) Summarize these two variables.
(b) Draw a scatterplot to see whether the two variables are related.

6. Table 1.19 gives data on population (in thousands) and expenditures on
criminal activities (in million $) for the 50 states and the District of
Columbia as obtained from the 1988 Statistical Abstract of the United
States.
(a) Describe the distribution of states’ criminal expenditures with what-

ever measures appear appropriate. Comment on the features and
implications of these data.

(b) Compute the per capita expenditures (EXPEND/POP) for these data.
Repeat part (a). Discuss any differences in the nature of the distribution
you may have stated in part (a).
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Table 1.18

Rain Days and
Temperatures, London
Area, January

Year Days Temp Year Days Temp Year Days Temp

1858 6 40.5 1886 23 35.8 1914 12 39.7
1859 10 40.0 1887 13 37.9 1915 19 45.9
1860 21 34.0 1888 9 37.2 1916 14 35.5
1861 7 39.3 1889 10 43.6 1917 18 39.6
1862 19 42.2 1890 21 34.1 1918 18 37.8
1863 15 36.6 1891 14 36.6 1919 22 42.4
1864 8 36.5 1892 13 35.5 1920 21 46.1
1865 13 43.1 1893 17 38.5 1921 20 40.2
1866 23 34.6 1894 25 33.7 1922 20 41.5
1867 17 37.6 1895 16 40.5 1923 15 40.8
1868 19 41.4 1896 9 35.4 1924 18 41.7
1869 15 38.5 1897 21 43.7 1925 11 40.5
1870 17 33.4 1898 9 42.8 1926 18 41.0
1871 17 41.5 1899 19 40.4 1927 17 42.1
1872 22 42.3 1900 21 38.8 1928 21 34.8
1873 18 41.9 1901 12 42.0 1929 12 44.0
1874 17 43.6 1902 11 41.1 1930 17 39.0
1875 23 37.3 1903 17 39.5 1931 20 44.0
1876 11 42.9 1904 22 38.4 1932 13 37.4
1877 25 40.4 1905 8 42.4 1933 14 39.6
1878 15 31.8 1906 18 38.8 1934 18 40.7
1879 12 33.3 1907 8 36.8 1935 13 40.9
1880 5 31.7 1908 10 38.8 1936 21 41.9
1881 8 40.5 1909 13 40.0 1937 23 43.6
1882 7 41.4 1910 14 38.2 1938 21 41.7
1883 21 43.9 1911 12 40.2 1939 22 30.8
1884 16 36.6 1912 17 41.1
1885 16 36.3 1913 17 38.4

(c) Make a scatterplot of total and per capita expenditures on the vertical
axis against population on the horizontal axis. Which of these plots is
more useful?

7. Make scatterplots for all pairwise combinations of the variables from the
tree data (Table 1.7). Which pairs of variables have the strongest relation-
ship? Is your conclusion consistent with prior knowledge?

8. The data set in Table 1.20 lists all cases of Down’s syndrome in Victoria,
Australia, from 1942 through 1957, as well as the number of births classified
by the age of the mother (Andrews and Herzberg, 1985).
(a) Construct a relative frequency histogram for total number of births by

age group.
(b) Construct a relative frequency histogram for number of mothers of

Down’s syndrome patients by age group.
(c) Compare the shape of the two histograms. Does the shape of the

histogram for Down’s syndrome suggest that age alone accounts for
number of Down’s syndrome patients born?

(d) Construct a scatter diagram of total number of births versus number
of mothers of Down’s syndrome. Does the scatter diagram support the
conclusion in part (c)?
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Table 1.19

Criminal Expenditures

STATE POP EXPEND STATE POP EXPEND

AK 525 360 MT 809 123
AL 4083 498 NC 6413 821
AR 2388 219 ND 672 75
AZ 3386 728 NE 1594 206
CA 27663 6539 NH 1057 140
CO 3296 602 NJ 7672 1592
CT 3211 544 NM 1500 296
DC 622 435 NV 1007 256
DE 644 130 NY 17825 5220
FL 12023 2252 OH 10784 1617
GA 6222 835 OK 3272 432
HI 1083 210 OR 2724 463
IA 2834 368 PA 11936 1796
ID 998 120 RI 986 164
IL 11582 2023 SC 3425 427
IN 5531 593 SD 709 79
KS 2476 324 TN 4855 568
KY 3727 417 TX 16789 2313
LA 4461 785 UT 1680 244
MA 5855 1024 VA 5904 914
MD 4535 940 VT 548 74
ME 1187 128 WA 4538 838
MI 9200 1788 WI 4807 863
MN 4246 665 WV 1897 168
MO 5103 660 WY 490 115
MS 2625 245

Table 1.20

Mongoloid Births in
Victoria, Australiaa

Age Group, Total Number Number of Mothers of

Years of Births Down’s Syndrome Patients

20 or less 35,555 15
20–24 207,931 128
25–29 253,450 208
30–34 170,970 194
35–39 86,046 297
40–44 24,498 240
45 or over 1,707 37

aReprinted with permission from Andrews and Herzberg (1985).

9. Table 1.21 shows the times in days from remission induction to relapse
for 51 patients with acute nonlymphoblastic leukemia who were treated
on a common protocol at university and private institutions in the Pacific
Northwest. This is a portion of a larger study reported by Glucksberg et al.

(1981).
Since data of this type are notoriously skewed, the distribution of

the times can be examined using the following output from PROC UNI-
VARIATE in SAS as seen in Fig. 1.22.
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Table 1.21 Ordered Remission Durations for 51 Patients with Acute Nonlymphoblastic Leukemia (in days)

24 46 57 57 64 65 82 89 90 90 111 117 128 143 148 152
166 171 186 191 197 209 223 230 247 249 254 258 264 269 270 273
284 294 304 304 332 341 393 395 487 510 516 518 518 534 608 642
697 955 1160
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Figure 1.22

Summary Statistics
for Remission Data

(a) What is the relation between the mean and the median? What does this
mean about the shape of the distribution? Do the stem and leaf plot
and the box plot support this?

(b) Identify any outliers in this data set. Can you think of any reasons for
these outliers? Can we just “throw them away”? Note that the mean
time of remission is 292.39 days and the median time is 249.

(c) Approximately what percent of these patients were in remission for
less than one year?

10. The use of placement exams in elementary statistics courses has been a
controversial topic in recent times. Some researchers think that the use
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of a placement exam can help determine whether a student will success-
fully complete a course (or program). A recent study in a large university
resulted in the data listed in Table 1.22. The placement test administered
was an inhouse written general mathematics test. The course was Elemen-
tary Statistics. The students were told that the test would not affect their
course grade. After the semester was over, students were classified accord-
ing to their status. In Table 1.22 are the students’ scores on the placement
test (from 0 to 100), and the status of the student (coded as 0 = passed the
course, 1 = failed the course, and 2 = dropped out before the semester was
over) related?
(a) Construct a frequency histogram for Score. Describe the results.

Table 1.22 Placement Scores for Elementary Statistics

Student Score Status Student Score Status Student Score Status

1 90 2 36 85 0 71 97 2
2 65 2 37 99 1 72 90 0
3 30 1 38 45 0 73 30 0
4 55 0 39 90 0 74 1 0
5 1 0 40 10 1 75 1 0
6 5 1 41 56 0 76 70 0
7 95 0 42 55 2 77 90 0
8 99 0 43 50 0 78 70 0
9 40 0 44 1 1 79 75 0

10 95 0 45 45 0 80 75 2
11 1 0 46 50 0 81 70 2
12 55 0 47 85 2 82 85 0
13 85 0 48 95 2 83 45 0
14 95 0 49 15 0 84 50 0
15 15 2 50 35 0 85 55 0
16 95 0 51 85 0 86 15 0
17 15 0 52 85 0 87 55 0
18 65 0 53 50 0 88 20 1
19 55 0 54 10 1 89 1 1
20 75 0 55 60 0 90 75 0
21 15 0 56 45 1 91 45 2
22 35 2 57 90 0 92 70 0
23 90 0 58 1 1 93 70 0
24 10 0 59 80 2 94 45 0
25 10 1 60 45 0 95 90 0
26 20 0 61 90 0 96 65 2
27 25 0 62 45 0 97 75 2
28 15 1 63 20 0 98 70 0
29 40 0 64 35 1 99 65 0
30 15 0 65 40 2 100 55 0
31 50 0 66 40 0 101 55 0
32 80 0 67 60 0 102 40 0
33 50 1 68 15 0 103 56 0
34 50 2 69 45 0 104 85 0
35 97 0 70 45 0 105 80 0
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(b) Construct a relative frequency histogram for Score for each value of
Status. Describe the differences among these distributions. Are there
some surprises?

11. The 1988 Life Insurance Fact Book, published by the American Council
of Life Insurance, gives the net rate of investment income for U.S. life
insurance companies from 1968 through 1987 (p. 65). These data are re-
produced in Table 1.23.

Table 1.23

Net Rate of Investment
Income

Year Percent Year Percent Year Percent Year Percent

68 4.95 73 5.88 78 7.31 83 8.96
69 5.12 74 6.25 79 7.73 84 9.45
70 5.3 75 6.36 80 8.09 85 9.63
71 5.44 76 6.55 81 8.57 86 9.35
72 5.56 77 6.89 82 8.91 87 9.09

(a) Find the mean rate of investment income and the standard deviation.
(b) What is the median rate of investment? When did the median occur?
(c) Plot the rate of investment income versus the year. What happens prior

to 1985? How about after 1985? What would you expect to happen in
1988?

12. A study of characteristics of successful salespersons in a certain industry
included a questionnaire given to sales managers of companies in this
industry. In this questionnaire the sales manager had to choose a trait that
the manager thought was most important for salespersons to have. The
results of 120 such responses are given in Table 1.24.

Table 1.24

Traits of Salespersons
Considered Most
Important by Sales
Managers

Trait Number of Responses

Reliability 44
Enthusiastic/energetic 30
Self-starter 20
Good grooming habits 18
Eloquent 6
Pushy 2

(a) Convert the number of responses to percents of total. What can be said
about the first two traits?

(b) Draw a bar chart of the data.

13. A measure of the time a drug stays in the blood system is given by the
half-life of the drug. This measure is dependent on the type of drug, the
weight of the patient, and the dose administered. To study the half-life of
aminoglyco sides in trauma patients, a pharmacy researcher recorded the
data in Table 1.25 for patients in a critical care facility. The data consist
of measurements of dosage per kilogram of weight of the patient, type of
drug, either Amikacin or Gentamicin, and the half-life measured 1 hour
after administration.
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Table 1.25

Half-Life
of Aminoglycosides
and Dosage by Drug Type

Patient Drug Half-Life Dosage (mg drug/kg patient)

1 G 1.60 2.10
2 A 2.50 7.90
3 G 1.90 2.00
4 G 2.30 1.60
5 A 2.20 8.00
6 A 1.60 8.30
7 A 1.30 8.10
8 A 1.20 8.60
9 G 1.80 2.00

10 G 2.50 1.90
11 A 1.60 7.60
12 A 2.20 6.50
13 A 2.20 7.60
14 G 1.70 2.86
15 A 2.60 10.00
16 A 1.00 9.88
17 G 2.86 2.89
18 A 1.50 10.00
19 A 3.15 10.29
20 A 1.44 9.76
21 A 1.26 9.69
22 A 1.98 10.00
23 A 1.98 10.00
24 A 1.87 9.87
25 G 2.89 2.96
26 A 2.31 10.00
27 A 1.40 10.00
28 A 2.48 10.50
29 G 1.98 2.86
30 G 1.93 2.86
31 G 1.80 2.86
32 G 1.70 3.00
33 G 1.60 3.00
34 G 2.20 2.86
35 G 2.20 2.86
36 G 2.40 3.00
37 G 1.70 2.86
38 G 2.00 2.86
39 G 1.40 2.82
40 G 1.90 2.93
41 G 2.00 2.95
42 A 2.80 10.00
43 A 0.69 10.00

(a) Draw a scatter diagram of half-life versus dose per kilogram, indexed
by drug type (use A’s and G’s). Does there appear to be a difference in
the prescription of initial doses in types of drugs?

(b) Does there appear to be a relation between half-life and dosage?
Explain.

(c) Find the mean and standard deviation for half-life for the two types of
drugs. Does this seem to support the conclusion in part (a)?



Chapter 2

Probability
and Sampling
Distributions

EXAMPLE 2.1 A quality control specialist for a manufacturing company that makes complex
aircraft parts is concerned about the costs generated by defective screws at
two points in the production line. These defective screws must be removed
and replaced before the part can be shipped. The two points in the production
operate independent of each other, but a single part may have defective screws
at one or both of the points. The cost of replacing defective screws at each
point, as well as the long-term observed proportion of times defective screws
are found at each point, is given in Table 2.1.

Table 2.1

Summary of Defective
Screws

Point in Proportion of Cost

the Production Parts Having of Replacing

Line Defective Screws Defective Screws

A 0.008 $0.23
B 0.004 $0.69

On a typical day, 1000 parts are manufactured by this production line. The
specialist wants to estimate the total cost involved in replacing the screws.
This example illustrates the use of a concept called probability in problem
solving. While the main emphasis of this chapter is to develop the use of
probability for statistical inference, there are other uses such as that illustrated
in this example. The solution is given in Section 2.3 where we discuss discrete
probability distributions. ■

62
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2.1 Introduction

Up to now, we have used numerical and graphical techniques to describe and
summarize sets of data without differentiating between a sample and a pop-
ulation. In Section 1.8 we introduced the idea of using data from a sample
to make inferences to the underlying population, which we called statistical
inference, and is the subject of most of the rest of this text. Because infer-
ential statistics involves using information obtained from a sample (usually
a small portion of the population) to draw conclusions about the population,
we can never be 100% sure that our conclusions are correct. That is, we are
constantly drawing conclusions under conditions of uncertainty. Before we
can understand the methods and limitations of inferential statistics we need
to become familiar with uncertainty. The science of uncertainty is known as
probability or probability theory. This chapter provides some of the tools
used in probability theory as measures of uncertainty, and particularly those
tools that allow us to make inferences and evaluate the reliability of such
inferences.

Subsequent chapters deal with the specific inferential procedures used for
solving various types of problems.

In statistical terms, a population is described by a distribution of one or
more variables. These distributions have some unique characteristics that de-
scribe their location or shape.

DEFINITION 2.1
A parameter is a quantity that describes a particular characteristic of the
distribution of a variable. For example, the mean of a variable (denoted
by μ) is the arithmetic mean of all the observations in the population.

DEFINITION 2.2
A statistic is a quantity calculated from data that describes a particular
characteristic of the sample. For example, the sample mean (denoted
by ȳ) is the arithmetic mean of the values of the observations of a
sample.

In general, statistical inference is the process of using sample statistics to
make deductions about a population probability distribution. If such deduc-
tions are made on population parameters, this process is called parametric

statistical inference. If the deductions are made on the entire probability distri-
bution, without reference to particular parameters, the process is called non-

parametric statistical inference. The majority of this text concerns itself with
parametric statistical inference (with the exception of Chapter 13). Therefore,
we will use the following definition:
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DEFINITION 2.3
Statistical inference is the process of using sample statistics to make
decisions about population parameters.

An example of one form of statistical inference is to estimate the value of
the population mean by using the value of the sample mean. Another form of
statistical inference is to postulate or hypothesize that the population mean
has a certain value, and then use the sample mean to confirm or deny that
hypothesis. For example, we take a small sample from a large population with
unknown mean, μ, and calculate the sample mean, ȳ, as 5.87. We use the value
5.87 to estimate the unknown value of the population mean. In all likelihood
the population mean is not exactly 5.87 since another sample of the same size
from the same population would yield a different value for ȳ. On the other
hand, if we were able to say that the true mean, μ, is between two values, say
5.70 and 6.04 there is a larger likelihood that we are correct. What we need
is a way to quantify this likelihood. Alternatively, we may hypothesize that μ

actually had the value 6.0 and use the sample mean to test this hypothesis.
That is, we ask how likely it is that the sample mean was only 5.87 if the true
mean has a value of 6? In order to answer this question, we need to explore a
way to actually calculate the probability that ȳ is as small as 5.87 if μ = 6. We
start the discussion of how to evaluate statistical inferences on the population
mean in Section 2.5.

Applications of statistical inferences are numerous, and the results of sta-
tistical inferences affect almost all phases of today’s world. A few examples
follow:

1. The results of a public opinion poll taken from a sample of registered voters.
The statistic is the sample proportion of voters favoring a candidate or
issue. The parameter to be estimated is the proportion of all registered
voters favoring that candidate or issue.

2. Testing light bulbs for longevity. Since such testing destroys the product,
only a small sample of a manufacturer’s total output of light bulbs can be
tested for longevity. The statistic is the mean lifetime as computed from
the sample. The parameter is the actual mean lifetime of all light bulbs
produced.

3. The yield of corn per acre in response to fertilizer application at a test site.
The statistic is the mean yield at the test site. The parameter is the mean
yield of corn per acre in response to given amounts of the fertilizer when
used by farmers under similar conditions.

It is obvious that a sample can be taken in a variety of ways with a correspond-
ing variety in the reliability of the statistical inference. For example, one way
of taking a sample to obtain an estimate of the proportion of voters favoring a
certain candidate for public office might be to go to that candidate’s campaign
office and ask workers there if they will vote for that candidate. Obviously, this
sampling procedure will yield less than unbiased results. Another way would
be to take a well-chosen sample of registered voters in the state and conduct a
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carefully controlled telephone poll. (We discussed one method of taking such
a sample in Section 1.8, and called it a random sample.) The difference in the
credibility of the two estimates is obvious, although voters who do not have a
telephone may present a problem. For the most part, we will assume that the
data we use have come from a random sample.

The primary purpose of this text is to present procedures for making infer-
ences in a number of different applications and evaluating the reliability of the
inferences that go with these procedures. This evaluation will be based on the
concepts and principles of probability and will allow us to attach a quantita-
tive measure to the reliability of the statistical inferences we make. Therefore,
to understand these procedures for making statistical inferences, some basic
principles of probability must be understood.

The subject of probability covers a wide range of topics, from relatively sim-
ple ideas to highly sophisticated mathematical concepts. In this chapter we use
simple examples to introduce only those topics necessary to provide an under-
standing of the concept of a sampling distribution which is the fundamental
tool for statistical inference. For those who find this topic challenging and
want to learn more, there are numerous books on the subject (see Ross, 2002).

In examples and exercises in probability (mainly in this chapter) we assume
that the population and its parameters are known and compute the probability
of obtaining a particular sample statistic. For example, a typical probability
problem might be that we have a population with μ = 6 and we want to know
the probability of getting a sample mean of 5.87 if we take a sample of ten items
from the population. Starting in Chapter 3 we use the principles developed in
this chapter to answer the complement of this question. That is, we want to
know what are likely values for the population mean if we get a sample mean
of 5.87 from a sample of size 10. Or we ask the question, how likely is it that we
get a sample mean of 5.87 if the population mean is actually 6? In other words,
in examples and exercises in statistical inference, we know the sample values
and ask questions concerning the unknown population parameter.

Chapter Preview

The following short preview outlines our development of the concept of a
sampling distribution which provides the foundation for statistical inference.
Section 2.2 presents the concept of the probability of a simple outcome of an
experiment, such as the probability of obtaining a head on a toss of a coin. Rules
are then given for obtaining the probability of an event, which may consist of
several such outcomes, such as obtaining no heads in the toss of five coins.

In Section 2.3, these rules are used to construct probability distribu-

tions, which are simply listings of probabilities of all events resulting from an
experiment, such as obtaining all possible number of heads in the toss of five
coins. In Section 2.4, this concept is generalized to define probability distribu-
tions for results of experiments that result in continuous numeric variables.
Some of these distributions are derived from purely mathematical concepts
and require the use of functions and tables to find probabilities.



66 Chapter 2 Probability and Sampling Distributions

Finally, Sections 2.5 and 2.6 present the ultimate goal of this chapter, the
concept of a sampling distribution, which is a probability distribution that
describes how a statistic from a random sample is related to the characteristics
of the population from which the sample is drawn.

2.2 Probability

The word probability means something to just about everyone, no matter
what his or her level of mathematical training. In general, however, most peo-
ple would be hard pressed to give a rigorous definition of probability. We are
not going to attempt such a definition either. Instead, we will use a working
definition of probability (Definition 2.7) that defines it as a “long-range relative
frequency.”

For example, if we proposed to flip a fair coin and asked for the probability
that the coin will land head side up, we would probably receive the answer
“fifty percent,” or maybe “one-half.” That is, in the long run we would expect
about 50% of the time to get a head, the other 50% a tail, although the 50% may
not apply exactly for a small number of flips. This same kind of reasoning can
be extended to much more complex situations.

EXAMPLE 2.2 Consider a study in which a city health official is concerned with the incidence
of childhood measles in parents of child-bearing age in the city. For each couple
she would like to know how likely it is that either the mother or father or both
have had childhood measles.

Solution For each person the results are similar to tossing a coin. That is,
they have either had measles (a head?) or not (a tail?). However, the probability
of an individual having had measles cannot be quite as easily determined as the
probability of a head in a single toss of a fair coin. However, we can sometimes
obtain this probability by using prior studies or census data. For example,
suppose that national health statistics indicate that 20% of adults between the
ages of 17 and 35 (regardless of sex) have had childhood measles. The city
health official may use 0.20 as the probability that an individual in her city has
had childhood measles. Even with this value, the official’s work is not finished.
Recall that she was interested in determining the likelihood of neither, one, or
both individuals in the couple having had measles. To answer this question, we
must use some of the basic rules of probability. We will introduce these rules,
along with the necessary definitions, and eventually answer the question. ■

Definitions and Concepts

DEFINITION 2.4
An experiment is any process that yields an observation.
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For example, the toss of a fair coin (gambling activities are popular examples
for studying probability) is an experiment.

DEFINITION 2.5
An outcome is a specific result of an experiment.

In the toss of a coin, a head would be one outcome, a tail the other. In the
measles study, one outcome would be “yes,” the other “no.”

In Example 2.2, determining whether an individual has had measles is an
experiment. The information on outcomes for this experiment may be obtained
in a variety of ways, including the use of health certificates, medical records,
a questionnaire, or perhaps a blood test.

DEFINITION 2.6
An event is a combination of outcomes having some special character-
istic of interest.

In the measles study, an event may be defined as “one member of the couple
has had measles.” This event could occur if the husband has and the wife has
not had measles, or if the husband has not and the wife has. An event may also
be the result of more than one replicate of an experiment. For example, asking
the couple may be considered as a combination of two replicates: (1) asking
if the wife has had measles and (2) asking if the husband has had measles.

DEFINITION 2.7
The probability of an event is the proportion (relative frequency) of
times that the event is expected to occur when an experiment is repeated
a large number of times under identical conditions.

We will represent outcomes and events by capital letters. Letting A be the
outcome “an individual of childbearing age has had measles,” then, based on
the national health study, we write the probability of A occurring:

P(A) = 0.20.

Note that any probability has the property

0 ≤ P(A) ≤ 1.

This is, of course, a result of the definition of probability as a relative frequency.

DEFINITION 2.8
If two events cannot occur simultaneously, that is, one “excludes” the
other, then the two events are said to be mutually exclusive.

Note that two individual observations are mutually exclusive. The sum of the
probabilities of all the mutually exclusive events in an experiment must be one.
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This is apparent because the sum of all the relative frequencies in a problem
must be one.

DEFINITION 2.9
The complement of an outcome or event A is the occurrence of any
event or outcome that precludes A from happening.

Thus, not having had measles is the complement of having had measles. The
complement of outcome A is represented by A′. Because A and A′ are mutu-
ally exclusive, and because A and A′ are all the events that can occur in any
experiment, the probabilities of A and A′ sum to one:

P(A′) = 1 − P(A).

Thus the probability of an individual not having had measles is

P(no measles) = 1 − 0.2 = 0.8.

DEFINITION 2.10
Two events A and B are said to be independent if the probability of A

occurring is in no way affected by event B having occurred or vice versa.

Rules for Probabilities Involving More Than One Event Consider an
experiment with events A and B, and P(A) and P(B) are the respective prob-
abilities of these events. We may be interested in the probability of the event
“both A and B occur.” If the two events are independent, then

P(A and B) = P(A) · P(B).

If two events are not independent, more complex methods must be used (see,
for example, Wackerly et al., 2002).

Suppose that we define an experiment to be two tosses of a fair coin. If we
define A to be a head on the first toss and B to be a head on the second toss,
these two events would be independent. This is because the outcome of the
second toss would not be affected in any way by the outcome of the first toss.

Using this rule, the probability of two heads in a row, P(A and B), is (0.5)
(0.5) = 0.25. In Example 2.2, any incidence of measles would have occurred
prior to the couple getting together, so it is reasonable to assume the occur-
rence of childhood measles in either individual is independent of the occur-
rence in the other. Therefore, the probability that both have had measles is

(0.2)(0.2) = 0.04.

Likewise, the probability that neither has had measles is

(0.8)(0.8) = 0.64.

We are also interested in the probability of the event “either A or B occurs.”
If two events are mutually exclusive, then

P(A or B) = P(A) + P(B).
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Note that if A and B are mutually exclusive then they both cannot occur at the
same time; that is, P(A and B) = 0.

If two events are not mutually exclusive, then

P(A or B) = P(A) + P(B) − P(A and B).

We can now use these rules to find the probability of the event “exactly one
member of the couple has had measles.” This event consists of two mutually
exclusive outcomes:

A: husband has and wife has not had measles.
B: husband has not and wife has had measles.

The probabilities of events A and B are

P(A) = (0.2)(0.8) = 0.16

P(B) = (0.8)(0.2) = 0.16.

The event “one has” means either of the above occurred, hence

P(one has) = P(A or B) = 0.16 + 0.16 = 0.32.

In the experiment of tossing two fair coins, events A (a head on the first
toss) and event B (a head on the second) are not mutually exclusive events.
The probability of getting at least one head in two tosses of a fair coin would be

P(A or B) = 0.5 + 0.5 − 0.25 = 0.75.

EXAMPLE 2.3 One practical application of probability is in the analysis of screening tests
in the medical profession. A recent study of the use of steroid hormone re-
ceptors using a fluorescent staining technic (sic) in detecting breast cancer
was conducted by the Pathology Department of University Hospital in
Jacksonville, Florida (Masood and Johnson 1987). The results of the stain-
ing technic were then compared with the commonly performed biochemical
assay. The staining technic is quick, inexpensive, and, as the analysis indicates,
accurate. Table 2.2 shows the result of 42 cases studied. The probabilities of
interest are as follows:

1. The probability of detecting cancer, that is, the probability of a true positive
test result. This is referred to as the sensitivity of the test.

2. The probability of a true negative, that is, a negative on the test for a patient
without cancer. This is known as the specificity of the test.

Solution To determine the sensitivity of the test, we notice that the test
did identify 23 out of the 25 cases; this probability is 23/25 = 0.92 or 92%.
To determine the specificity of the test, we observe that 15 of the 17 negative

Table 2.2

Staining Technic Result

STAINING TECHNIC RESULTS

Biochemical Assay Result Positive Negative Total

Positive 23 2 25
Negative 2 15 17
Total 25 17 42
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biochemical results were classified negative by the staining technic. Thus the
probability is 15/17 = 0.88 or 88%. Since the biochemical assay itself is almost
100% accurate, these probabilities indicate that the staining technic is both
sensitive and specific to breast cancer. However, the test is not completely
infallible. ■

System Reliability

An interesting application of probability is found in the study of the reliabil-
ity of a system consisting of two or more components, such as relays in an
electrical system or check valves in a water system. The reliability of a system
or component is measured by the probability that the system or component
will not fail (or that the system will work). We are interested in knowing the
reliability of a system given that we know the reliabilities of the individual com-
ponents. In practice, reliability is often used to determine which design among
those possible for the system meets the required specifications. For example,
consider a system with two components, say, component A and component
B. If the two components are connected in series, as shown in the diagram,
then the system will work only if both components work or, conversely, only
if both components do not fail.

A B

An alternative system that involves two components could be designed as a
parallel system. A two-component system with parallel components is shown
in the following diagram. In this system, if either of the components fails, the
system will still function as long as the other component works. So for the
system to fail, both components must fail.

A

B

In most practical applications, the probability of failure (often called the
failure rate) is known for each component. Then the reliability for each com-
ponent is 1 – failure rate. Likewise, the reliability of the entire system is 1 – the
failure rate of the entire system.

In the series system, if the probability of failure of component A is P(A) and
the probability of failure of component B is P(B), then the probability of failure
of the system would be P(system) = P(A or B) = P(A) + P(B) − P(A)P(B).
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This assumes, of course, that the failure of component A is independent of
the failure of component B. The reliability of the system would then be 1 –
P(system). So, for example, if the probability of component A failing is
0.01 and the probability of component B failing is 0.02, then the probabil-
ity of the system failing would be P(system) = (0.01) + (0.02) − (0.01)(0.02) =
0.0298. The probability of the system not failing (the reliability) would then be
1 − 0.0298 = 0.9702.

We could have obtained the same result by considering the probability of
each component not failing. Then the probability of the system working would
be the probability that both components worked. That is, the probability of
the system not failing = (1 − 0.01)(1 − 0.02) = (0.99)(0.98) = 0.9702.

In the parallel system, the probability of failure is simply the probability
that both components fail, that is, P(system) = P(A and B) = P(A)P(B).
The reliability is then 1 − P(A)P(B). Assuming the same failure rates, the
probability of the system failing is (0.01)(0.02) = 0.0002. The probability that
the system works (reliability) is 1 − 0.0002 = 0.9998.

Note that it is more difficult to calculate the reliability of the system by
considering the reliability of each component. That is, the probability of the
system working is the probability that one or more of the components work.
This probability could be calculated by the following:

P(system works) = P(A works and B fails) + P(A fails and B works)

+ P(A and B work)

= [(0.99)(0.02) + (0.01)(0.98) + (0.99)(0.98)] = 0.0198

+ 0.0098 + 0.9702

= 0.9998.

Note that this system only needs one component working; the other one is
redundant. Hence, systems with this design are often called redundant sys-

tems. To illustrate the need for redundant systems, consider a space shuttle
rocket. It would not be surprising for this rocket to have as many as 1000 com-
ponents. If these components were all connected in series, then the system
reliability might be much lower than would be tolerated. For example, even if
the reliability of an individual component was as high as 0.999, the reliability of
the entire rocket would be only 0.368! Obviously, more complex arrangements
of components can be used, but the same basic principles of probability can
be used to evaluate the reliability of the system.

Random Variables

Events of major interest for most statistical inferences are expressed in nu-
merical terms. For example, in Example 2.2 we are primarily interested in the
number of adults in a couple that have had measles rather than simply the fact
that an adult had measles as a child.
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Table 2.3

A Probability
Distribution

Y Probability

0 0.64
1 0.32
2 0.04

DEFINITION 2.11
A random variable is a rule that assigns a numerical value to an outcome
of interest.

This variable is similar to those discussed in Chapter 1, but is not exactly the
same. Specifically, a random variable is a number assigned to each outcome of
an experiment. In this case, as in many other applications, outcomes are
already numerical in nature, and all we have to do is record the value. For
others we may have to assign a numerical value to the outcome.

In our measles study we define a random variable Y as the number of
parents in a married couple who have had childhood measles. This random
variable can take values of 0, 1, and 2. The probability that the random variable
takes on a given value can be computed using the rules governing probability.
For example, the probability that Y = 0 is the same as the probability that
neither individual in the married couple has had measles. We have previously
determined that to be 0.64. Similarly, we have the probability for each of the
possible values for Y . These values are summarized in tabular form in Table 2.3.

DEFINITION 2.12
A probability distribution is a definition of the probabilities of the
values of a random variable.

The list of probabilities given in Table 2.3 is a probability distribution.
Note the similarity of the probability distribution to the empirical relative

frequency distributions of sets of data discussed in Chapter 1. Those distribu-
tions were the results of samples from populations and, as noted in Section
1.4, are often called empirical probability distributions. On the other hand,
the probability distribution we have presented above is an exact picture of
the population if the 20% figure is correct. For this reason it is also called a
theoretical probability distribution. The theoretical distribution is a result of
applying mathematical (probability) concepts, while the empirical distribution
is computed from data obtained as a result of sampling. If the sampling could
be carried out forever, that is, the sample becomes the population, then the
empirical distribution would be identical to the theoretical distribution.

In Chapter 1 we found it convenient to use letters and symbols to denote
variables. For example, yi was used to represent the ith observed value of the
variable Y in a data set. A random variable is not observed, but is defined for
all values in the distribution; however, we use a similar notation for random
variables. That is, a random variable is denoted by the capital letter, Y , and
specific realizations, such as those shown in Table 2.3, are denoted by the
lower case letter, y. A method of notation commonly used to represent the
probability that the random variable Y takes on the specific value y is P(Y = y),
often written p(y). For example, the random variable describing the number of
parents having had measles is denoted by Y , and has values y= 0, 1, and 2. Then
p(0) = P(Y = 0) = 0.64 and so forth. This level of specificity is necessary for
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Table 2.4

P (Number of Heads)

y p(y)

0 1/4
1 2/4
2 1/4

Table 2.5

P (Number of Repeats)

x p(x)

1 1/2
2 1/2

Table 2.6

A Discrete Probability
Distribution

y p(x)

1 1/6
2 2/6
3 3/6

our introductory discussion of probability and probability distributions. After
Chapter 3 we will relax this specificity and use lower case letters exclusively.

EXAMPLE 2.4 Consider the experiment of tossing a fair coin twice and observing the random
variable Y = number of heads showing. Thus Y takes on the values 0, 1, or 2.
We are interested in determining the probability distribution of Y .

Solution The probability distribution of Y , the number of heads, is obtained
by applying the probability rules, and is seen in Table 2.4. ■

Suppose that we wanted to define another random variable that measured
the number of times the coin repeated itself. That is, if a head came up on the
first toss and a head on the second, the variable would have a value of two. If
a head came up on the first and a tail the second, the variable would have a
value 1.

Let us define X as the number of times the coin repeats. Then X will have
values 1 and 2. The probability distribution of X is shown in Table 2.5. The
reader may want to verify the values of p(x).

For our discussion in this text, we classify random variables into two types
as defined in the following definitions:

DEFINITION 2.13
A discrete random variable is one that can take on only a countable
number of values.

DEFINITION 2.14
A continuous random variable is one that can take on any value in an
interval.

The random variables defined in Examples 2.3 and 2.4 are discrete. Height,
weight, and time are examples of continuous random variables.

Probability distributions are also classified as continuous or discrete, de-
pending on the type of random variable the distribution describes.

Before continuing to the subject of sampling distributions, we will examine
several examples of discrete and continuous probability distributions with
considerable emphasis on the so-called normal distribution, which we will use
extensively throughout the book.

2.3 Discrete Probability Distributions

A discrete probability distribution displays the probability associated with
each value of the random variable Y . This display can be presented as a table,
as the previous examples illustrate, as a graph, or as a formula. For example,
the probability distribution in Table 2.6 can be expressed in formula form, also
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called a function, as

p(y) = y/6, y = 1, 2, 3,

p(y) = 0, for all other values of y.

It can be displayed in graphic form as shown in Fig. 2.1.

0.5

Probability

0.4

0.3

0.2

0.1

1 2

Y

3

Figure 2.1

Bar Chart of
Probability
Distribution in
Table 2.6

Properties of Discrete Probability Distributions

Any formula p(y) that satisfies the following conditions for discrete values of
a variable Y can be considered a probability distribution:

0 ≤ p(y) ≤ 1∑
p(y) = 1.

All probability distributions presented above are seen to fulfill both conditions.

Descriptive Measures for Probability Distributions

Because empirical and theoretical probability distributions can both be de-
scribed by similar tables of relative frequencies and/or histograms, it is logical
to expect that numerical descriptors of both are the same. Since a theoretical
distribution essentially describes a population, the descriptors of such distri-
butions are called parameters. For example, we use the Greek letters μ and σ
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for the mean and standard deviation of a theoretical probability distribution
just as we did for an empirical probability distribution.

Numerically the parameters of a discrete probability distribution are cal-
culated using formulas similar to those used for empirical probability distri-
butions shown in Section 1.5. Specifically,

μ =
∑

yp(y),

and its variance, which we denote by σ 2, is computed as

σ 2 =
∑

(y − μ)2 p(y),

where the sums are over all values of Y .
For example, if the 20% figure discussed in the measles example is valid,

the mean number of individuals in a couple having had measles calculated
from the theoretical probability distribution is

μ = 0(0.64) + 1(0.32) + 2(0.04) = 0.4.

That is, the average number of individuals per couple having had measles is
0.4 for the whole city. The variance is

σ 2 = (0 − 0.4)2(0.64) + (1 − 0.4)2(0.32) + (2 − 0.4)2(0.04)

= 0.1024 + 0.1152 + 0.1024 = 0.320,

and σ = 0.566.
The mean of a probability distribution is often called the expected value

of the random variable. For example, the expected number of individuals in
a couple having had measles is 0.4. This is a “long-range expectation” in the
sense that if we sampled a large number of couples, the expected (average)
number of individuals having had measles would be 0.4. Note that the expected
value can be (and often is) a value that the random variable may never attain.

Solution to Example 2.1 We can now solve the problem facing the spe-
cialist in Example 2.1. The random variable is the cost of replacing screws on
a single part for the four outcomes, which we calculate as follows:

Outcome Probability Cost

Screw A defective 0.008 $0.23
Screw B is defective 0.004 $0.69
Both screws defective (0.008)(0.004) = 0.000032 $0.92
Neither screw is defective 1 − 0.008 − 0.004 − 0.000032 $0.00

= 0.987968

We can now find the expected cost of replacing defective screws on one part:

μ = 0.23(0.008) + 0.69(0.004) + 0.92(0.000032) + 0(0.987968) = 0.00463.

There are 1000 parts produced in a day; hence the expected daily cost is
1000($0.00463) = $4.63. ■
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The Discrete Uniform Distribution

Suppose the possible values of a random variable from an experiment are a
set of integer values occurring with the same frequency. That is, the integers 1
through k occur with equal probability. Then the probability of obtaining any
particular integer in that range is 1/k and the probability distribution can be
written

p(y) = 1/k, y = 1, 2, . . . , k.

This is called the discrete uniform (or rectangular) distribution, and may be
used for all populations of this type, with k depending on the range of existing
values of the variable. Note that we are able to represent many different dis-
tributions with one function by using a letter (k in this case) to represent an
arbitrary value of an important characteristic. This characteristic is the only
thing that differs between the distributions, and is called a parameter of the
distribution. All probability distributions are characterized by one or more pa-
rameters, and the descriptive parameters, such as the mean and variance, are
known functions of those parameters. For example, for this distribution

μ = (k + 1)/2

and

σ 2 = (k2 − 1)/12.

A simple example of an experiment resulting in a random variable having
the discrete uniform distribution consists of tossing a fair die. Let Y be the
random variable describing the number of spots on the top face of the die.
Then

p(y) = 1/6, y = 1, 2, . . . , 6,

which is the discrete uniform distribution with k = 6. The mean of Y is

μ = (6 + 1)/2 = 3.5,

and the variance is

σ 2 = (36 − 1)/12 = 2.917.

Note that this is an example where the random variable can never take the
mean value.

EXAMPLE 2.5 Simulating a Distribution The discrete uniform distribution is frequently
used in simulation studies. A simulation study is exactly what it sounds like,
a study that uses a computer to simulate a real phenomenon or process as
closely as possible. The use of simulation studies can often eliminate the need
for costly experiments and is also often used to study problems where actual
experimentation is impossible.

When the process being simulated requires the use of a probability distribution
to describe it, the technique is often referred to as a Monte Carlo method.
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Table 2.7

Simulation of Measles
Probabilities

y P(y)

0 0.7
1 0.3
2 0

For example, Monte Carlo methods have been used to simulate collisions
between photons and electrons, the decay of radioactive isotopes, and the
effect of dropping an atomic bomb on a city.

The basic ingredient of a Monte Carlo simulation is the generation of random
numbers (see, for example, Owen, 1962). Random numbers can, for example,
be generated to consist of single digits having the discrete uniform distribution
with k = 10. Using the digits 0 through 9, such random digits can be used
to simulate the outcomes of Example 2.2. For each simulated interview we
generate a random digit. If the value of the digit is 0 or 1, the outcome is “had
childhood measles”; otherwise (digits 2 through 9) the outcome is “did not.”
The outcome “had” then occurs with a probability of 0.2. The result of the
experiment involving a single couple is then simulated by using a pair of such
integers, one for each individual.

Solution Simulation studies usually involve large numbers of simulated
events, but for illustration purposes we use only 10 pairs. Assume that we
have obtained the following 10 pairs of random numbers (from a table or
generated by a computer):

15 38 68 39 49 54 19 79 38 14

In the first pair (15), the first digit “1” signifies one “has,” while the second
digit “5” indicates “has not”; hence, for this couple, y = 1. For the second
pair, y = 0, and so forth. The relative frequency distribution for this simulated
sample of ten pairs is shown in Table 2.7.

This result is somewhat different from the theoretical distribution obtained
with the use of probability theory because considerable variability is expected
in small samples. A sample of 1000 would come much closer but would still
not produce the theoretical distribution exactly. ■

The Binomial Distribution

In several examples in this chapter, an outcome has included only two pos-
sibilities. That is, an individual had or had not had childhood measles, a coin
landed with head or tail up, or a tested specimen did or did not have cancer
cells. This dichotomous outcome is quite common in experimental work. For
example, questionnaires quite often have questions requiring simple yes or no
responses, medical tests have positive or negative results, banks either suc-
ceed or fail after the first 5 years, and so forth. In each of these cases, there are
two outcomes for which we will arbitrarily adopt the generic labels “success”
and “failure.” The measles example is such an experiment where each indi-
vidual in a couple is a “trial,” and each trial produces a dichotomous outcome
(yes or no).

The binomial probability distribution describes the distribution of the ran-
dom variable Y , the number of successes in n trials, if the experiment satisfies
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the following conditions:

1. The experiment consists of n identical trials.
2. Each trial results in one of two mutually exclusive outcomes, one labeled a

“success,” the other a “failure.”
3. The probability of a success on a single trial is equal to p. The value of p

remains constant throughout the experiment.
4. The trials are independent.

The formula or function for computing the probabilities for the binomial prob-
ability distribution is given by

p(y) = n!
y!(n − y)!

py(1 − p)n−y, for y = 0, 1, . . . , n.

The notation n!, called the factorial of n, is the quantity obtained by multiplying
n by every nonzero integer less than n. For example 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 =
5040. By definition, 0! = 1.

Derivation of the Binomial Probability Distribution Function The
binomial distribution is one that can be derived with the use of the simple
probability rules presented in this chapter. Although memorization of this
derivation is not needed, being able to follow it provides an insight into the
use of probability rules. The formula for the binomial probability distribution
can be developed by first observing that the p(y) is the probability of getting
exactly y successes out of n trials. We know that there are n trials so there
must be (n − y) failures occurring at the same time. Because the trials are
independent, the probability of y successes is the product of the probabilities
of the y individual successes, which is py and the probability of (n − y) fail-
ures is (1 − p)n−y. Then the probability of y successes and (n − y) failures is
py(1 − p)n−y.

However, this is the probability of only one of the many sequences of y

successes and (n − y) failures and the definition of p(y) is the probability of
any sequence of y successes and (n − y) failures. We can count the number
of such sequences using a counting rule called combinations. This rule says
that there are (

n

y

)
= n!

y!(n − y)!

ways that we can get y items from n items. Thus, if we have 5 trials there are

5!
2!(5 − 2)!

= 5 · 4 · 3 · 2 · 1
(2 · 1)(3 · 2 · 1)

= 10

ways of arranging 2 successes and 3 failures. (The reader may want to list
these and verify that there are ten of them.)

The probability of y successes, then, is obtained by repeated application
of the addition rule. That is, the probability of y successes is obtained by mul-
tiplying the probability of a sequence by the number of possible sequences,
resulting in the above formula.
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Note that the measles example satisfies the conditions for a binomial exper-
iment. That is, we label “having had childhood measles” a success, the number
of trials is two (a couple is an experiment, and an individual a trial), and
p = 0.2, using the value from the national health study. We also assume that
each individual has the same chance of having had measles as a child, hence p

is constant for all trials, and we have previously assumed that the incidence of
measles is independent between the individuals. The random variable Y is the
number in each couple having had measles. Using the binomial distribution
function, we obtain

P(Y = 0) = 2!
0!(2 − 0)!

(0.2)0(0.8)2−0 = 0.64,

P(Y = 1) = 2!
1!(2 − 1)!

(0.2)1(0.8)2−1 = 0.32,

P(Y = 2) = 2!
2!(2 − 2)!

(0.2)2(0.8)2−2 = 0.04.

These probabilities agree exactly with those that were obtained earlier from
basic principles, as they should.

Computations involving the binomial distribution can become quite tedi-
ous, especially if n is large. Fortunately, a large sample approximation that
works well for even moderately large samples is available. The use of this
approximation is presented in Section 2.5 and additional applications are pre-
sented in subsequent chapters.

The binomial distribution has only one parameter, p (n is usually consid-
ered a fixed value). The mean and variance of the binomial distribution are
expressed in terms of p as

μ = np,

σ 2 = np(1 − p).

For our health study example, n = 2 and p = 0.2 gives

μ = 2(0.2) = 0.4,

σ 2 = (2)(0.2)(0.8) = 0.32.

Again these results are identical to the values previously computed for this
example.

The Poisson Distribution

The binomial distribution describes the situation where observations are as-
signed to one of two categories, and the measurement of interest is the fre-
quency of occurrence of observations in each category. Some data naturally
occur as frequencies, but do not necessarily have the category assignment.
Examples of such data include the monthly number of fatal automobile acci-
dents in a city, the number of bacteria on a microscope slide, the number of



80 Chapter 2 Probability and Sampling Distributions

fish caught in a trawl, or the number of telephone calls per day to a switch-
board. In a sense such frequencies may be thought of as binomial data without
any “failures.” The analysis of such data can be addressed using the Poisson

distribution.
Consider the variable “number of fatal automobile accidents in a given

month.” Since an accident can occur at any split second of time, there is es-
sentially an infinite number of chances for an accident to occur. If we consider
the event “a fatal accident occurs” as a success (!), we have a binomial ex-
periment in which n is infinite. However, the probability of a fatal accident
occurring at any given instant is essentially zero. We then have a binomial ex-
periment with a near infinite sample and an almost zero value for p, but np,
the number of occurrences, is a finite number. Actually, the formula for the
Poisson distribution can be derived by finding the limit of the binomial formula
as n approaches infinity and p approaches zero (Wackerly et al., 1996).

The formula for calculating probabilities for the Poisson distribution is

P(y) = μye−μ

y !
, y = 0, 1, 2, . . . ,

where y represents the number of occurrences in a fixed time period and μ is
the mean number of occurrences in the same time period. The letter e is the
Naperian constant, which is approximately equal to 2.71828. For the Poisson
distribution both the mean and variance have the value μ.

Use of the formula for calculating probabilities is not too difficult for small
y and μ, particularly when using calculators with exponentiation capabilities.
Tables for limited ranges of μ are available (for example, Ott, 1993, Appendix
Table 7).

EXAMPLE 2.6 Operators of toll roads and bridges need information for staffing tollbooths
so as to minimize queues (waiting lines) without using too many operators.
Assume that in a specified time period the number of cars per minute ap-
proaching a tollbooth has a mean of 10. Traffic engineers are interested in the
probability that exactly 11 cars approach the tollbooth in the minute from 12
noon to 12:01.

p(11) = 1011e−10

11!
= 0.114.

Thus, there is about an 11% chance that exactly 11 cars would approach the
tollbooth the first minute after noon.

Assume that an unacceptable queue will develop when 14 or more cars ap-
proach the tollbooth in any minute. The probability of such an event can
be computed as the sum of probabilities of 14 or more cars approaching
the tollbooth, or more practically by calculating the complement. That is,
P(Y ≥ 14) = 1 − P(Y ≤ 13). We can use the above formula or a computer
package with the Poisson option such as Microsoft Excel. Using Excel we find
the P(Y ≤ 13) = 0.8645 or the resulting probability is 1 − 0.8645 = 0.1355.
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2.4 Continuous Probability Distributions

When the random variable of interest can take on any value in an interval, it is
called a continuous random variable. Continuous random variables differ from
discrete random variables, and consequently continuous probability distribu-
tions differ from discrete ones and must be treated separately. For example,
every continuous random variable has an infinite, uncountable number of pos-
sible values (any value in an interval). Therefore, we must redefine our concept
of relative frequency to understand continuous probability distributions. The
following list should help in this understanding.

Characteristics of a Continuous Probability Distribution

The characteristics of a continuous probability distribution are as follows:

1. The graph of the distribution (the equivalent of a bar graph for a discrete
distribution) is usually a smooth curve. A typical example is seen in Fig. 2.2.
The curve is described by an equation or a function that we call f (y). This
equation is often called the probability density and corresponds to the
p(y) we used for discrete variables in the previous section (see additional
discussion following).

2. The total area under the curve is one. This corresponds to the sum of the
probabilities being equal to 1 in the discrete case.

3. The area between the curve and horizontal axis from the value a to the value
b represents the probability of the random variable taking on a value in the
interval (a, b). In Fig. 2.2 the area under the curve between the values −1
and 0.5, for example, is the probability of finding a value in this interval.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

−3 −2 −1 0

f

Y

2 31

Figure 2.2

Graph of a
Continuous
Distribution



82 Chapter 2 Probability and Sampling Distributions

This corresponds to adding probabilities of mutually exclusive outcomes
from a discrete probability distribution.

There are similarities but also some important differences between con-
tinuous and discrete probability distributions. Some of the most important
differences are as follows:

1. The equation f (y) does not give the probability that Y = y as did p(y)
in the discrete case. This is because Y can take on an infinite number of
values (any value in an interval), and therefore it is impossible to assign a
probability value for each y. In fact the value of f (y) is not a probability
at all; hence f (y) can take any nonnegative value, including values greater
than 1.

2. Since the area under any curve corresponding to a single point is (for
practical purposes) zero, the probability of obtaining exactly a specific
value is zero. Thus, for a continuous random variable, P(a ≤ Y ≤ b)
and P(a < Y < b) are equivalent, which is certainly not true for discrete
distributions.

3. Finding areas under curves representing continuous probability distribu-
tions involves the use of calculus and may become quite difficult. For some
distributions, areas cannot even be directly computed and require special
numerical techniques. For this reason, the areas required to calculate prob-
abilities for the most frequently used distributions have been calculated
and appear in tabular form in this and other texts, as well as in books de-
voted entirely to tables (for example, Pearson and Hartley, 1972). Of course
statistical computer programs easily calculate such probabilities.

In some cases, recording limitations may exist that make continuous ran-
dom variables look as if they are discrete. The round-off of values may result
in a continuous variable being represented in a discrete manner. For exam-
ple, people’s weight is almost always recorded to the nearest pound, even
though the variable weight is conceptually continuous. Therefore, if the vari-
able is continuous, then the probability distribution describing it is continuous,
regardless of the type of recording procedure. As in the case of discrete dis-
tributions, several common continuous distributions are used in statistical
inference. This section discusses most of the distributions used in this text.

The Continuous Uniform Distribution

A very simple example of a continuous distribution is the continuous uniform
or rectangular distribution. Assume a random variable Y has the probability
distribution shown in Fig. 2.3. The equation

f (y) = 1/(b − a), a ≤ y ≤ b

= 0, elsewhere

describes the distribution of such a random variable. Note that this equation
describes a straight line, and the area under this line above the horizontal axis
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is rectangular in shape as can be seen by the graph in Fig. 2.3. The distribution
parameters are a and b, and the graph is a rectangle with width (b − a) and
height 1/(b − a).

This distribution can be used to describe many processes, including, for
example, the error due to rounding. Under the assumption that any real number
may occur, rounding to the nearest whole number introduces a round-off error
whose value is equally likely between a = −0.5 and b = +0.5.

The continuous uniform distribution is also extensively used in simulation
studies in a manner similar to the discrete uniform distribution. Areas under
the curve of the rectangular distribution can be computed using geometry.
For example, the total area under the curve is simply the width times the
height or

area = 1
(b − a)

· (b − a) = 1.

In a similar manner, other probabilities are computed by finding the area of
the desired rectangle. For example, the probability P(c < Y < d), where both
c and d are in the interval (a, b), is equal to (d − c)/(b − a).

Principles of calculus are used to derive formulas for the mean and variance
of the rectangular distribution in terms of the distribution parameters a and b

and are

μ = (a + b)/2

and

σ 2 = (b − a)2/12.

The Normal Distribution

By far the most often used continuous probability distribution is the normal
or Gaussian distribution. The normal distribution is described by the equation

f (y) = 1√
2πσ

e−(y−μ)2/2σ 2
, −∞ < y < ∞,

where e ≈ 2.71828, the Naperian constant.
This function is quite complicated and is never directly used to calculate

probabilities. However, several interesting features can be determined from
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the function without really evaluating it. These features can be summarized as
follows:

1. The random variable Y can take on any value from −∞ to +∞.
2. The distribution has only two parameters μ and σ 2 (or σ ). These are, in fact,

the mean and variance (or standard deviation) of the distribution. Thus,
knowing the values of these two parameters completely determines the
distribution. The fact that these parameters are also the two most frequently
used descriptive measures is a major reason why the normal distribution is
so popular.

3. The distribution is bell shaped and symmetric about the mean. This is ap-
parent in the graph of a normal distribution with μ = 0 and σ = 1, given in
Fig. 2.4, and has resulted in the normal distribution being referred to often
as the “bell curve.”

The primary use of probability distributions is to find probabilities of the
occurrence of specified values of the random variable. For example, if it is
known that the weights of four-year-old boys can be described by a normal
distribution with a mean of 40 lbs and a standard deviation of 3, it may be
of interest to determine the probability that a randomly picked four-year-old
boy weighs less than 30 lbs. Unfortunately the actual function describing the
normal probability distribution (and most other continuous distributions) is
much too complicated to easily use to calculate probabilities. Therefore, such
probabilities must be obtained by the use of tables or by computer programs
which, incidentally, almost always use numerical approximations to the actual
distribution functions to calculate probabilities.

Although most of the probabilities associated with various statistical infer-
ences are produced by the computer program that does the analysis, the use of
a table for obtaining probabilities of a normally distributed random variable is
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presented here in some detail. We do this not so much because this method is
often used, but rather to help in the interpretation of the probabilities produced
by computer outputs.

Since any specific normal distribution is defined by the two parameters, μ

and σ , each of which can take on an infinite number of values, it would seem
that we need an infinite number of tables. Fortunately normal distributions can
easily be standardized, which allows us to use a single table for any normal
distribution.

All probabilities (areas under the curve) associated with a specific value of
the normally distributed variable relate exactly to the distance from that value
to the mean (μ) as measured in standard deviation (σ ) units. For example
consider the two normal distributions shown in Figs. 2.5 and 2.6. The one in
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Fig. 2.5 has μ = 10 and σ = 10, and the one in Fig. 2.6 has μ = 100 and σ = 2. In
both figures, the shaded area is that for Y > (μ+σ ); that is, Y > (10+10) = 20
for Fig. 2.5 and Y > (100 + 2) = 102 for Fig. 2.6. The appearance from the
plots (supported by mathematical calculations) indicates that both areas are
the same. The areas of interest for both variables are those to the right of
one standard deviation from the mean. It is this characteristic of the normal
distribution that allows the use of a single table to compute probabilities for
a normal distribution with any mean and variance. The table used for this
purpose is that for μ = 0 and σ = 1, which is called the standard normal

distribution. The random variable associated with this distribution is usually
denoted by Z. Areas for a normal distribution for a random variable Y with
any mean and variance are found by performing a simple transformation of
origin and scale. This transformation, called the standardizing transformation,
converts the variable Y , which has mean μ and standard deviation σ , to the
variable Z, which has the standard normal distribution. This transformation is
written

Z = Y − μ

σ
.

Calculating Probabilities Using the Table of the Normal Distribution

The use of the table of probabilities for the normal distribution is given here in
some detail. Although you will rarely use these procedures after leaving this
chapter, they should help you understand and use tables of probabilities of
other distributions as well as appreciate what computer outputs mean.

A table of probabilities for the standard normal distribution is given in
Appendix Table A.1. This table gives the area to the right (larger than) of
Z for values of z from −3.99 to +4.00. Because of the shape of the normal
distribution, the area and hence the probability values are almost zero out-
side this range. Figure 2.7 illustrates the use of the table to obtain standard
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normal probabilities. According to the table, the area to the right of z = 0.9 is
0.1841, which is the shaded area in Fig. 2.7.

Obviously we do not always want “areas to the right.” The characteristics
of the normal distribution allow the following rules to “make the table work”:

1. Since the standard normal distribution is symmetric about zero, P(Z > z) =
P(Z < −z). This is illustrated later in Fig. 2.11 where the two shaded areas
are equal.

2. Since the area under the entire curve is one,

P(Z < z) = 1 − P(Z > z).

This is true regardless of the value of z.
3. We may add or subtract areas to get probabilities associated with a combi-

nation of values. For example,

P(−1 < Z < 1.5) = P(Z > −1) − P(Z > 1.5) = 0.8413 − 0.0668 = 0.7745.

This is illustrated in Example 2.9.
With these rules the standard normal table can be used to calculate any

desired probability associated with a standard normal distribution, and with
the help of the standardization transformation, for any normal distribution
with known mean and standard deviation.

EXAMPLE 2.7 Find the area to the right of 2.0; that is, P(Z ≥ 2.0).

Solution It helps to draw a picture such as Fig. 2.8. The desired area is
the shaded area, which can be directly obtained from the table as 0.0228.
Therefore, P(Z > 2.0) = 0.0228. ■
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EXAMPLE 2.8 Find the area to the left of −0.5; that is, P(Z < −0.5).

Solution In Fig. 2.9 this is the shaded area. From the table the area to the
right of −0.5 is 0.6915. The desired probability is the area to the left; that is,
(1 − 0.6915) = 0.3085. Alternatively, we can use the symmetry of the normal
distribution and find the equivalent area to the right of +0.5. ■
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EXAMPLE 2.9 Find P(−1.0 < Z < 1.5).

Solution In Fig. 2.10, the desired area is between −1.0 and 1.5 (shaded).
This is obtained by subtracting the area from 1.5 to +∞ from the area from
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−1 to +∞. That is,

P(−1 < Z < 1.5) = P(Z > −1) − P(Z > 1.5).

From the table, the area from 1.5 to ∞ is 0.0668, and the area from −1 to ∞ is
0.8413. Therefore, the desired probability is 0.8413 − 0.0668 = 0.7745. ■

EXAMPLE 2.10 Sometimes we want to find the value of z associated with a certain probability.
For example, we may want to find the value of z that satisfies the requirement
P(|Z| > z) = 0.10.

Solution Figure 2.11 shows the desired Z values where the total area out-
side of the vertical lines is 0.10. Due to symmetry the desired value of zsatisfies
the statement P(Z > z) = 0.05. The procedure is to search the table for a value
of z such that its value is exceeded with probability 0.05. No area of exactly
0.05 is seen in the table, and the nearest are

P(Z > 1.64) = 0.0505,

P(Z > 1.65) = 0.0495.

We can approximate a more exact value by interpolation, which gives z =
1.645. ■
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Symmetry of the
Normal Distribution

We will often be concerned with finding values of z for given probability
values when we start using the normal distribution in statistical inference. To
make the writing of formulas easier, we will adopt a form of notation often
called the zα notation. According to this notation, zα is the value of z such that

P(Z > zα) = α.
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This definition results in the equivalent statements

P(Z < −zα) = α

and, because of the symmetry of the normal distribution,

P(−zα/2 < Z < zα/2) = 1 − α.

Appendix Table A.1A gives a small set of z values for some frequently used
probabilities. From this table we can see that the z value exceeded with prob-
ability 0.05 (or z0.05) is 1.64485.

Finding probabilities associated with a normal distribution other than the
standard normal is accomplished in two steps. First use the standardization
transformation. As we have noted, this transformation converts a normally
distributed random variable having mean μ and variance σ 2 to the standard
normal variable having mean zero and variance one. The transformation is

Z = (Y − μ)
σ

,

and the resulting Z variable is often called a standard score. The second step
is to find the areas as we have already done.

EXAMPLE 2.11 Suppose that Y is normally distributed with μ = 10 and σ 2 = 20 (or σ =
4.472).

(a) What is P(Y > 15)?
(b) What is P(5 < Y < 15)?
(c) What is P(5 < Y < 10)?

Solution

(a) Step 1: Find the corresponding value of z:

z = (15 − 10)/4.472 = 1.12.

Step 2: Use the table and find P(Z > 1.12) = 0.1314.
(b) Step 1: Find the two corresponding values of z:

z = (15 − 10)/4.472 = 1.12,

z = (5 − 10)/4.472 = −1.12.

Step 2: From the table, P(Z > 1.12) = 0.1314, and P(Z > −1.12) =
0.8686, and by subtraction P(−1.12 < Z < 1.12) = 0.8686 − 0.1314 =
0.7372.

(c) Step 1: z = (10 − 10)/4.472 = 0, and
z = (5 − 10)/4.472 = −1.12.

Step 2: P(Z > 0) = 0.5000, and
P(Z > −1.12) = 0.8686, and then
P(−1.12 < Z < 0) = 0.8686 − 0.5000 = 0.3686. ■
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EXAMPLE 2.12 Let Y be the variable representing the distribution of grades in a statistics
course. It can be assumed that these grades are approximately normally dis-
tributed with μ = 75 and σ = 10. If the instructor wants no more than 10%
of the class to get an A, what should be the cutoff grade? That is, what is the
value of y such that P(Y > y) = 0.10?

Solution The two steps are now used in reverse order:

Step 1: Find z from the table so that P(Z > z) = 0.10. This is z = 1.28
(rounded for convenience).
Step 2: Reverse the transformation. That is, solve for y in the equation
1.28 = (y − 75)/10. The solution is y = 87.8.

Therefore, the instructor should assign an A to those students with grades
of 87.8 or higher. Problems of this type can also be solved directly using the
formula y = μ+ zσ , and substituting the given values of μ and σ and the value
of z for the desired probability. Specifically, for this example,

y = 75 + 1.28(10) = 87.8. ■

2.5 Sampling Distributions

We are now ready to discuss the relationship between probability and sta-
tistical inference. Recall that, for purposes of this text, we defined statistical
inference as the process of making inferences on population parameters us-

ing sample statistics. We have two facts that are key to statistical inference.
These are: (1) population parameters are fixed numbers whose values are usu-
ally unknown and (2) sample statistics are known values for any given sample,
but vary from sample to sample taken from the same population. In fact, it
is nearly impossible for any two independently drawn samples to produce
identical values of a sample statistic.

This variability of sample statistics is always present and must be account-
ed for in any inferential procedure. Fortunately this variability, which is called
sampling variation, is readily recognized and is accounted for by identifying
probability distributions that describe the variability of sample statistics. In
fact, a sample statistic is a random variable as defined in Definition 2.11. And,
like any other random variable, a sample statistic has a probability distribution.

DEFINITION 2.15
The sampling distribution of a statistic is the probability distribution
of that statistic.

This sampling distribution has characteristics that can be related to those of
the population from which the sample is drawn. This relationship is usually
provided by the parameters of the probability distribution describing the pop-
ulation. The next section presents the sampling distribution of the mean, also
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referred to as the distribution of the sample mean. In following sections we
present sampling distributions of other statistics.

Sampling Distribution of the Mean

Consider drawing a random sample of n observations from a population and
computing ȳ. Repetition of this process a number of times provides a collection
of sample means. This collection of values can be summarized by a relative
frequency or empirical probability distribution describing the behavior of these
means. If this process could be repeated to include all possible samples of
size n, then all possible values of ȳwould appear in that collection. The relative
frequency distribution of these values is defined as the sampling distribution
of Ȳ for samples of size n and is itself a probability distribution. The next step
is to determine how this distribution is related to that of the population from
which these samples were drawn.

We illustrate with a very simple population that consists of five identical
disks with numbers 1, 2, 3, 4, and 5. The distribution of the numbers can be
described by the discrete uniform distribution with k = 5; hence

μ = (5 + 1)/2 = 3, and σ 2 = (25 − 1)/12 = 2 (see Section 2.3).

Blind (random) drawing of these disks, replacing each disk after drawing,
simulates random sampling from a discrete uniform distribution having these
parameters.

Consider an experiment consisting of drawing two disks, replacing the
first before drawing the second, and then computing the mean of the values
on the two disks. Table 2.8 lists every possible sample and its mean. Since
each of these samples is equally likely to occur, the sampling distribution
of these means is, in fact, the relative frequency distribution of the ȳ val-
ues in the display. This distribution is shown in Table 2.9 and Fig. 2.12. Note
that the distribution of the means calculated from a sample of size two more
closely resembles a normal distribution than a uniform distribution. Using the

Table 2.8

Samples of Size 2 from
Uniform Population

Sample Mean Sample Mean

Disks ȳ Disks ȳ

(1,1) 1.0 (3,4) 3.5
(1,2) 1.5 (3,5) 4.0
(1,3) 2.0 (4,1) 2.5
(1,4) 2.5 (4,2) 3.0
(1,5) 3.0 (4,3) 3.5
(2,1) 1.5 (4,4) 4.0
(2,2) 2.0 (4,5) 4.5
(2,3) 2.5 (5,1) 3.0
(2,4) 3.0 (5,2) 3.5
(2,5) 3.5 (5,3) 4.0
(3,1) 2.0 (5,4) 4.5
(3,2) 2.5 (5,5) 5.0
(3,3) 3.0
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Table 2.9

Distribution of Sample
Means

ȳ 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

P(ȳ) 1/25 2/25 3/25 4/25 5/25 4/25 3/25 2/25 1/25

0.20
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0.18
0.17
0.16
0.15
0.14
0.13
0.12
0.11
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

Relative

Frequency

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

ybar MIDPOINT

Figure 2.12

Histogram of Sample
Means

formulas for the mean and variance of a probability distribution given in
Section 2.3, we can verify that the mean of the distribution of ȳ values is 3
and the variance is 1.

Obviously we cannot draw all possible samples from an infinite population
so we must rely on theoretical considerations to characterize the sampling
distribution of the mean. A useful theorem, whose proof requires mathematics
beyond the scope of this book, states the following:

THEOREM 2.1
Sampling Distribution of the Mean The sampling distribution of Ȳ

from a random sample of size n drawn from a population with mean μ

and variance σ 2 will have mean = μ and variance = σ 2/n.

We can now see that the distribution of means from the samples of two disks
obeys this theorem:

mean = μ = 3,

and

variance = σ 2/2 = 2/2 = 1.

A second consideration, called the central limit theorem, states that if the
sample size n is large, then the following is true:
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THEOREM 2.2
Central Limit Theorem If random samples of size nare taken from any
distribution with mean μ and variance σ 2, the sample mean Ȳ will have a
distribution approximately normal with mean μ and variance σ 2/n. The
approximation becomes better as n increases.

While the theorem itself is an asymptotic result (being exactly true only if ngoes
to infinity), the approximation is usually very good for quite moderate values
of n. Sample sizes required for the approximation to be useful depend on the
nature of the distribution of the population. For populations that resemble the
normal, sample sizes of 10 or more are usually sufficient, while sample sizes in
excess of 30 are adequate for virtually all populations, unless the distribution
is extremely skewed. Finally, if the population is normally distributed, the
sampling distribution of the mean is exactly normally distributed regardless
of sample size. We can now see why the normal distribution is so important.

We illustrate the characteristics of the sampling distribution of the mean
with a simulation study. We instruct a computer to simulate the drawing of
random samples from a population described by the continuous uniform dis-
tribution with range from 0 to 1 (a = 0, b = 1, see Section 2.4 on the continuous
uniform distribution). We know that for this distribution

μ = 1/2 = 0.5

and

σ 2 = 1/12 = 0.08333.

We further instruct the computer to draw 1000 samples of n = 3 each, and
compute the mean for each of the samples. This provides 1000 observations on
Ȳ for samples of n= 3 from the continuous uniform distribution. The histogram
of the distribution of these sample means is shown in Fig. 2.13. This histogram
is an empirical probability distribution of Ȳ for the 1000 samples. According
to theory, the mean and variance of Ȳ should be 0.5 and 0.0833/3 = 0.0278,
respectively. From the actual 1000 values of ȳ (not reproduced here), we can
compute the mean and variance, which are 0.4999 and 0.02759, respectively.

The values from our empirical distribution are not exactly those specified
by the theory for the sampling distribution, but the results are quite close.
This is, of course, due to the fact that we have not taken all possible samples.
Examination of the histogram shows that the distribution of the sample mean
looks somewhat like the normal. Further, if the distribution of means is normal,
the 5th and 95th percentiles should be

0.5 ± (1.645)(
√

0.0278), or 0.2258 and 0.7742, respectively.

The corresponding percentiles of the 1000 sample means are 0.2237 and 0.7744,
which are certainly close to expected values.

We now repeat the sampling process using samples of size 12. The resulting
distribution of sample means is given in Fig. 2.14. The shape of the distribution
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of these means is now nearly indistinguishable from the normal, and the mean
and variance of the distribution (again computed from the 1000 values not
listed) show even more precision, that is, a smaller variance of Ȳ than was ob-
tained for samples of three. Specifically, the mean of these 1000 sample means
is 0.4987 and the variance is 0.007393, which is quite close to the theoretical
values of 0.5 and 0.0833/12 = 0.00694. Also the actual 5th and 95th percentiles
of 0.3515 and 0.6447 agree closely with the values of 0.3586 and 0.6414 based
on the additional assumption of normality.



96 Chapter 2 Probability and Sampling Distributions

Usefulness of the Sampling Distribution

Note that the sampling distribution provides a bridge that relates what we
may expect from a sample to the characteristics of the population. In other
words, if we were to know the mean and variance of a population, we can now
make probability statements about what results we may get from a sample.
The important features of the sampling distribution of the mean are as follows:

1. The mean of the sampling distribution of the mean is the population mean.
This implies that “on the average” the sample mean is the same as the
population mean. We therefore say that the sample mean is an unbiased

estimate of the population mean. Most estimates used in this book are
unbiased estimates, but not all sample statistics have the property of being
unbiased.

2. The variance of the distribution of the sample mean is σ 2/n. Its square
root, σ/

√
n, is the standard deviation of the sampling distribution of the

mean, often called the standard error of the mean, and has the same
interpretation as the standard deviation of any distribution. The formula for
the standard error reveals the two very important features of the sampling
distribution:
• The more variable the population, the more variable is the sampling

distribution. In other words, for any given sample size, the sample mean
will be a less reliable estimate of the population mean for populations
with larger variances.

• The sampling distribution becomes less variable with increased sample
size. We expect larger samples to provide more precise estimates, but
this formula specifies by how much: the standard error decreases with

the square root of the sample size. And if the sample size is infinity, the
standard error is zero because then the sample mean is, by definition, the
population mean.

3. The approximate normality of the distribution of the sample mean facil-
itates probability calculations when sampling from populations with un-
known distributions. Occasionally, however, the sample is so small or the
population distribution is such that the distribution of the sample mean is
not normal. The consequences of this occurring are discussed throughout
this book.

EXAMPLE 2.13 An aptitude test for high school students is designed so that scores on the test
have μ = 90 and σ = 20. Students in a school are randomly assigned to various
sections of a course. In one of these sections of 100 students the mean score
is 86. If the assignment of students is indeed random, what is the probability
of getting a mean of 86 or lower on that test?

Solution According to the central limit theorem and the sampling distri-
bution of the mean, the sample mean will have approximately the normal
distribution with mean 90 and standard error 20/

√
100 = 2. Standardizing the
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value of 86, we get

z = (86 − 90)
2

= −2.

Using the standard normal table, we obtain the desired value P(z < −2) =
0.0228. Since this is a rather low probability, the actual occurrence of such a
result may raise questions about the randomness of student assignments to
sections. ■

EXAMPLE 2.14 Quality Control Statistical methods have long been used in industrial situ-
ations, such as for process control. Usually production processes will operate
in the “in-control” state, producing acceptable products for relatively long pe-
riods of time. Occasionally the process will shift to an “out-of-control” state
where a proportion of the process output does not conform to requirements. It
is important to be able to identify when this shift occurs and take action imme-
diately. One way of monitoring this production process is through the use of a
control chart. A typical control chart, such as that illustrated in Fig. 2.15, is
a graphical display of a quality characteristic that has been measured or com-
puted from a sample plotted against the sample number or time. The chart
contains a center line that represents the average value of the characteristic
when the process is in control. Two other lines, the upper control limit (UCL)
and the lower control limit (LCL), are shown on the control chart. These limits
are chosen so that if the process is in control, nearly all of the sample points
will fall between them. Therefore, as long as the points plot within these limits
the process is considered in control. If a point plots outside the control limits,
the process is considered out of control and intervention is necessary. Typ-
ically control limits that are three standard deviations of the statistic above
and below the average will be established. These are called “3-sigma” control
limits. We will use the following simple example to illustrate the use of the
sampling distribution of the mean in constructing a control chart.

A manufacturing company uses a machine to punch out parts for a hinge
for vent windows to be installed in trucks and vans. This machine produces
thousands of these parts each day. To monitor the production of this part and
to make sure that it will be acceptable for the next stage of vent window
assembly, a sample of 25 parts is taken each hour. The width of a critical area
of each part is measured and the mean of each sample is calculated. Thus for
each day there are a total of 24 samples of 25 observations each. Listed in
Table 2.10 are one day’s sampling results. The part will have a mean width of
0.45 in. with a standard deviation of 0.11 in. when the production process is in
control.

Solution Using the sampling distribution of the mean, we can determine its
standard error as 0.11/

√
25 = 0.022. Using the control limits of plus or minus

3 standard errors, the control limits on this process are 0.45 + 3(0.022) =
0.516 and 0.45 − 3(0.022) = 0.384, respectively. The control chart is shown in
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Table 2.10

Data for Control Chart

Sample Mean Width Sample Mean Width

Number (in.) Number (in.)

1 0.42 2 0.46
3 0.44 4 0.45
5 0.39 6 0.41
7 0.47 8 0.46
9 0.44 10 0.48

11 0.51 12 0.55
13 0.49 14 0.44
15 0.47 16 0.44
17 0.48 18 0.46
19 0.42 20 0.40
21 0.45 22 0.47
23 0.44 24 0.45

Fig. 2.15. Note that the 12th sample mean has a value of 0.55, which is larger
than the upper control limit. This is an indication that the process went “out
of control” at that point.

0.450

0.516

0.600

0.384

0.300

WIDTH

0 2 4 6 8 10 12 14 16 18 20 22 24

SAMPLE

Figure 2.15

Control Chart

The probability of any sample mean falling outside the control limits can
be determined by

P(Ȳ > 0.516) + P(Ȳ < 0.384) = P(Z > 3) + P(Z < −3) = 0.0026.

Therefore, the value of 0.55 for the mean is quite extreme if the process
is in control. On investigation, the quality manager found out that during
that sampling period, there was a thunderstorm in the area, and electric ser-
vice was erratic, resulting in the machine also becoming erratic. After the
storm passed, things returned to normal, as indicated by the subsequent
samples. ■
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Table 2.11

Distribution of Binomial
Population

y p(y)

0 1 − p

1 p

Sampling Distribution of a Proportion

The central limit theorem provides a procedure for approximating probabilities
for the binomial distribution presented in Section 2.3. A binomial distribution
can be redefined as describing a population of observations, yi, each having
either the value 0 or 1, with the value “1” corresponding to “success” and “0”
to “failure.” Then each yi can be described as a random variable from the
probability distribution described in Table 2.11.

Further, the mean and variance of the distribution of the population of y

values described in this manner can be shown to be p and p(1− p), respectively
(see Section 2.3).

A binomial experiment can be considered a random sample of size n from
this population. The total number of successes in the experiment therefore is
�yi, and the sample proportion of successes is ȳ, which is usually denoted
by p̂. Now, according to the central limit theorem, the sample proportion will
be an approximately normally distributed random variable with mean p and
variance [p(1 − p)]/n for sufficiently large n. It is generally accepted that
when the smaller of np and n(1 − p) is greater than 5, the approximation will
be adequate for most purposes. This application of the central limit theorem
is known as the large sample approximation to the binomial distribution be-
cause it provides the specification of the sampling distribution of the sample
proportion p̂.

EXAMPLE 2.15 In most elections, a simple majority of voters, that is, a favorable vote of over
50% of voters, will give a candidate a victory. This is equivalent to the statement
that the probability that any randomly selected voter votes for that candidate
is greater than 0.5. Therefore, if a candidate were to conduct an opinion poll,
he or she would hope to be able to substantiate at least 50% support. If such
an opinion poll is indeed a random sample from the population of voters, the
results of the poll would satisfy the conditions for a binomial experiment given
in Section 2.3.

Suppose a random sample of 100 registered voters show 61 with a preference
for the candidate. If the election were in fact a toss-up (that is, p = 0.5) what
is the probability of obtaining that (or a more extreme value)?

Solution Under the assumption p = 0.5, the mean and variance of the
sampling distribution of p̂ are p = 0.5 and p(1− p)/100 = 0.0025, respectively.
Then the standard error of the estimated proportion is 0.05. The probability is
obtained by using the z transformation

z = (0.61 − 0.5)/0.05 = 2.2,

and from the table of the normal distribution the probability of Z being greater
than 2.2 is 0.0139. In other words, if the election really is a toss-up, obtaining
this large a majority in a sample of 100 will occur with a probability of only
0.0139.
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Note that in this section we have been concerned with the proportion of
successes, while in previous discussions of the binomial distribution (Section
2.3) we were concerned with the number of successes. Since sample size is
fixed, the frequency is simply the proportion multiplied by the sample size,
which is a simple linear transformation. Using the rules for means and vari-
ances of transformed variables (Section 1.5 on change of scale) we see that
the mean and variance of proportions given in this section correspond to the
mean and variance of the binomial distribution given in Section 2.3. That is, the
mean number of successes is np and the variance is np(1− p). The central limit
theorem also holds for both frequency and proportion of successes. Thus, the
normal approximation to the binomial can be used for both proportions and
frequencies of successes, using the appropriate means and variances, although
proportions are more frequently used in practice. ■

EXAMPLE 2.16 Suppose that the process discussed in Example 2.14 also involved the forming
of rubber gaskets for the vent windows. When these gaskets are inspected, they
are classified as acceptable or nonacceptable based on a number of different
characteristics, such as thickness, consistency, and overall size. The process
of manufacturing these gaskets is monitored by constructing a control chart
using random samples as specified in Example 2.14, where the chart is based on
the proportion of nonacceptable gaskets. Such a chart is called an “attribute”
chart or simply a p chart.

To monitor the “fraction nonconforming” of gaskets being produced, a sample
of 25 gaskets is inspected each hour. The proportion of gaskets not acceptable
(nonconforming) is recorded and plotted on a control chart. The center line
for this control chart will be the average proportion of nonconforming gaskets
when the process is in control. This is found to be p = 0.10. The result of a
day’s sampling, presented in Table 2.12, is to be used to construct a control
chart.

Table 2.12

Proportion of
Nonconforming Gaskets

Sample p̂ Sample p̂

1 0.17 13 0.09
2 0.12 14 0.10
3 0.15 15 0.07
4 0.10 16 0.09
5 0.09 17 0.05
6 0.11 18 0.04
7 0.14 19 0.06
8 0.13 20 0.08
9 0.08 21 0.05

10 0.09 22 0.04
11 0.11 23 0.03
12 0.10 24 0.04
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Solution The control limits for the chart are computed by using the sam-
pling distribution of p̂ under the assumption that p = 0.10. Then the vari-
ance of p̂ is (0.10)(0.90)/25 = 0.0036 and the standard error is 0.06. The
upper control limit is 0.10 + 3(0.06) = 0.28, and the lower control limit is
0.10 − 3(0.06) = −0.08. For practical purposes, the lower control limit is set
at 0, because we cannot have a negative proportion. The chart is illustrated in
Fig. 2.16. This chart indicates that the process is in control and seems to remain
that way throughout the day. The last 10 samples, as illustrated in the chart,
are all below the target value. This seems to indicate a downward “trend.” The
process does, in fact, appear to be getting better as the control monitoring
process continues. This is not unusual, since one way to improve quality is
to monitor it. The quality manager may want to test the process to determine
whether the process is really getting better. ■

2.6 Other Sampling Distributions

Although the normal distribution is, in fact, used to describe sampling distri-
butions of statistics other than the mean, other statistics have sampling distri-
butions that are quite different. This section gives a brief introduction to three
sampling distributions, which are associated with the normal distributions and
are used extensively in this text. These distributions are

χ2: describes the distribution of the sample variance.
t: describes the distribution of a normally distributed random variable stan-

dardized by an estimate of the standard deviation.
F : describes the distribution of the ratio of two variances. We will see later

that this has applications to inferences on means from several populations.
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A brief outline of these distributions is presented here for the purpose of pro-
viding an understanding of the interrelationships among these distributions.
Applications of these distributions are deferred to the appropriate methods
sections in later chapters.
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Figure 2.17

χ2 Distributions for
1, 3, 6, and 10
Degrees of Freedom

The χ2 Distribution

Consider n independent random variables with the standard normal distribu-
tion. Call these variables Zi, i = 1, 2, . . . , n. The statistic

X 2 =
∑

Z 2
i

is also a random variable whose distribution we call χ2 (the Greek lowercase
letter chi). The function describing this distribution is rather complicated and
is of no use to us at this time, except to observe that this function contains
only one parameter. This parameter is called the degrees of freedom, and is
equal to the number of Z values in the sum of squares. Thus the variable X 2

described above would have a χ2 distribution with degrees of freedom equal
to n. Usually the degrees of freedom are denoted by the Greek letter ν. The
distribution is usually denoted by χ2(ν). Graphs of χ2 distributions for selected
values of ν are given in Fig. 2.17.

A few important characteristics of the χ2 distribution are as follows:

1. χ2 values cannot be negative since they are sums of squares.
2. The shape of the χ2 distribution is different for each value of ν; hence, a

separate table is needed for each value of ν. For this reason, tables giving
probabilities for the χ2 distribution give values for only a selected set of
probabilities similar to the small table for the normal distribution given
in Appendix Table A.1A. Appendix Table A.3 gives probabilities for the χ2

distribution. Values not given in the table may be estimated by interpolation,
but such precision is not often required in practice. Computer programs are
available for calculating exact values if necessary.
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3. The mean of the χ2 distribution is ν, and the variance is 2ν.
4. For large values of ν (usually greater than 30), the χ2 distribution may be

approximated by the normal, using the mean and variance given in item 3.
Thus we may use Z = (χ2 − ν)/

√
2ν, and find the probability associated

with the z value.
5. The ability of the χ2 distribution to reflect the distribution of

∑
Z 2 is only

moderately affected if the distribution of the Zi is not exactly normal, al-
though severe departures from normality can affect the nature of the result-
ing distribution.

Distribution of the Sample Variance

A common use of the χ2 distribution is to describe the distribution of the
sample variance. Let Y1, Y2, . . . , Yn be a random sample from a normally dis-
tributed population with mean = μ and variance = σ 2. Then the quantity
(n − 1)S2/σ 2 is a random variable whose distribution is described by a χ2

distribution with (n − 1) degrees of freedom, where S 2 is the usual sample
estimate of the population variance given in Section 1.5. That is,

S2 =
∑

(Y − Ȳ )2/(n − 1).

In other words the χ2 distribution is used to describe the sampling distribution
of S 2. Since we divide the sum of squares by degrees of freedom to obtain
the variance estimate, the expression for the random variable having a χ2

distribution can be written

X 2 =
∑

Z 2 =
∑(

(Y − Ȳ )
σ

)2

=
∑

(Y − Ȳ )2

σ 2
= SS

σ 2
= (n − 1)S2

σ 2
.

EXAMPLE 2.17 In making machined auto parts, the consistency of dimensions, the tolerance
as it is called, is an important quality factor. Since the standard deviation (or
variance) is a measure of the dispersion of a variable, we can use it as a measure
of consistency.

Suppose a sample of 15 such parts shows s = 0.0125 mm. If the allowable
tolerance of these parts is specified so that the standard deviation may not
be larger than 0.01 mm, we would like to know the probability of obtaining
that value of S (or larger) if the population standard deviation is 0.01 mm.
Specifically, then, we want the probability that S2 > (0.0125)2 or 0.00015625
when σ 2 = (0.01)2 = 0.0001.

Solution The statistic to be compared to the χ2 distribution has the value

X2 = (n − 1)s2

σ 2
= 14 · 0.00015625

0.0001
= 21.875.

Figure 2.18 shows theχ2 distribution for 14 degrees of freedom and the location
of the computed value. The desired probability is the area to the right of that
value.
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A χ2 Distribution
for 14 Degrees of
Freedom

The table of χ2 probabilities (Appendix Table A.3) gives areas for χ2 values
only for selected probabilities; hence the calculated value does not appear.
However, we note that values of χ2 > 21.064 occur with probability 0.1 and
values greater than 23.685 occur with probability 0.05; hence the probability
of exceeding the sample value of 21.875 occurs with a probability that lies
between 0.05 and 0.1. A computer program provides the exact probability of
0.081. ■

The t Distribution

In problems involving the sampling distribution of the mean we have used the
fact that

Z = (Ȳ − μ)

σ/
√

n

is a random variable having the standard normal distribution. In most practical
situations σ is not known. The only measure of the standard deviation available
may be the sample standard deviation S. It is natural then to substitute S for
σ in the above relationship. The problem is that the resulting statistic is not
normally distributed.

W. S. Gosset, writing under the pen name “Student,” derived the probability
distribution for this statistic, which is called the Student t or simply t distri-
bution. The function describing this distribution is quite complex and of little
use to us in this text. However, it is of interest that this distribution also has
only one parameter, the degrees of freedom; hence the t distribution with ν

degrees of freedom is denoted by t(ν). This distribution is quite similar to the
normal in that it is symmetric and bell shaped. However, the t distribution has
“fatter” tails than the normal. That is, it has more probability in the extreme
or tail areas than does the normal distribution, a characteristic quite apparent
for small values of the degrees of freedom, but barely noticeable if the degrees
of freedom exceed 30 or so.
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In fact, when the degrees of freedom are ∞, the t distribution is identical to
the standard normal distribution as illustrated in Fig. 2.19. A separate table for
probabilities from the t distribution is required for each value of the degrees
of freedom; hence, as in the table for the χ2 distribution, only a limited set of
probability values is given. Also, since the distribution is symmetric, only the
upper tail values are given (see Appendix Table A.2).

The t distribution with ν degrees of freedom actually takes the form

t(ν) = Z√
χ2(ν)

ν

,

where Z is a standard normal random variable and χ2(ν) is an independent χ2

random variable with ν degrees of freedom.

Using the t Distribution

Using this definition, we can develop the sampling distribution of the sample
mean when the population variance, σ 2, is unknown. Recall that

(1) Z = Ȳ−μ

σ/
√

n
, has the standard normal

distribution, and

(2) χ2(n − 1) = SS/σ 2 = (n − 1)S 2/σ 2 has the χ2 distribution
with n − 1 degrees of freedom.

These two statistics can be shown to be independent so that

T =
Ȳ−μ

σ/
√

n√
(n−1)S 2/σ 2

n−1

= Ȳ − μ

S/
√

n

has the t distribution with n − 1 degrees of freedom.
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EXAMPLE 2.18 Grade point ratios (GPRs) have been recorded for a random sample of 16
from the entering freshman class at a major university. It can be assumed that
the distribution of GPR values is approximately normal. The sample yielded a
mean, ȳ = 3.1, and standard deviation, s = 0.8. The nationwide mean GPR of
entering freshmen is μ = 2.7. We want to know the probability of getting this
sample mean (or higher) if the mean GPR of this university is the same as the
nationwide population of students. That is, we want the probability of getting
a Ȳ that is greater than or equal to 3.1 from a population whose mean is 2.7.
We compute the value of the statistic as

t = 3.1 − 2.7

0.8/
√

16
= 2.0.

From Appendix Table A.2 we see that for 15 degrees of freedom this value
lies between the values 1.7531 for the tail probability 0.05 and 2.1314 for the
tail probability 0.025. Therefore, we can say that the probability of obtaining
a sample mean this large or larger is between 0.025 and 0.05. As in the case of
the χ2 distribution, more precise values for the probability may be obtained by
interpolation or the use of a computer if necessary, which in this example pro-
vides the probability as 0.032. We will make extensive use of the t distribution
starting in Chapter 4.

The F Distribution

A sampling distribution, which occurs frequently in statistical methods, is one
that describes the distribution of the ratio of two estimates of σ 2. This is the so-
called F distribution, named in honor of Sir Ronald Fisher, who is often called
the father of modern statistics. The F distribution is uniquely identified by its
set of two degrees of freedom, one called the “numerator degrees of freedom”
and the other called the “denominator degrees of freedom.” This terminology
comes from the fact that the F distribution with ν1 and ν2 degrees of freedom,
denoted by F(ν1, ν2), can be written as

F(ν1, ν2) = χ2
1 (ν1)/ν1

χ2
2 (ν2)/ν2

.

Where χ2
1 (ν1) is a χ2 random variable with ν1 degrees of freedom and χ2

2 (ν2)
is an independent χ2 random variable wtih ν2 degrees of freedom.

Using of the F Distribution

Recall that the quantity (n−1)S2/σ 2 has the χ2 distribution with n−1 degrees
of freedom. Therefore, if we assume that we have a sample of size n1 from a
population with variance σ 2

1 and an independent sample of size n2 from another
population with variance σ 2

2 then the statistic

F = S2
1 /σ 2

1

S2
2/σ

2
2

,

where S2
1 and S2

2 represent the usual variance estimates of σ 2
1 and σ 2

2 , respec-
tively, is a random variable having the F distribution.
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The F distribution has two parameters, ν1 and ν2. The distribution is de-
noted by F(ν1, ν2). If the variances are estimated in the usual manner, the
degrees of freedom are (n1 − 1) and (n2 − 1), respectively. Also, if both pop-
ulations have equal variance, that is, σ 2

1 = σ 2
2 , the F statistic is simply the

ratio S 2
1 /S 2

2 . The equation describing the distribution of the F statistic is also
quite complex and is of little use to us in this text. However, some of the
characteristics of the F distribution are of interest:

1. The F distribution is defined only for nonnegative values.
2. The F distribution is not symmetric.
3. A different table is needed for each combination of degrees of freedom.

Fortunately, for most practical problems only a relatively few probability
values are needed.

4. The choice of which variance estimate to place in the numerator is some-
what arbitrary; hence the table of probabilities of the F distribution always
gives the right tail value. That is, it assumes that the larger variance estimate
is in the numerator.

Appendix Table A.4 gives values of the F distribution for selected degrees of
freedom combinations for right tail areas of 0.1, 0.05, 0.025, 0.01, and 0.005.
There is one table for each probability (tail area), and the values in the table
correspond to F values for numerator degrees of freedom ν1 indicated by
column headings, and denominator degrees of freedom ν2 as row headings.
Interpolation may be used for values not found in the table, but this is rarely
needed in practice.

EXAMPLE 2.19 Two machines, A and B, are supposed to make parts for which a critical dimen-
sion must have the same consistency. That is, the parts produced by the two
machines must have equal standard deviations. A random sample of 10 parts
from machine A has a sample standard deviation of 0.014 and an independently
drawn sample of 15 parts from machine B has a sample standard deviation of
0.008. What is the probability of obtaining standard deviations this far apart if
the machines are really making parts with equal consistency?

Solution To answer this question we need to calculate probabilities in both
tails of the distribution:

(A) P
[(

S2
A/S2

B

)
> (0.014)2/(0.008)2] = P

[(
S2

A/S2
B

)
> 3.06

]
,

as well as

(B) P
[(

S2
B/S2

A

)
< (0.0082)/(0.014)2] = P

[(
S2

B/S2
A

)
< 0.327

]
,

assuming σ 2
A = σ 2

B.

For part (A) we need the probability P[F(9, 14) > 3.06]. Because of the
limited number of entries in the table of the F distribution, we can find the
value 2.65 for p = 0.05 and the value 3.21 for p = 0.01 for 9 and 14 degrees of
freedom. The sample value is between these two; hence we can say that

0.025 < P[F(9, 14) > 3.06] < 0.05.
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For part (B) we need P[F(14, 9) > 0.327], which is the same as P[F(9, 14) >

1/0.327] = P[F(9, 14) > 3.06], which is the same as for part (A). Since we
want the probability for both directions, we add the probabilities; hence,
the probability of the two samples of parts having standard deviations this
far apart is between 0.05 and 0.10. The exact value obtained by a computer
is 0.06. ■

Relationships among the Distributions

All of the distributions presented in this section start with normally distributed
random variables; hence they are naturally related. The following relationships
are not difficult to verify and have implications for many of the methods pre-
sented later in this book:

(1) t (∞) = z,

(2) z 2 = χ2(1),

(3) F(1, v2) = t 2(v2),

(4) F(v1, ∞) = χ2(v1)/v1.

2.7 CHAPTER SUMMARY

The reliability of statistical inferences is described by probabilities, which are
based on sampling distributions. The purpose of this chapter is to develop
various concepts and principles leading to the definition and use of sampling
distributions.

• A probability is defined as the long-term relative frequency of the occur-
rence of an outcome of an experiment.

• An event is defined as a combination of outcomes. Probabilities of the
occurrence of a specific event are obtained by the application of rules gov-
erning probabilities.

• A random variable is defined as a numeric value assigned to an event.
Random variables may be discrete or continuous.

• A probability distribution is a definition of the probabilities of all possible
values of a random variable for an experiment. There are probability dis-
tributions for both discrete and continuous random variables. Probability
distributions are characterized by parameters.

• The normal distribution is the basis for most inferential procedures. Rules
are provided for using a table to obtain probabilities associated with nor-
mally distributed random variables.
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• A sampling distribution is a probability distribution of a statistic which
relates the statistic to the parameters of the population from which the
sample is drawn. The most important of these is the sampling distribution
of the mean, but other sampling distributions are presented.

2.8 CHAPTER EXERCISES

CONCEPT

QUESTIONS

This section consists of some true/false questions regarding concepts of sta-
tistical inference. Indicate if a statement is true or false and, if false, indicate
what is required to make the statement true.

1. If two events are mutually exclusive, then P(A or B) =
P(A) + P(B).

2. If A and B are two events, then P(A and B) = P(A)P(B),
no matter what the relation between A and B.

3. The probability distribution function of a discrete random
variable cannot have a value greater than 1.

4. The probability distribution function of a continuous ran-
dom variable can take on any value, even negative ones.

5. The probability that a continuous random variable lies in
the interval 4 to 7, inclusively, is the sum of P(4) + P(5) + P(6) + P(7).

6. The variance of the number of successes in a binomial
experiment of n trials is σ 2 = np(p − 1).

7. A normal distribution is characterized by its mean and its
degrees of freedom.

8. The standard normal distribution has the mean zero and
variance σ 2.

9. The t distribution is used as the sampling distribution of
the mean if the sample is small and the population variance is known.

10. The standard error of the mean increases as the sample
size increases.

PRACTICE

EXERCISES

The following exercises are designed to give the reader practice in using the
rules of probability through simple examples. The solutions are given in the
back of the text.

1. The weather forecast says there is a 40% chance of rain today and a 30%
chance of rain tomorrow.
(a) What is the chance of rain on both days?
(b) What is the chance of rain on neither day?
(c) What is the chance of rain on at least one day?
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2. The following is a probability distribution of the number of defects on a
given contact lens produced in one shift on a production line:

Number of Defects 0 1 2 3 4
Probability 0.50 0.20 0.15 0.10 0.05

Let A be the event that one defect occurred, and B be the event that 2, 3, or
4 defects occurred. Find:
(a) P(A) and P(B)
(b) P(A and B)
(c) P(A or B)

3. Using the distribution in Exercise 2, let the random variable Y be the number
of defects on a contact lens randomly selected from lenses produced during
the shift.
(a) Find the mean and variance of Y for the shift.
(b) Assume that the lenses are produced independently. What is the prob-

ability that five lenses drawn randomly from the production line during
the shift will be defect-free?

4. Using the distribution in Exercise 2, suppose that the lens can be sold as
is if there are no defects for $20. If there is one defect, it can be reworked
at a cost of $5 and then sold. If there are two defects, it can be reworked
at a cost of $10 and then sold. If there are more than two defects, it must
be scrapped. What is the expected revenue generated during the shift if 100
contact lenses are produced?

5. Suppose that Y is a normally distributed random variable with μ = 10 and
σ = 2, and X is an independent random variable, also normally distributed
with μ = 5 and σ = 5. Find:
(a) P(Y > 12 and X > 4)
(b) P(Y > 12 or X > 4)
(c) P(Y > 10 and X < 5)

EXERCISES

1. A lottery that sells 150,000 tickets has the following prize structure:
(1) first prize of $50,000
(2) 5 second prizes of $10,000
(3) 25 third prizes of $1000
(4) 1000 fourth prizes of $10

(a) Let Y be the winning amount of a randomly drawn lottery ticket.
Describe the probability distribution of Y.

(b) Compute the mean or expected value of the ticket.
(c) If the ticket costs $1.00, is the purchase of the ticket worthwhile?

Explain your answer.
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(d) Compute the standard deviation of this distribution. Comment on
the usefulness of the standard deviation as a measure of dispersion
for this distribution.

2. Assume the random variable y has the continuous uniform distribution
defined on the interval a to b, that is,

f (y) = 1/(b − a), a ≤ y ≤ b.

For this problem let a = 0 and b = 2.

(a) Find P(Y < 1). (Hint: Use a picture.)
(b) Find μ and σ 2 for the distribution.

3. The binomial distribution for p = 0.2 and n = 5 is:

Value of Y 0 1 2 3 4 5
Probability 0.3277 0.4095 0.2048 0.0512 0.0064 0.0003

(a) Compute μ and σ 2 for this distribution.
(b) Do these values agree with those obtained as a function of the parame-

ter p and sample size n? (See discussion of random variables in Section
2.2.)

4. A system consists of 10 components all arranged in series, each with a
failure probability of 0.001. What is the probability that the system will
fail? (Hint: See Section 2.2.)

5. A system requires two components, A and B, to both work before the
system will. Because of the sensitivity of the system, an increased reliability
is needed. To obtain this reliability, two duplicate components are to be
used. That is, the system will have components A1, A2, B1, and B2. An
engineer designs the two systems illustrated in the diagram. Assuming
independent failure probabilities of 0.01 for each component, compute
the probability of failure of each arrangement. Which one gives the more
reliable system?

A1

A2

B1

B2

Arrangement 1

A1
Arrangement 2

A2

B1

B2
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6. Let Z be a standard normal random variable. Use Appendix Table A.1 to
find:
(a) P(Z > 1)
(b) P(Z > −1)
(c) P(0 < Z < 1)
(d) P(Z < −1.5)
(e) P(−2.07 < Z < 0.98)
(f) the value A such that P(Z < A) = 0.95
(g) the value C such that P(−C < Z < C) = 0.95

7. Let Y be a normally distributed random variable with mean 10 and variance
25. Find:
(a) P(Y > 15)
(b) P(8 < Y < 12)
(c) the value of C such that P(Y < C) = 0.90

8. A teacher finds that the scores of a particularly difficult test were approx-
imately normally distributed with a mean of 76 and standard deviation of
14:
(a) If a score below 60 represents a grade of F (failure), approximately

what percent of students failed the test?
(b) If the cutoff for a grade of A is the lowest score of the top 10%, what is

that cutoff point?
(c) How many points must be added to the students’ scores so that only

5% fail?

9. It is believed that 20% of voters in a certain city favor a tax increase for
improved schools. If this percentage is correct, what is the probability that
in a sample of 250 voters 60 or more will favor the tax increase? (Use the
normal approximation.)

10. The probabilities for a random variable having the Poisson distribution
with μ = 1 is given in the following table.

Values of Y 0 1 2 3 4 5 6
Probability 0.368 0.368 0.184 0.061 0.015 0.003 0.001

Note: Probabilities for Y > 6 are very small and may be ignored.
(a) Compute the mean and variance of Y .
(b) According to theory, both the mean and the variance of the Poisson

distribution are μ. Do the results in part (a) agree with the theory?

11. As μ increases, say, to values greater than 30, the Poisson distribution
begins to be very similar to the normal with both a mean and variance
of μ. Using this approximation, determine how many telephone operators
are needed to ensure at most 5% busy signals if the mean number of phone
calls at any given time is 30.
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12. The Poisson distribution may also be used to find approximate binomial
probabilities when n is large and p is small, by letting μ be np. This method
provides for faster calculations of probabilities of rare events such as
exotic diseases. For example, assume the incidence rate (proportion in
the population) of a certain blood disease is known to be 1%. The prob-
ability of getting exactly seven cases in a random sample of 500, where
μ = np = (0.01)(500) = 5, is

P(Y = 7) = (57e−5)/7! = 0.1044.

Suppose the incidence of another blood disease is 0.015. What is the prob-
ability of getting no occurrences of the disease in a random sample of 200?
(Remember that 0! = 1.)

13. A random sample of 100 is taken from a population with a mean of 140 and
standard deviation of 25. What is the probability that the sample mean lies
between 138 and 142?

14. A manufacturer wants to state a specific guarantee for the life of a product
with a replacement for failed products. The distribution of lifetimes of
the product has a mean of 1000 days and standard deviation of 150 days.
What life length should be stated in the guarantee so that only 10% of the
products need to be replaced?

15. A teacher wants to curve her grades such that 10% are below 60 and 10%
above 90. Assuming a normal distribution, what values of μ and σ 2 will
provide such a curve?

16. To monitor the production of sheet metal screws by a machine in a large
manufacturing company, a sample of 100 screws is examined each hour
for three shifts of 8 hours each. Each screw is inspected and designated as
conforming or nonconforming according to specifications. Management is
willing to accept a proportion of nonconforming screws of 0.05. Use the
following result of one day’s sampling (Table 2.13) to construct a control
chart. Does the process seem to be in control? Explain.

Table 2.13

Data for Exercise 16

Sample p̂ Sample p̂

1 0.04 13 0.09
2 0.07 14 0.10
3 0.05 15 0.09
4 0.03 16 0.11
5 0.04 17 0.10
6 0.06 18 0.12
7 0.05 19 0.13
8 0.03 20 0.09
9 0.05 21 0.14

10 0.07 22 0.11
11 0.09 23 0.15
12 0.10 24 0.16
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17. The Florida lottery uses a system of numbers ranging in value from 1 to
49. Every week the lottery commission randomly selects six numbers, and
every ticket with those numbers wins a share of the grand prize. Individual
numbers appear only once (no repeat values), and the order in which they
are chosen does not matter.
(a) What is the probability that a person buying one ticket will win the

grand prize? (Hint: Use the counting procedure for binomial distribu-
tions in Section 2.3.)

(b) The lottery also pays a lesser prize for tickets with five of the six num-
bers matching. What is the probability that a person buying one ticket
will win either the grand prize or the lesser prize?

(c) The lottery also pays smaller prizes for getting three or four numbers
matching. What is the probability that a person buying one ticket will
win anything? That is, what is the probability of getting six matching
numbers, or five matching numbers, or four matching numbers, or
three matching numbers?

18. A manufacturer of auto windows uses a thin layer of plastic material be-
tween two layers of glass to make safety glass for windshields. The thick-
ness of the layer of this material is important to the quality of the vision
through the glass. A constant quality control monitoring scheme is em-
ployed by the manufacturer that checks the thickness at 30-minute inter-
vals throughout the manufacturing process by sampling five windshields.
The mean thickness is then plotted on a control chart. A perfect wind-
shield will have a thickness of 4 mm. From past experience, it is known
that the variance of thickness is about 0.25 mm. The results of one shift’s
production are given in Table 2.14.
(a) Construct a control chart of these data. (Hint: See Example 2.13.) Does

the process stay in control throughout the shift?
(b) Does the chart indicate any trends? Explain. Can you think of a reason

for this pattern?

19. During 1989, a certain trucking company purchased 500 tires from a local
dealer. The dealer guaranteed the tires to withstand loads of up to 100,000
pounds at speeds up to 55 mph. The drivers for the trucking company
complained that the tires were not living up to this guarantee and were
failing the first trip they were used. The trucking company decided to
sample the tires and send them to an engineering firm for testing. This
testing is expensive and destructive; therefore, the sample size to be tested
must be carefully chosen. Construct a sampling plan for the company by
doing the following:
(a) Calculate the probability of getting all defective tires in samples of size

25, 30, and 50 for p = 0.80, 0.90, 0.95, and 0.99, where p is the probability
that an individual tire will fail. (Use the binomial distribution.)

(b) Graph these probabilities against p for the various values of n on the
same graph. Use this graph to suggest a sample size.

Table 2.14

Thickness of Material
(in Millimeters)

Sample

Number Thickness

1 4,3,3,4,2
2 5,4,4,4,3
3 3,3,4,4,4,
4 2,3,3,3,5
5 5,5,4,4,5
6 6,4,6,4,5
7 4,4,6,5,4
8 6,5,5,6,5
9 5,5,6,5,5

10 5,4,4,6,4
11 4,6,5,4,4
12 5,5,4,3,3
13 3,3,4,4,5
14 4,4,4,3,4
15 3,3,4,2,4
16 4,3,2,2,3
17 4,5,3,2,2
18 3,4,4,3,4
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20. Single-sample acceptance sampling for attributes uses a procedure similar
to that of Exercise 19. Suppose that a sampling plan for accepting a lot of
size N coming to a manufacturer from a supplier is to be determined by
sampling n items from the lot and accepting the entire lot if c of fewer of the
items are defective. The lot fraction defective, p, is the true proportion of
defective items in the lot. The probability of observing xdefective items in a
random sample of nitems can be calculated using the binomial distribution.
The probability of observing c or fewer defective items is the sum of the
probabilities from 0 to c and is called the probability of acceptance, Pa.

An operating characteristic (OC) curve is then constructed plotting Pa

versus p. This OC curve illustrates the performance of a sampling plan
using n items and an acceptance value of c. Construct an OC curve for
the sampling plan n = 50 and c = 1. OC curves are further discussed in
Section 3.2.

21. A computer slot machine game has a number of different machines. In
the simplest machine, there are three “wheels,” each of which has four
different symbols: three, two, one, or no bars. We will use principles of pro-
bability to estimate the mean payout for this machine.
(a) Playing 600 games (it does not cost anything on the computer!)

gives the following probabilities of the different symbols for each
wheel:

PROBABILITIES

Symbols Wheel 1 Wheel 2 Wheel 3

No bars (blank) 0.487 0.515 0.492
One bar 0.317 0.230 0.095
Two bars 0.163 0.165 0.203
Three bars 0.033 0.090 0.210

The payoff table gives the following information for using $1 coins:

Game Result Payoff

Three bars on each wheel $100
Two bars on each wheel $50
One bar on each wheel $25
Any bar on each wheel $3

Compute the mean payoff for this machine. Remember that this is only
an estimate based on the 600 games.

(b) If you insert five coins, all payoff are five times larger, except that if you
get three bars on each wheel, the payoff is $150. Calculate the mean
payoff if five coins are used.

(c) With a litte effort, the true makeup of the machine shows that each
“wheel” has 30 positions. The number of positions having the different
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symbols are as follows:

NUMBER OF POSITIONS

Symbols Wheel 1 Wheel 2 Wheel 3

No bars (blank) 15 15 15
One bar 9 7 3
Two bars 5 5 6
Three bars 1 3 6

Compute the mean payoff for this machine. Note that this is close to,
but not exactly the same as, the mean payoff using the result of 600
games.



Chapter 3

Principles
of Inference

EXAMPLE 3.1 Is Office Rent More Expensive in Atlanta? A businessman in Atlanta is
considering moving to Jacksonville, Florida, to reduce the office rental costs
for his company. In the October 1990 issue of the Jacksonville Journal, the
mean cost of leasing office space for all downtown buildings in Jacksonville
was quoted as being $12.61 per square foot with a standard deviation of $4.50.
To compare costs with those in Atlanta, the businessman sampled 36 office
buildings in Atlanta and found a mean leasing cost of $13.55 per square foot.
Does this mean that leasing office space in Atlanta is really higher? Should the
businessman consider moving to Jacksonville to save money on rent (assuming
other factors equal)? This chapter presents methodology that can be used to
help answer this question. This problem will be solved in Section 3.2. ■

3.1 Introduction

As we have repeatedly noted, one of the primary objectives of a statistical
analysis is to use data from a sample to make inferences about the popula-
tion from which the sample was drawn. In this chapter we present the basic
procedures for making such inferences.

As we will see, the sampling distributions discussed in Chapter 2 play a
pivotal role in statistical inference. Because inference on an unknown popu-
lation parameter is usually based solely on a statistic computed from a single
sample, we rely on these distributions to determine how reliable this inference
is. That is, a statistical inference is composed of two parts:

1. a statement about the value of that parameter, and
2. a measure of the reliability of that statement, usually expressed as a

probability.
117
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Traditionally statistical inference is done with one of two different but
related objectives in mind.

1. We conduct tests of hypotheses, in which we hypothesize that one or more
parameters have some specific values or relationships, and make our deci-
sion about the parameter(s) based on one or more sample statistic. In this
type of inference, the reliability of the decision is the probability that the
decision is incorrect.

2. We estimate one or more parameters using sample statistics. This estimation
is usually done in the form of an interval, and the reliability of this inference
is expressed as the level of confidence we have in the interval.

We usually refer to an incorrect decision in a hypothesis test as “making an
error” of one kind or another. Making an error in a statistical inference is not
the same as making a mistake; the term simply recognizes the fact that the
possibility of making an incorrect inference is an inescapable fact of statis-
tical inference. The best we can do is to try to evaluate the reliability of our
inference. Fortunately, if the data used to perform a statistical inference are a
random sample, we can use sampling distributions to calculate the probability
of making an error and therefore quantify the reliability of our inference.

In this chapter we present the basic principles for making these inferences
and see how they are related. As you go through this and the next two chap-
ters, you will note that hypothesis testing is presented before estimation. The
reason for this is that it is somewhat easier to introduce them in this order,
and since they are closely related, once the concept of the hypothesis test is
understood, the estimation principles are easily grasped. We want to empha-
size that both are equally important and each should be used where appro-
priate. To avoid extraneous issues, in this chapter we use two extremely
simple (and not very interesting) examples that have little practical appli-
cation. Once we have learned these principles, we can apply them to more
interesting and useful applications. That is the subject of the remainder of this
book.

3.2 Hypothesis Testing

A hypothesis usually results from speculation concerning observed behavior,
natural phenomena, or established theory. If the hypothesis is stated in terms
of population parameters such as the mean and variance, the hypothesis is
called a statistical hypothesis. Data from a sample (which may be an exper-
iment) are used to test the validity of the hypothesis. A procedure that en-
ables us to agree or disagree with the statistical hypothesis using data from a
sample is called a test of the hypothesis. Some examples of hypothesis tests
are:

• A consumer-testing organization determining whether a type of appliance
is of standard quality (say, an average lifetime of a prescribed length)
would base their test on the examination of a sample of prototypes of the
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appliance. The result of the test may be that the appliance is not of accept-
able quality and the organization will recommend against its purchase.

• A test of the effect of a diet pill on weight loss would be based on observed
weight losses of a sample of healthy adults. If the test concludes the pill is
effective, the manufacturer can safely advertise to that effect.

• To determine whether a teaching procedure enhances student performance,
a sample of students would be tested before and after exposure to the proce-
dure and the differences in test scores subjected to a statistical hypothesis
test. If the test concludes that the method is not effective, it will not be used.

General Considerations

To illustrate the general principles of hypothesis testing, consider the following
two simple examples:

EXAMPLE 3.2 There are two identically appearing bowls of jelly beans. Bowl 1 contains 60
red and 40 black jelly beans, and bowl 2 contains 40 red and 60 black jelly
beans. Therefore, the proportion of red jelly beans, p, for the two bowls are

Bowl 1: p = 0.6

Bowl 2: p = 0.4.

One of the bowls is sitting on the table, but you do not know which one it is
(you cannot see inside it). You suspect that it is bowl 2, but you are not sure.
To test your hypothesis that bowl 2 is on the table you sample five jelly beans.1

The data from this sample, specifically the number of red jelly beans, is the
sample statistic that will be used to test the hypothesis that bowl 2 is on the
table. That is, based on this sample, you will decide whether bowl 2 is the one
on the table. ■

EXAMPLE 3.3 A company that packages salted peanuts in 8-oz. jars is interested in main-
taining control on the amount of peanuts put in jars by one of its machines.
Control is defined as averaging 8 oz. per jar and not consistently over- or
underfilling the jars. To monitor this control, a sample of 16 jars is taken from
the line at random time intervals and their contents weighed. The mean weight
of peanuts in these 16 jars will be used to test the hypothesis that the machine is
indeed working properly. If it is deemed not to be doing so, a costly adjustment
will be needed.2 ■

These two examples will be used to illustrate the procedures presented in this
chapter.

1To make the necessary probability calculations easier, you replace each jelly bean before selecting
a new one; this is called sampling with replacement and allows the use of the binomial probability
distribution presented in Section 2.3.
2Note the difference between this problem and Example 2.13, the control chart example. In this
case, a decision to adjust the machine is to be made on one sample only, while in Example 2.13 it
is made by an examination of its performance over time.
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The Hypotheses

Statistical hypothesis testing starts by making a set of two statements about
the parameter or parameters in question. These are usually in the form of
simple mathematical relationships involving the parameters. The two state-
ments are exclusive and exhaustive, which means that one or the other state-
ment must be true, but they cannot both be true. The first statement is called the
null hypothesis and is denoted by H0, and the second is called the alternative

hypothesis and is denoted by H1.

DEFINITION 3.1
The null hypothesis is a statement about the values of one or more
parameters. This hypothesis represents the status quo and is usually not
rejected unless the sample results strongly imply that it is false.

For Example 3.2, the null hypothesis is

Bowl 2 is on the table.

In bowl 2, since 40 of the 100 jelly beans are red, the statistical hypothesis
is stated in terms of a population parameter, p = the proportion of red jelly
beans in bowl 2. Thus the null hypothesis is

H0: p = 0.4.

DEFINITION 3.2
The alternative hypothesis is a statement that contradicts the null
hypothesis. This hypothesis is declared to be accepted if the null hypoth-
esis is rejected. The alternative hypothesis is often called the research
hypothesis because it usually implies that some action is to be performed,
some money spent, or some established theory overturned.

In Example 3.2 the alternative hypothesis is

Bowl 1 is on the table,

for which the statistical hypothesis is

H1: p = 0.6,

since 60 of the 100 jelly beans in bowl 1 are red. Because there are no other
choices, the two statements form a set of two exclusive and exhaustive hypo-
theses. That is, the two statements specify all possible values of parameter p.

For Example 3.3, the hypothesis statements are given in terms of the pop-
ulation parameter μ, the mean weight of peanuts per jar. The null hypothesis
is

H0: μ = 8,
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which is the specification for the machine to be functioning correctly. The
alternative hypothesis is

H1: μ 
= 8,

which means the machine is malfunctioning. These statements also form a
set of two exclusive and exhaustive hypotheses, even though the alternative
hypothesis does not specify a single value as it did for Example 3.2.

Rules for Making Decisions

After stating the hypotheses we specify what sample results will lead to the
rejection of the null hypothesis. Intuitively, sample results (summarized as
sample statistics) that lead to rejection of the null hypothesis should reflect
an apparent contradiction to the null hypothesis. In other words, if the sample
statistics have values that are unlikely to occur if the null hypothesis is true,
then we decide the null hypothesis is false. The statistical hypothesis test-
ing procedure consists of defining sample results that appear to sufficiently
contradict the null hypothesis to justify rejecting it.

In Section 2.5 we showed that a sampling distribution can be used to
calculate the probability of getting values of a sample statistic from a given pop-
ulation. If we now define “unlikely” as some small probability, we can use the
sampling distribution to determine a range of values of a sample statistic that is
unlikely to occur if the null hypothesis is true. The occurrence of values in that
range may then be considered grounds for rejecting that hypothesis. Statistical
hypothesis testing consists of appropriately defining that region of values.

DEFINITION 3.3
The rejection region (also called the critical region) is the range
of values of a sample statistic that will lead to rejection of the null
hypothesis.

In Example 3.2, the null hypothesis specifies the bowl having the lower pro-
portion of red jelly beans; hence observing a large proportion of red jelly
beans would tend to contradict the null hypothesis. For now, we will arbitrarily
decide that having a sample with all red jelly beans provides sufficient evidence
to reject the null hypothesis. If we let Y be the number of red jelly beans, the
rejection region is defined as y = 5.

In Example 3.3, any sample mean weight Ȳ not equal to 8 oz. would seem to
contradict the null hypothesis. However, since some variation is expected, we
would probably not want to reject the null hypothesis for values reasonably
close to 8 oz. For the time being we will arbitrarily decide that a mean weight of
below 7.9 or above 8.1 oz. is not “reasonably close,” and we will therefore reject
the null hypothesis if the mean weight of our sample occurs in this region. Thus,
the rejection region for this example contains the values of ȳ < 7.9 or ȳ > 8.1.

If the value of the sample statistic falls in the rejection region, we know
what decision to make. If it does not fall in the rejection region, we have a
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choice of decisions. First, we could accept the null hypothesis as being true.
As we will see, this decision may not be the best choice. Our other choice would
be to “fail to reject” the null hypothesis. As we will see, this is not necessarily
the same as accepting the null hypothesis.

Table 3.1

Results of a Hypothesis
Test

IN THE POPULATION

The Decision H0 is True H0 is not True

H0 is not rejected Decision is correct A type II error
has been committed

H0 is rejected A type I error Decision is correct
has been committed

Possible Errors in Hypothesis Testing

In Section 3.1 we emphasized that statistical inferences based on sample data
may be subject to what we called errors. Actually, it turns out that results of
a hypothesis test may be subject to two distinctly different errors, which are
called type I and type II errors. These errors are defined in Definitions 3.4 and
3.5 and illustrated in Table 3.1.

DEFINITION 3.4
A type I error occurs when we incorrectly reject H0, that is, when H0 is
actually true and our sample-based inference procedure rejects it.

DEFINITION 3.5
A type II error occurs when we incorrectly fail to reject H0, that is,
when H0 is actually not true, and our inference procedure fails to detect
this fact.

In Example 3.2 the rejection region consisted of finding all five jelly beans
in the sample to be red. Hence, the type I error occurs if all five sample jelly
beans are red, the null hypothesis is rejected, and we proclaim the bowl
to be bowl 1 but, in fact, bowl 2 is actually on the table. Alternatively, a
type II error will occur if our sample has four or fewer red jelly beans (or
one or more black jelly beans), in which case H0 is not rejected, and we there-
fore proclaim that it is bowl 2, but, in fact, bowl 1 is on the table.

In Example 3.3, a type I error will occur if the machine is indeed work-
ing properly, but our sample yields a mean weight of over 8.1 or under 7.9 oz.,
leading to rejection of the null hypothesis and therefore an unnecessary
adjustment to the machine. Alternatively, a type II error will occur if the ma-
chine is malfunctioning but the sample mean weight falls between 7.9 and
8.1 oz. In this case we fail to reject H0 and do nothing when the machine really
needs to be adjusted.

Obviously we cannot make both types of errors simultaneously, and in fact
we may not make either, but the possibility does exist. In fact, we will usually
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never know whether any error has been committed. The only way to avoid any
chance of error is not to make a decision at all, hardly a satisfactory alternative.

Probabilities of Making Errors

If we assume that we have the results of a random sample, we can use the
characteristics of sampling distributions presented in Chapter 2 to calculate
the probabilities of making either a type I or type II error for any specified
decision rule.

DEFINITION 3.6

α: denotes the probability of making a type I error
β: denotes the probability of making a type II error

The ability to provide these probabilities is a key element in statistical infer-
ence, because they measure the reliability of our decisions. We will now show
how to calculate these probabilities for our examples.

Calculating α for Example 3.2 The null hypothesis specifies that the
probability of drawing a red jelly bean is 0.4 (bowl 2), and the null hypothesis
is to be rejected with the occurrence of five red jelly beans. Then the probability
of making a type I error is the probability of getting five red jelly beans in a
sample of five from bowl 2. If we let Y be the number of red jelly beans in our
sample of five, then

α = P(Y = 5 when p = 0.4).

The use of binomial probability distribution (Section 2.3) provides the result
α = (0.4)5 = 0.01024. Thus the probability of incorrectly rejecting a true
null hypothesis in this case is 0.01024; that is, there is approximately a 1 in 100
chance that bowl 2 will be mislabeled bowl 1 using the described decision rule.

Calculating α for Example 3.3 For this example, the null hypothesis was
to be rejected if the mean weight was less than 7.9 or greater than 8.1 oz. If Ȳ

is the sample mean weight of 16 jars, the probability of a type I error is

α = P(Ȳ < 7.9 or Ȳ > 8.1 when μ = 8).

Assume for now that we know3 that σ , the standard deviation of the population
of weights, is 0.2 and that the distribution of weights is approximately normal.
If the null hypothesis is true, the sampling distribution of the mean of 16 jars
is normal with μ = 8 and σ = 0.2/

√
16 = 0.05 (see discussion on the normal

distribution in Section 2.5). The probability of a type I error corresponds to
the shaded area in Fig. 3.1.

3This is an assumption made here to simplify matters. In Chapter 4 we present the method required
if we calculate the standard deviation from the sample data.
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Using the tables of the normal distribution we compute the area for each
portion of the rejection region

P(Ȳ < 7.9) = P

[
Z <

7.9 − 8

(0.2/
√

16)

]
= P(Z < −2.0) = 0.0228

and

P(Ȳ > 8.1) = P

(
Z >

8.1 − 8

0.2/
√

16

)
= P(Z > 2.0) = 0.0228.

Hence

α = 0.0228 + 0.0228 = 0.0456.

Thus the probability of adjusting the machine when it does not need it (using
the described decision rule) is slightly less than 0.05 (or 5%).

Calculating β for Example 3.2 Having determined α for a specified
decision rule, it is of interest to determine β. This probability can be readily
calculated for Example 3.2. Recall that the type II error occurs if we fail to
reject the null hypothesis when it is not true. For this example, this occurs if
bowl 1 is on the table but we did not get the five red jelly beans required to
reject the null hypothesis that bowl 2 is on the table. The probability of a type
II error, which is denoted by β, is then the probability of getting four or fewer
red jelly beans in a size-five sample from bowl 1. If we let Y be the number of
red jelly beans in the sample, then

β = P(Y ≤ 4 when p = 0.6).

Using the probability rules from Section 2.2, we know that

P(Y ≤ 4) + P(Y = 5) = 1.

Since (Y = 5) is the complement of (Y ≤ 4),

P(Y ≤ 4) = 1 − P(Y = 5).
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Now

P(Y = 5) = (0.6)5,

and therefore

β = 1 − (0.6)5 = 1 − 0.07776 = 0.92224.

That is, the probability of making a type II error in Example 3.2 is over 92%.
This value of β is unacceptably large. That is, if on the basis of this test we
conclude that bowl 2 is on the table, the probability that we are wrong is 0.92!

Calculating β for Example 3.3 For Example 3.3, H1 does not specify a
single value for μ but instead includes all values of μ 
= 8. Therefore, calculat-
ing the probability of the type II error requires that we examine the probability
of the sample mean being outside the rejection region for every value of μ 
= 8.
These calculations and further discussion of β are presented later in this sec-
tion where we discuss type II errors.

Choosing between α and β

The probability of making a type II error can be decreased by making rejec-
tion easier, which is accomplished by making the rejection region larger. For
example, suppose we decide to reject H0 if either four or five of the jelly beans
are red. In this case,

α = P(Y ≥ 4 when p = 0.4) = 0.087

and

β = P(Y < 4 when p = 0.6) = 0.663.

Note that by changing the rejection region we succeeded in lowering β but
we increased α. This will always happen if the sample size is unchanged. In
fact, if by changing the rejection region α becomes unacceptably large, no
satisfactory testing procedure is available for a sample of five jelly beans, a
condition that often occurs when sample sizes are small (see Section 3.4). This
relationship between the two types of errors prevents us from constructing a
hypothesis test that has a probability of 0 for either error. In fact, the only way
to ensure that α = 0 is to never reject a hypothesis, while to ensure that β = 0
the hypothesis should always be rejected, regardless of any sample results.

Five-Step Procedure for Hypothesis Testing

In the above presentation we have shown how to determine the probability of
making a type I error for some arbitrarily chosen rejection region. The more
frequently used method is to specify an acceptable maximum value for α and
then delineate a rejection region for a sample statistic that satisfies this value.
A hypothesis test can be formally summarized as a five-step process. Briefly
these steps are as follows:

Step 1: Specify H0, H1, and an acceptable level of α.
Step 2: Define a sample-based test statistic and the rejection region for the

specified H0.
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Step 3: Collect the sample data and calculate the test statistic.
Step 4: Make a decision to either reject or fail to reject H0. This decision will

normally result in a recommendation for action.
Step 5: Interpret the results in the language of the problem. It is imperative

that the results be usable by the practitioner.

We now discuss various aspects of these steps.
Step 1 consists of specifying H0 and H1 and a choice of a maximum

acceptable value of α. This value is based on the seriousness or cost of making
a type I error in the problem being considered.

DEFINITION 3.7
The significance level of a hypothesis test is the maximum acceptable
probability of rejecting a true null hypothesis.4

The reason for specifying α (rather than β) for a hypothesis test is based
on the premise that the type I error is of prime concern. For this reason the
hypothesis statement must be set up in such a manner that the type I error is
indeed the more costly. The significance level is then chosen considering the
cost of making that error.

In Example 3.2, H0 was the assertion that the bowl on the table was bowl 2.
In this example interchanging H0 and H1 would probably not cause any major
changes unless there was some extra penalty for one of the errors. Thus, we
could just as easily have hypothesized that the bowl was really 1, which would
have made H0: p = 0.6 instead of H0: p = 0.4.

In Example 3.3 we stated that the null hypothesis is μ = 8. In this example
the choice of the appropriate H0 is clear: There is a definite cost if we make
a type I error since this error may cause an unnecessary adjustment on a
properly working machine. Of course, making a type II error is not without
cost, but since we have not accepted H0, we are free to repeat the sampling at
another time, and if the machine is indeed malfunctioning, the null hypothesis
will eventually be rejected.

Why Do We Focus on the Type I Error?

In general, the null hypothesis is usually constructed to be that of the status
quo; that is, it is the hypothesis requiring no action to be taken, no money
to be spent, or in general nothing changed. This is the reason for denoting
this as the null or nothing hypothesis. Since it is usually costlier to incorrectly
reject the status quo than it is to do the reverse, this characterization of the
null hypothesis does indeed cause the type I error to be of greater concern. In
statistical hypothesis testing, the null hypothesis will invariably be stated in
terms of an “equal” condition existing.

4Because the selection and use of the significance level is fundamental to this procedure, it is often
referred to as a significance test. Although some statisticians make a minor distinction between
hypothesis and significance testing, we use the two labels interchangeably.
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On the other hand, the alternative hypothesis describes conditions for
which something will be done. It is the action or research hypothesis. In an ex-
perimental or research setting, the alternative hypothesis is that an established
(status quo) hypothesis is to be replaced with a new one. Thus, the research
hypothesis is the one we actually want to support, which is accomplished by
rejecting the null hypothesis with a sufficiently low level of α such that it is
unlikely that the new hypothesis will be erroneously pronounced as true.

In Example 3.2, we thought the bowl was 2 (the status quo), and would only
change our mind if the sample showed significant evidence that we were wrong.
In Example 3.3 the status quo is that the machine is performing correctly; hence
the machine would be left alone unless the sample showed so many or so few
peanuts so as to provide sufficient evidence to reject H0.

We can now see that it is quite important to specify an appropriate signifi-
cance level. Because making the type I error is likely to have the more serious
consequences, the value of α is usually chosen to be a relatively small number,
and smaller in some cases than in others. That is, α must be selected so that
an acceptable level of risk exists that the test will incorrectly reject the null
hypothesis. Historically and traditionally, α has been chosen to have values of
0.10, 0.05, or 0.01, with 0.05 being most frequently used. These values are not
sacred but do represent convenient numbers and allow the publication of sta-
tistical tables for use in hypothesis testing. We shall use these values often
throughout the text. (See, however, the discussion of p values later in this
section.)

Choosing α

As we saw in Example 3.2, α and β are inversely related. Unless the sample size
is increased, we can reduce α only at the price of increasing β. In Example 3.2
there was little difference in the consequences of a type I or type II error;
hence, the hypothesis test would probably be designed to have approximately
equal levels of α and β. In Example 3.3 making the type I error will cause a
costly adjustment to be made to a properly working machine, while if the type
II error is committed we do not adjust the machine when needed. This error
also entails some cost such as wasted peanuts or unsatisfied customers. Unless
the cost of adjusting the machine is extremely high, a reasonable choice here
would be to use the “standard” value of 0.05.

Some examples of problems for which one or the other type of error is
more serious include the following:

• Malnutrition among young children can have serious consequences. Assume
that six-year-old children should average about 10 kg in weight to be
considered normal. If a sample of children from a low-income neighborhood
is to be tested5 for subnormal weight, we would probably use H0: μ = 10 kg

5An alternative hypothesis that specifies values in only one direction from the null hypothesis
is called a one-sided or one-tailed alternative and requires some modifications in the testing
procedure. One-tailed hypothesis tests are discussed later in this section.
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and H1: μ < 10 kg. Rejection of the null hypothesis implies that the children
in that neighborhood are of subnormal weight, which may lead to an ex-
panded school lunch program. A type I error would cause the initiation of
an expanded school lunch program for children who do not need it, which
would be an unnecessary expenditure, but would certainly do no physical
harm to the children. Hence the type I error is not very serious. A type II
error, on the other hand, would result in no expanded school lunch program
being initiated for children who really need it. This error appears to be more
serious, and a low level of β would be needed. This, of course, would indi-
cate that a high level of α would be chosen (or a different testing principle,
see Section 3.6).

• A chemist working for a major food company has developed a new formula-
tion for instant pudding that he believes tastes better but is more expensive
to make. Using a sample of taste testers and a rating scale, he tests H0:
the mean rating of the new formulation is the same as that of the old for-
mulation, against H1: the mean rating for the new pudding is larger than
that of the old. A type I error would result if the hypothesis test concluded
that the new pudding tastes better and it really does not. The result of this
error would be marketing a product that costs more but does not taste
better, probably causing the company to lose a share of the market, which
would be a relatively costly error. A type II error would result in failing
to market a superior pudding at this time, which could potentially result
in some loss of income. Therefore, a low value for α would appear to be
appropriate.

• When a drug company tests a new drug, there are two considerations that
must be tested: (1) the toxicity (side effects) and (2) the effectiveness. For
(1), the null hypothesis would be that the drug is toxic. This is because we
would want to “prove” that it is not. For this test we would want a very
small α, because a type I error would have extremely serious consequences
(a significance level of 0.0001 would not be uncommon). For (2), the null
hypothesis would be that the drug is not effective and a type I error would
result in the drug being put on the market when it is not effective. The ramifi-
cations of this error would depend on the existing competitive drug market
and the cost to both the company and society of marketing an ineffective
drug.

DEFINITION 3.8
The test statistic is a sample statistic whose sampling distribution can
be specified for both the null and alternative hypothesis case (although
the sampling distribution when the alternative hypothesis is true may
often be quite complex). After specifying the appropriate significance
level of α, the sampling distribution of this statistic is used to define the
rejection region.
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DEFINITION 3.9
The rejection region comprises the values of the test statistic for which
(1) the probability when the null hypothesis is true is less than or equal
to the specified α and (2) probabilities when H1 is true are greater than
they are under H0.

In Step 2 we define the test statistic and the rejection region.
For Example 3.3 the appropriate test statistic is the sample mean. The

sampling distribution of this statistic has already been used to show that the
initially proposed rejection region of ȳ < 7.9 and ȳ > 8.1 produces a value of
0.0456 for α. If we had wanted α to be 0.05, this rejection region would appear to
have been a very lucky guess! However, in most hypothesis tests it is necessary
to specify α first and then use this value to delineate the rejection region. In
the discussion of the significance level for Example 3.3 an appropriate level of
α was chosen to be 0.05.

Remember, α is defined as

P(Ȳ falls in the rejection region when H0 is true).

We define the rejection region by a set of boundary values, often called critical
values, that are denoted by C1 and C2. The probability α is then defined as

P(Ȳ < C1 when μ = 8) + P(Ȳ > C2 when μ = 8).

We want to find values of C1 and C2 so that this probability is 0.05. This is
obtained by finding the C1 and C2 that satisfy the expression

α = P

[
Z <

C1 − 8

0.2/
√

16

]
+ P

[
Z >

C2 − 8

0.2/
√

16

]
= 0.05,

where Z is the standard normal variable. Because of the symmetry of the
normal distribution, exactly half of the rejection region is in each tail; hence,

P =
[

Z <
C1 − 8

0.05

]
= P

[
Z >

C2 − 8
0.05

]
= 0.025.

The values of C1 and C2 that satisfy this probability statement are found by
using the standard normal table, where we find that the values of z = −1.96
and z = +1.96 satisfy our probability criteria. We use these values to solve for
C1 and C2 in the equations [(C1−8)/0.05] = −1.96 and [(C2−8)/0.05] = 1.96.
The solution yields C1 = 7.902 and C2 = 8.098; hence, the rejection region is

ȳ < 7.902 or ȳ > 8.098,

as seen in Fig. 3.2. The rejection region of Fig. 3.2 is given in terms of the test
statistic Ȳ , the sample mean.

It is computationally more convenient to express the rejection region in
terms of a test statistic that can be compared directly to a table, such as that
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of the normal distribution. In this case the test statistic is

Z = Ȳ − μ

σ/
√

n

= Ȳ − 8
0.05

,

which has the standard normal distribution and can be compared directly with
the values read from the table. Then the rejection region for this statistic is

z < −1.96 or z > 1.96,

which can be more compactly written as |z| > 1.96. In other words we reject
the null hypothesis if the value we calculate for Z has an absolute value (value
ignoring sign) larger than 1.96.

Step 3 of the hypothesis test is to collect the sample data and compute
the test statistic. (While this strict order may not be explicitly followed in
practice, the sample data should not be used until the first two steps have been
completed!) In Example 3.3, suppose our sample of 16 peanut jars yielded a
sample mean value ȳ = 7.89. Then

z = (7.89 − 8)/0.05 = −2.20, or |z| = 2.20.

Step 4 compares the value of the test statistic to the rejection region
to make the decision. In this case we have observed that the value 2.20 is
larger than 1.96 so our decision is to reject H0. This is often referred to as a
“statistically significant” result, which means that the difference between the
hypothesized value of μ = 8 and the observed value of ȳ = 7.89 is large enough
to be statistically significant.
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In Step 5 we then conclude that the mean weight of nuts being put into
jars is not the desired 8 oz. and the machine should be adjusted.

The Five Steps for Example 3.3

The hypothesis for Example 3.3 is summarized as follows:

Step 1:

H0: μ = 8

H1: μ 
= 8

α = 0.05.

Step 2: The test statistic is

Z = Ȳ − 8

0.2/
√

16

whose sampling distribution is the standard normal. We specify α = 0.05;
hence we will reject H0 if |z| > 1.96.

Step 3: Sample results: n = 16, ȳ = 7.89, σ = 0.2 (assumed);

z = (7.89 − 8)/[0.2/
√

16] = −2.20, hence |z| = 2.20.

Step 4: |z| > 1.96; hence we reject H0.
Step 5: We conclude μ 
= 8 and recommend that the machine be adjusted.

Suppose that in our initial setup of the hypothesis test we had chosen α to be
0.01 instead of 0.05. What changes? This test is summarized as follows:

Step 1:

H0: μ = 8

H1: μ 
= 8

α = 0.01.

Step 2: Reject H0 if |z| > 2.576.
Step 3: Sample results: n = 16, σ = 0.2, ȳ = 7.89;

z = (7.89 − 8)/0.05 = −2.20.

Step 4: |z| < 2.576; hence we fail to reject H0: μ = 8.
Step 5: We do not recommend that the machine be readjusted.

We now have a problem. We have failed to reject the null hypothesis and do
nothing. However, remember that we have not proved that the machine is
working perfectly. In other words, failing to reject the null hypothesis does

not mean the null hypothesis was accepted. Instead, we are simply saying
that this particular test (or experiment) does not provide sufficient evidence
to have the machine adjusted at this time. In fact, in a continuing quality control
program, the test will be repeated in due time.
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P Values

Having to specify a significance level before making a hypothesis test seems
unnecessarily restrictive because many users do not have a fixed or definite
idea of what constitutes an appropriate value for α. Also it is quite difficult to
do when using computers because the user would have to specify an alpha for
every test being requested. Another problem with using a specified significance
level is that the ultimate conclusion may be affected by very minor changes in
sample statistics.

As an illustration, we observed that in Example 3.3 the sample value of 7.89
leads to rejection with α = 0.05. However, if the sample mean had been 7.91,
certainly a very similar result, the test statistic would be −1.8, and we would
not reject H0. In other words, the decision of whether to reject may depend on
minute differences in sample results.

We also noted that with a sample mean of 7.89 we would reject H0 with
α = 0.05 but not with α = 0.01. The logical question then is this: What about
α = 0.02, or α = 0.03, or . . . ? This question leads to a method of reporting
the results of a significance test without having to choose an exact level of
significance, but instead leaves that decision to the individual who will actually
act on the conclusion of the test. This method of reporting results is referred
to as reporting the p value.

DEFINITION 3.10
The p value is the probability of committing a type I error if the actual
sample value of the statistic is used as the boundary of the rejection
region. It is therefore the smallest level of significance for which we
would reject the null hypothesis with that sample. Consequently, the p

value is often called the “attained” or the “empirical” significance level.
It is also interpreted as an indicator of the weight of evidence against the
null hypothesis.

In Example 3.3, the use of the normal table allows us to calculate the p value
accurate to about four decimal places. For the sample ȳ = 7.89, this value is
P(|Z| > 2.20). Remembering the symmetry of the normal distribution, this is
easily calculated to be 2P(Z > 2.20) = 0.0278. This means that the manage-
ment of the peanut-packing establishment can now evaluate the results of this
experiment. They would reject the null hypothesis with a level of significance
of 0.0278 or higher, and fail to reject it at anything lower.

Using the p value approach, Example 3.3 is summarized as follows:

Step 1:

H0: μ = 8

H1: μ 
= 8.

Step 2: Sample: n = 16, σ = 0.2, ȳ = 7.89;

z = (7.89 − 8)/0.05 = −2.20.
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Step 3: p = P(|Z| > 2.20) = 0.0278; hence the p value is 0.0278. Therefore,
we can say that the probability of observing a test statistic at least this extreme
if the null hypothesis is true is 0.0278.

One feature of this approach is that the significance level need not be specified
by the statistical analyst. In situations where the statistical analyst is not the
same person who makes decisions, the analyst provides the p value and the
decision maker determines the significance level based on the costs of making
the type I error. For these reasons, many research journals now require that
the results of such tests be published in this manner.

It is, in fact, actually easier for a computer program to provide p values,
which are often given to three or more decimal places. However, when tests
are calculated manually we must use tables. And because many tables provide
for only a limited set of probabilities, p values can only be approximately
determined. For example, we may only be able to state that the p value for the
peanut jar example is between 0.01 and 0.05.

Note that the five steps of a significance test require that the significance
level α be specified before conducting the test, while the p value is determined
after the data have been collected and analyzed. Thus the use of a p value and
a significance test are similar, but not strictly identical. It is, however, possible
to use the p value in a significance test by specifying α in Step 1 and then
altering Step 3 to read: Compute the p value and compare with the desired
α. If the p value is smaller than α, reject the null hypothesis; otherwise fail to
reject.

ALTERNATE DEFINITION 3.10
A p value is the probability of observing a value of the test statistic that
is at least as contradictory to the null hypothesis as that computed from
the sample data.

Thus the p value measures the extent to which the test statistic disagrees with
the null hypothesis.

EXAMPLE 3.4 An aptitude test has been used to test the ability of fourth graders to reason
quantitatively. The test is constructed so that the scores are normally dis-
tributed with a mean of 50 and standard deviation of 10. It is suspected that,
with increasing exposure to computer-assisted learning, the test has become
obsolete. That is, it is suspected that the mean score is no longer 50, although σ

remains the same. This suspicion may be tested based on a sample of students
who have been exposed to a certain amount of computer-assisted learning.

Solution The test is summarized as follows:

1.

H0: μ = 50,

H1: μ 
= 50.
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2. The test is administered to a random sample of 500 fourth graders. The test
statistic is

Z = Ȳ − 50

10/
√

500
.

The sample yields a mean of 51.07. The test statistic has a value of

z = 51.07 − 50

10/
√

500
= 2.39.

3. The p value is computed as 2P(Z > 2.39) = 0.0168. Because the construc-
tion of a new test is quite expensive, it may be determined that the level
of significance should be less than 0.01, in which case the null hypothesis
will not be rejected. However, the p value of 0.0168 may be considered suf-
ficiently small to justify further investigation, say, by performing another
experiment. ■

Type II Error and Power

In presenting the procedures for hypothesis and significance tests we have
concentrated exclusively on the control over α, the probability of making the
type I error. However, just because that error is the more serious one, we cannot
completely ignore the type II error. There are many reasons for ascertaining
the probability of that error, for example:

• The probability of making a type II error may be so large that the test may
not be useful. This was the case for Example 3.2.

• Because of the trade-off between α and β, we may find that we may need
to increase α in order to have a reasonable value for β.

• Sometimes we have a choice of testing procedures where we may get
different values of β for a given α.

Unfortunately, calculating β is not always straightforward. Consider Exam-
ple 3.3. The alternative hypothesis, H1: μ 
= 8, encompasses all values of μ not
equal to 8. Hence there is a sampling distribution of the test statistic for each
unique value of μ, each producing a different value for β. Therefore β must be
evaluated for all values of μ contained in the alternative hypothesis, that is, all
values of μ not equal to 8.

This is not really necessary. For practical purposes it is sufficient to cal-
culate β for a few representative values of μ and use these values to plot a
function representing β for all values of μ not equal to 8. A graph of β versus
μ is called an “operating characteristic curve” or simply an OC curve.

To construct the OC curve for Example 3.3, we first select a few values of
μ and calculate the probability of a type II error at these values. For example,
consider μ = 7.80, 7.90, 7.95, 8.05, 8.10, and 8.20. Recall that for α = 0.05
the rejection region is ȳ < 7.902 or ȳ > 8.098. The probability of a type II
error is then the probability that Ȳ does not fall in the rejection region, that is,
P(7.902 ≤ Ȳ ≤ 8.098), which is to be calculated for each of the specific values
of μ given above.
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Figure 3.3 shows the sampling distribution for the mean if the population
mean is 7.95 as well as the rejection region (nonshaded area) for testing the
null hypothesis that μ = 8. The type II error occurs when the sample mean is
not in the rejection region. Therefore, as seen in the figure, the probability of
a type II error when the true value of μ is 7.95 is

β = P(7.902 ≤ Ȳ ≤ 8.098 when μ = 7.95)

= P{[(7.902 − 7.95)/0.05] ≤ Z ≤ [(8.098 − 7.95)/0.05]}
= P(−0.96 ≤ Z ≤ 2.96) = 0.8300,

obtained by using the table of the normal distribution. This probability corre-
sponds to the shaded area in Fig. 3.3.

Similarly, the probability of a type II error when μ = 8.05 is

β = P(7.902 ≤ Ȳ ≤ 8.098 when μ = 8.05)

= P{[(7.902 − 8.05)/0.05] ≤ Z ≤ [(8.098 − 8.05)/0.05]}
= P(−2.96 ≤ Z ≤ 0.96) = 0.8300.

These two values of β are the same because of the symmetry of the nor-
mal distribution and also because in both cases μ is 0.05 units from the null
hypothesis value. The probability of a type II error when μ = 7.90, which is
the same as that for μ = 8.10, is calculated as

β = P(7.902 ≤ Ȳ ≤ 8.098 when μ = 7.90)

= P(0.04 ≤ Z ≤ 3.96) = 0.4840.

In a similar manner we can obtain β for μ = 7.80 and μ = 8.20, which has the
value 0.0207.
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While it is impossible to make a type II error when the true mean is equal
to the value specified in the null hypothesis, β approaches (1 − α) as the true
value of the parameter approaches that specified in the null hypothesis. The OC
curve can now be constructed using these values. Figure 3.4 gives the OC curve
for Example 3.3. Note that the curve is indeed symmetric and continuous. Its
maximum value is (1 − α) = 0.95 at μ = 8, and it approaches zero as the true
mean moves further from the H0 value. From this OC curve we may read (at
least approximately) the value of β for any value of μ we desire.

The OC curve shows the logic behind the hypothesis testing procedure as
follows:

• We have controlled the probability of making the more serious type I error.
• The OC curve shows that the probability of making the type II error is larger

when the difference between the true value of the mean is close to the null
hypothesis value, but decreases as that difference becomes greater. In other
words, the higher probabilities of failing to reject the null hypothesis occur
when the null hypothesis is “almost” true, in which case the type II error
may not have serious consequences.

For example, in the peanut jar problem, failing to reject simply means that
we continue using the machine but also continue the sampling inspection plan.
If the machine is only slightly off, continuing the operation is not likely to have
very serious consequences, but since sampling inspection continues, we will
have the larger probability of rejection if the machine strays very far from its
target.

Power

As a practical matter we are usually more interested in the probability of not
making a type II error, that is, the probability of correctly rejecting the null
hypothesis when it is false.
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DEFINITION 3.11
The power of a test is the probability of correctly rejecting the null
hypothesis when it is false.

The power of a test is (1−β) and depends on the true value of the parameter
μ. The graph of power versus all values of μ is called a power curve. The power
curve for Example 3.3 is given in Fig. 3.5. Some features of a power curve are
as follows:
• The power of the test increases and approaches unity as the true mean gets

further from the null hypothesis value. This feature simply confirms that it
is easier to deny a hypothesis as it gets further from the truth.

• As the true value of the population parameter approaches that of the null
hypothesis, the power approaches α.

• Decreasing α while keeping the sample size fixed will produce a power
curve that is everywhere lower. That is, decreasing α decreases the power.

• Increasing the sample size will produce a power curve that has a sharper
“trough”; hence (except at the null hypothesis value) the power is higher
everywhere. That is, increasing the sample size increases the power.

Uniformly Most Powerful Tests

Obviously high power is a desirable property of a test. If a choice of tests is
available, the test with the largest power should be chosen. In certain cases,
theory leads us to a test that has the largest possible power for any speci-
fied alternative hypothesis, sample size, and level of significance. Such a test
is considered to be the best possible test for the hypothesis and is called a
“uniformly most powerful” test. The test discussed in Example 3.3 is a uni-
formly most powerful test for the conditions specified in the example.

The computations involved in the construction of a power curve are not
simple, and they become increasingly difficult for the applications in
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subsequent chapters. Fortunately, the performance of such computations of-
ten is not necessary because virtually all of the procedures we will be us-
ing provide uniformly the most powerful tests, assuming that basic assump-
tions are met. We discuss these assumptions in subsequent chapters and pro-
vide some information on what the consequences may be of nonfulfillment of
assumptions.

Power calculations for more complex applications can be made easier
through the use of computer programs. While there is no single program that
calculates power for all hypothesis tests, some programs either have the option
of calculating power for specific situations or can be adapted to do so. One
example using the SAS System can be found in Wright and O’Brien (1988).

One-Tailed Hypothesis Tests

In Examples 3.3 and 3.4 the alternative hypothesis simply stated that μ was not
equal to the specified null hypothesis value. That is, the null hypothesis was to
be rejected if the evidence showed that the population mean was either larger
or smaller than that specified by the null hypothesis. For some applications
we may want to reject the null hypothesis only if the value of the parameter is
larger or smaller than that specified by the null hypothesis.

Solution to Example 3.1 In the example at the beginning of the chapter,
we were interested in determining whether leasing office space in Atlanta costs
more than that in Jacksonville. If we let μ be the mean cost per square foot
of office space in Atlanta, and if we assume the standard deviation of costs is
the same in both cities (σ = 4.50), we can answer the question by testing the
hypothesis6

H0: μ = $12.61,

H1: μ > $12.61.

Note that the alternative hypothesis statement is now “greater than.” Even
though the possibility exists that the cost may be less in Atlanta than in
Jacksonville, we really don’t care. That is, the decision to move is to be based
on the condition that the cost is higher in Atlanta. The businessman will stay
in Atlanta if it costs no more to stay. The test statistic is calculated as before:
z = (13.55 − 12.61)/(4.50/6) = 1.25. However, in this case rejection of H0 is
logical only if the value of ȳ is larger than that specified by H0, which cor-
responds to positive values for the test statistic z. Thus the entire rejection
region is in the upper tail. A test that locates the rejection region only in one
tail of the sampling distribution is known as a “one-tailed” (or one-sided) test.
For this example, we will let α = 0.10, and the rejection value is z = 1.28 (the

6To be consistent with the specification that the two hypotheses must be exhaustive, some authors
will specify the null hypothesis as μ ≤ 12.61 for this situation. We will stay with the single-valued
null hypothesis statement whether we have a one- or two-tailed alternative. We maintain the
exclusive and exhaustive nature of the two hypothesis statements by stating that we do not
concern ourselves with values of the parameter in the “other” tail.
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value for the Z distribution exceeded with probability 0.10 from Appendix
Table A.1, rounded to two decimals). Since the calculated value of z is 1.25,
which does not exceed 1.28, we would not reject the null hypothesis, conclud-
ing that there is insufficient evidence that the mean cost in Atlanta is higher
than that in Jacksonville. Alternately the p value for this test is obtained di-
rectly from the table:

p = P(Z > 1.25) = 0.1056.

The advantage of a one-tailed test over a two-tailed test is that for a given
level of significance, the power is larger when the value of μ is in the range of
the alternative hypothesis. This is illustrated by comparing the power curves of
a one-tailed (- - -) and two-tailed (—) test as seen in Fig. 3.6. The disadvantage
of a one-tailed test is that the power is essentially zero on the “other” side and,
in fact, approaches zero as the true value of the parameter moves away from
the null hypothesis value. (Obviously we have no interest in the “other side”
as shown by the choice of H1.) In this example, we would not be able to reject
the null hypothesis even if ȳ were as extreme as $5, since we do not have a
rejection region in that direction. Therefore a one-tailed test should never be
used if there is any concern over the true value of the parameter being on the
“other” side. ■

The decision on whether to perform a one- or two-tailed test is determined
entirely by the problem statement. A one-tailed test is indicated by the alter-
native or research hypothesis, stating that only larger (or smaller) values of
the parameter are of interest. In the absence of such specification, a two-tailed
test should be employed.

3.3 Estimation

In many cases we do not necessarily have a hypothesized value for the param-
eter that we want to test; instead we simply want to make a statement about
the value of the parameter. For example, a large business may want to know
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the mean income of families in a target population near a proposed retail sales
outlet. A chemical company may want to know the average amount of a chem-
ical produced in a certain reaction. An animal scientist may want to know the
mean yield of marketable meat of animals fed a certain ration. In each of these
examples we use data from a sample to estimate the value of a parameter
of the population. These are all examples of the inferential procedure called
estimation.

As we will see, estimation and testing share some common characteristics
and are often used in conjunction. For example, assume that we had rejected
the hypothesis that the peanut-filling machine was putting 8 oz. of peanuts in
the jars. It is then logical to ask, how much is the machine putting in the jars?
The answer to this question could be useful in the effort to fix it.

The most obvious estimate of a population parameter is the corresponding
sample statistic. This single value is known as a point estimate. For example,
for estimating the parameter μ, the best point estimate is the sample mean
ȳ. For estimating the parameter p in a binomial experiment, the best point
estimate is the sample proportion p̂ = y/n.

For Example 3.3, the best point estimate of the mean weight of peanuts is
the sample mean, which we found to be 7.89. We know that a point estimate
will vary among samples from the same population. In fact, the probability
that any point estimate exactly equals the true population parameter value is
essentially zero for any continuous distribution. This means that if we make
an unqualified statement of the form “μ is ȳ,” that statement has almost no
probability of being correct.

Thus a point estimate appears to be precise, but the precision is illusory
because we have no confidence that the estimate is correct. In other words, it
provides no information on the reliability of the estimate. A common practice
for avoiding this dilemma is to “hedge,” that is, to make a statement of the form
“μ is almost certainly between 7.8 and 8.” This is an interval estimate, and is
the idea behind the statistical inference procedure known as the confidence

interval. Admittedly a confidence interval does not seem as precise as a point
estimate, but it has the advantage of having a known (and hopefully high)
reliability.

DEFINITION 3.12
A confidence interval consists of a range of values together with a
percentage that specifies how confident we are that the parameter lies
in the interval.

Estimation of parameters with intervals uses the sampling distribution of the
point estimate. For example, to construct an interval estimate of μ we use
the already established sampling distribution of Ȳ (see Section 2.5). Using the
characteristics of this distribution we can make the statement

P[(μ − 1.96σ/
√

n) < Ȳ < (μ + 1.96σ/
√

n)] = 0.95.
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An exercise in algebra provides a rearrangement of the inequality inside the
parentheses without affecting the probability statement:

P[(Ȳ − 1.96σ/
√

n) < μ < (Ȳ + 1.96σ/
√

n)] = 0.95.

In general, using the notation of Chapter 2 we can write the probability state-
ment as

P[(Ȳ − zα/2σ/
√

n) < μ < (Ȳ + zα/2σ/
√

n)] = (1 − α).

Then, our interval estimate of μ is

(ȳ − zα/2σ/
√

n) to (ȳ + zα/2σ/
√

n).

This interval estimate is called a confidence interval, and the lower and
upper boundary values of the interval are known as confidence limits. The
probability used to construct the interval is called the level of confidence or
confidence coefficient. This confidence level is the equivalent of the “almost
certainly” alluded to in the preceding introduction. We thus say that we are
(1 − α) confident that this interval contains the population mean. The confi-
dence coefficient is often given as a percentage, for example, a 95% confidence
interval.

For Example 3.3, a 0.95 confidence interval (or 95% confidence interval)
lies between the values

7.89 − 1.96(0.2)/
√

16 and 7.89 + 1.96(0.2)/
√

16

or

7.89 ± 1.96(0.05), or 7.89 ± 0.098.

Hence, we say that we are 95% confident that the true mean weight of peanuts
is between 7.792 and 7.988 oz. per jar.

Interpreting the Confidence Coefficient

We must emphasize that the confidence interval statement is not a standard
probability statement. That is, we cannot say that with 0.95 probability μ lies
between 7.792 and 7.988. Remember that μ is a fixed number, which by defi-
nition has no distribution. This true value of the parameter either is or is not
in a particular interval, and we will likely never know which event has oc-
curred for a particular sample. We can, however, state that 95% of the intervals
constructed in this manner will contain the true value of μ.

DEFINITION 3.13
The maximum error of estimation, also called the margin of error, is
an indicator of the precision of an estimate and is defined as one-half the
width of a confidence interval.
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We can write the formula for the confidence limits on μ as ȳ ± E, where

E = zα/2σ/
√

n

is one-half of the width of the (1 − α) confidence interval. The quantity E can
also be described as the farthest that μ may be from ȳ and still be in the con-
fidence interval. This value is a measure of how “close” our estimate may be
to the true value of the parameter. This bound on the error of estimation, E,
is most often associated with a 95% confidence interval, but other confidence
coefficients may be used. Incidentally, the “margin of error” often quoted in
association with opinion polls is indeed E with an unstated 0.95 confidence
level.

The formula for E illustrates for us the following relationships among
E, α, n, and σ :

1. If the confidence coefficient is increased (α decreased) and the sample
size remains constant, the maximum error of estimation will increase (the
confidence interval will be wider). In other words, the more confidence we
require, the less precise a statement we can make, and vice versa.

2. If the sample size is increased and the confidence coefficient remains con-
stant, the maximum error of estimation will be decreased (the confidence
interval narrower). In other words, by increasing the sample size we can
increase precision without loss of confidence, or vice versa.

3. Decreasing σ has the same effect as increasing the sample size. This may
seem a useless statement, but it turns out that proper experimental design
(Chapter 10) can often reduce the standard deviation.

Thus there are trade-offs in interval estimation just as there are in hypothesis
testing. In this case we trade precision (narrower interval) for higher confi-
dence. The only way to have more confidence without increasing the width
(or vice versa) is to have a larger sample size.

EXAMPLE 3.5 Suppose that a population mean is to be estimated from a sample of size 25
from a normal population with σ = 5.0. Find the maximum error of estimation
with confidence coefficients 0.95 and 0.99. What changes if n is increased to
100 while the confidence coefficient remains at 0.95?

Solution

1. The maximum error of estimation of μ with confidence coefficient 0.95 is

E = 1.96(5/
√

25) = 1.96.

2. The maximum error of estimation of μ with confidence coefficient 0.99 is

E = 2.576(5/
√

25) = 2.576.

3. If n = 100 then the maximum error of estimation of μ with confidence
coefficient 0.95 is

E = 1.96(5/
√

100) = 0.98.
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Note that increasing n fourfold only halved E. The relationship of sample size
to confidence intervals is discussed further in Section 3.4. ■

Relationship between Hypothesis Testing and Confidence Intervals

As noted previously there is a direct relationship between hypothesis testing
and confidence interval estimation. A confidence interval on μ gives all accept-
able values for that parameter with confidence (1 − α). This means that any
value of μ not in the interval is not an “acceptable” value for the parameter.
The probability of being incorrect in making this statement is, of course, α.
Therefore,

a hypothesis test for H0: μ = μ0 against H1: μ 
= μ0 will be rejected at a
significance level of α if μ0 is not in the (1 − α) confidence interval for μ.

Conversely,

any value of μ inside the (1 − α) confidence interval will not be rejected
by an α-level significance test.

For Example 3.3, the 95% confidence interval is 7.792 to 7.988. The hy-
pothesized value of 8 is not contained in the interval; therefore we would
reject the hypothesis H0:μ = 8 at the 0.05 level of significance. For Example
3.4, a 99% confidence interval on μ is 49.92 to 52.22. The hypothesis H0:μ = 50
would not be rejected with α = 0.01 because the value 50 does lie within the
interval. These results are, of course, consistent with results obtained from
the hypothesis tests presented previously.

As in hypothesis testing, one-sided confidence intervals can be constructed.
In Example 3.1 we used a one-sided alternative hypothesis, H1: μ > $12.61.
This corresponds to finding the lower confidence limit so that the confidence
statement will indicate that the mean score is at least that amount or higher.
For this example, then, the lower (1 − α) limit is

ȳ − zα(σ/
√

n),

which results in the lower 0.90 confidence limit:

13.55 − 1.28(4.50/6) = 12.59.

Thus we are 90% confident that the mean cost per square foot of office space
in Atlanta is at least $12.59. This confirms our previous conclusion that there
was no evidence that Atlanta cost was higher than the $12.61 in Jacksonville
since 12.61 is in the confidence interval.
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3.4 Sample Size

We have noted that in both hypothesis testing and interval estimation, a definite
relationship exists between sample size and the precision of our results. In fact,
the best possible sample appears to be the one that contains the largest num-
ber of observations. This is not necessarily the case. The cost and effort of
obtaining the sample and processing and analyzing the data may offset the
added precision of the results. Remember that costs often increase linearly
with sample size, while precision, in terms of E, decreases only with the square
root of the sample size. It is therefore not surprising that the question of sample
size is of major concern. Because of the relationship of sample size to the preci-
sion of statistical inference, we can answer the question of optimal sample size.

Consider the problem of estimating μ using a sample from a normal popu-
lation with known standard deviation, σ . We want to find the required sample
size, n, for a specified maximum value of E. Using the formula for E,

E = zα/2σ√
n

,

we can solve for n, resulting in

n = z2
α/2σ

2

E2
.

Thus, given values for σ and α and a specified maximum E, we can determine
the required sample size for the desired precision. For example, suppose that
in Example 3.3 we wanted a 99% confidence interval for the mean weight to be
no wider than 0.10 oz. This means that E = 0.05. The required sample size is

n = (2.576)2(0.2)2/(0.5)2

= 106.2.

We round up to the nearest integer, so the required sample size is 107. This is
a large sample, but both the confidence coefficient and the required precision
were both quite strict. This example illustrates an often encountered problem:
Requirements are often made so strict that unreasonably large sample sizes
are required.

Sample size determination must satisfy two prespecified criteria:

1. the value of E, the maximum error of estimation (or, equivalently, the width
of the confidence interval), and

2. the required level of confidence (the confidence coefficient, 1 − α).

In other words, it is not only sufficient to require a certain degree of precision,
but it is also necessary to state the degree of confidence. Since the degree of
confidence is so often assumed to be 0.95, it is usually not stated, which may
give the incorrect impression of 100% confidence! It is, of course, also neces-
sary to have an estimated value for σ 2 if we are estimating μ. In many cases, we
have to use rough approximations of the variance. One such approximation
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can be obtained from the empirical rule discussed in Chapter 1. If we can
determine the expected range of values of the results of the experiment, we can
use the empirical rule to obtain an estimate of the standard deviation. That is,
we could use the range divided by 4 to estimate the standard deviation. This is
because the empirical rule states that 95% of the values of a distribution will be
plus or minus 2σ from the mean. Thus, 95% of the values will be in the 4σ range.

EXAMPLE 3.6 In a study of the effect of a certain drug on the behavior of laboratory animals,
a research psychologist needed to determine the appropriate sample size. The
study was to estimate the time necessary for the animal to travel through a
maze under the influence of this drug.

Solution Since no previous studies had been conducted on this drug, no
independent estimate for the variation of times was available. Using the
conventional confidence level of 95%, a bound on the error of estimation of
5 seconds, and an anticipated range of times of from 15 to 60 seconds, what
sample size would the psychologist need?

1. First, an estimate of the standard deviation was obtained from the range by
dividing by 4:

EST(σ ) = (60 − 15)/4 = 11.25.

2. The sample size was determined as n = [(1.96)2(11.25)2]/52 = 19.4.
3. Round up to n = 20, so the researcher needs 20 animals in the study.

The formula for the required sample size clearly indicates the trade-off between
the interval width (the value of E) and the degree of confidence. In Example
3.6, narrowing the width to 1 would give

n = (1.96)2(11.25)2/(1)2 = 487.

■

Requirements for being able to detect a specified difference between the
null and alternate hypotheses with a given degree of significance can be con-
verted to the desired width of a confidence interval by remembering the equiv-
alence of the two procedures.

In Example 3.4 we may want to be able to detect, at the 0.01 level of
significance, a change of one unit in the average test score. According to the
equivalence, this requires a 99% confidence interval of plus or minus one unit,
hence E = 1. The required sample size is

n = (2.576)2(10)2/(1)2 = 664.

This, of course, may not always be possible, or may not be the best way to
approach the problem. What we need is a way to compute directly the required
sample size for conducting a hypothesis test, using the constraints usually
developed in the process of testing a hypothesis. For example, we might be
interested in determining how big a sample we need to have reasonable power
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against a specified value of μ, say μa, in the hypothesis

H0: μ = μ0 vs

H1: μ > μ0.

That is, we want to determine what sample size will give us adequate protection
against mean values in the alternative (values of μa greater than μ0) that have
some negative impact on the process under scrutiny. In this case, however,
several prespecified criteria must be considered. We need to satisfy:

1. the required level of significance (α),
2. the difference, called δ (delta), between the hypothesized value and the

specified value (δ = μa − μ0), and
3. the probability of a type II error (β) when the real mean is at this specified

value (or one larger than the specified value).

The value of n that satisfies these criteria can be obtained using the formula

n = σ 2(zα + zβ)
δ2

,

where all the components of this formula have been defined.
Suppose that in Example 3.6 we wanted to test the following set of

hypotheses:

H0: μ = 35 s vs

H1: μ > 35 s.

We use a level of significance α = 0.05, and we decide that we are willing to risk
making a type II error of β = 0.10 if the actual mean time is 37 s. This means
that the power of the test at μ = 37 s will be 0.90. The difference between
the hypothesized value of the mean and the specified value of the mean is
δ = 37 − 35 = 2. In Example 3.6 we estimated the value of the standard
deviation as 11.25. We can substitute this value for σ in the formula, obtain the
necessary values from Appendix Table A.1A, and calculate n as

n = (11.25)2 (1.64485 + 1.28155)2

(2)2
= 271.

Therefore, if we take a sample of size n = 271 we can expect to reject the
hypothesis that μ = 35 if the real mean value is 37 or higher with probability
0.90.

The procedure for a hypothesis test with a one-sided alternative in the other
direction is almost identical. The only difference is that μa will be less than
μ0. To use a two-sided alternative, we use the following formula to calculate
the required sample size,

n = σ 2(zα/2 + zβ)2

δ2
,

where δ = |μa − μ0|.
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In Example 3.4 we might want to be more rigorous in our definition of the
problem, and rather than saying that we simply want to detect a difference of
one unit, say instead that we want to reject the null hypothesis if the deviation
from the hypothesized value is one unit or more with probability 99%. That is,
we would reject the null hypothesis if it were less than 49 or greater than 51
with power of 0.99. Using the values of σ = 10, α = 0.01, β = 0.01, and δ = 1,
we get

n = (10)2 (2.57583 + 2.32635)2

(1)2
= 2404.

Note that this is larger than the value we obtained using the confidence interval
approach; this is because we imposed more rigorous criteria.

These examples of sample size determination are relatively straightforward
because of the simplicity of the methods used. If we did not know the standard
deviation in a hypothesis test on the mean, or if we were using any of the
hypothesis testing procedures discussed in subsequent chapters, we would not
have such simple formulas for calculating n. There are, however, tables and
charts that enable sample size determination to be done for most hypotheses
tests. See, for example, Neter et al. (1996).

3.5 Assumptions

In this chapter we have considered inferences on the population mean in
situations where it can be assumed that the sampling distribution of the mean
is reasonably close to normal. Inference procedures based on the assumption
of a normally distributed sample statistic are referred to as normal theory
methods.

In Section 2.5 we pointed out that the sampling distribution of the sample
mean is normal if the population itself is normal, or if the sample size is large
enough to satisfy the central limit theorem. However, normality of the sampling
distribution of the mean is not always assured for relatively small samples,
especially those from highly skewed distributions or where the observations
may be dominated by a few extreme values. In addition, as noted in Chapter 1,
some data may be obtained as ordinal values such as ranks, or nominal values
such as categorical data. Such data are not readily amenable to analysis by the
methods designed for interval data.

When the assumption of normality does not hold, use of methods requiring
this assumption may produce misleading inferences. That is, the significance
level of a hypothesis test or the confidence level of an estimate may not be as
specified by the procedure. For instance, the use of the normal distribution
for a test statistic may indicate rejection at the 0.05 significance level, but
due to nonfulfillment of the assumptions, the true protection against making a
type I error may be as high as 0.10. (Refer to Section 4.5 for ways to determine
whether the normality assumption is valid.)
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Unfortunately, we cannot know the true value of α in such cases. For
this reason alternate procedures have been developed for situations in which
normal theory methods are not applicable. Such methods are often described
as “robust” methods, because they provide the specified α for virtually all
situations. However, this added protection is not free: Most of these robust
methods have wider confidence intervals and/or have power curves generally
lower than those provided by normal theory methods when the assumption of
normality is indeed satisfied.

Various principles are used to develop robust methods. Two often used
principles are as follows:

1. Trimming, which consists of discarding a small prespecified portion of the
most extreme observations and making appropriate adjustments to the test
statistics.

2. Nonparametric methods, which avoid dependence on the sampling dis-
tribution by making strictly probabilistic arguments (often referred to as
distribution-free methods).

In subsequent chapters we will give examples of situations in which assump-
tions are not fulfilled and briefly describe some results of alternative methods.
A more complete presentation of nonparametric methods is found in Chapter
13. Trimming and other robust methods are not presented in this text (see
Koopmans, 1987).

Statistical Significance versus Practical Significance

The use of statistical hypothesis testing provides a powerful tool for decision
making. In fact, there really is no other way to determine whether two or
more population means differ based solely on the results of one sample or one
experiment. However, a statistically significant result cannot be interpreted
simply by itself. In fact, we can have a statistically significant result that has
no practical implications, or we may not have a statistically significant result,
yet useful information may be obtained from the data. For example, a market
research survey of potential customers might find that a potential market exists
for a particular product. The next question to be answered is whether this
market is such that a reasonable expectation exists for making profit if the
product is marketed in the area. That is, does the mere existence of a potential
market guarantee a profit? Probably not. Further investigation must be done
before recommending marketing of the product, especially if the marketing is
expensive. The following examples are illustrations of the difference between
statistical significance and practical significance.

EXAMPLE 3.7 This is an example of a statistically significant result that is not practically
significant.

In the January/February 1992 International Contact Lens Clinic publication,
there is an article that presented the results of a clinical trial designed to de-
termine the effect of defective disposable contact lenses on ocular integrity
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(Efron and Veys, 1992). The study involved 29 subjects, each of whom wore
a defective lens in one eye and a nondefective one in the other eye. The de-
sign of the study was such that neither the research officer nor the subject
was informed of which eye wore the defective lens. In particular, the study
indicated that a significantly greater ocular response was observed in eyes
wearing defective lenses in the form of corneal epithelial microcysts (among
other results). The test had a p value of 0.04. Using a level of significance
of 0.05, the conclusion would be that the defective lenses resulted in more
microcysts being measured. The study reported a mean number of microcysts
for the eyes wearing defective lenses as 3.3 and the mean for eyes wearing
the nondefective lenses as 1.6. In an invited commentary following the article,
Dr. Michel Guillon makes an interesting observation concerning the presence
of microcysts. The commentary points out that the observation of fewer than
50 microcysts per eye requires no clinical action other than regular patient
follow-up. The commentary further states that it is logical to conclude that
an incidence of microcysts so much lower than the established guideline for
action is not clinically significant. Thus, we have an example of the case where
statistical significance exists but where there is no practical significance. ■

EXAMPLE 3.8 A major impetus for developing the statistical hypothesis test was to avoid
jumping to conclusions simply on the basis of apparent results. Consequently,
if some result is not statistically significant the story usually ends. However
it is possible to have practical significance but not statistical significance. In
a recent study of the effect of a certain diet on weight reduction, a random
sample of 10 subjects was weighed, put on a diet for 2 weeks, and weighed
again. The results are given in Table 3.2.

Solution A hypothesis test comparing the mean weight before with the
mean weight after (see Section 5.4 for the exact procedure for this test) would
result in a p value of 0.21. Using a level of significance of 0.05 there would not
be sufficient evidence to reject the null hypothesis and the conclusion would
be that there is no significant loss in weight due to the diet. However, note that
9 of the 10 subjects lost weight! This means that the diet is probably effective

Table 3.2

Weight Gains (in lbs.)

Difference

Subject Weight Before Weight After (Before − After)

1 120 119 +1
2 131 130 +1
3 190 188 +2
4 185 183 +2
5 201 188 +13
6 121 119 +2
7 115 114 +1
8 145 144 +1
9 220 243 −23

10 190 188 +2
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in reducing weight, but perhaps does not take a lot of it off. Obviously, the
observation that almost all the subjects did in fact lose weight does not take
into account the amount of weight lost, which is what the hypothesis test did.
So in effect, the fact that 9 of the 10 subjects lost weight (90%) really means
that the proportion of subjects losing weight is high rather than that the mean
weight loss differs from 0.

We can evaluate this phenomenon by calculating the probability that the
results we observed occurred strictly due to chance using the basic principles
of probability of Chapter 2. That is, we can calculate the probability that 9 of the
10 differences in before and after weight are in fact positive if the diet does not
affect the subjects’ weight. If the sign of the difference is really due to chance,
then the probability of an individual difference being positive would be 0.5 or
1/2. The probability of 9 of the 10 differences being positive would then be
10(0.5)(0.5)9 or 0.009765—a very small value. Thus, it is highly unlikely that we
could get 9 of the 10 differences positive due to chance so there is something
else causing the differences. That something must be the diet.

Note that although the results appear to be contradictory, we actually tested
two different hypotheses. The first one was a test to compare the weight before
and after. Thus, if there was a significant increase or decrease in the average
weight we would have rejected this hypothesis. On the other hand, the second
analysis was really a hypothesis test to determine whether the probability of
losing weight is really 0.5 or 1/2. We discuss this type of a hypothesis test in
the next chapter. ■

3.6 CHAPTER SUMMARY

The statistical inference principles illustrated in this section, often referred
to as the Neyman–Pearson principles, may seem awkward at first. This is
especially true of the hypothesis testing procedures, where the null hypoth-
esis is the opposite of what we really want to “prove.” These procedures
are, however, widely used because of the ease of controlling the type I error,
which protects against erroneously announcing a new theory, proposing a large
expenditure, or adopting a new policy. Further, it is also useful to be able to
specify the degree of trade-off between the precision of the statement and the
probability that the statement is incorrect.

At this point it is appropriate to ask “Is it really necessary to go to all this
trouble to make inferences?” The answer must obviously be “yes” because,
despite all the jokes and sayings about statistics and statisticians, the proce-
dures of statistical inference are designed to avoid lying with statistics. The
key to statistical inference is to be able to indicate the reliability of a statistic
when it is used to make inferences. In statistical inference the use of random
samples allows the use of probability statements to provide a measure of that
reliability.

Because statistical significance or confidence is based on probability, it
is important to point out the distinction between statistical significance and
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practical significance. A hypothesis test may, for example, declare that due to a
certain plant modification, an average increase of production of 0.04 shirts per
day is a statistically significant increase for a large factory. If the modification
is very expensive, that relatively small increase is statistically significant, but
it is far from being practically significant. This type of result often occurs with
very large sample sizes, a situation that sometimes arises from automated
data collection. On the other hand, it may happen that some estimated change
or difference is of sufficient magnitude to be of practical importance, but
is not statistically significant. In such cases the lack of statistical significance
provides the necessary protection against that result being taken too seriously.

However, these principles are not wholly suitable for all statistical infer-
ence applications. For example, as we noted in Section 3.2, the proper null
hypothesis for testing the effectiveness of a drug was that the drug is not
effective. It is difficult to state this as a single value of a population parameter.
Very few drugs are completely ineffective; hence the hypothesis that p, the
proportion of individuals “cured,” is zero is not realistic. A more appropriate
hypothesis might be H0: p > 0.5, say, but this does not meet the requirement
of being a single-valued null hypothesis. Some other inference procedures that
are not considered in this text include:

• The use of penalty or payoff functions. In the procedures discussed in this
book, an incorrect inference is an incorrect inference. There is no “degree”
of correctness. In some applications different degrees of being incorrect
may incur different magnitudes of penalty. Inference procedures utilizing
various expected penalty (or payoff) functions are available. These can be
somewhat difficult to use, because the exact nature of the penalty or payoff
function is not always known. See, for example, Neter et al. (1996).

• Sequential sampling. In the standard form of a hypothesis test or estima-
tion problem, the precision is controlled by the selection of the sample
size. In some cases where the sample size is not fixed prior to the experi-
ment, a method of inference called “sequential” analysis can be performed.
For this procedure sample units are selected in a sequential manner. As
each sample unit is selected, the precision of any inference (specifically the
actual α and β levels) is checked; if there is sufficient precision (in terms of
α and β) the procedure stops and a decision is made; if there is not, the deci-
sion is to continue sampling. Sequential analysis has limited uses, however,
since the methodology is not easy to implement for all applications, and, in
many cases, the very act of sequential sampling is not physically feasible. A
bibliography on sequential sampling is found in Wald (1947).

Finally, because the reliability of statistical inferences is expressed in prob-
ability terms, it is important to distinguish between confirmatory and
exploratory analyses. Remember that the steps for a hypothesis test are
as follows:

• State the hypotheses.
• Collect data and compute statistics.
• Make a decision to confirm or deny hypothesis.
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This procedure is a confirmatory statistical analysis since its purpose is to
confirm or deny a hypothesis and to provide a probability-based protection
against a wrong decision. A very large proportion of statistical analyses does
not strictly conform to this scenario. The main reason for this is that most
applications do not involve inferences on only one parameter based on a
sample from a single population. In multiple-parameter situations inferences
are not only concerned with the individual parameters but also with compar-
isons among parameters. This means that there are many hypotheses and, in
order to make inferences more manageable, hypotheses are based on the char-
acteristics of the point estimates of the parameters. This type of situation leads
to exploratory analyses, where in effect some hypotheses may be generated
by the data. Now, assigning significance probabilities to the results of such
tests is like placing a bet on a horse race after a part of the race has already
been run.

For example, assume we have samples from t populations having identical
population means and we test hypotheses on differences among these popu-
lation means. (We will do this in Chapter 6.) If we now choose to perform a
test involving only the largest and smallest sample means, their difference is
likely to be sufficiently large such that they appear to contradict the true null
hypothesis that the means are equal. In other words, although the hypothesis
test is based on, say, a 0.05 significance level, the probability of rejecting the
true null hypothesis greatly exceeds this amount.

There is nothing wrong with exploratory data analysis. Often the complex-
ity and originality of a problem preclude well-formulated specific hypotheses
and at least some data-driven analysis procedure must be used. The point to
be made here is that results of such analyses should not be embellished with
precise statistical significance levels or p values. These statistics, are, how-
ever, not useless but should be used in relative context. That is, a p value
of 0.0002 most likely means that a result is statistically significant, but the
true probability of a type I error is not likely to be as small as 0.0002. Un-
fortunately, no precise methods exist for obtaining true p values for such
situations.

3.7 CHAPTER EXERCISES

CONCEPT

QUESTIONS

This section consists of some true/false questions regarding concepts of sta-
tistical inference. Indicate whether a statement is true or false and, if false,
indicate what is required to make the statement true.

1. In a hypothesis test, the p value is 0.043. This means that the null
hypothesis would be rejected at α = 0.05.

2. If the null hypothesis is rejected by a one-tailed hypothesis test,
then it will also be rejected by a two-tailed test.
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3. If a null hypothesis is rejected at the 0.01 level of significance, it
will also be rejected at the 0.05 level of significance.

4. If the test statistic falls in the rejection region, the null hypothesis
has been proven to be true.

5. The risk of a type II error is directly controlled in a hypothesis
test by establishing a specific significance level.

6. If the null hypothesis is true, increasing only the sample size will
increase the probability of rejecting the null hypothesis.

7. If the null hypothesis is false, increasing the level of significance
(α) for a specified sample size will increase the probability of rejecting the
null hypothesis.

8. If we decrease the confidence coefficient for a fixed n, we decrease
the width of the confidence interval.

9. If a 95% confidence interval on μ was from 50.5 to 60.6, we would
reject the null hypothesis that μ = 60 at the 0.05 level of significance.

10. If the sample size is increased and the level of confidence is
decreased, the width of the confidence interval will increase.

PRACTICE

EXERCISES

The following exercises are designed to give the reader practice in doing sta-
tistical inferences through small examples. The solutions are given in the back
of the text.

1. From extensive research it is known that the population of a particular
species of fish has a mean length μ = 171 mm and a standard deviation
σ = 44 mm. The lengths are known to have a normal distribution. A sample
of 100 fish from such a population yielded a mean length ȳ = 167 mm.
Compute the 0.95 confidence interval for the mean length of the sampled
population. Assume the standard deviation of the population is also 44 mm.

2. Using the data in Exercise 1 and using a 0.05 level of significance, test the
null hypothesis that the population sampled has a mean of μ = 171. Use a
two-tailed alternative.

3. What sample size is required for a maximum error of estimation of 10 for
a population whose standard deviation is 40 using a confidence interval of
0.95? How much larger must the sample size be if the maximum error is to
be 5?

4. The following sample was taken from a normally distributed population
with a known standard deviation σ = 4. Test the hypothesis that the mean
μ = 20 using a level of significance of 0.05 and the alternative that μ > 20:

23, 32, 22, 31, 27, 25, 21, 24, 20, 18.
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MULTIPLE

CHOICE

QUESTIONS

1. In testing the null hypothesis that p = 0.3 against the alternative that
p 
= 0.3, the probability of a type II error is when the true p = 0.4
than when p = 0.6.
(1) the same
(2) smaller
(3) larger
(4) none of the above

2. In a hypothesis test the p value is 0.043. This means that we can find
statistical significance at:
(1) both the 0.05 and 0.01 levels
(2) the 0.05 but not at the 0.01 level
(3) the 0.01 but not at the 0.05 level
(4) neither the 0.05 or 0.01 levels
(5) none of the above

3. A research report states: The differences between public and private school
seventh graders’ attitudes toward minority groups was statistically signif-
icant at the α = 0.05 level. This means that:
(1) It has been proven that the two groups are different.
(2) There is a probability of 0.05 that the attitudes of the two groups are

different.
(3) There is a probability of 0.95 that the attitudes of the two groups are

different.
(4) If there is no difference between the groups, the difference observed

in the sample would occur by chance with probability of no more than
0.05.

(5) None of the above is correct.

4. Which of these statements characterizes the outcome if the calculated
value of any test statistic falls in the rejection region when a false null
hypothesis is being tested?
(1) The decision is correct.
(2) A type I error has been committed.
(3) A type II error has been committed.
(4) Insufficient information has been given to make a decision.
(5) None of the above is correct.

5. Which of these statements characterizes the outcome if the calculated
value of any test statistic does not fall in the rejection region when a false
null hypothesis is being tested?
(1) The decision is correct.
(2) A type I error has been committed.
(3) A type II error has been committed.
(4) Insufficient information has been given to make a decision.
(5) None of the above is correct.



3.7 Chapter Exercises 155

6. If the value of any test statistic does not fall in the rejection region, the
decision is:
(1) Reject the null hypothesis.
(2) Reject the alternative hypothesis.
(3) Fail to reject the null hypothesis.
(4) Fail to reject the alternative hypothesis.
(5) There is insufficient information to make a decision.

7. For a particular sample, the 0.95 confidence interval for the population
mean is from 11 to 17. You are asked to test the hypothesis that the popu-
lation mean is 18 against a two-sided alternative. Your decision is:
(1) Fail to reject the null hypothesis, α = 0.05.
(2) Reject the null hypothesis, α = 0.05.
(3) There is insufficient information to decide.

8. Failure to reject the null hypothesis means:
(1) acceptance of the alternative hypothesis
(2) rejection of the null hypothesis
(3) rejection of the alternative hypothesis
(4) absolute acceptance of the null hypothesis
(5) none of the above

9. If we decrease the confidence level, the width of the confidence interval
will:
(1) increase
(2) remain unchanged
(3) decrease
(4) double
(5) none of the above

10. If the value of the test statistic falls in the rejection region, then:
(1) We cannot commit a type I error.
(2) We cannot commit a type II error.
(3) We have proven that the null hypothesis is true.
(4) We have proven that the null hypothesis is false.
(5) None of the above is correct.

EXERCISES

1. The following pose conceptual hypothesis test situations. For each situa-
tion define H0 and H1 so as to provide control of the more serious error.
Justify your choice and comment on logical values for α.
(a) You are deciding whether you should take an umbrella to work.
(b) You are planning a proficiency testing procedure to determine whether

some employees should be fired.
(c) Same as part (b) except you want to determine whether some employ-

ees deserve a special merit raise.
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(d) A cigarette manufacturer is conducting a test of nicotine content in
order to justify a new advertising claim.

(e) You are considering the procedure to decide guilt or innocence in a
court of law.

(f) You are wondering whether you should buy a new battery for your
calculator before the next statistics test.

(g) As a university administrator you are considering a policy to restrict
student driving in order to improve scholastic achievement.

2. Suppose that in Example 3.3, σ was 0.15 instead of 0.2 and we decided to
adjust the machine if a sample of 16 had a mean weight below 7.9 or above
8.1 (same as before).
(a) What is the probability of a type I error now?
(b) Draw the operating characteristic curve using the rejection region

obtained in part (a).

3. Assume that a random sample of size 25 is to be taken from a normal
population with μ = 10 and σ = 2. The value of μ, however, is not known
by the person taking the sample.
(a) Suppose that the person taking the sample tests H0: μ = 10.4 against

H1: μ 
= 10.4. Although this null hypothesis is not true, it may not be
rejected, and a type II error may therefore be committed. Compute β

if α = 0.05.
(b) Suppose the same hypothesis is to be tested as that of part (a) but

α = 0.01. Compute β.
(c) Suppose the person wanted to test H0: μ = 11.2 against H1: μ 
= 11.2.

Compute β for α = 0.05 and α = 0.01.
(d) Suppose that the person decided to use H1: μ < 11.2. Calculate β for

α = 0.05 and α = 0.01.
(e) What principles of hypothesis testing are illustrated by these

exercises?

4. Repeat Exercise 3 using n = 100. What principles of hypothesis testing do
these exercises illustrate?

5. A standardized test for a specific college course is constructed so that the
distribution of grades should have μ = 100 and σ = 10. A class of 30
students has a mean grade of 92.
(a) Test the null hypothesis that the grades from this class are a random

sample from the stated distribution. (Use α = 0.05.)
(b) What is the p value associated with this test?
(c) Discuss the practical uses of the results of this statistical test.

6. The family incomes in a certain city in 1970 had a mean of $14,200 with a
standard deviation of $2600. A random sample of 75 families taken in 1975
produced ȳ = $15, 300 (adjusted for inflation).
(a) Assume σ has remained unchanged and test to see whether mean

income has changed using a 0.05 level of significance.
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(b) Construct a 99% confidence interval on mean family income in 1975.
(c) Construct the power curve for the test in part (a).

7. Suppose in Example 3.2 we were to reject H0 if all the jelly beans in a
sample of size four were red.
(a) What is α?
(b) What is β?

8. Suppose that for a given population with σ = 7.2 we want to test H0: μ = 80
against H1: μ < 80 based on a sample of n = 100.
(a) If the null hypothesis is rejected when ȳ < 76, what is the probability

of a type I error?
(b) What would be the rejection region if we wanted to have a level of

significance of exactly 0.05?

9. An experiment designed to estimate the mean reaction time of a certain
chemical process has ȳ = 79.6 s, based on 144 observations. The standard
deviation is σ = 8.
(a) What is the maximum error of estimate at 0.95 confidence?
(b) Construct a 0.95 confidence interval on μ.
(c) How large a sample must be taken so that the 0.95 maximum error of

estimate is 1 s or less?

10. A drug company is testing a drug intended to increase heart rate. A sample
of 100 yielded a mean increase of 1.4 beats per minute, with a standard
deviation known to be 3.6. Since the company wants to avoid marketing
an ineffective drug, it proposes a 0.001 significance level. Should it market
the drug? (Hint: If the drug does not work, the mean increase will be zero.)

11. The manufacturer of auto windows discussed in Exercise 19 of Chapter 2
has developed a new plastic material that can be applied much thinner than
the conventional material. To use this material, however, the production
machinery must be adjusted. A trial adjustment was made on one of the 10
machines used in production, and a sample of 25 windshields measured.
This sample had a mean thickness of 2.9 mm. Using the standard deviation
of 0.25 mm, does this adjustment provide for a smaller thickness in the
material than the old adjustment (4 mm)? (Use a hypothesis test and level of
significance of 0.01. Assume the distribution of thickness is approximately
normal.)

12. The manufacturer in Exercise 11 tried another, less expensive adjustment
on another machine. A sample of 25 windshields was measured yielding
a sample mean thickness of 3.4. Calculate the p value resulting from this
mean using the same hypothesis and assumptions as in Exercise 11.

13. An experiment is conducted to determine whether a new computer pro-
gram will speed up the processing of credit card billing at a large bank. The
mean time to process billing using the present program is 12.3 min. with a
standard deviation of 3.5 min. The new program is tested with 100 billings
and yielded a sample mean of 10.9 min. Assuming the standard deviation
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of times in the new program is the same as the old, does the new program
significantly reduce the time of processing? Use α = 0.05.

14. Another bank is experimenting with programs to direct bill companies for
commercial loans. They are particularly interested in the number of errors
of a billing program. To examine a particular program, a simulation of 1000
typical loans is run through the program. The simulation yielded a mean
of 4.6 errors with a standard deviation of 0.5. Construct a 95% confidence
interval on the true mean error rate.

15. If the bank wanted to examine a program similar to that of Exercise 14 and
wanted a maximum error of estimation of 0.01 with a level of confidence
of 95%, how large a sample should be taken? (Assume that the standard
deviation of the number of errors remains the same.)



Chapter 4

Inferences on a Single
Population

EXAMPLE 4.1 How Accurately Are Areas Perceived? The data in Table 4.1 are from
an experiment in perceptual psychology. A person asked to judge the relative
areas of circles of varying sizes typically judges the areas on a perceptual scale
that can be approximated by

judged area = a(true area)b.

For most people the exponent b is between 0.6 and 1. That is, a person with an
exponent of 0.8 who sees two circles, one twice the area of the other, would
judge the larger one to be only 20.8 = 1.74 as large. Note that if the exponent
is less than 1 a person tends to underestimate the area; if larger than 1, he
or she will overestimate the area. The data shown in Table 4.1 are the set of
measured exponents for 24 people from one particular experiment (Cleveland
et al., 1982). A histogram of this data is given in Figure 4.1.

It may be of interest to estimate the mean value of b for the population from
which this sample is drawn; however, because we do not know the value of
the population standard deviation we cannot use the methods of Chapter 3.
Further, we might be interested in estimating the variance of these measure-
ments as well. This chapter discusses methods for doing inferences on means
when the population variance is unknown as well as inferences on the un-
known population variance. The inferences for this example are presented in
Sections 4.2 and 4.4. ■

4.1 Introduction

The examples used in Chapter 3 to introduce the concepts of statistical in-
ference were neither very interesting nor useful. This was intentional, as we
wanted to avoid distractions from issues that were irrelevant to the principles

159
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Table 4.1

Measured Exponents
Note: Reprinted with

permission from the

American Statistical

Association.

0.58 0.63 0.69 0.72 0.74 0.79
0.88 0.88 0.90 0.91 0.93 0.94
0.97 0.97 0.99 0.99 0.99 1.00
1.03 1.04 1.05 1.07 1.18 1.27
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Histogram of
Exponents in
Example 4.1

we were introducing. We will now turn to examples that, although still quite
simple, will be have more useful applications. Specifically, we present proce-
dures for

• making inferences on the mean of a normally distributed population where
the variance is unknown,

• making inferences on the variance of a normally distributed population, and
• making inferences on the proportion of successes in a binomial population.

Increasing degrees of complexity are added in subsequent chapters. These
begin in Chapter 5 with inferences for comparing two populations and in
Chapter 6 with inferences on means from any number of populations. In
Chapter 7 we present inference procedures for relationships between two vari-
ables through what we will refer to as the linear model, which is subsequently
used as the common basis for the many other statistical inference procedures.
Additional chapters contain brief introductions to other statistical methods
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that cover different situations as well as methodology that may be used when
underlying assumptions cannot be satisfied.

4.2 Inferences on the Population Mean

In Chapter 3 we used the sample mean ȳ and its sampling distribution to make
inferences on the population mean. For these inferences we used the fact that,
for any approximately normally distributed population the statistic1

z = (ȳ − μ)

σ/
√

n

has the standard normal distribution. This statistic has limited practical value
because, if the population mean is unknown, it is also likely that the variance
of the population is unknown.

In the discussion of the t distribution in Section 2.6 we noted that if, in the
above equation, the known standard deviation is replaced by its estimate, s, the
resulting statistic has a sampling distribution known as Student’s t distribution.
This distribution has a single parameter, called degrees of freedom, which is
(n− 1) for this case. Thus for statistical inferences on a mean from a normally
distributed population, we can use the statistic

t = (ȳ − μ)√
s2/n

,

where s2 = ∑
(y − ȳ)2/(n − 1).

It is very important to note that the degrees of freedom are based on the
denominator of the formula used to calculate s2, which reflects the general
formula for computing s2,

s2 = sum of squares
degrees of freedom

= SS
df

,

a form that will be used extensively in future chapters.
Inferences on μ follow the same pattern outlined in Chapter 3 with only

the test statistic changed, that is, z and σ are replaced by t and s.

Hypothesis Test on μ

To test the hypothesis

H0: μ = μ0 vs

H1: μ 
= μ0,

1In Section 2.2 we adopted a convention that used capital letters to designate random variables
and lowercase letters to represent realizations of those random variables. At that time we stated
that the specificity of this designation would not be necessary after Chapter 3. Therefore, for this
and subsequent chapters we will use lower case letters exclusively.
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Table 4.2

Data for Peanuts
Example (oz.)

8.08 7.71 7.89 7.72
8.00 7.90 7.77 7.81
8.33 7.67 7.79 7.79
7.94 7.84 8.17 7.87

compute the test statistic

t = (ȳ − μ0)√
s2/n

= ȳ − μ0

s/
√

n
.

The decision on the rejection of H0 follows the rules specified in Chapter 3.
That is, H0 is rejected if the calculated value of t is in the rejection region,
as defined by a specified α, found in the table of the t distribution, or if the
calculated p value is smaller than a specified value of α. Since most tables
of the t distribution have only limited numbers of probability levels available,
the calculation of p values is usually provided only when the analysis is being
performed on computers, which are not limited to using tables.2

Power curves for this test can be constructed; however, they require a
rather more complex distribution. Charts do exist for determining the power
for selected situations and are available in some texts (see, for example, Neter
et al., 1996).

EXAMPLE 4.2 In Example 3.3 we presented a quality control problem in which we tested the
hypothesis that the mean weight of peanuts being put in jars was the required
8 oz. We assumed that we knew the population standard deviation, possibly
from experience. We now relax that assumption and estimate both mean and
variance from the sample. Table 4.2 lists the data from a sample of 16 jars.

Solution We follow the five steps of a hypothesis test (Section 3.2).

1. The hypotheses are

H0: μ = 8,

H1: μ 
= 8.

2. Specify α = 0.05. The table of the t distribution (Appendix Table A.2) pro-
vides the t value for the two-tailed rejection region for 15 degrees of freedom
as |t| > 2.1314.

3. To obtain the appropriate test statistic, first calculate ȳ and s2:

ȳ = 126.28/16 = 7.8925,

s2 = (997.141 − 996.6649)/15 = 0.03174.

The test statistic has the value

t = (7.8925 − 8)/
√

(0.03174/16) = (−0.1075)/0.04453 = −2.4136.

2We noted in Section 2.6 that when the degrees of freedom become large, the t distribution very
closely approximates the normal. In such cases, the use of the tables of the normal distribution
provides acceptable results even if σ 2 is not known. For this reason many textbooks treat such
cases, usually specifying sample sizes in excess of 30, as large sample cases and specify the use of
the zstatistic for inferences on a mean. Although the results of such methodology are not incorrect,
the large sample–small sample dichotomy does not extend to most other statistical methods. In
addition, most computer programs correctly use the t distribution regardless of sample size.
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Table 4.3

Apple Dimensions
(Diameters, in.)

2.9 2.8 2.7 3.2
2.1 3.1 3.0 2.3
2.4 2.8 2.4 3.4

4. Since |t| exceeds the critical value of 2.1314, reject the null hypothesis.
5. We will recommend that the machine be adjusted. Note that the chance that

this decision is incorrect is at most 0.05, the chosen level of significance.

The actual p value of the test statistic cannot be obtained from Appendix Table
A.2. The actual p value, obtained by a computer program, is 0.0290, and we
may reject H0 at any specified α greater than the observed value of 0.0290. ■

EXAMPLE 4.3 An apple buyer is willing to pay a premium price for a load of apples if they
have, as claimed, an average diameter of more than 2.5 in. The buyer wants to
test the claim of sufficiently large apples, so he takes a random sample of 12
apples from the load and measures their diameters. The results are given in
Table 4.3.

Solution Since getting somewhat smaller apples is not a disaster, the buyer
is willing to take a 10% chance of unnecessarily paying the premium price.
Therefore the significance level, α, is set at 0.10. Of course, the buyer only
pays the premium price if the apples are larger than 2.5 in., which implies a
one-tailed test.

1. The hypotheses are

H0: μ = 2.5,

H1: μ > 2.5.

2. In other words, he will buy the apples only if the null hypothesis is rejected.
We have already specified α = 0.10. The variance is estimated from the
sample of 12; hence the t statistic for the test has 11 degrees of freedom
and the one-tailed rejection region is to reject H0 if the calculated value of
t exceeds 1.3634.

3. From the sample, the values of ȳ and s2 are

ȳ = 2.758,

s2 = 0.1554,

and the test statistic is

t = (2.758 − 2.5)/
√

(0.1554/12) = 2.267.

4. The null hypothesis is rejected.
5. The buyer should be willing to pay the premium price because there is

sufficient evidence that the mean diameter of apples from this load is more
than 2.5 in.

If this problem had been performed by a computer program, the result of
the test would probably be reported in the form of a p value. However, most
computer programs automatically give two-tailed probabilities, in which case
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the correct p value for a one-tailed hypothesis test must be found by dividing
the printed p value by 2. For this example, the computer-generated p value
is 0.0433; hence the correct one-tailed p value is 0.0443/2 = 0.0222, which is
indeed less than the required 0.10. ■

EXAMPLE 1.2 REVISITED Recall that in Example 1.2, John Mode had been offered a job
in a mid-sized east Texas town. Obviously, the cost of housing in this city
will be an important consideration in a decision to move. The Modes read an
article in the paper from the town in which they presently live that claimed
the “average” price of homes was $155,000. The Modes want to know whether
the data collected in Example 1.2 indicate a difference between the two cities.
They assumed that the “average” price referred to in the article was the mean,
and the sample they collected from the new city represents a random sample
of all home prices in that city.

For this purpose,

H0: μ = 155, and

H1: μ 
= 155.

They computed the following results from Table 1.2:∑
y = 9755.18,

∑
y 2 = 1,876,762, and n = 69.

Thus,

ȳ = 141.4, SS = 497,580, and s2 = 7317.4,

and then

t = 141.4 − 155.0√
7317.4

69

= −1.32,

which is insufficient evidence (at α = 0.05) that the mean price is different. In
other words, the mean price of housing appears not to be different from that
of the city in which the Modes currently live. ■

Estimation of μ

Confidence intervals on μ are constructed in the same manner as those in
Chapter 3 except that σ is replaced with s, and the table value of z for a
specified confidence coefficient (1−α) is replaced by the corresponding value
from the table of the t distribution for the appropriate degrees of freedom. The
general formula of the (1 − α) confidence interval on μ is

ȳ ± tα/2

√
s2

n
,

where tα/2 has (n − 1) degrees of freedom.
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A 0.95 confidence interval on the mean weight of peanuts in Example 4.2
(Table 4.2) is

7.8925 ± 2.1314 (0.04453),

7.8925 ± 0.0949,

or from 7.798 to 7.987. Remembering the equivalence of hypothesis tests and
confidence intervals, we note that this interval does not contain the null hy-
pothesis value of 8 used in Example 4.2, thus agreeing with the results obtained
there.

Similarly, the one-sided lower 0.90 confidence interval for the mean apple
size is

2.758 − 1.3634
√

(0.1554/12) or

2.758 − 0.155 = 2.603.

This is larger than the required value of 2.5, again agreeing with the results of
the hypothesis test.

Solution to Example 4.1 We can now solve the problem in Example 4.1
by providing a confidence interval for the mean exponent. We first calculate
the sample statistics: ȳ = 0.9225 and s = 0.165. The t statistic is based on
24 − 1 = 23 degrees of freedom, and since we want a 95% confidence in-
terval we use t0.05/2 = 2.069 (rounded). The 0.95 confidence interval on μ is
given by

0.9225 ± (2.069)(0.165)/
√

24 or

0.9225 ± 0.070, or from 0.8525 to 0.9925.

Thus we are 95% confident that the true mean exponent is between 0.85 and
0.99, rounded to two decimal places. This seems to imply that, on the average,
people tend to underestimate the relative areas. ■

Sample Size

Sample size requirements for an estimation problem where σ is not known can
be quite complicated. Obviously we cannot estimate a variance before we take
the sample; hence the t statistic cannot be used directly to estimate sample
size. Iterative methods that will furnish sample sizes for certain situations do
exist, but they are beyond the scope of this text. Therefore most sample size
calculations simply assume some known variance and proceed as discussed
in Section 3.4.
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Degrees of Freedom

For the examples in this section the degrees of freedom of the test statistic (the
t statistic) have been (n− 1), where n is the size of the sample. It is, however,
important to remember that the degrees of freedom of the t statistic are always
those used to estimate the variance used in constructing the test statistic. We
will see that for many applications this is not (n − 1).

For example, suppose that we need to estimate the average size of stones
produced by a gravel crusher. A random sample of 100 stones is to be used.
Unfortunately, we do not have time to weigh each stone individually. We can,
however, weigh the entire 100 in one weighing, divide the total weight by 100
to obtain an estimate of μ, and call it ȳ100. We then take a random subsample of
10 stones from the 100, which we weigh individually to compute an estimate
of the variance,

s2 =
∑

(y − ȳ10)2

9
,

where ȳ10 is calculated from the subsample of 10 observations. The statistic

t = ȳ100 − μ√
s2/100

,

will have the t distribution with 9 (not 99) degrees of freedom.
Although situations such as this do not often arise in practice, it illustrates

the fact that the degrees of freedom for the t statistic are associated with the
calculation of s2: it is always the denominator in the expression s2 = SS/df.
However, the variance of ȳ100 is still estimated by s2/100 because the variance
of the sampling distribution of the mean is based on the sample size used to
calculate that mean.

4.3 Inferences on a Proportion

In a binomial population, the parameter of interest is p, the proportion of
“successes.” In Section 2.3 we described the nature of a binomial population
and provided in Section 2.5 the normal approximation to the distribution of
the proportion of successes in a sample of n from a binomial population. This
distribution can be used to make statistical inferences about the parameter p,
the proportion of successes in a population.

The estimate of p from a sample of size n is the sample proportion, p̂ =
y/n, where y is the number of successes in the sample. Using the normal
approximation, the appropriate statistic to perform inferences on p is

z = p̂ − p√
p(1 − p)/n

.

Under the conditions for binomial distributions stated in Section 2.3, this statis-
tic has the standard normal distribution, assuming sufficient sample size for
the approximation to be valid.
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Hypothesis Test on p

The hypotheses are

H0: p = p0,

H1: p 
= p0.

The alternative hypothesis may, of course, be one-sided. To perform the test,
compute the test statistic

z = p̂ − p0√
p0(1 − p0)/n

,

which is compared to the appropriate critical values from the normal dis-
tribution (Appendix Table A.1), or a p value is calculated from the normal
distribution.

Note that we do not use the t distribution here because the variance is
not estimated as a sum of squares divided by degrees of freedom. Of course,
the use of the normal distribution is an approximation, and it is generally
recommended to be used only if np ≥ 5 and n(1 − p) ≥ 5.

EXAMPLE 4.4 An advertisement claims that more than 60% of doctors prefer a particular
brand of pain killer. An agency established to monitor truth in advertising
conducts a survey consisting of a random sample of 120 doctors. Of the 120
questioned, 82 indicated a preference for the particular brand. Is the adver-
tisement justified?

Solution The parameter of interest is p, the proportion of doctors in the
population who prefer the particular brand. To answer the question, the fol-
lowing hypothesis test is performed:

H0: p = 0.6,

H1: p > 0.6.

Note that this is a one-tailed test and that rejection of the hypothesis supports
the advertising claim. Is it likely that the manufacturer of the pain killer would
use a slightly different set of hypotheses? A significance level of 0.05 is chosen.
The test statistic is

z =
82
120 − 0.6√

0.6(1 − 0.6)/120

= 0.083
0.0447

= 1.86.

The p value for this statistic (from Appendix Table A.1) is

p = P(z > 1.86) = 0.0314.
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Since this p value is less than the specified 0.05, we reject H0 and conclude
that the proportion is in fact larger than 0.6. That is, the advertisement appears
to be justified. ■

Estimation of p

A (1−α) confidence interval on p based on a sample size of n with y successes
is

p̂ ± zα/2

√
p̂(1 − p̂)

n
.

Note that since there is no hypothesized value of p, the sample proportion p̂

is substituted for p in the formula for the variance.

EXAMPLE 4.5 A preelection poll using a random sample of 150 voters indicated that 84 fa-
vored candidate Smith, that is, p̂ = 0.56. We would like to construct a 0.99
confidence interval on the true proportion of voters favoring Smith.

Solution To calculate the confidence interval, we use

0.56 ± (2.576)

√
(0.56)(1 − 0.56)

150
0.56 ± 0.104,

resulting in an interval from 0.456 to 0.664. Note that the interval does contain
50% (0.5) as well as values below 50%. This means that Smith cannot predict
with 0.99 confidence that she will win the election. ■

An Alternate Approximation for the Confidence Interval In Agresti
and Coull (1998), it is pointed out that the method of obtaining a confidence
interval on p presented above tends to result in an interval that does not
actually provide the level of confidence specified. This is because the binomial
is a discrete random variable and the confidence interval is constructed using
the normal approximation to the binomial, which is continuous. Simulation
studies reported in Agresti and Coull indicate that even with sample sizes
as high as 100 and true proportion of 0.018, the actual number of confidence
intervals containing the true p are closer to 84% than the nominal 95% specified.

The solution, as proposed in this article, is to add two successes and two
failures and then use the standard formula to calculate the confidence interval.
This adjustment results in much better performance of the confidence interval,
even with relative small samples. Using this adjustment, the interval is based
on a new estimate of p; p̃ = (y + 2)/(n + 4). For Example 4.5 the interval
would be based on p̃ = (86)/154 = 0.558. The resulting confidence interval
would be

0.558 ± (2.576)

√
(0.558)(0.442)

154
0.558 ± 0.103, or
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the interval would be from 0.455 to 0.661. This interval is not much different
from that constructed without the adjustment, mainly because the sample size
is large and the estimate of p is close to 0.5. If the sample size were small, this
approximation would result in a more reliable confidence interval.

Sample Size

Since estimation on p uses the standard normal sampling distribution, we are
able to obtain the required sample sizes for a given degree of precision. In
Section 3.4 we noted that for a (1 − α) degree of confidence and a maximum
error of estimation E, the required sample size is

n = (zα/2σ )2/E2.

This formula is adapted for a binomial population by substituting the quantity
p(1 − p) for σ 2.

In most cases we may have an estimate (or guess) for p that can be used
to calculate the required sample size. If no estimate is available, then 0.5 may
be used for p, since this results in the largest possible value for the variance
and, hence, also the largest n for a given E (and, of course, α). In other words,
the use of 0.5 for the unknown p provides the most conservative estimate of
sample size.

EXAMPLE 4.6 In close elections between two candidates (p approximately 0.5), a preelec-
tion poll must give rather precise estimates to be useful. We would like to
estimate the proportion of voters favoring the candidate with a maximum er-
ror of estimation of 1% (with confidence of 0.95). What sample size would be
needed?

Solution To satisfy the criteria specified would require a sample size of

n = (1.96)2(0.5)(0.5)/(0.01)2 = 9604.

This is certainly a rather large sample and is a natural consequence of the high
degree of precision and confidence required. ■

4.4 Inferences on the Variance of One Population

Inferences for the variance follow the same pattern as those for the mean
in that the inference procedures use the sampling distribution of the point
estimate. The point estimate for σ 2 is

s2 =
∑ (y − ȳ)2

n − 1
,

or more generally SS/df. We also noted in Section 2.6 that the sample quantity

(n − 1)s2

o2
=
∑

(y − ȳ)2

σ 2
= SS

σ 2
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has the χ2 distribution with (n − 1) degrees of freedom, assuming a sample
from a normally distributed population. As before, the point estimate and its
sampling distribution provide the basis for hypothesis tests and confidence
intervals.

Hypothesis Test on σ2

To test the null hypothesis that the variance of a population is a prescribed
value, say σ 2

0 , the hypotheses are

H0: σ 2 = σ 2
0 ,

H1: σ 2 
= σ 2
0 ,

with one-sided alternatives allowed. The statistic from Section 2.6 used to test
the null hypothesis is

X2 = SS/σ 2
0 ,

where for this case SS = ∑
(y− ȳ)2. If the null hypothesis is true, this statistic

has the χ2 distribution with (n − 1) degrees of freedom.
If the null hypothesis is false, then the value of the quantity SS will tend

to reflect the true value of σ 2. That is, if σ 2 is larger (smaller) than the null
hypothesis value, then SS will tend to be relatively large (small), and the value
of the test statistic will therefore tend to be larger (smaller) than those sug-
gested by the χ2 distribution. Hence the rejection region for the test will be
two-tailed; however, the critical values will both be positive and we must find
individual critical values for each tail. In other words, the rejection region is

reject H0 if:
(
SS/σ 2

0

)
> χ2

α/2,

or if:
(
SS/σ 2

0

)
< χ2

(1−α/2).

Like the t distribution, χ2 is another distribution for which only limited tables
are available. Thus it is difficult to calculate p values when performing hypoth-
esis tests on the variance when such tables must be used.

Hypothesis tests on variances are often one-tailed because variability is
used as a measure of consistency, and we usually want to maintain consistency,
which is indicated by small variance. Thus, an alternative hypothesis of a larger
variance implies an unstable or inconsistent process.

EXAMPLE 4.2 REVISITED In filling the jar with peanuts, we not only want the average
weight of the contents to be 8 oz., but we also want to maintain a degree of
consistency in the amount of peanuts being put in jars. If one jar receives too
many peanuts, it will overflow, and waste peanuts. If another jar gets too few
peanuts, it will not be full and the consumer of that jar will feel cheated even
though on average the jars have the specified amount of peanuts. Therefore,
a test on the variance of weights of peanuts should also be part of the quality
control of the process.
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Suppose the weight of peanuts in at least 95% of the jars is required to be
within 0.2 oz. of the mean. Assuming an approximately normal distribution we
can use the empirical rule to state that the standard deviation should be at
most 0.2/2 = 0.10, or equivalently that the variance be at most 0.01.

Solution We will use the sample data in Table 4.2 to test the hypothesis

H0: σ 2 = 0.01 vs

H1: σ 2 > 0.01,

using a significance level of α = 0.05. If we reject the null hypothesis in favor
of a larger variance we declare that the filling process is not in control. The
rejection region is based on the statistic

X2 = SS/0.01,

which is compared to the χ2 distribution with 15 degrees of freedom. From
Appendix Table A.3 the rejection region for rejecting H0 is for the calculated
χ2 value to exceed 25.00. From the sample, SS = 0.4761, and the test statistic
has the value

X2 = 0.4761/0.01 = 47.61.

Therefore the null hypothesis is rejected and we recommend the expense of
modifying the filling process to ensure more consistency. That is, the machine
must be adjusted or modified to reduce the variability. Naturally, after the
modification, another series of tests would be conducted to ensure success in
reducing variation. ■

EXAMPLE 4.1 REVISITED Suppose in the study in perceptual psychology, the variability
of subjects was of concern. In particular, suppose that the researchers wanted
to know whether the variance of exponents differed from 0.02.

Solution The hypotheses of interest would then be

H0: σ 2 = 0.02,

H1: σ 2 
= 0.02.

Using a level of significance of 0.05, the critical region is

reject H0 if SS/0.02 is larger than 38.08 (rounded)

or smaller than 11.69 (rounded).

The data in Table 4.1 produce SS = 0.628. Hence, the test statistic has a value
of 0.628/0.02 = 31.4, which is not in the critical region; thus, we cannot reject
the null hypothesis that σ 2 = 0.02. ■

Estimation of σ2

A confidence interval can be constructed for the value of the parameter σ 2

using the χ2 distribution. Because the distribution is not symmetric, the con-
fidence interval is not symmetric about s2 and, as in the case of the two-sided
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hypothesis test, we need two individual values from the χ2 distribution to
calculate the confidence interval.

The lower limit of the confidence interval is

L = SS/χ2
α/2,

and the upper limit is

U = SS/χ2
(1−α/2),

where the tail values come from the χ2 distribution with (n − 1) degrees of
freedom. Note that the upper tail value from the χ2 distribution is used for the
lower limit and vice versa.

For Example 4.2 we can calculate a 0.95 confidence interval on σ 2 based on
the sample data given in Table 4.2. Since the hypothesis test for this example
was one-tailed, we construct a corresponding one-sided confidence interval.
In this case we would want the lower 95% limit, which would require the upper
0.05 tail of the χ2 distribution with 15 degrees of freedom, which we have
already seen to be 25.00. The lower confidence limit is SS/χ2

α = 0.4761/25.00 =
0.0190. The lower 0.95 confidence limit for the standard deviation is simply
the square root of the limit for the variance, resulting in the value 0.138. We
are therefore 95% confident that the true standard deviation is at least 0.138.
This value is larger than that specified by the null hypothesis and again the
confidence interval agrees with the result of the hypothesis test.

4.5 Assumptions

Today virtually all statistical analyses are performed by computers. We know
that for all practical purposes, computers do not make mistakes, and further-
more the beautifully annotated outputs for such analyses make us believe that
the results they produce reveal the ultimate truth. Unfortunately, the results
provided by the best computers using the ultimate software only reflect the
quality of the submitted data. And if the data are deficient, results of the anal-
ysis will be less than useful.

How can data be deficient? There are two major sources:

• sloppy data gathering and recording, and
• failure of the distribution of the variable(s) being studied to conform to the

assumptions underlying the statistical inference procedure.

Avoiding sloppy data gathering and recording is mostly a matter of common
sense, although the increased use of automatic data gathering and recording
increases the chance of undetected errors. For this reason graphical data sum-
marization, including but not limited to stem and leaf, box, and scatter plots
should be an integral part of data quality control.

The failure to conform to assumptions is a subtler problem. In this sec-
tion we briefly summarize the necessary assumptions, suggest a method for
detecting violations, and suggest some remedial methods.
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Required Assumptions and Sources of Violations

Two major assumptions are needed to assure the correctness for statistical
inferences:

• randomness of the sample observations, and
• the distribution of the variable(s) being studied.

We have already noted that randomness is a necessary requirement to de-
fine sampling distributions and the consequent use of probabilities associated
with these distributions. Another aspect of randomness is that it helps to as-
sure that the observations we obtain have the necessary independence. For
example, a failure of the assumption of independence occurs when the sample
is selected from the population in some ordered manner. This occurs in some
types of economic data obtained on a regular basis at different time periods.
These observations then become naturally ordered, and adjacent observations
tend to be related, which is a violation of the independence assumption. This
does not make the data useless; instead, the user must be aware of the trend
and account for it in the analysis (see also Section 7.6).

The distributional assumptions arise from the fact that most of the sam-
pling distributions we use are based on the normal distribution. We know that
no “real” data are ever exactly normally distributed. However, we also know
that the central limit theorem is quite robust so that the normality of the sam-
pling distribution of the mean should not pose major problems except with
small sample sizes and/or extremely nonnormal distributions. The χ2 distribu-
tion used for the sampling distribution of the variance and consequently the
t distribution are not quite as robust but again, larger sample sizes help.

Outliers or unusual observations are also a major source of nonnormality.
If they arise from measurement errors or plain sloppiness, they can often be
detected and corrected. However, sometimes they are “real,” and no correc-
tions can be made, and they certainly cannot simply be discarded and may
therefore pose a problem.

Prevention of Violations

The best method of avoiding violations is to use common sense, diligence,
and honesty when collecting, recording, and analyzing data. For example,
sloppiness or recording errors may cause extreme values to be included and
considered as legitimate data. Improper sampling procedures may result in
nonrandom or nonindependent sample observations. Any automated data col-
lection procedure must have close supervision and internal checks. Remember
that the very machines that make such data gathering possible also have the
ability for error detection and exhaustive data summarization.

Detection of Violations

The exploratory data analysis techniques presented in Chapter 1 should be
used as a matter of routine. These techniques not only help to reveal mistakes
but can also detect distributional problems. For example, the stem and leaf and
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Table 4.4

Exponents from Example
4.1

N 24
MEAN 0.9225
STD DEV 0.165247

50% MED 0.955

STEM LEAF # BOXPLOT
12 7 1 |
10 034578 6 +----+
8 88013477999 11 ∗-----∗
6 39249 5

∣∣∣∣4 8 1
---+---+---+---+

MULTIPLY STEM.LEAF BY 10∗∗ −01
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Figure 4.2

Normal Probability
Plot for a Negatively
Skewed Distribution

box plots for Example 4.1, shown in Table 4.4, are easily produced and show
that there appear to be no obvious problems with the normality assumption.

The use of a normal probability plot allows a slightly more rigorous test of
the normality assumption. A special plot, called a Q–Q plot (quantile–quantile),
shows the observed value on one axis (usually the horizontal axis) and the
value that is expected if the data are a sample from the normal distribution on
the other axis. The points should cluster around a straight line for a normally
distributed variable. If the data are skewed, the normal probability plot will
have a very distinctive shape. Figures 4.2, 4.3, and 4.4 were constructed using
the Q–Q graphics function in SPSS. Figure 4.2 shows a typical Q–Q plot for a
distribution skewed negatively. Note how the points are all above the line for
small values. Figure 4.3 shows a typical Q–Q plot for a distribution skewed
positively. In this plot the larger points are all below the line. Figure 4.4 shows
the Q–Q plot for the data in Example 4.1. Note that the points are reasonably
close to the line, and there are no indications of systematic deviations from
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the line, thereby indicating that the distribution of the population is reasonably
close to normal.

Tests for Normality

There are formal hypothesis tests that can be used to determine whether a
set of observed values fit some specified distribution. Such tests are known as
goodness-of-fit tests. One such test is the χ2 test discussed in Section 12.3.

Because tests for distributions are often concerned specifically with the
normal distribution and are also not very easy to perform by hand, tests for
normality are available in data summarization programs, such as SAS PROC
UNIVARIATE. One of the most popular tests for normality is the Kolmogoroff–

Smirnoff test. This test compares the observed cumulative distribution with
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the cumulative distribution that would occur if the data were normally dis-
tributed. The test statistic is based on the maximum difference between these
two. For example, using the tree data (Example 1.3) PROC UNIVARIATE gives
p values for this test as p > 0.14 for HT and p < 0.01 for HCRN, which indi-
cates that the height is approximately normally distributed while the height to
the crown is not. This test confirms what the histograms in Figs. 1.4 and 1.5
showed.

The sensitivity of such tests is obviously affected by sample size, which
means that they may not be sufficiently sensitive for small samples where non-
normality may pose a problem, and overly sensitive for large samples where
normality may not be very important. Furthermore, most of the procedures
used in doing routine statistical inferences are not very sensitive to devia-
tions from normality (Kirk, 1995). A procedure not affected by violations of
assumptions is said to be robust with respect to these violations.

If Assumptions Fail

Now that we have scared you, we add a few words of comfort. Many statisti-
cal methods are reasonably robust and with reasonable care, most statistical
analyses can be used as advertised. And even if problems arise, all is not lost.
The following example shows the effect of an extreme value on a test for the
mean and how an alternate analysis can be used to alleviate the effects of that
observation.

EXAMPLE 4.7 A supermarket chain is interested in locating a store in a neighborhood sus-
pected of having families with relatively low incomes, a situation that may
cause a store in that neighborhood to be unprofitable. The supermarket chain
believes that if the average family income is more than $13,000 the store will
be profitable. To determine whether the suspicion is valid, income figures are
obtained from a random sample of 20 families in that neighborhood. The data
from the sample are given in Table 4.5. Assuming that the conditions for using
the t test described in this chapter hold, what can be concluded about the
average income in this neighborhood?

Solution The hypotheses

H0: μ = 13.0,

H1: μ > 13.0

Table 4.5

Data on Household
Income (Coded in Units
of $1000)

No. Income No. Income No. Income No. Income

1 17.1 6 12.3 11 15.7 16 16.2
2 12.7 7 13.2 12 93.4 17 13.6
3 16.5 8 13.3 13 14.9 18 12.8
4 14.0 9 17.9 14 13.0 19 13.4
5 14.2 10 12.5 15 13.8 20 16.6
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are to be tested using a 0.05 significance level. The estimated mean and vari-
ance are

ȳ = 18.36,

s2 = 314.9,

resulting in a t statistic of

t = (18.36 − 13.0)/
√

314.9/20

= 1.351.

We compare this with the 0.05 one-tailed t value of 1.729 and the conclusion is
to fail to reject the null hypothesis. It appears that the store will not be built.

The developer involved in the proposed venture decides to take another
look at the data and immediately notes an obvious anomaly. The observed
income values are all less than $20,000 with one exception: One family reported
its income as $93,400. Further investigation reveals that the observation is
correct. This income belongs to a family of descendants of the original owner
of the land on which the neighborhood is located and who are still living in the
old family mansion.

The relevant question here is: What effect does this observation have on the
conclusion reached by the hypothesis test? One would think that the large value
of this observation would inflate the value of the sample mean and therefore
tend to increase the probability of finding an adequate mean income in that
area. However, the effect of the extreme value is not only on the mean, but
also on the variance, and therefore the result is not quite so predictable. To
illustrate, assume that the sampling procedure had picked a more typical family
with an income of 16.4. This substitution does lower the sample mean from
18.36 to 14.51. However, it also reduces the variance from 314.86 to 3.05! The
value of the test statistic now becomes 3.87, and the null hypothesis would be
rejected. ■

Alternate Methodology

In the above example we were able to get a different result by replacing an
extreme observation with one that seemed more reasonable. Such a procedure
is definitely not recommended, because it could easily lead to abuse (data could
be changed until the desired result was obtained). There are, however, more
legitimate alternative procedures that can be used if the necessary assumptions
appear to be unfulfilled. Such methods may be of two types:

1. The data are “adjusted” so that the assumptions fit.
2. Procedures that do not require as many assumptions are used.

Adjusting the data may be accomplished by simply discarding a prespeci-

fied number of extreme observations (in both tails), and making appropriate
(mathematically justified) adjustments in the test statistic. This is referred to
as “trimming” the data (see Koopmans, 1987). Trimming is not often used and
can be quite difficult to implement in complex situations.
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Adjusting the data can also be accomplished by “transforming” the data.
For example, the variable measured in an experiment may not have a normal
distribution, but the natural logarithm of that variable may. Transformations
take many forms, and are discussed in Section 6.4. More complete discussions
are given in some texts (see, for example, Neter et al., 1996).

Procedures of the second type are usually referred to as “nonparametric”
or “distribution-free” methods since they do not depend on parameters of
specified distributions describing the population. For illustration we apply a
simple alternative procedure to the data of Example 4.7 that will illustrate the
use of a nonparametric procedure for making the decision on the location of
the store.

EXAMPLE 4.7 REVISITED In Chapter 1 we observed that for a highly skewed distribution
the median may be a more logical measure of central tendency. Remember
that the specification for building the store said “average,” a term that may be
satisfied by the use of the median.

The median (see Section 1.5) is defined as the “middle” value of a set of popu-
lation values. Therefore, in the population, half of the observations are above
and half of the observations are below the median. In a random sample then,
observations should be either higher or lower than the median with equal prob-
ability. Defining values above the median as successes, we have a sample from
a binomial population with p = 0.5. We can then simply count how many of the
sample values fall above the hypothesized median value and use the binomial
distribution to conduct a hypothesis test.

Solution The decision to locate a store in the neighborhood discussed in
Example 4.7 is then based on testing the hypotheses

H0: the population median = 13,

H1: the population median > 13.

This is equivalent to testing the hypotheses

H0: p = 0.5,

H1: p > 0.5,

where p is the proportion of the population values exceeding 13.
This is an application of the use of inferences on a binomial parameter. In

the sample shown in Table 4.5 we observe that 15 of the 20 values are strictly
larger than 13. Thus p̂, the sample proportion having incomes greater than 13,
is 0.75. Using the normal approximation to the binomial, the value of the test
statistic is

z = (0.75 − 0.5)/
√

[(0.5)(0.5)/20] = 2.23.

This value is compared with the 0.05 level of the standard normal distribution
(1.645), or results in a p value of 0.012. The result is that the null hypothesis is
rejected, leading to the conclusion that the store should be built. ■
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EXAMPLE 1.2 REVISITED After reviewing the housing data collected in Example 1.1, the
Modes realized that the t test they performed might be affected by the small
number of very-high-priced homes that appeared in Table 1.2. In fact, they
determined that the median price of the data in Table 1.2 was $119,000, which
is quite a bit less than the sample mean of $141,400 obtained from the data.
Further, a re-reading of the article in the paper found that the “average” price
of $155,000 referred to was actually the median price. A quick check showed
that 50 of the 69 (or 72.4%) of the housing prices given in Table 1.2 had values
below 155. The test for the null hypothesis that the median is $155,000 gives

z = 0.724 − 0.500√
(0.5)(0.5)

69

= 3.73,

which, when compared with the 0.05 level of the standard normal distribution
(z = 1.960), provides significant evidence that the median price of homes is
lower in their prospective new city than that of their current city of residence.

It is necessary to emphasize at this point that, despite its simplicity, this test
should not be used if the assumptions necessary for the t test are indeed
fulfilled. The reason for this caution is that under the assumption of normality
the t test has more power. This is due to the fact that the test on the median
does not use all of the information available in the observed values, since the
actual values of the observations are not considered when simply counting the
number of sample observations larger than the hypothesized median. That is,
the ordinal variable describing the median is not as informative as the ratio
variable used to compute the mean.

Other nonparametric methods exist for this particular example. Specifically,
the Wilcoxon signed rank test (Chapter 13) may be considered appropriate
here, but we defer presentation of all nonparametric methods to Chapter 13.

■

4.6 CHAPTER SUMMARY

This chapter provides the methodology for making inferences on the parame-
ters of a single population. The specific inferences presented are

• inferences on the mean, which are based on the Student t distribution,
• inferences on a proportion using the normal approximation to the binomial

distribution, and
• inferences on the variance using the χ2 distribution.

A final section discusses some of the assumptions necessary for ensuring the
validity of these inference procedures and provides an example for which a
violation has occurred and a possible alternative inference procedure for that
situation.
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4.7 CHAPTER EXERCISES

CONCEPT

QUESTIONS

Indicate true or false for the following statements. If false, specify what change
will make the statement true.

1. The t distribution is more dispersed than the normal.

2. The χ2 distribution is used for inferences on the mean when the
variance is unknown.

3. The mean of the t distribution is affected by the degrees of
freedom.

4. The quantity

(ȳ − μ)√
σ 2/n

has the t distribution with (n − 1) degrees of freedom.

5. In the t test for a mean, the level of significance increases if the
population standard deviation increases, holding the sample size constant.

6. The χ2 distribution is used for inferences on the variance.

7. The mean of the t distribution is zero.

8. When the test statistic is t and the number of degrees of freedom
is >30, the critical value of t is very close to that of z (the standard normal).

9. The χ2 distribution is skewed and its mean is always 2.

10. The variance of a binomial proportion is npq [or np(1 − p)].

11. The sampling distribution of a proportion is approximated by the
χ2 distribution.

12. The t test can be applied with absolutely no assumptions about
the distribution of the population.

13. The degrees of freedom for the t test do not necessarily depend
on the sample size used in computing the mean.

PRACTICE

EXERCISES

The following exercises are designed to give the reader practice in doing sta-
tistical inferences on a single population through simple examples with small
data sets. The solutions are given in the back of the text.

1. Find the following upper one-tail values:
(a) t0.05(13)
(b) t0.01(26)
(c) t0.10(8)
(d) χ2

0.01(20)
(e) χ2

0.10(8)
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(f) χ2
0.975(40)

(g) χ2
0.99(9)

2. The following sample was taken from a normally distributed population:

3, 4, 5, 5, 6, 6, 6, 7, 7, 9, 10, 11, 12, 12, 13, 13, 13, 14, 15.

(a) Compute the 0.95 confidence interval on the population mean μ.
(b) Compute the 0.90 confidence interval on the population standard

deviation σ.

3. Using the data in Exercise 2, test the following hypotheses:
(a) H0: μ = 13,

H1: μ 
= 13.
(b) H0: σ 2 = 10,

H1: σ 2 
= 10.

4. A local congressman indicated that he would support the building of a new
dam on the Yahoo River if at least 60% of his constituents supported the
dam. His legislative aide sampled 225 registered voters in his district and
found 135 favored the dam. At the level of significance of 0.10 should the
congressman support the building of the dam?

5. In Exercise 4, how many voters should the aide sample if the congressman
wanted to estimate the true level of support to within 1%?

EXERCISES

1. Weight losses of 12 persons in an experimental one-week diet program are
given below:

Weight loss in pounds

3.0 1.4 0.2 −1.2
5.3 1.7 3.7 5.9
0.2 3.6 3.7 2.0

Do these results indicate that a mean weight loss was achieved? (Use
α = 0.05).

2. In Exercise 1, determine whether a mean weight loss of more than 1 lb.
was achieved. (Use α = 0.01.)

3. A manufacturer of watches has established that on the average his watches
do not gain or lose. He also would like to claim that at least 95% of the
watches are accurate to ±0.2 s per week. A random sample of 15 watches
provided the following gains (+) or losses (−) in seconds in one week:

+0.17 −0.07 +0.13 −0.05 +0.23
+0.01 +0.06 +0.08 −0.14 −0.10
+0.08 +0.11 +0.05 −0.87 +0.05

Can the claim be made with a 5% chance of being wrong? (Assume that the
inaccurancies of these watches are normally distributed.)
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4. A sample of 20 insurance claims for automobile accidents (in $1000) gives
the following values:

1.6 2.0 2.7 1.3 2.0
1.3 0.3 0.9 1.2 1.2
0.2 1.3 5.0 0.8 7.4
3.0 0.6 1.8 2.5 0.3

Construct a 0.95 confidence interval on the mean value of claims. Comment
on the usefulness of this estimate (Hint: Look at the distribution.)

5. An advertisement for a headache remedy claims that 90% or more of
headache sufferers get relief if they use the remedy. A truth in advertising
agency is considering a suit for false advertising and obtains a sample of
100 individuals, which shows that 88 indicate that the remedy gave them
relief.
(a) Using α = 0.10 can the suit be justified?
(b) Comment on the implications of a type I or a type II error in this prob-

lem.
(c) Suppose that the company manufacturing the remedy wants to conduct

a promotion campaign that claims over 90% of the remedy users get
relief from headaches. What would change in the hypotheses state-
ments used in part (a)?

(d) What about the implications discussed in part (b)?

6. Average systolic blood pressure of a normal male is supposed to be about
129. Measurements of systolic blood pressure on a sample of 12 adult
males from a community whose dietary habits are suspected of causing
high blood pressure are listed below:

115 134 131 143
130 154 119 137
155 130 110 138

Do the data justify the suspicions regarding the blood pressure of this
community? (Use α = 0.01.)

7. A public opinion poll shows that in a sample of 150 voters, 79 preferred
candidate X. If X can be confident of winning, she can save campaign
funds by reducing TV commercials. Given the results of the survey should
X conclude that she has a majority of the votes? (Use α = 0.05.)

8. Construct a 0.95 interval on the true proportion of voters preferring can-
didate X in Exercise 7.

9. It is said that the average weight of healthy 12-hr-old infants is supposed to
be 7.5 lbs. A sample of newborn babies from a low-income neighborhood
yielded the following weights (in pounds) at 12 hr after birth:

6.0 8.2 6.4 4.8
8.6 8.0 6.0
7.5 8.1 7.2
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At the 0.01 significance level, can we conclude that babies from this neigh-
borhood are underweight?

10. Construct a 0.99 confidence interval on the mean weight of 12-hr-old babies
in Exercise 9.

11. A truth in labeling regulation states that no more than 1% of units may
vary by more than 2% from the weight stated on the label. The label of a
product states that units weigh 10 oz. each. A sample of 20 units yielded
the following:

10.01 9.92 9.82 10.04
10.04 10.06 9.97 9.94

9.97 9.86 10.02 10.14
9.97 9.97 9.97 10.05

10.19 10.10 9.95 10.00

At α = 0.05 can we conclude that these units satisfy the regulation?

12. Construct a 0.95 confidence interval on the variance of weights given in
Exercise 11.

13. A production line in a certain factory puts out washers with an average
inside diameter of 0.10 in. A quality control procedure that requires the
line to be shut down and adjusted when the standard deviation of in-
side diameters of washers exceeds 0.002 in. has been established. Discuss
the quality control procedure relative to the value of the significance level,
type I and type II errors, sample size, and cost of the adjustment.

14. Suppose that a sample of size 25 from Exercise 13 yielded s = 0.0037.
Should the machine be adjusted?

15. Using the data from Exercise 4, construct a stem and leaf plot and a box
plot (Section 1.6). Do these graphs indicate that the assumptions discussed
in Section 4.5 are valid? Discuss possible alternatives.

16. Using the data from Exercise 11, construct a stem and leaf plot and a box
plot. Do these graphs indicate that the assumptions discussed in Section
4.5 are valid? Discuss possible alternatives.

17. In Exercise 13 of Chapter 1 the half-lives of aminoglycosides were listed
for a sample of 43 patients, 22 of which were given the drug Amikacin. The
data for the drug Amikacin are reproduced in Table 4.6. Use these data to
determine a 95% confidence interval on the true mean half-life of this drug.

Table 4.6

Half-Life of Amikacin

2.50 1.20 2.60 1.44 1.87 2.48
2.20 1.60 1.00 1.26 2.31 2.80
1.60 2.20 1.50 1.98 1.40 0.69
1.30 2.20 3.15 1.98
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18. Using the data from Exercise 17, construct a 90% confidence interval on
the variance of the half-life of Amikacin.

19. A certain soft drink bottler claims that less than 10% of its customers drink
another brand of soft drink on a regular basis. A random sample of 100
customers yielded 18 who did in fact drink another brand of soft drink on
a regular basis. Do these sample results support the bottler’s claim? (Use
a level of significance of 0.05.)

20. Draw a power curve for the test constructed in Exercise 19. (Refer to
the discussion on power curves in Section 3.2 and plot 1 − β versus p =
proportion of customers drinking another brand.)

Table 4.7

Data for Exercise 21

Type Concentration Differences

1 1 −0.112 0.163 −0.151
1 2 −0.117 0.072 0.169
1 3 −0.006 −0.092 −0.268
1 4 0.119 0.118 0.051
1 5 −0.272 −0.302 0.343
2 1 −0.094 −0.137 0.308
2 2 −0.238 0.031 0.160
2 3 −0.385 −0.366 −0.173
2 4 −0.259 0.266 −0.303
2 5 −0.125 0.383 0.334
3 1 0.060 0.106 0.084
3 2 −0.016 −0.191 0.097
3 3 −0.024 −0.046 −0.178
3 4 0.040 0.028 0.619
3 5 0.062 0.293 −0.106
4 1 −0.034 0.116 0.055
4 2 −0.023 −0.099 −0.212
4 3 −0.256 −0.110 −0.272
4 4 −0.046 0.009 −0.134
4 5 −0.050 0.009 −0.034

21. This experiment concerns the precision of four types of collecting tubes
used for air sampling of hydrofluoric acid. Each type is tested three times
at five different concentrations. The data shown in Table 4.7 give the differ-
ences between the three observed and true concentrations for each level
of true concentration for each of the tubes.

The differences are required to have a standard deviation of no more
than 0.1. Do any of the tubes meet this criterion? (Careful: What is the
most appropriate sum of squares for this test?)



Chapter 5

Inferences for Two
Populations

EXAMPLE 5.1 Comparing Costs of an Audit Publicly funded institutions are required
to have their financial records periodically audited by independent auditing
firms. They are usually free to choose any accredited firm, but there is some
inclination to employ a prestigious firm such as one of the “Big Eight.” Since
there is a suspicion that these firms charge more for their services, the chief
accountant of a city conducts a study to investigate this possibility. She obtains
information on the cost of their latest audit for a random sample of 25 cities
and notes whether the firm was one of the Big Eight. Recognizing that the size
of the city also affects the cost of an audit, she also obtains the population of
each city. The data are shown in Table 5.1. The population (POP) and audit
fee (FEE) are in units of 1000; the columns under BIG8 signify whether the
auditing firm is one of the Big Eight by YES or NO.

Figure 5.1 shows the box plots of the fees charged by the two classes of auditing
firms. This figure certainly suggests that the BIG8 do charge more; however,
the analysis presented in the chapter summary (Section 5.7) provides the sur-
prising result that there is insufficient evidence to conclude that a difference
exists. In order to see why this apparent contradiction occurs, we must first ex-
plore the method necessary to compare the differences in fees charged by the
two classes of auditing firms. This chapter presents methods used to compare
two populations. ■

5.1 Introduction

In Chapter 4 we provided methods for inferences on parameters of a single
population. A natural extension of these methods occurs when two popula-
tions are to be compared. In this chapter we provide the inferential methods

185
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Table 5.1 Audit Fees

POP FEE BIG8 POP FEE BIG8 POP FEE BIG8

25.43 7.50 NO 40.20 20.00 NO 191.00 50.00 YES
25.50 15.00 NO 70.42 30.00 NO 279.27 82.00 YES
26.42 10.00 NO 75.23 44.00 YES 357.87 125.00 YES
27.15 18.00 NO 81.83 32.00 YES 385.46 76.00 YES
29.52 16.00 NO 105.61 48.50 NO 492.37 86.00 YES
30.40 17.62 NO 111.81 65.00 YES 562.99 126.00 YES
32.10 8.45 NO 150.25 90.00 YES 1203.34 177.00 YES
35.81 12.00 NO 164.67 104.50 YES
36.61 21.50 NO 171.93 95.00 YES

0
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100

150

200

NO YES

BIG8

F
E
E

Figure 5.1

Audit Fees

for making comparisons on parameters of two populations. This leads to a
natural extension, that of comparing more than two populations, which is
presented in Chapter 6. So, why not go directly to comparing parameters of
several populations and consider the case of two populations as a special case?
There are several good answers to that question:

• Many interesting applications involve only two populations, for example,
any comparisons involving differences between the two sexes, comparing
a drug with a placebo, comparing old versus new, or before and after some
event.

• Some of the concepts underlying comparing several populations are more
easily introduced for the two-population case.

• The comparison of two populations results in a single easily understood
statistic: the difference between sample means. As we shall see in Chapter
6, such a simple statistic is not available for comparing more than two popu-
lations. As a matter of fact, even when we have more than two populations,
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we will often want to make comparisons among specific pairs from the set
of populations.

Populations that are to be compared arise in two distinct ways:

• The populations are actually different. For example, male and female stu-
dents, two regions of a state or nation, or two different breeds of cattle.
In Section 1.1 we referred to a study involving separate populations as an
observational study.

• The populations are a result of an experiment where a single homogeneous
population has been divided into two portions where each has been sub-
jected to some sort of modification, for example, a sample of individuals
given two different drugs to combat a disease, a field of an agricultural
crop where two different fertilizer mixtures are applied to various portions,
or a group of school children subjected to different teaching methods. In
Section 1.1 this type of study was referred to as a designed experiment.

This latter situation constitutes the more common usage of statistical
inference. In such experiments the different populations are usually referred
to as “treatments” or “levels of a factor.” These terms will be discussed in
greater detail in later chapters, especially Chapter 10.

There are also two distinct methods for collecting data on two populations,
or equivalently, designing an experiment for comparing two populations. These
are called (1) independent samples and (2) dependent or paired samples.
We illustrate these two methods with a hypothetical experiment designed to
compare the effectiveness of two migraine headache remedies. The response
variable is a measure of headache relief reported by the subjects.

Independent Samples A sample of migraine sufferers is randomly divided
into two groups. The first group is given remedy A while the other is given
remedy B, both to be taken at the onset of a migraine attack. The pills are not
identified, so patients do not know which pill they are taking. Note that the
individuals sampled for the two remedies are indeed independent of each other.

Dependent or Paired Samples Each person in a group of migraine suf-
ferers is given two pills, one of which is red and the other is green. The group
is randomly split into two subgroups and one is told to take the green pill the
first time a migraine attack occurs and the red pill for the next one. The other
group is told to take the red pill first and the green pill next. Note that both pills
are given to each patient so the responses of the two remedies are naturally
paired for each patient.

These two methods of comparing the efficacy of the remedies dictate dif-
ferent inferential procedures. The comparison of means, variances, and pro-
portions for independent samples are presented in Sections 5.2, 5.3, and 5.5,
respectively, and the comparison of means and proportions for the dependent
or paired sample case in Sections 5.4 and 5.5.
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5.2 Inferences on the Difference between Means Using Independent Samples

We are interested in comparing two populations whose means are μ1 and μ2

and whose variances are σ 2
1 and σ 2

2 , respectively. Comparisons may involve
the means or the variances (standard deviations). In this section we consider
the comparison of means.

For two populations we define the difference between the two means as

δ = μ1 − μ2.

This single parameter δ provides a simple, tractable measure for comparing
two population means, not only to see whether they are equal, but also to esti-
mate the difference between the two. For example, testing the null hypothesis

H0: μ1 = μ2

is the same as testing the null hypothesis

H0: δ = 0.

A sample of size n1 is randomly selected from the first population and a sample
of size n2 is independently drawn from the second. The difference between
the two sample means (ȳ1 − ȳ2) provides the unbiased point estimate of the
difference (μ1 − μ2). However, as we have learned, before we can make any
inferences about the difference between means, we must know the sampling
distribution of (ȳ1 − ȳ2).

Sampling Distribution of a Linear Function of Random Variables

The sampling distribution of the difference between two means from inde-
pendently drawn samples is a special case of the sampling distribution of a
linear function of random variables. Consider a set of n random variables
y1, y2, . . . , yn, whose distributions have means μ1, μ2, . . . , μn and variances
σ 2

1 , σ 2
2 , . . . , σ 2

n . A linear function of these random variables is defined as

L =
∑

aiyi = a1 y1 + a2 y2 + · · · + anyn,

where the ai are arbitrary constants. L is also a random variable and has mean

μL =
∑

aiμi = a1μ1 + a2μ2 + · · · + anμn.

If the variables are independent, then L has variance

σ 2
L =

∑
a2

i σ
2
i = a2

1σ
2
1 + a2

2σ
2
2 + · · · + a2

nσ
2
n .

Further, if the yi are normally distributed, so is L.

The Sampling Distribution of the Difference between Two Means

Since sample means are random variables, the difference between two sample
means is a linear function of two random variables. That is,

ȳ1 − ȳ2
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can be written as

L = a1 ȳ1 + a2 ȳ2 = (1)ȳ1 + (−1)ȳ2.

In terms of the linear function specified above, n = 2, and a1 = 1 and a2 = −1.
Using these specifications, the sampling distribution of the difference between
two means has a mean of (μ1 − μ2).

Further, since the ȳ1 and ȳ2 are sample means, the variance of ȳ1 is σ 2
1 /n1

and the variance of ȳ2 is σ 2
2 /n2. Also, because we have made the assumption

that the two samples are independently drawn from the two populations, the
two sample means are independent random variables. Therefore, the variance
of the difference (ȳ1 − ȳ2) is

σ 2
L = (+1)2σ 2

1 /n1 + (−1)2σ 2
2 /n2,

or simply

= σ 2
1 /n1 + σ 2

2 /n2.

Note that for the special case where σ 2
1 = σ 2

2 = σ 2 and n1 = n2 = n, say, the
variance of the difference is 2σ 2/n.

Finally, the central limit theorem states that if the sample sizes are suffi-
ciently large, ȳ1 and ȳ2 are normally distributed; hence for most applications
L is also normally distributed.

Thus, if the variances σ 2
1 and σ 2

2 are known, we can determine the variance
of the difference (ȳ1 − ȳ2). As in the one-population case we first present
inference procedures that assume that the population variances are known.
Procedures using estimated variances are presented later in this section.

Variances Known

We first consider the situation in which both population variances are known.
We want to make inferences on the difference

δ = μ1 − μ2,

for which the point estimate is

ȳ1 − ȳ2.

This statistic has the normal distribution with mean (μ1 − μ2) and variance
(σ 2

1 /n1 + σ 2
2 /n2). Hence, the statistic

z = ȳ1 − ȳ2 − δ√(
σ 2

1 /n1
)+ (

σ 2
2 /n2

)
has the standard normal distribution. Hypothesis tests and confidence intervals
are obtained using the distribution of this statistic.

Hypothesis Testing We want to test the hypotheses

H0: μ1 − μ2 = δ0,

H1: μ1 − μ2 
= δ0,
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where δ0 represents the hypothesized difference between the population
means. To perform this test, we use the test statistic

z = ȳ1 − ȳ2 − δ0√(
σ 2

1 /n1
)+ (

σ 2
2 /n2

) .
The most common application is to let δ0 = 0, which is, of course, the test
for the equality of the two population means. The resulting value of z is used
to calculate a p value (using the standard normal table) or compared with
a rejection region constructed for the desired level of significance. One- or
two-sided alternative hypotheses may be used.

A confidence interval on the difference (μ1 − μ2) is constructed using
the sampling distribution of the difference presented above. The confidence
interval takes the form

(ȳ1 − ȳ2) ± zα/2

√(
σ 2

1 /n1
)+ (

σ 2
2 /n2

)
.

EXAMPLE 5.2 A production plant has two fabricating systems: One uses automated equip-
ment, the other is manually operated. Since the automated system costs more
to install, we want to know whether it provides increased production in terms
of the mean number of finished products fabricated per day. Experience has
shown that the daily production of the automated system has a standard devi-
ation of σ1 = 10, the manual system, σ2 = 20.1 Independent random samples
of 100 days of production are obtained from company records for each sys-
tem. The sample results are that the automated system had a sample mean
production of ȳ1 = 254, and the manual system a sample mean of ȳ2 = 248. Is
the automated system superior to the manual one?

Solution To answer the question, we will test the hypothesis

H0: δ = μ1 − μ2 = 0 (or μ1 = μ2),

where μ1 is the average production of the automated system and μ2 that of
the manual system. The alternate hypothesis is

H1: δ = μ1 − μ2 > 0 (or μ1 > μ2);

that is, the automated system has a higher production rate. Because of the
cost of installing the automated system, α = 0.01 is chosen to determine
whether the manual system should be replaced by an automated system. The
test statistic has a value of

z = (254 − 248) − 0√
(102/100) + (202/100)

= 2.68.

The p value associated with this test statistic is p = 0.0037. The null hypothesis
is rejected for any significance level exceeding 0.0037; hence we can conclude

1The fact that the automated system has a smaller variance is not of interest at this time.
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that average daily production will be increased by replacing the manual system
with an automated one.

It is also of interest to estimate by what amount the average daily production
will be increased. This can be determined by using a one-sided confidence
interval similar to that discussed in Section 3.3. In particular, we determine
the lower 0.99 confidence limit on the mean as

(254 − 248) − 2.326
√

(10)2/100 + (20)2/100 = 0.80.

This means that the increase may be as low as one unit, which may not be
sufficient to justify the expense of installing the new system, illustrating the
principle that a statistically significant result does not necessarily imply prac-
tical significance as noted in Section 3.6. ■

Variances Unknown but Assumed Equal

The “obvious” methodology for comparing two means when the population
variances are not known would seem to be to use the two variance estimates,
s2

1 and s2
2 , in the statistic described in the previous section and determine the

significance level from the Student t distribution. This approach will not work
because the mathematical formulation of this distribution requires as its single
parameter the degrees of freedom for a single variance estimate.

The solution to this problem is to assume that the two-population variances
are equal and find an estimate of that variance. The equal variance assumption
is actually quite reasonable since in many studies, a focus on means implies
that the populations are similar in many respects. Otherwise, it would not make
sense to compare just the means (apples with oranges, etc.). If the assumption
of equal variances cannot be made, then other methods must be employed, as
discussed later in this section.

Assume that we have independent samples of size n1 and n2, respectively,
from two normally distributed populations with equal variances. We want to
make inferences on the difference δ = (μ1 − μ2). Again the point estimate of
that difference is (ȳ1 − ȳ2).

The Pooled Variance Estimate

The estimate of a common variance from two independent samples is obtained
by “pooling,” which is simply the weighted mean of the two individual variance
estimates with the weights being the degrees of freedom for each variance.
Thus the pooled variance, denoted by s2

p, is

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

(n1 − 1) + (n2 − 1)
.

We have emphasized that all estimates of a variance have the form

s2 = SS/df,
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where, for example, df = (n − 1) for a single sample, and consequently SS =
(n− 1)s2. Using the notation SS1 and SS2 for the sums of squares from the two
samples, the pooled variance can be defined (and, incidentally, more easily
calculated) as

s2
p = SS1 + SS2

n1 + n2 − 2
.

This form of the equation shows that the pooled variance is indeed of the form
SS/df, where now df = (n1 − 1)+ (n2 − 1) = (n1 +n2 − 2). The pooled variance
is now used in the t statistic, which has the t distribution with = (n1 + n2 − 2)
degrees of freedom. We will see in Chapter 6 that the principle of pooling can
be applied to any number of samples.

The ‘‘Pooled” t Test

To test the hypotheses

H0: μ1 − μ2 = δ0,

H1: μ1 − μ2 
= δ0,

we use the test statistic

t = (ȳ1 − ȳ2) − δ0√(
s2

p/n1
)+ (

s2
p/n2

) ,

or equivalently

t = (ȳ1 − ȳ2) − δ0√
s2

p(1/n1 + 1/n2)
.

This statistic will have the t distribution and the degrees of freedom are (n1 +
n2 −2) as provided by the denominator of the formula for s2

p. This test statistic
is often called the pooled t statistic since it uses the pooled variance estimate.

Similarly the confidence interval on μ1 − μ2 is

(ȳ1 − ȳ2) ± tα/2

√
s2

p(1/n1 + 1/n2),

using values from the t distribution with (n1 + n2 − 2) degrees of freedom.

EXAMPLE 5.3 Mesquite is a thorny bush whose presence reduces the quality of pastures
in the Southwest United States. In a study of growth patterns of this plant,
dimensions of samples of mesquite were taken in two similar areas (labeled A

and M) of a ranch. In this example, we are interested in determining whether
the average heights of the plants are the same in both areas. The data are given
in Table 5.2.
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Table 5.2

Heights of Mesquite

Location A Location M

(nA = 20) (nM = 26)

1.70 2.00 1.30 0.90 1.50
3.00 1.30 1.35 1.35 1.50
1.70 1.45 2.16 1.40 1.20
1.60 2.20 1.80 1.00 0.70
1.40 0.70 1.55 1.70 1.20
1.90 1.90 1.20 1.50 0.80
1.10 1.80 1.00 0.65
1.60 2.00 1.70 1.50
2.00 2.20 0.80 1.70
1.25 0.92 1.20 1.70

Table 5.3

Stem and Leaf Plot for
Mesquite Heights

Location A Stem Location M

0 3
2

00022 2 2
6677789 1 5555677778
12344 1 0022223444
79 0 77889

Solution As a first step in the analysis of the data, construction of a stem
and leaf plot of the two samples (Table 5.3) is appropriate. The purpose of
this exploratory procedure is to provide an overview of the data and look
for potential problems, such as outliers or distributional anomalies. The plot
appears to indicate somewhat larger mesquite bushes in location A. One bush
in location A appears to be quite large; however, we do not have sufficient
evidence that this value represents an outlier or unusual observation that may
affect the analysis.

We next perform the test for the hypotheses

H0: μA − μM = 0 (or μA = μM),

H1: μA − μM 
= 0 (or μA 
= μM).

The following preliminary calculations are required to obtain the desired
value for the test statistic:

Location A Location M

n = 20 n = 26∑
y = 33.72

∑
y = 34.36∑

y2 = 61.9014
∑

y2 = 48.9256
ȳ = 1.6860 ȳ = 1.3215
SS = 5.0495 SS = 3.5175
s2 = 0.2658 s2 = 0.1407
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The computed t statistic is

t = 1.6860 − 1.3215√
5.0495 + 3.5175

44

(
1
20 + 1

26

)
= 0.3645√

(0.1947)(0.08846)

= 0.3654
0.1312

= 2.778.

We have decided that a significance level of 0.01 would be appropriate. For
this test we need the t distribution for 20 + 26 − 2 = 44 degrees of freedom.
Because Appendix Table A.2 does not have entries for 44 degrees of freedom,
we use the next smaller degrees of freedom, which is 40. This provides for
a more conservative test; that is, the true value of α will be somewhat less
than the specified 0.01. It is possible to interpolate between 40 and 60 degrees
of freedom to provide a more precise rejection region, but such a degree of
precision is rarely needed. Using this approximation, we see that the rejection
region consists of absolute values exceeding 2.7045.

The value of the test statistic exceeds 2.7045 so the null hypothesis is
rejected, and we determine that the average heights of plants differ between
the two locations. Using a computer program, the exact p value for the test
statistic is 0.008.

The 0.99 confidence interval on the difference in population means, (μ1 −
μ2), is

ȳ1 − ȳ2 ± tα/2

√
s2

p(1/n1 + 1/n2),

which produces the values

0.3645 ± 2.7045 (0.1312) or 0.3645 ± 0.3548,

which defines the interval from 0.0097 to 0.7193. The interval does not contain
zero, which agrees with the results of the hypothesis test. ■

Variances Unknown but Not Equal

In Example 5.3 we saw that the variance of the heights from location A was
almost twice that of location M . The difference between these variances
probably is due to the rather large bush measured at location A. Since we can-
not discount this observation, we may need to provide a method for comparing
means that does not assume equal variances. (A test for equality of variances
is presented in Section 5.3 and according to this test these two variances are
not significantly different.)

Before continuing, it should be noted that inferences on means may not be
useful when variances are not equal. If, for example, the distributions of two
populations look like those in Fig. 5.2, the fact that population 2 has a larger
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Distributions with
Different Variances

mean is only one factor in the difference between the two populations. In such
cases it may be more useful to test other hypotheses about the distributions.
Additional comments on this and other assumptions needed for the pooled
t test are presented in Section 5.6 and also in Chapter 13.

Sometimes differences in variances are systematic or predictable. For
some populations the magnitude of the variance or standard deviation may be
proportional to the magnitude of the mean. For example, for many biological
organisms, populations with larger means also have larger variances. This type
of variance inequality may be handled by making “transformations” on the data,
which employ the analysis of some function of the y’s, such as log y, rather
than the original values. The transformed data may have equal variances and
the pooled t test can then be used. The use of transformations is more fully
discussed in Section 6.4.

Not all problems with unequal variances are amenable to this type of anal-
ysis; hence we need alternate procedures for performing inferences on the
means of two populations based on data from independent samples. For this
situation we may use one of the following procedures with the choice depend-
ing on the sample sizes:

1. If both n1 and n2 are large (both over 30) we can assume a normal distribu-
tion and compute the test statistic

t′ = ȳ1 − ȳ2√
s2

1
n1

+ s2
2

n2

.

Since n1 and n2 are large, the central limit theorem will allow us to assume
that the difference between the sample means will have approximately the
normal distribution. Again, for the large sample case, we can replace σ1 and
σ2 with s1 and s2 without serious loss of accuracy. Therefore, the statistic t′

will have approximately the standard normal distribution.
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2. If either sample size is not large, compute the statistic t′ as in part (1). If
the data come from approximately normally distributed populations, this
statistic does have an approximate Student t distribution, but the degrees of
freedom cannot be precisely determined. A reasonable (and conservative)
approximation is to use the degrees of freedom for the smaller sample;
however, other approximations may be used (see the example in Section
5.7).

EXAMPLE 5.4 In a study on attitudes among commuters, random samples of commuters were
asked to score their feelings toward fellow passengers using a score ranging
from 0 for “like” to 10 for “dislike.” A sample of 10 city subway commuters
(population 1) and an independent sample of 17 suburban rail commuters
(population 2) were used for this study. The purpose of the study is to compare
the mean attitude scores of the two types of commuters. It can be assumed
that the data represent samples from normally distributed populations.

The data from the two samples are given in Table 5.4. Note that the data are
presented in the form of frequency distributions; that is, a score of zero was
given by three subway commuters and five rail commuters and so forth.

Solution Distributions of scores of this type typically have larger variances
when the mean score is near the center (5) and smaller variances when the
mean score is near either extreme (0 or 10). Thus, if there is a difference in
means, there is also likely to be a difference in variances. We want to test the
hypotheses

H0: μ1 = μ2,

H1: μ1 
= μ2.

The t′ statistic has a value of

t′ = 3.70 − 1.53√
(13.12/10) + (2.14/17)

= 1.81.

The smaller sample has 10 observations; hence we use the t distribution with 9
degrees of freedom. The 0.05 critical value is ±2.262. The sample statistic does
not lead to rejection at α = 0.05; in fact, the p value is somewhat greater than
0.10. Therefore there is insufficient evidence that the attitudes of commuters
differ.

Figure 5.3 shows the distributions of the two samples. The plot clearly
shows the larger variation for the subway scores, but there does not appear to

Table 5.4 SCORE

Commuter Type 0 1 2 3 4 5 6 7 8 9 10

Subway 3 1 2 1 1 2
Rail 5 4 5 1 1 1
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be much difference between the means. Even though the distributions appear
to be skewed, Q–Q plots similar to those discussed in Section 4.5 (not shown
here) do not indicate any serious deviations from normality.

If this data set had been analyzed using the pooled t test discussed earlier,
the t value would be 2.21 with 25 degrees of freedom. The p value associated
with this test statistic is about 0.04, which is sufficiently small to result in
rejection of the hypothesis at the 0.05 significance level. Thus, if the test had
been made under the assumption of equal variances (which in this case is
not valid), an incorrect inference may have been made about the attitudes of
commuters. ■

Actually the equal variance assumption is only one of several necessary
to assure the validity of conclusions obtained by the pooled t test. A brief
discussion of these issues and some ideas on remedial or alternate methods is
presented in Section 5.6 and also in Chapter 13.

5.3 Inferences on Variances

In some applications it may be important to be able to determine whether the
variances of two populations are equal. Such inferences are not only useful
to determine whether a pooled variance may be used for inferences on the
means, but also to answer more general questions about the variances of two
populations. For example, in many quality control experiments, it is important
to maintain consistency, and for such experiments inferences on variances are
of prime importance, since the variance is a measure of consistency within a
population.

In comparing the means of two populations, we are able to use the dif-
ference between the two sample means as the relevant point estimate and
the sampling distribution of that difference to make inferences. However,
the difference between two sample variances does not have a simple, usable
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distribution. On the other hand, the statistic based on the ratio s2
1/s2

2 is, as we
saw in Section 2.6, related to the F distribution. Consequently, if we want to
state that two variances are equal, we can express this relationship by stating
that the ratio σ 2

1 /σ 2
2 is unity. The general procedures for performing statistical

inference remain the same.
Recall that the F distribution depends on two parameters, the degrees

of freedom for the numerator and the denominator variance estimates. Also
the F distribution is not symmetric. Therefore the inferential procedures are
somewhat different from those for means, but more like those for the variance
(Section 4.4).

To test the hypothesis that the variances from two populations are equal,
based on independent samples of size n1 and n2, from normally distributed
populations, use the following procedures:

1. The null hypothesis is

H1: σ 2
1 = σ 2

2 or H0: σ 2
1 /σ 2

2 = 1.

2. The alternative hypothesis is

H0: σ 2
1 
= σ 2

2 or H1: σ 2
1 /σ 2

2 
= 1.

One-tailed alternatives are that the ratio is either greater or less than unity.

3. Independent samples of size n1 and n2 are taken from the two populations
to provide the sample variances s2

1 and s2
2 .

4. Compute the ratio F = s2
1/s2

2 .
5. This value is compared with the appropriate value from the table of the

F distribution, or a p value is computed from it. Note that since the F

distribution is not symmetric, a two-tailed alternative hypothesis requires
finding two separate critical values in the table.

As we discussed in Section 2.6 regarding the F distribution, most tables do not
have the lower tail values. It was also shown that these values may be found
by using the relationship

F(1−α/2)(ν1, ν2) = 1
Fα/2(ν2, ν1)

.

An easier way of obtaining a rejection region for a two-tailed alternative is
to always use the larger variance estimate for the numerator, in which case we
need only the upper tail of the distribution, remembering to use α/2 to find the
critical value. In other words, if s2

2 is larger than s2
1 , use the ratio F = s2

2/s2
1 , and

determine the F value for α/2 with (n2−1) numerator and (n1−1) denominator
degrees of freedom.

For a one-tailed alternative, simply label the populations such that the
alternative hypothesis can be stated in terms of “greater than,” which then
requires the use of the tabled upper tail of the distribution.
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Confidence intervals are also expressed in terms of the ratio σ 2
1 /σ 2

2 . The
confidence limits for this ratio are as follows:

Lower limit: (
s2

1/s2
2

)
Fα/2(n1 − 1, n2 − 1)

.

Upper limit: (
s2

1/s2
2

)
F(1−α/2)(n1 − 1, n2 − 1)

.

In this case we must use the reciprocal relationship (Section 2.6) for the two
tails of the distribution to compute the upper limit:(

s2
1/s2

2

)
Fα/2(n2 − 1, n1 − 1).

Alternately, we can compute the lower limit for σ 2
2 /σ 2

1 , which is the reciprocal
of the upper limit for σ 2

1 /σ 2
2 .

EXAMPLE 5.5 In previous chapters we discussed a quality control example in which we were
monitoring the amount of peanuts being put in jars. In situations such as this,
consistency of weights is very important and therefore warrants considerable
attention in quality control efforts. Suppose that the manufacturer of the ma-
chine proposes installation of a new control device that supposedly increases
the consistency of the output from the machine. Before purchasing it, the de-
vice must be tested to ascertain whether it will indeed reduce variability. To test
the device, a sample of 11 jars is examined from a machine without the device
(population N), and a sample of 9 jars is examined from the production after
the device is installed (population C). The data from the experiment are given
in Table 5.5, and Fig. 5.4 shows side-by-side box plots for the weights of the
samples. The sample from population C certainly appears to exhibit less vari-
ation. The question is, does the control device significantly reduce variation?

Solution We are interested in testing the hypotheses

H0: σ 2
N = σ 2

C

(
or σ 2

N/σ 2
C = 1

)
,

H1: σ 2
N > σ 2

C

(
or σ 2

N/σ 2
C > 1

)
.

Table 5.5

Contents of Peanut Jars
(oz.)

Population N Population C

without Control with Control

8.06 8.39 7.99 8.03
8.64 8.46 8.12 8.14
7.97 8.28 8.34 8.14
7.81 8.02 8.17 7.87
7.93 8.39 8.11
8.57
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The sample statistics are

s2
N = 0.07973 and s2

C = 0.01701.

Since we have a one-tailed alternative, we place the larger alternate hypothesis
variance in the numerator; that is, the test statistic is s2

N/s2
C . The calculated test

statistic has a value of F = 0.07973/0.01701 = 4.687. The rejection region for
α = 0.05 for the F distribution with 10 and 8 degrees of freedom consists of
values exceeding 3.35. Hence the null hypothesis is rejected and the conclusion
is that the device does in fact increase the consistency (reduce the variance).

A one-sided interval is appropriate for this example. The desired confidence
limit is the lower limit for the ratio σ 2

N/σ 2
C , since we want to be, say, 0.95

confident that the variance of the machine without the control device is larger.
The lower 0.95 confidence limit is (

s2
N/s2

C

)
F0.05(10, 8)

.

The value of F0.05(10, 8) is 3.35; hence the limit is

4.687/3.35 = 1.40.

In other words we are 0.95 confident that the variance without the control
device is at least 1.4 times as large as it is with the control device. As usual, the
result agrees with the hypothesis test, which rejected the hypothesis of a unit
ratio. ■

5.4 Inferences on Means for Dependent Samples

In Section 5.2 we discussed the methods of inferential statistics as applied to
two independent random samples obtained from separate populations. These
methods are not appropriate for evaluating data from studies in which each
observation in one sample is matched or paired with a particular observation
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in the other sample. For example, if we are studying the effect of a special
diet on weight gains, it is not effective to randomly divide a sample of subjects
into two groups and give the special diet to one of these groups and then
compare the weights of the individuals from these two groups. Remember
that for two independently drawn samples the estimate of the variance is
based on the differences in weights among individuals in each sample, and
these differences are probably larger than those induced by the special diet. A
more logical data collection method is to weigh a random sample of individuals
before they go on the diet and then weigh the same individuals after they have
been subjected to the diet. The individuals’ differences in weight before and
after the special diet are then a more precise indicator of the effect of the diet.
Of course, these two sets of weights are no longer independent, since the same
individuals belong to both. The choice of data collection method (independent
or dependent samples in this example) was briefly introduced in Section 5.1
and is an example of the use of a design of an experiment. (Experimental
design is discussed briefly in Chapter 6 and more extensively in Chapter 10.)

For two populations, such samples are dependent and are called “paired
samples” because our analysis will be based on the differences between pairs
of observed values. For example, in evaluating the diet discussed above, the
pairs are the weights obtained on individuals before and after the special
diet and the analysis is based on the individual weight losses. This proce-
dure can be used in almost any context in which the data can physically be
paired.

For example, identical twins provide an excellent source of pairs for study-
ing various medical and psychological hypotheses. Usually each of a pair of
twins is given a different treatment, and the difference in response is the basis
of the inference. In educational studies, a score on a pretest given to a stu-
dent is paired with that student’s post-test score to provide an evaluation of a
new teaching method. Adjacent farm plots may be paired if they are of similar
physical characteristics in order to study the effect of radiation on seeds, and
so on. In fact, for any experiment where it is suspected that the difference
between the two populations may be overshadowed by the variation within
the two populations, the paired samples procedure should be appropriate.

Inferences on the difference in means of two populations based on paired
samples use as data the simple differences between paired values. For exam-
ple, in the diet study the observed value for each individual is obtained by
subtracting the after weight from the before weight. The result becomes a sin-
gle sample of differences, which can be analyzed in exactly the same way as
any single sample experiment (Chapter 4). Thus the basic statistic is

t = d̄ − δ0√
s2
d/n

,

where d̄ is the mean of the sample differences, di; δ0 is the population mean
difference (usually zero); and s2

d is the estimated variance of the differences.
When used in this way, the t statistic is usually called the “paired t statistic.”
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Table 5.6

Baseball Attendance
(Thousands)

Team 1960 1961 Diff.

1 809 673 −136
2 663 1123 460
3 2253 1813 −440
4 1497 1100 −397
5 862 584 −278
6 1705 1199 −506
7 1096 855 −241
8 1795 1391 −404
9 1187 951 −236

10 1129 850 −279
11 1644 1151 −493
12 950 735 −215
13 1167 1606 439
14 774 683 −91
15 1627 1747 120
16 743 597 −146
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Baseball Attendance
Data

EXAMPLE 5.6 For the first 60 years major league baseball consisted of 16 teams, eight each
in the National and the American leagues. In 1961 the Los Angeles Angels and
the Washington Senators became the first expansion teams in baseball his-
tory. It is conjectured that the main reason that the league allowed expansion
teams was the fact that total attendance dropped from 20 million in 1960 to
slightly over 17 million in 1961. Table 5.6 shows the total ticket sales for the
16 teams for the two years 1960 and 1961. Examination of the data (helped
by Fig. 5.5) shows the reason that a paired t test would be appropriate to
determine whether the average attendance did in fact drop significantly from
1960 to 1961. The variation among the attendance figures from team to team is
extremely large—going from around 663,000 for team 2 to 2,253,000 for team
3 in 1960, for example. The variation between years by individual teams, on
the other hand, is relative small—the largest being 506,000 by team 6.
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Solution The attendance data for the 16 major league teams for 1960 and
1961 are given in Table 5.6. The individual differences d = y1961 − y1960 are
used for the analysis. Positive differences indicate increased attendance while
negative numbers that predominate here indicate decreased attendance. The
hypotheses are

H0: δ0 = 0,

H1: δ0 < 0,

where δ0 is the mean of the population differences. Note that we started out
with 32 observations and ended up with only 16 pairs. Thus the mean and
variance used to compute the test statistic are based on only 16 observations.
This means that the estimate of the variance has 15 degrees of freedom and
thus the t distribution for this statistic also has 15 degrees of freedom.

The test statistic is computed from the differences, di, using the computa-
tions

n = 16,
∑

di = −2843,
∑

d2
i = 1,795,451,

d̄ = −177.69, SSd = 1,290,285, s2
d = 86,019,

and the test statistic t has the value

t = (−177.69)/
√

(86,019/16) = −2.423.

The (one-tailed) 0.05 rejection region for Student t distribution with 15 degrees
of freedom is −1.7531; hence we reject the null hypothesis and conclude that
average attendance has decreased. The p value for this test statistic (from a
computer program) is p = 0.0150.

A confidence interval on the mean difference is obtained using the t distri-
bution in the same manner as was done in Chapter 4. We will need the upper
confidence limit on the increase (equivalent to lower limit for decrease) from
1960 to 1961. The upper limit is

d̄ + tα

√
s2
d/n,

which results in

−177.69 + (1.753)
√

(86,019/16) = −49.16;

hence, we are 0.95 confident that the true mean decrease is at least 49.16
(thousand).

The benefit of pairing Example 5.6 can be seen by pretending that the data
resulted from independent samples. The resulting pooled t statistic would have
the value t = −1.164 with 30 degrees of freedom. This value would not be
significant at the 0.05 level and the test would result in a different conclusion.
The reason for this result is seen by examining the variance estimates. The
pooled variance estimate is quite large and reflects variation among teams
that is irrelevant for studying year-to-year attendance changes. As a result,
the paired t statistic will detect smaller differences, thereby providing more
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power, that is, a greater probability of correctly rejecting the null hypothesis
(or equivalently give a narrower confidence interval). ■

It is important to note that while we performed both tests for this example,
it was for demonstration purposes only! In a practical application, only pro-
cedures appropriate for the design employed in the study may be performed.
That is, in this example only the paired t statistic may be used because the
data resulted from paired samples.

The question may be asked: “Why not pair all two-population studies?”
The answer is that not all experimental situations lend themselves to pairing.
In some instances it is impossible to pair the data. In other cases there is
not a sufficient physical relationship for the pairing to be effective. In such
cases pairing will be detrimental to the outcome because in the act of pairing
we “sacrifice” degrees of freedom for the test statistic. That is, assuming equal
sample sizes, we go from 2(n−1) degrees of freedom in the independent sample
case to (n−1) in the paired case. An examination of the t table illustrates the fact
that for smaller degrees of freedom the critical value are larger in magnitude,
thereby requiring a larger value of the test statistic. Since pairing does not affect
the mean difference, it is effective only if the variances of the two populations
are definitely larger than the variances among paired differences. Fortunately,
the desired condition for pairing often occurs if a physical reason exists for
pairing.

EXAMPLE 5.7 Two measures of blood pressure are known as systolic and diastolic. Now
everyone knows that high blood pressure is bad news. However, a small dif-
ference between the two measures is also of concern. The estimation of this
difference is a natural application of paired samples since both measurements
are always taken together for any individual. In Table 5.7 are systolic (RSBP)
and diastolic (RDBP) pressures of 15 males aged 40 and over participating in
a health study. Also given is the difference (DIFF). What we want to do is to
construct a confidence interval on the true mean difference between the two
pressures.

Solution Using the differences, we obtain d̄ = 41.0667 and s2
d = 52.067,

and the standard error of the difference is√
52.067

15
= 1.863.

The 0.95 two-tailed value of the t distribution for 14 degrees of freedom is
2.148. The confidence interval is computed

41.0667 ± (2.1448)(1.863),

which produces the interval 37.071 to 45.062.
If we had assumed that these data represented independent samples of 15

systolic and 15 diastolic readings, the standard error of mean difference would
be 4.644, resulting in a 0.95 confidence interval from 31.557 to 50.577, which

Table 5.7

Blood Pressures of Males

OBS RSBP RDBP DIFF

1 100 75 25
2 135 85 50
3 110 78 32
4 110 75 35
5 142 96 46
6 120 74 46
7 140 90 50
8 110 76 34
9 122 80 42
10 140 90 50
11 150 110 40
12 120 78 42
13 132 88 44
14 112 72 40
15 120 80 40
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is quite a bit wider. As noted, pairing here is obvious, and it is unlikely that
anyone would consider independent samples. ■

5.5 Inferences on Proportions

In Chapter 2 we presented the concept of a binomial distribution, and in
Chapter 4 we used this distribution for making inferences on the proportion of
“successes” in a binomial population. In this section we present procedures for
inferences on differences in the proportions of successes using independent
as well as dependent samples from two binomial populations.

Comparing Proportions Using Independent Samples

Assume we have two binomial populations for which the probability of success
in population 1 is p1 and in population 2 is p2. Based on independent samples
of size n1 and n2 we want to make inferences on the difference between p1 and
p2, that is, (p1− p2). The estimate of p1 is p̂1 = y1/n1, where y1 is the number of
successes in sample 1, and likewise the estimate of p2 is p̂2 = y2/n2. Assuming
sufficiently large sample sizes (see Section 4.3), the difference ( p̂1 − p̂2) is
normally distributed with mean

p1 − p2

and variance

p1(1 − p1)/n1 + p2(1 − p2)/n2.

Therefore the appropriate statistic for inferences on (p1 − p2) is

z = p̂1 − p̂2 − (p1 − p2)√
p1(1 − p1)/n1 + p2(1 − p2)/n2

,

which has the standard normal distribution.
Note that the expression for the variance of the difference contains the

unknown parameters p1 and p2. In the single-population case, the null hy-
pothesis value for the population parameter p was used in calculating the
variance. In the two-population case the null hypothesis is for equal propor-
tions and we therefore use an estimate of this common proportion for the
variance formula. Letting p̂1 and p̂2 be the sample proportions for samples 1
and 2, respectively, the estimate of the common proportion p is a weighted
mean of the two-sample proportions,

p̄ = n1 p̂1 + n2 p̂2

n1 + n2
,

or, in terms of the observed frequencies,

p̄ = y1 + y2

n1 + n2
.
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The test statistic is now computed:

z = p̂1 − p̂2 − (p1 − p2)√
p̄(1 − p̄)(1/n1 + 1/n2)

.

In construction of a confidence interval for the difference in proportions, we
can not assume a common proportion, hence we use the individual estimates
p̂1 and p̂2 in the variance estimate. The (1 − α) confidence interval on the
difference p1 − p2 is

( p̂1 − p̂2) ± zα/2

√
( p̂1(1 − p̂1)/n1) + ( p̂2(1 − p̂2)/n2).

As in the one-population case the use of the t distribution is not appropriate
since the variance is not calculated as a sum of squares divided by degrees of
freedom. However, samples must be reasonably large in order to use the normal
approximation.

EXAMPLE 5.8 A candidate for political office wants to determine whether there is a difference
in his popularity between men and women. To establish the existence of this
difference, he conducts a sample survey of voters. The sample contains 250
men and 250 women, of which 42% of the men and 51% (rounded) of the women
favor his candidacy. Do these values indicate a difference in popularity?

Solution Let p1 denote the proportion of men and p2 the proportion of
women favoring the candidate, then the appropriate hypotheses are

H0: p1 = p2,

H1: p1 
= p2.

The estimate of the common proportion is computed using the frequencies of
successes:

p̄ = (105 + 128)/(250 + 250) = 0.466.

The test statistic then has the value

z = (0.42 − 0.51)/
√

[(0.466)(0.534)(1/250 + 1/250)]

= −0.09/0.0446 = −2.02.

The two-tailed p value for this test statistic (obtained from the standard normal
table) is p = 0.0434. Thus the hypothesis is rejected at the 0.05 level, indicating
that there is a difference between the sexes in the degree of support for the
candidate.

We can construct a 0.95 confidence interval on the difference (p1 − p2) as

(0.42 − 0.51) ± (1.96)
√

[(0.42)(0.58)/250] + [(0.51)(0.49)/250],

or

−0.09 ± (1.96)(0.0444).
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Thus we are 95% confident that the true difference in preference by sex is
between 0.003 and 0.177. ■

An Alternate Approximation for the Confidence Interval In Section
4.3 we gave an alternative approximation for the confidence interval on a single
proportion. In Agresti and Caffo (2000), it is pointed out that the method of
obtaining a confidence interval on the difference between p1 and p2 presented
previously also tends to result in an interval that does not actually provide the
specified level of confidence.

The solution, as proposed by Agresti and Caffo, is to add one success and
one failure to each sample, and then use the standard formula to calculate the
confidence interval. This adjustment results in much better performance of
the confidence interval, even with relative small samples. Using this adjust-
ment, the interval is based on new estimates of p1, p̃1 = (y1 + 1)/(n1 + 2) and
p2, p̃2 = (y2 + 1)/(n2 + 2). For Example 5.8, the interval would be based on
p̃1 = 106/252 = 0.417 and p̃2 = 129/252 = 0.512. The resulting confidence
interval would be

0.417 − 0.512 ± (1.96)

√
(0.417)(0.583)

252
+ (0.512)(0.488)

252
or

−0.095 ± 0.087, or

the interval would be from −0.182 to −0.008. As in Chapter 4, this interval is
not much different from the one constructed without the adjustment, mainly
because the sample sizes are quite large and both sample proportions are close
to 0.5. If the sample sizes were small, this approximation would result in a more
reliable confidence interval.

Comparing Proportions Using Paired Samples

A binomial response may occur in paired samples and, as is the case for
inferences on means, a different analysis procedure that is most easily pre-
sented with an example must be used.

EXAMPLE 5.9 In an experiment for evaluating a new headache remedy, 80 chronic headache
sufferers are given a standard remedy and a new drug on different days, and
the response is whether their headache was relieved. In the experiment 56%
or 70% were relieved by the standard remedy and 64% or 80% by the new drug.
Do the data indicate a difference in the proportion of headaches relieved?

Solution The usual binomial test is not correct for this situation because
it is based on a total of 160 observations, while there are only 80 experimental
units (patients). Instead, a different procedure, called McNemar’s test, must be
used. For this test, the presentation of results is shown in Table 5.8. In this table
the 10 individuals helped by neither drug and the 50 who were helped by both
are called concordant pairs, and do not provide information on the relative
merits of the two preparations. Those whose responses differ for the two
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Table 5.8

Data on Headache
Remedy

STANDARD REMEDY

Headache No Headache Totals

New drug

Headache 10 6 16
No headache 14 50 64
Totals 24 56 80

drugs are called discordant pairs. Among these, the 14 who were not helped
by the standard but were helped by the new can be called “successes,” while
the 6 who were helped by the old and not the new can be called “failures.”
If both drugs are equally effective, the proportion of successes among the
discordant pairs should be 0.5, while if the new drug is more effective, the
proportion of successes should be greater than 0.5. The test for ascertaining
the effectiveness of the new drug, then, is to determine whether the sample
proportion of successes, 14/20 = 0.7, provides evidence to reject the null
hypothesis that the true proportion is 0.5. This is a simple application of the
one-sample binomial test (Section 4.3) for which the test statistic is

z = 0.7 − 0.5√
[(0.5)(0.5)]/20

= 1.789.

Since this is a one-tailed test, the critical value is 1.64485, and we may reject
the hypothesis of no effect. ■

5.6 Assumptions and Remedial Methods

This chapter has been largely concerned with the comparison of means and
variances of two populations. Yet we noted in Chapter 1 that means and vari-
ances are not necessarily good descriptors for populations with highly skewed
distributions. This consideration leads to a discussion of assumptions underly-
ing the proper use of the methods presented in this chapter. These assumptions
can be summarized as follows.

1. The pooled t statistic:

(a) The two samples are independent.
(b) The distributions of the two populations are normal or of such a size

that the central limit theorem is applicable.
(c) The variances of the two populations are equal.

2. The paired t statistic:

(a) The observations are paired.
(b) The distribution of the differences is normal or of such a size that the

central limit theorem is applicable.
3. Inferences on binomial populations:

(a) Observations are independent (for McNemar’s test pairs are indepen-
dent).

(b) The probability of success is constant for all observations.
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4. Inferences on variances:

(a) The samples are independent.
(b) The distributions of the two populations are approximately normal.

When assumptions are not fulfilled, the analysis is not appropriate and/or the
significance levels (p values) are not as advertised. In other words, conclu-
sions that arise from the inferences may be misleading, which means any
recommendations or actions that follow may not have the expected results.

Most of the assumptions are relatively straightforward and violations easily
detected by simply examining the data collection procedure. Major problems
arise from (1) distributions that are distinctly nonnormal so that the means
and variances are not useful measures of location and dispersion and/or the
central limit theorem does not work, and, of course, (2) the equal variance
assumption does not hold.

Violation of distributional assumptions may be detected by the exploratory
data analysis methods described in Chapter 1, which should be routinely ap-
plied to all data. The F test for equal variances may be used to detect violation
of the equal variance assumption.2

What to do when assumptions are not fulfilled is not clear-cut. For the t

statistics, minor violations are not particularly serious because these statistics
are relatively robust; that is, they do not lose validity for modest departures
from the assumptions. The inferences on variances are not quite so robust,
because if a distribution is distinctly nonnormal, the variance may not be a
good measure of dispersion. Therefore, for cases in which the robustness of
the t statistics fails as well as for other cases of violated assumptions, it will be
necessary to investigate other analysis strategies. In Section 4.5 we used a test
on the median in a situation where the use of the mean was not appropriate.
The procedure for comparing two medians is illustrated below.

Comparing medians is, however, not always appropriate. For example,
population distributions may have different shapes and then neither means
nor variances nor medians may provide the proper comparative measures.
A wide variety of analysis procedures, called nonparametric methods, are
available for such situations and a selection of such methods is presented in
Chapter 13, where Section 13.3 is devoted to a two-sample comparison.

EXAMPLE 1.4 REVISITED In Example 4.7 we noted that the existence of extreme obser-
vations may compromise the usefulness of inferences on a mean and that an
inference on the median may be more useful. The same principle can be ap-
plied to inferences for two populations. One purpose of collecting the data
for Example 1.4 was to determine whether Cytosol levels are a good indica-
tor of cancer. We noted that the distribution of Cytosol levels (Table 1.11 and
Fig. 1.11) is highly skewed and dominated by a few extreme values. For com-
paring Cytosol levels for patients diagnosed as having or not having cancer,
the side-by-side box plots in Fig. 5.6 also show that the variances of the two
samples are very different. How can the comparison be made?

2Some will argue that one should not test for violation of assumptions. We will not attempt to
answer that argument.
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Solution Since we can see that using the t test to compare means is not
going to be appropriate, it may be more useful to test the null hypothesis that
the two populations have the same median. The test is performed as follows:

1. Find the overall median, which is 25.5.
2. Obtain the proportion of observations above the median for each of the two

samples. These are 0/17 = 0.0 for the no cancer patients and 21/25 = 0.84
for the cancer patients.

3. Test the hypothesis that the proportion of patients above the median is the
same for both populations, using the test for equality of two proportions.
The overall proportion is 0.5; hence the test statistic is

z = 0.0 − 0.84√
(0.5)(0.5)(1/17 + 1/25)

= −0.84
0.157

= −5.35,

which easily leads to rejection.

In this example the difference between the two samples is so large that any
test will declare a significant difference. However, the median test has a useful
interpretation in that if the median were to be used as a cancer diagnostic,
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none of the no-cancer patients and only four of the cancer patients would be
misdiagnosed. ■

EXAMPLE 5.4 REVISITED This example had unequal variances and was analyzed using
the unequal variance procedure, which resulted in finding inadequate evidence
of unequal mean attitude scores for the two populations of commuters. Can we
use the procedure above to perform the same analysis? What are the results?

Solution Using the test for equality of medians, we find that the overall
median is 2 and the proportions of observations above the median are 0.6
for the subway and 0.38 for the rail commuters. The binomial test, for which
sample sizes are barely adequate, results in a z statistic of 1.10, which does not
support rejection of the null hypothesis of equal median scores. ■

5.7 CHAPTER SUMMARY

Table 5.9 Audit Fees

TEST PROCEDURE

VARIABLE: FEE

BIG8 N Mean Std Dev Std Error Minimum Maximum

NO 12 18.714583 11.2773529 3.25549137 7.50000000 48.5000000
YES 13 88.653846 39.0327771 10.82574457 32.00000000 177.0000000

Variances T DF Prob > }T}

Unequal −6.1868 14.1 0.0001
Equal −5.9724 23.0 0.0000

For H0: Variances are equal, F′ = 11.98 DF = (12,11) Prob > F′ = 0.0002

Solution to Example 5.1 In the introduction to this chapter we posed
the question of whether the prestigious Big Eight firms charge more for their
auditing services. Since the samples of cities are independent, a pooled t test
seems in order. Table 5.9 presents the result of this test as provided by PROC
TTEST of the SAS System. In this output, the first portion provides some stan-
dard descriptive statistics for the two samples and the second portion provides
information on the t test. Results are provided for both the pooled (variances
equal) and unequal variance test3 and the last line gives the test for equality of
variances.

The mean fee for the Big Eight is obviously larger ($88.65) than that charged
by the others ($18.71), and the difference appears highly significant (p value <

3A different approximation for the degrees of freedom is used by the SAS System, but the hypoth-
esis of equal means will also be rejected using the approximation presented in Section 5.2.
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0.0001 assuming variance equal). However, the last line, which gives the F test
for equality of variances, shows that variances are not equal. Of course, we
can use the unequal variances test, whose results also indicate a difference.
However, we have noted that the existence of different variances may imply
that the comparisons of means may not be meaningful.

Closer inspection of the data shows that the Big Eight seem to be predom-
inantly used by the larger cities whose audit fees are naturally higher. This is
illustrated in Fig. 5.7, which shows the fees and populations of the cities. It is
obvious that the larger cities use the Big Eight, the smaller ones do not, and
obviously an audit for a larger city will cost more than one for a smaller city. It
may therefore be useful to compare the mean per capita audit fees. Using this
measure, in cents per person, provides the results given in Table 5.10.

Table 5.10 Audit Fees

TTEST PROCEDURE

VARIABLE: PERCAP

BIG8 N Mean Std Dev Std Error Minimum Maximum

NO 12 46.789828 12.9685312 3.74369249 26.32152758 66.30078456
YES 13 38.391125 18.2941248 5.07387733 14.70907201 63.45871237

Variances T DF Prob > }T}

Unequal 1.3320 21.6 0.1967
Equal 1.3137 23.0 0.2019

For H0: Variances are equal, F′ = 1.99 DF = (12, 11) Prob > F′ = 0.2645

In this analysis neither means nor variances appear to differ; hence we
cannot infer that using one of the Big Eight firms costs more. Of course, we
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must add the caution that we have virtually no data on small cities using the Big
Eight. ■

This chapter provides the methodology for making inferences on differ-
ences between two populations. The focus is on differences in means, vari-
ances, and proportions. In performing two-sample inferences it is important
to know whether the two samples are independent or dependent (paired). The
following specific inference procedures were presented in this chapter:
• Inferences on means based on independent samples where the variances are

assumed known use the variance of a linear function of random variables
to generate a test statistic having the standard normal distribution. This
method has little direct practical application but provides the principles to
be used for the methods that follow.

• Inferences on means based on independent samples where the variances
can be assumed equal use a single (pooled) estimate of the common variance
in a test statistic having Student t distribution.

• Inferences on means based on independent samples where the variances
cannot be assumed equal use the estimated variances as if they were the
known population variances for large samples. For small samples an ap-
proximation must be used.

• Inferences on means based on dependent (paired) samples use differences
between the pairs as the variable to be analyzed.

• Inferences on variances use the F distribution, which describes the sam-
pling distribution on the ratio of two estimated variances.

• Inferences on proportions from independent samples use the normal ap-
proximation of the binomial to compute a statistic similar to that for infer-
ences on means when variances are assumed known.

• Inferences on proportions from dependent samples use a statistic based on
information only on pairs whose responses differ between the two groups.

• Inferences on medians are performed by adapting the method used for
inferences on proportions.

• A final section discusses assumptions underlying the various procedures for
comparing two populations and a brief discussion of detection of violations
and some alternative methods.

5.8 CHAPTER EXERCISES

CONCEPT

QUESTIONS

Indicate true or false for the following statements. If false, specify what change
will make the statement true.

1. One of the assumptions underlying the use of the (pooled)
two-sample test is that the samples are drawn from populations having
equal means.

2. In the two-sample t test, the number of degrees of freedom
for the test statistic increases as sample sizes increase.
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3. A two-sample test is twice as powerful as a one-sample
test.

4. If every observation is multiplied by 2, then the t statistic
is multiplied by 2.

5. When the means of two independent samples are used to
compare two population means, we are dealing with dependent (paired)
samples.

6. The use of paired samples allows for the control of varia-
tion because each pair is subject to the same common sources of variability.

7. The χ2 distribution is used for making inferences about
two population variances.

8. The F distribution is used for testing differences between
means of paired samples.

9. The standard normal (z) score may be used for inferences
concerning population proportions.

10. The F distribution is symmetric and has a mean of 0.

11. The F distribution is skewed and its mean is close to 1.

12. The pooled variance estimate is used when comparing
means of two populations using independent samples.

13. It is not necessary to have equal sample sizes for the paired
t test.

14. If the calculated value of the t statistic is negative, then
there is strong evidence that the null hypothesis is false.

PRACTICE

EXERCISES

The following exercises are designed to give the reader practice in doing statis-
tical inferences on two populations through the use of sample examples with
small data sets. The solutions are given in the back of the text.

1. An engineer was comparing the output from two different processes by
independently sampling each one. From process A she took a sample of
n1 = 64, which yielded a sample mean of ȳ1 = 12.5. Process A has a known
standard deviation, σ = 2.1. From process B she took a sample of n2 = 100,
which yielded a sample mean of ȳ2 = 11.9. Process B has a known standard
deviation of σ = 2.2. At α = 0.05 would the engineer conclude that both
processes had the same average output?

2. The results of two independent samples from two populations are listed
below:

Sample 1: 17, 19, 10, 29, 27, 21, 17, 17, 14, 20
Sample 2: 26, 24, 26, 29, 15, 29, 31, 25, 18, 26.
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Use the 0.05 level of significance and test the hypothesis that the two pop-
ulations have equal means. Assume the two samples come from populations
whose standard deviations are equal.

3. Using the data in Exercise 2, compute the 0.90 confidence interval on the
difference between the two population means, μ1 − μ2.

4. The following weights in ounces resulted from a sample of laboratory rats
on a particular diet. Use α = 0.05 and test whether the diet was effective in
reducing weight.

Rat 1 2 3 4 5 6 7 8 9 10

Before 14 27 19 17 19 12 15 15 21 19

After 16 18 17 16 16 11 15 12 21 18

5. In a test of a new medication, 65 out of 98 males and 45 out of 85 females
responded positively. At the 0.05 level of significance, can we say that the
drug is more effective for males?

EXERCISES

1. Two sections of a class in statistics were taught by two different methods.
Students’ scores on a standardized test are shown in Table 5.11. Do the
results present evidence of a difference in the effectiveness of the two
methods? (Use α = 0.05.)

2. Construct a 95% confidence interval on the mean difference in the scores
for the two classes in Exercise 1.

3. Table 5.12 shows the observed pollution indexes of air samples in two
areas of a city. Test the hypothesis that the mean pollution indexes are the
same for the two areas. (Use α = 0.05.)

4. A closer examination of the records of the air samples in Exercise 3 reveals
that each line of the data actually represents readings on the same day: 2.92
and 1.84 are from day 1, and so forth. Does this affect the validity of the
results obtained in Exercise 3? If so, reanalyze.

5. To assess the effectiveness of a new diet formulation, a sample of 8 steers
is fed a regular diet and another sample of 10 steers is fed a new diet. The
weights of the steers at 1 year are given in Table 5.13. Do these results
imply that the new diet results in higher weights? (Use α = 0.05.)

6. Assume that in Exercise 5 the new diet costs more than the old one. The
cost is approximately equal to the value of 25 lbs. of additional weight.
Does this affect the results obtained in Exercise 5? Redo the problem if
necessary.

7. In a test of the reliability of products produced by two machines, machine
A produced 7 defective parts in a run of 140, while machine B produced

Table 5.11

Data for Exercise 1

Class A Class B

74 76 78 79
97 75 92 76
79 82 94 93
88 86 78 82
78 100 71 69
93 94 85 84

70

Table 5.12

Data for Exercise 3

Area A Area B

2.92 1.84
1.88 0.95
5.35 4.26
3.81 3.18
4.69 3.44
4.86 3.69
5.81 4.95
5.55 4.47

Table 5.13

Data for Exercise 5

Regular New

Diet Diet

831 870
858 882
833 896
860 925
922 842
875 908
797 944
788 927

965
887
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Table 5.14

Data for Exercise 8

Car Without With

No. Device Device

1 21.0 20.6
2 30.0 29.9
3 29.8 30.7
4 27.3 26.5
5 27.7 26.7
6 33.1 32.8
7 18.8 21.7
8 26.2 28.2
9 28.0 28.9

10 18.9 19.9
11 29.3 32.4
12 21.0 22.0

10 defective parts in a run of 200. Do these results imply a difference in the
reliability of these two machines?

8. In a test of the effectiveness of a device that is supposed to increase gaso-
line mileage in automobiles, 12 cars were run, in random order, over a
prescribed course both with and without the device in random order. The
mileages (mpg) are given in Table 5.14. Is there evidence that the device is
effective?

9. A new method of teaching children to read promises more consistent im-
provement in reading ability across students. The new method is imple-
mented in one randomly chosen class, while another class is randomly
chosen to represent the standard method. Improvement in reading ability
using a standardized test is given for the students in each class in Table 5.15.
Use the appropriate test to see whether the claim can be substantiated.

10. The manager of a large office building needs to buy a large shipment of
light bulbs. After reviewing specifications and prices from a number of
suppliers, the choice is narrowed to two brands whose specifications with
respect to price and quality appear identical. He purchases 40 bulbs of
each brand and subjects them to an accelerated life test, recording hours
to burnout, as shown in Table 5.16.
(a) The manager intends to buy the bulbs with a longer mean life. Do the

data provide sufficient evidence to make a choice?

Table 5.15

Data for Exercise 9

New Standard

Method Method

13.0 16.7 20.1 27.0
15.1 16.7 16.7 19.2
16.5 18.4 25.6 19.3
19.0 16.6 25.4 26.7
20.2 19.4 22.0 14.7
19.9 23.6 16.8 16.9
23.3 16.5 23.8 23.7
17.3 24.5 23.6 21.7

Table 5.16

Data for Exercise 10

Brand A Brand B

Life (Hours) Life (Hours)

915 992 1034 1080 1235 1238 1248 1273
1137 1211 1211 1218 1275 1282 1298 1303
1260 1276 1289 1306 1307 1335 1337 1339
1319 1336 1360 1387 1360 1383 1384 1384
1400 1405 1419 1437 1388 1390 1390 1390
1488 1543 1581 1603 1394 1394 1403 1410
1606 1614 1635 1669 1417 1419 1423 1426
1683 1746 1752 1776 1430 1442 1448 1469
1881 1928 1940 1960 1478 1485 1486 1501
2029 2053 2063 2737 1508 1514 1515 1517
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(b) To save labor expense, the owners have decided that all bulbs will be
replaced when 10% have burned out. Is the decision in part (a) still
valid? Is an alternate test possibly more useful? (Suggest the test only;
do not perform.)

11. Chlorinated hydrocarbons (mg/kg) found in samples of two species of fish
in a lake are as follows:

Species 1: 34 1 167 20
Species 2: 45 86 82 70 160 170

Perform a hypothesis test to determine whether there is a difference in the
mean level of hydrocarbons between the two species. Check assumptions.

12. Eight samples of effluent from a pulp mill were each divided into 10
batches. From each sample, 5 randomly selected batches were subjected
to a treatment process intended to remove toxic substances. Five fish of
the same species were placed in each batch, and the mean number surviv-
ing in the 5 treated and untreated portions of each effluent sample after 5
days were recorded and are given in Table 5.17. Test to see whether the
treatment increased the mean number of surviving fish.

13. In Exercise 13 of Chapter 1, the half-life of aminoglycosides from a sample
of 43 patients was recorded. The data are reproduced in Table 5.18. Use

Table 5.17

Data for Exercise 12

MEAN NUMBER SURVIVING

Sample No. 1 2 3 4 5 6 7 8

Untreated 5 1 1.8 1 3.6 5 2.6 1
Treated 5 5 1.2 4.8 5 5 4.4 2

Table 5.18 Half-Life of Aminoglycosides by Drug Type

Pat Drug Half-Life Pat Drug Half-Life Pat Drug Half-Life

1 G 1.60 16 A 1.00 31 G 1.80
2 A 2.50 17 G 2.86 32 G 1.70
3 G 1.90 18 A 1.50 33 G 1.60
4 G 2.30 19 A 3.15 34 G 2.20
5 A 2.20 20 A 1.44 35 G 2.20
6 A 1.60 21 A 1.26 36 G 2.40
7 A 1.30 22 A 1.98 37 G 1.70
8 A 1.20 23 A 1.98 38 G 2.00
9 G 1.80 24 A 1.87 39 G 1.40

10 G 2.50 25 G 2.89 40 G 1.90
11 A 1.60 26 A 2.31 41 G 2.00
12 A 2.20 27 A 1.40 42 A 2.80
13 A 2.20 28 A 2.48 43 A 0.69
14 G 1.70 29 G 1.98
15 A 2.60 30 G 1.93
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these data to see whether there is a significant difference in the mean
half-life of Amikacin and Gentamicin. (Use α = 0.10.)

14. Draw a stem and leaf plot of half-life for each drug in Exercise 13. Do the
assumptions necessary for the test in Exercise 13 seem to be satisfied by
the data? Explain.

15. In Exercise 12 of Chapter 1 a study of characteristics of successful sales-
persons indicated that 44 of 120 sales managers rated reliability as the
most important characteristic in salespersons. A study of a different in-
dustry showed that 60 of 150 sales managers rated reliability as the most
important characteristic of a successful salesperson.
(a) At the 0.05 level of significance, do these opinions differ from one

industry to the other?
(b) Construct the power curve for this test. (Hint: The horizontal axis will

be the difference between the proportions.)



Chapter 6

Inferences for Two
or More Means

EXAMPLE 6.1 How Do Soils Differ? A study was done to compare soil mapping units
on the basis of their lateral variabilities for a single property, silt content.
The study area consisted of a sequence of eight contiguous sites extending
over the crest and flank of a low rise in a valley plain underlain by marl near
Albudeite in the province of Murcia, Spain. The geomorphological sites were
the primary mapping units adopted and were small areas of ground surface
of uniform shape. Following the delimitation of the sites, soil samples were
obtained in each site at 11 random points within a 10 × 10-m2 area centered
on the midpoint of the site. All samples were taken from the same depth. The
soil property considered was the silt content, expressed as percentages of the
total silt, clay, and sand content. The data are given in Table 6.1. The questions
to be answered are as follows:

• Is there a difference in silt content among the soils from different sites?
• If there is a difference, can we identify the sites having the largest and

smallest silt content?
• Do the data fit a standard set of assumptions similar to those given in

Section 5.6? If not, what is the effect on the analysis?

The solution is given in Section 6.5. ■

6.1 Introduction

Although methods for comparing two populations have many applications, it
is obvious that we need procedures for the more general case of comparing
several populations. In fact, with the availability of modern technology to
acquire, store, and analyze data, there seem to be no limits to the number

219
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Table 6.1

Data on Silt Content of
Soils
Source: Adapted from

Andrews, D. F., and

Herzberg, A. M. (1985),

Data: A Collection of
Problems from Many Fields
for the Student and Research
Worker, pp. 121, 127–130.

New York: Springer–Verlag

Site = 1 Site = 2 Site = 3 Site = 4 Site = 5 Site = 6 Site = 7 Site = 8

46.2 40.0 41.9 41.1 48.6 43.7 47.0 48.0
36.0 48.9 40.7 40.4 50.2 41.0 46.4 47.9
47.3 44.5 44.0 39.9 51.2 44.4 46.3 49.9
40.8 30.3 40.7 41.1 47.0 44.6 47.1 48.2
30.9 40.1 32.3 31.9 42.8 35.7 36.8 40.6
34.9 46.4 37.0 43.0 46.6 50.3 54.6 49.5
39.8 42.3 44.3 42.0 46.7 44.5 43.0 46.4
48.1 34.0 41.8 40.3 48.3 42.5 43.7 47.7
35.6 41.9 41.4 42.2 47.1 48.6 43.7 48.9
48.8 34.1 41.5 50.7 48.8 48.5 45.1 47.0
45.2 48.7 29.7 33.4 38.3 35.8 36.1 37.1

of populations that can be sampled for comparison purposes. This chapter
presents statistical methods for comparing means among any number of pop-
ulations based on samples from these populations.

As we will see, the t test for comparing two means cannot be genera-
lized to the comparing of more than two means. Instead, the analysis most
frequently used for this purpose is based on a comparison of variances, and is
therefore called the analysis of variance, often referred to by the acronyms
ANOVA or AOV. We will present a motivation for this terminology in Section
6.2. When ANOVA is applied to only two populations, the results are equivalent
to those of the t test.

Specifically this chapter covers the following topics:

• the ANOVA method for testing the equality of a set of means,
• the use of the linear model to justify the method,
• the assumptions necessary for the validity of the results of such an analysis

and discussion of remedial methods if these assumptions are not met,
• procedures for specific comparisons among selected means, and
• an alternative to the analysis of variance called the analysis of means.

As noted in Section 5.1, comparative studies can arise from either observa-

tional studies or designed experiments, and the methodology in this chap-
ter is applicable to either type of study. Further, in Section 5.1 we indicated
that data can be collected in two ways, independent samples or depen-

dent samples. In this chapter we will consider only the case of independent
samples, which in experimental design terminology is called the “completely
randomized design” or the CRD. The resulting analysis method is often referred
to as a “one-way” or “single-factor” analysis as the single factor consists of the
factor levels of the experiment. We will cover the methodology for data having
more than one factor, which includes the equivalent of dependent samples, in
Chapters 9 and 10.

Using the Computer

Virtually all statistical analyses are now performed with computers. Thus the
formulas presented in this chapter (and many others) are rarely implemented
by hand on hand-held or desk calculators. The presentation of these formulas



6.2 The Analysis of Variance 221

is intended as a pedagogical tool, because their use helps to provide an under-
standing of the methodology.

We assume that anyone using this text has access to a computer and
appropriate statistical software for completing assigned exercises as well as
duplicating the results of the examples. We do, however, suggest that one or
two of the easiest exercises be completed by hand and the results compared
to computer outputs.

Most statistical software packages are essentially collections of individual
programs or procedures that perform data manipulation and statistical anal-
yses and are typically implemented by a uniform and easy-to-understand in-
structional format or language. The individual programs or procedures within
these packages are usually quite general in scope. For example, most ANOVA
programs are designed to do any analysis of variance, regardless of the num-
ber of factors. Thus, one program or procedure would probably be capable of
doing all the analyses in this chapter as well as those in Chapters 9 and 10 (and
many more). However, they may not perform the appropriate analysis for un-
balanced data, and may, in fact, provide incorrect answers without comment!
Because of this, the user of such programs must be able to implement the
program correctly as well as be able to determine what part of the program’s
output is appropriate for any specific problem. It is important that users of
such programs:

• Have data in proper format for the particular package being used. Most, but
not all, packages require one observation per line where variables identify
both factor levels and the response(s).

• Specify the correct analysis (usually through specification of the model).
• Determine and use only that portion of the output appropriate to the prob-

lem at hand.

Despite the generality of most statistical packages, they often do not provide
for all aspects of the desired analysis. For example, many programs do not
provide a simple way of specifying contrasts to be tested. Yet they do provide
for some sort of post hoc multiple-comparison procedure, whether or not
it is appropriate (see Section 6.5). Thus, if contrasts are appropriate for a
specific problem, the user must either search for a program having that option
or implement a separate program or procedure to get the required analyses.
The important message here is that “one must not let the computer program
dictate the analysis!”

6.2 The Analysis of Variance

We are interested in testing the statistical hypothesis of the equality of a set of
population means. At first it might seem logical to extend the two-population
procedure of Chapter 5 to the general case by constructing pairwise compar-
isons on all means; that is, use the two-population t test repeatedly until all
possible pairs of population means have been compared. Besides being very
awkward (to compare 10 populations would require 45 t tests), fundamental
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Table 6.2

Data from Three
Populations

SET 1 SET 2

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

5.7 9.4 14.2 3.0 5.0 11.0
5.9 9.8 14.4 4.0 7.0 13.0
6.0 10.0 15.0 6.0 10.0 16.0
6.1 10.2 15.6 8.0 13.0 17.0
6.3 10.6 15.8 9.0 15.0 18.0

ȳ = 6.0 ȳ = 10.0 ȳ = 15.0 ȳ = 6.0 ȳ = 10.0 ȳ = 15.0

problems arise with such an approach. The main difficulty is that the true level
of significance of the analysis as a whole would not be what is specified for
each of the individual t tests, but would be considerably distorted; that is,
it would not have the value specified by each test. For example, if we were
to test the equality of five means, we would have to test 10 pairs. Assuming
that α has been specified to be 0.05, then the probability of correctly failing
to reject the null hypothesis of equality of each pair is (1 − α) = 0.95. The
probability of correctly failing to reject the null hypothesis for all 10 tests is
then (0.95)10 = 0.60, assuming the tests are independent. Thus the true value
of α for this set of comparisons is at least 0.4 rather than the specified 0.05.

Therefore we will need an alternate approach. We have already noted that
the statistical method for comparing means is called the analysis of variance.
Now it may seem strange that in order to compare means we study variances.
To see why we do this, consider the two sets of contrived data shown in
Table 6.2, each having five sample values for each of three populations. Looking
only at the means we can see that they are identical for the three populations
in both sets. Using the means alone, we would state that there is no difference
between the two sets.

However, when we look at the box plots of the two sets, as shown in Fig. 6.1,
it appears that there is stronger evidence of differences among means in Set
1 than among means in Set 2. That is because the box plots show that the
observations within the samples are more closely bunched in Set 1 than they
are in Set 2, and we know that sample means from populations with smaller
variances will also be less variable. Thus, although the variances among the
means for the two sets are identical, the variance among the observations
within the individual samples is smaller for Set 1 and is the reason for the
apparently stronger evidence of different means. This observation is the basis
for using the analysis of variance for making inferences about differences
among means: the analysis of variance is based on the comparison of the
variance among the means of the populations to the variance among sample
observations within the individual populations.

Notation and Definitions

The purpose of the procedures discussed in this section is to compare sample
means of t populations, t ≥ 2, based on independently drawn random sam-
ples from these populations. We assume samples of size ni are taken from
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population i, i = 1, 2, . . . , t. An observation from such a set of data is denoted
by

yij , i = 1, . . . , t and j = 1, . . . , ni.

There are a total of
∑

ni observations. It is not necessary for all the ni to be
the same. If they are all equal, say, ni = n for all i, then we say that the data
are “balanced.”

If we denote by μi the mean of the ith population, then the hypotheses of
interest are

H0: μ1 = μ2 = · · · = μt,

H1: at least one equality is not satisfied.

As we have done in Chapter 5, we assume that the variances are equal for the
different populations.

Using the indexing discussed previously, the data set can be listed in tabular
form as illustrated by Table 6.3, where the rows identify the populations, which
are the treatments or “factor levels.” As in previous analyses, the analysis is
based on computed sums and means and also sums of squares and variances
of observations for each factor level (or sample). Note that we denote totals by
capital letters, means by lowercase letters with bars, and that a dot replaces a
subscript when that subscript has been summed over. This notation may seem
more complicated than is necessary at this time, but we will see later that it is
quite useful for more complex situations.
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Table 6.3

Notation for One-Way
Anova

Factor Sums of

Levels Observations Totals Means Squares

1 y11 y12 · · · y1n1 Y1. ȳ1. SS1

2 y21 y22 · · · y2n2 Y2. ȳ2. SS2

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
i yi1 yi2 · · · yini

Yi. ȳi. SSi

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
t yt1 yt2 · · · ytnt Yt. ȳt. SSt

Overall Y.. ȳ.. SSp

Computing sums and means is straightforward. The formulas are given
here to illustrate the use of the notation. The factor level totals are computed
as1

Yi. =
∑

j

(yij),

and the factor level means are

ȳi. = Yi.

ni

.

The overall total is computed as

Y.. =
∑

i

(Yi.) =
∑

i

[∑
j

(yij)

]
,

and the overall mean is

ȳ.. = Y..

/∑
i

(ni).

As for all previously discussed inference procedures, we next need to estimate
a variance. We first calculate the corrected sum of squares for each factor level,

SSi =
∑

j

(yij − ȳi.)2, for i = 1, . . . , t,

or, using the computational form,

SSi =
∑

j

y2
ij − (Yi.)2/ni.

We then calculate a pooled sums of squares,

SSp =
∑

i

SSi,

1We will use the notation
∑
i

to signify the summation is over the ‘‘i ” index, etc. However, in many

cases where the indexing is obvious, we will omit that designation.
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which is divided by the pooled degrees of freedom to obtain

s2
p = SSp∑

ni − t
=

∑
i SSi∑
ni − t

·

Note that if the individual variances are available, this can be computed as

s2
p =

∑
i

(ni − 1)s2
i

/(∑
ni − t

)
,

where the s2
i are the variances for each sample.

As in the two-population case, if the t populations can be assumed to have a
common variance, say, σ 2, then the pooled sample variance is the proper esti-
mate of that variance. The assumption of equal variances (called homoscedas-

ticity) is discussed in Section 6.4.

Heuristic Justification for the Analysis of Variance

In this section, we present a heuristic justification for the analysis of variance
procedure for the balanced case (all ni = n). Extension to the unbalanced
case involves no additional principles but is algebraically messy. Later in this
chapter, we present the “linear model,” which provides an alternate (but equiv-
alent) basis for the method and gives a more rigorous justification and readily
provides for extensions to many other situations.

For the analysis of variance the null hypothesis is that the means of the
populations under study are equal, and the alternative hypothesis is that there
are some inequalities among these means. As before, the hypothesis test is
based on a test statistic whose distribution can be identified under the null
and alternative hypotheses.

In Section 2.5 the sampling distribution of the mean specified that a sample
mean computed from a random sample of size n from a population with mean
μ and variance σ 2 is a random variable with mean μ and variance σ 2/n. In the
present case we have t populations that may have different means μi but have
the same variance σ 2. If the null hypothesis is true, that is, each of the μi has
the same value, say, μ, then the distribution of each of the t sample means,
ȳi., will have mean μ and variance σ 2/n. It then follows that if we calculate a
variance using the sample means as observations

s2
means =

∑
(ȳi. − ȳ..)2/(t − 1),

then this quantity is an estimate of σ 2/n. Hence ns2
means is an estimate of σ 2.

This estimate has (t −1) degrees of freedom, and it can also be shown that this
estimate is independent of the pooled estimate of σ 2 presented previously.

In Section 2.6, we introduced a number of sampling distributions. One of
these, the F distribution, describes the distribution of a ratio of two indepen-
dent estimates of a common variance. The parameters of the distribution are
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the degrees of freedom of the numerator and denominator variances, respec-
tively. Now if the null hypothesis of equal means is true, we use the arguments
presented above to compute two estimates of σ 2 as follows:

ns2
means = n

∑
(ȳi. − ȳ..)2/(t − 1) and s2

p, the pooled variance.

Therefore the ratio (ns2
means/s2

p) has the F distribution with degrees of freedom
(t − 1) and t(n − 1).

Of course, the numerator is an estimate of σ 2 only if the null hypothesis of
equal population means is true. If the null hypothesis is not true, that is, the μi

are not all the same, we would expect larger differences among sample means,
(ȳi. − ȳ..), which in turn would result in a larger ns2

means, and consequently a
larger value of the computed F ratio. In other words, when H0 is not true, the
computed F ratio will tend to have values larger than those associated with
the F distribution.

The nature of the sampling distribution of the statistic (ns2
means/s2

p) when
H0 is true and when it is not true sets the stage for the hypothesis test. The test
statistic is the ratio of the two variance estimates, and values of this ratio that
lead to the rejection of the null hypothesis are those that are larger than the
values of the F distribution for the desired significance level. (Equivalently
p values can be derived for any computed value of the ratio.) That is, the
procedure for testing the hypotheses

H0: μ1 − μ2 = · · · , = μt,

H1: at least one equality is not satisfied

is to reject H0 if the calculated value of

F = ns2
means

s2
p

exceeds the α right tail of the F distribution with (t − 1) and t(n − 1) degrees
of freedom.

We can see how this works by returning to the data in Table 6.2. For both
sets, the value of ns2

means is 101.67. However, for set 1, s2
p = 0.250, while for

set 2, s2
p = 10.67. Thus, for set 1, F = 406.67 (p value, 0.0001) and for set 2

it is 9.53 (p value = 0.0033), confirming that the relative magnitudes of the
two variances is the important factor for detecting differences among means
(although the means from both sets are significantly different at α = 0.05).

EXAMPLE 6.2 An experiment to compare the yield of four varieties of rice was conducted.
Each of 16 plots on a test farm where soil fertility was fairly homogeneous was
treated alike relative to water and fertilizer. Four plots were randomly assigned
each of the four varieties of rice. Note that this is a designed experiment,
specifically a completely randomized design. The yield in pounds per acre was
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Table 6.4

Rice Yields

Variety Yields Yi. ȳi. SSi

1 934 1041 1028 935 3938 984.50 10085.00
2 880 963 924 946 3713 928.25 3868.75
3 987 951 976 840 3754 938.50 13617.00
4 992 1143 1140 1191 4466 1116.50 22305.00

Overall 15871 991.94 49875.75
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Figure 6.2

Box Plots of Rice
Yields

recorded for each plot. Do the data presented in Table 6.4 indicate a difference
in the mean yield between the four varieties? The data are shown in Table 6.2
and box plots of the data are shown in Fig. 6.2. Comparing these plots suggests
the means may be different. We will use the analysis of variance to confirm or
deny this impression.

Solution The various intermediate totals and means and corrected sums
of squares (SSi) are presented in the margin of the table. The hypotheses to
be tested are

H0: μ1 = μ2 = μ3 = μ4,

H1: not all varieties have the same mean,

where μi is the mean yield per acre for variety i.
The value of ns2

means is

ns2
means = n

∑
(ȳi. − ȳ..)2/(t − 1)

= 4[(984.5 − 991.94)2 + · · · + (1116.50 − 991.94)2]/3

= 29977.06.
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The value of s2
p is

s2
p =

∑
i

SSi/[t(n − 1)]

= (10,085.00 + · · · + 22,305.00)/12 = 49,875.75/12

= 4156.31.

The calculated F ratio is

F = 29,977.06/4156.31 = 7.21.

The critical region is based on the F distribution with 3 and 12 degrees of
freedom. Using an α of 0.01, the critical value is 5.95, and since this value is
exceeded by the calculated F ratio we can reject the null hypothesis of equal
means, and conclude that a difference exists in the yields of the four varieties.
Further analysis will be postponed until Section 6.5 where we will examine
these differences for more specific conclusions. ■

Computational Formulas and the Partitioning of Sums of Squares

Calculation of the necessary variance estimates in Example 6.2 is cumber-
some. Although the computations for the analysis of variance are almost al-
ways done on computers, it is instructive to provide computational formulas
that not only make these computations easier to perform but also provide
further insight into the structure of the analysis of variance.

Although we have justified the analysis of variance procedure for the bal-
anced case, that is, all ni are equal, we present the computational formulas for
the general case. Note that all the formulas are somewhat simplified for the
balanced case.

The Sum of Squares among Means

Remember that the F ratio is computed from two variance estimates, each
of which is a sum of squares divided by degrees of freedom. In Chapter 1 we
learned a shortcut for computing the sum of squares; that is,

SS =
∑

(y − ȳ)2

is more easily computed by

SS =
∑

y2 −
(∑

y

)2
/

n.

In a similar manner, the sum of squares for computing ns2
means, often referred

to as the “between groups”2 or “factor sum of squares,” can be obtained by

2Students of the English Language recognize that “between” refers to a comparison of two items
while “among” refers to comparisons involving more than two items. Statisticians apparently do
not recognize this distinction.
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using the formula

SSB =
∑ Y 2

i.

ni

− Y 2
..∑
ni

,

which is divided by its degrees of freedom, dfB = t−1, to obtain ns2
means, called

the “between groups mean square,” denoted by MSB, the quantity to be used
for the numerator of the F statistic.

The Sum of Squares within Groups

The sum of squares for computing the pooled variance, often called the “within
groups” or the “error sum of squares,” is simply the sum of the sums of squares
for each of the samples, that is,

SSW (or SSE) =
∑

SSi =
∑

i

[∑
j

(yij − ȳi)2
]

=
∑
i, j

y2
ij −

∑
i

Y 2
i.

ni

,

where the subscripts under the summation signs indicate the index being
summed over. This sum of squares is divided by its degrees of freedom, df W =
(
∑

ni−t), to obtain the pooled variance estimate to be used in the denominator
of the F statistic.

The Ratio of Variances

We noted in Chapter 1 that a variance is sometimes called a mean square. In fact,
the variances computed for the analysis of variance are always referred to as
mean squares. These mean squares are denoted by MSB and MSW, respectively.
The F statistic is then computed as MSB/MSW.

Partitioning of the Sums of Squares

If we now consider all the observations to be coming from a single sample,
that is, we ignore the existence of the different factor levels, we can measure
the overall or total variation by a total sum of squares, denoted by TSS:

TSS =
∑
all

(yij − ȳ..)2.

This quantity can be calculated by the computational formula

TSS =
∑
all

y2
ij − Y 2

..∑
ni

.

This sum of squares has (
∑

ni − 1) degrees of freedom. Using a favorite trick
of algebraic manipulation, we subtract and add the quantity

∑
(Yi.)2/ni in this

expression. This results in

TSS =
(∑

all

y2
ij −

∑ Y 2
i.

ni

)
+
(∑ Y 2

i.

ni

− Y 2
..∑
ni

)
.

The first term in this expression is SSW and the second is SSB, thus it is seen
that

TSS = SSB + SSW.
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This identity illustrates the principle of the partitioning of the sums of squares
in the analysis of variance. That is, the total sum of squares, which measures
the total variability of the entire set of data, is partitioned into two parts:

1. SSB, which measures the variability among the means, and
2. SSW, which measures the variability within the individual samples.

Note that the degrees of freedom are partitioned similarly. That is, the total
degrees of freedom, dfT, can be written

dfT = dfB + dfW,(∑
ni − 1

)
= (t − 1) +

(∑
ni − t

)
.

We will see later that this principle of partitioning the sums of squares is a
very powerful tool for a large class of statistical analysis techniques.

The partitioning of the sums of squares and degrees of freedom and
the associated means squares are conveniently summarized in tabular form in
the so-called ANOVA (or sometimes AOV) table shown in Table 6.5.

Table 6.5

Tabular Form for the
Analysis of Variance

Source df SS MS F

Between groups t − 1 SSB MSB MSB/MSW
Within groups

∑
ni − t SSW MSW

Total
∑

ni − 1 TSS

EXAMPLE 6.2 REVISITED Using the computational formulas on the data given in Example
6.2, we obtain the following results:

TSS = 9342 + 10412 + · · · + 11912 − (15871)2/16

= 15,882,847 − 15,743,040.06 = 139,806.94,

SSB = 39382/4 + · · · + 44662/4 − (15871)2/16

= 15,832,971.25 − 15,743,040.06 = 89,931.19.

Because of the partitioning of the sums of squares, we obtain SSW by subtract-
ing SSB from TSS as follows:

SSW = TSS − SSB = 139,806.94 − 89,931.19 = 49,875.75.

The results are summarized in Table 6.6 and are seen to be identical to the
results obtained previously.

The procedures discussed in this section can be applied to any number of
populations, including the two-population case. It is not difficult to show that
the pooled t test given in Section 5.2 and the analysis of variance F test give
identical results. This is based on the fact that the F distribution with 1 and
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Table 6.6

Analysis of Variance for
Rice Data

Source df SS MS F

Between varieties 3 89,931.19 29,977.06 7.21
Within varieties 12 49,875.75 4,156.31
Total 15 139,806.94

ν degrees of freedom is identically equal to the distribution of the square of t

with ν degrees of freedom (Section 2.6). That is,

t2(ν) = F(1, ν).

Note that in the act of squaring, both tails of the t distribution are placed in the
right tail of the F distribution; hence the use of the F distribution automatically
provides a two-tailed test. ■

EXAMPLE 6.3 (EXAMPLE 1.2 REVISITED) The Modes were looking at the data on
homes given in Table 1.2 and noted that the prices of the homes appeared
to differ among the zip areas. They therefore decided to do an analysis of vari-
ance to see if their observations were correct. The preliminary calculations
are shown in Table 6.7.

Table 6.7

Preliminary Calculations
of Prices in Zip Areas

Zip n
∑

y ȳ
∑

y2

1 6 521.35 86.892 48912.76
2 13 1923.33 147.948 339136.82
3 16 1543.28 96.455 187484.16
4 34 5767.22 169.624 1301229.07
ALL 69 9755.18 141.379 1876762.82

The column headings are self-explanatory. The sums of squares are calculated
as (note that sample sizes are unequal):

TSS = 1,876,762.82 − (9755.18)2/69 = 497,580.28,

SSB = (521.35)2/6 + · · · + (5756.22)2/34 = 77,789.84,

and by subtraction,

SSW = 497,580.28 − 77,789.84 = 419,790.44.

The degrees of freedom for SSB and SSW are 3 and 65, respectively; hence
MSB = 25,929.95 and MSW = 6458.31, and then F = 25,929.95/6458.31 = 4.01.
The 0.05 critical value for the F distribution with 3 and 60 degrees of freedom
is 2.76; hence we reject the null hypothesis of no price differences among zip
areas. The results are summarized in Table 6.8, which shows that the p value
is 0.011. ■
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Table 6.8

Analysis of Variance for
Home Prices

Source DF Sum of Squares Mean Square F Value Pr > F

Between zip 3 77789.837369 25929.945790 4.01 0.0110
Within zip 65 419790.437600 6458.3144246
Total 68 497580.274969

6.3 The Linear Model

The Linear Model for a Single Population

We introduce the concept of the linear model by considering data from a single
population (using notation from Section 1.5) normally distributed with mean
μ and variance σ 2. The linear model expresses the observed values of the
random variable Y as the following equation or model:

yi = μ + ε i, i = 1, . . . , n.

To see how this model works, consider a population that consists of four
values, 1, 2, 3, and 4. The mean of these four values is μ = 2.5. The first obser-
vation, whose value is 1, can be represented as the mean of 2.5 plus ε1 = −1.5.
So 1 = 2.5 − 1.5. The other three observations can be similarly represented as
a “function” of the mean and a remainder term that differs for each value. In
general, the terms in a statistical model can be described as follows.

The left-hand side of the equation is yi, which is the ith observed value
of the response variable Y . The response variable is also referred to as the
dependent variable.

The right-hand side of the equation is composed of two terms:

• The functional or deterministic portion, consisting of functions of pa-
rameters. In the single-population case, the deterministic portion is simply
μ, the mean of the single population under study.

• The random portion, usually consisting of one term, εi, measures the dif-
ference in the response variable and the functional portion of the model.
For example, in the single-population case, the term ε i can be expressed
as yi − μ. This is simply the difference between the observed value and
the population mean. This term accounts for the natural variation existing
among the observations. This term is called the error term, and is assumed
to be a normally distributed random variable with a mean of zero and a
variance of σ 2. The variance of this error term is referred to as the error

variance.

It is important to remember that the nomenclature error does not imply any
sort of mistake; it simply reflects the fact that variation is an acknowledged
factor in any observed data. It is the existence of this variability that makes it
necessary to use statistical analyses. If the variation described by this term did
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not exist, all observations would be the same and a single observation would
provide all needed information about the population. Life would certainly be
simpler, but unfortunately also very boring.

The Linear Model for Several Populations

We now turn to the linear model that describes samples from t ≥ 2 popula-
tions having means μ1, μ2, . . . , μt, and common variance σ 2. The linear model
describing the response variable is

yij = μi + εij , i = 1, . . . , t, j = 1, . . . , ni,

where yij = jth observed sample value from the ith population, μi = mean
of the ith population, and εij = difference or deviation of the jth observed
value from its respective population mean. This error term is specified to be
a normally distributed random variable with mean zero and variance σ 2. It is
also called the “experimental” error when data arise from experiments.

Note that the deterministic portion of this model consists of the t means,
μ1, i = 1, 2, . . . , t; hence inferences are made about these parameters. The
most common inference is the test that these are all equal, but other inference
may be made. The error term is defined as it was for the single population
model.

Again, the variance of the εij is referred to as the error variance, and the
individual εij are normally distributed with mean zero and variance σ 2. Note
that this specification of the model also implies that there are no other factors
affecting the values of the yij other than the means.

The Analysis of Variance Model

The linear model for samples from several populations can be redefined to
correspond to the partitioning of the sum of squares discussed in Section 6.2.
This model, called the analysis of variance model, is written as

yij = μ + τi + εij ,

where yij and εij are defined as before, μ = a reference value, usually called
the “grand” or overall mean, and τi = a parameter that measures the effect
of an observation being in the ith population. This effect is, in fact, (μi − μ),
or the difference between the mean of the ith population and the reference
value. It is usually assumed that

∑
τi = 0, in which case μ is the mean of

the t populations represented by the factor levels and τi is the effect of an
observation being in the population defined by factor i. It is therefore called
the “treatment effect.”

Note that in this model the deterministic component includes μ and the τi.
When used as the model for the rice yield experiment, μ is the mean yield of
the four varieties of rice, and the τi indicate by how much the mean yield of
each variety differs from this overall mean.



234 Chapter 6 Inferences for Two or More Means

Fixed and Random Effects Model

Any inferences for the parameters of the model for this experiment are re-
stricted to the mean and the effects of these four specific treatment effects,
τi, i = 1, 2, 3, and 4. In other words, the parameters μ and τi of this model refer
only to the prespecified or fixed set of treatments for this particular experi-
ment. For this reason, the model describing the data from this experiment is
called a fixed effects model, sometimes called model I, and the parameters
(μ and the τi) are called fixed effects.

In general, a fixed effects linear model describes the data from an experi-
ment whose purpose it is to make inferences only for the specific set of factor
levels actually included in that experiment. For example, in our rice yield ex-
periment, all inferences are restricted to yields of the four varieties actually
planted for this experiment.

In some applications the τi represent the effects of a sample from a pop-
ulation of such effects. In such applications the τi are then random variables
and the inference from the analysis is on the variance of the τi. This appli-
cation is called the random effects model, or model II, and is described in
Section 6.6.

The Hypotheses

In terms of the parameters of the fixed effects linear model, the hypotheses of
interest can be stated

H0: τi = 0 for all i,

H1: τi 
= 0 for some i.

These hypotheses are equivalent to those given in Section 6.2 since

τ1 = τ2 = · · · = τt = 0

is the same as

(μ1 − μ) = (μ2 − μ) = · · · = (μt − μ) = 0,

or equivalently

μ1 = μ2 = · · · = μt = μ.

The point estimates of the parameters in the analysis of variance model are

estimate of μ = ȳ.., and

estimate of τi = (ȳi. − ȳ..),

then also

estimate of μi = μ + τi = ȳi..
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Expected Mean Squares

Having defined the point estimates of the fixed parameters, we next need to
know what is estimated by the mean squares we calculate for the analysis of
variance. In Section 2.2 we defined the expected value of a statistic as the mean
of the sampling distribution of that statistic. For example, the expected value
of ȳ is the population mean, μ. Hence we say that ȳ is an unbiased estimate of
μ. Using some algebra with special rules about expected values, expressions
for the expected values of the mean squares involved in the analysis of variance
as functions of the parameters of the analysis of the variance model can be
derived. Without proof, these are (for the balanced case)

E(MSB) = σ 2 + n

t − 1

∑
i

τ 2
i ,

E(MSW) = σ 2.

These formulas clearly show that if the null hypothesis is true (τi = 0 for all i),
then

∑
τ 2

i = 0, and consequently both MSB and MSW are estimates of σ 2.
Therefore, if the null hypothesis is true, the ratio MSB/MSW is a ratio of two
estimates of σ 2, and is a random variable with the F distribution. If, on the
other hand, the null hypothesis is not true, the numerator of that ratio will tend
to be larger by the factor [n/(t − 1)]

∑
i τ 2

i , which must be a positive quantity
that will increase in magnitude with the magnitude of the τi. Consequently,
large values of τi tend to increase the magnitude of the F ratio and will lead to
rejection of the null hypothesis. Therefore, the critical value for rejection of
the hypothesis of equal means is in the right tail of the F distribution. As this
discussion illustrates, the use of the expected mean squares provides a more
rigorous justification for the analysis of variance than that of the heuristic
argument used in Section 6.2.

The sampling distribution of the ratio of two estimates of a variance is
called the “central” F distribution, which is the one for which we have tables.
As we have seen, the ratio MSB/MSW has the central F distribution if the null
hypothesis of equal population means is true. Violation of this hypothesis
causes the sampling distribution of MSB/MSW to be stretched to the right,
a distribution that is called a “noncentral” F distribution. The degree to which
this distribution is stretched is determined by the factor [n/(t − 1)]

∑
i(τ

2
i ),

which is therefore called the “noncentrality” parameter. The noncentrality
parameter thus shows that the null hypothesis actually tested by the analy-
sis of variance is

H0:
∑

τ 2
i = 0;

that is, the null hypothesis is that the noncentrality parameter is zero. We can
see that this noncentrality parameter increases with increasing magnitudes
of the absolute value of τi and larger sample sizes, implying greater power of
the test as differences among treatments become larger and as sample sizes
increase. This is, of course, consistent with the general principles of hypothesis
testing presented in Chapter 3. The noncentrality parameter may be used in
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computing the power of the F test, a procedure not considered in this text
(see, for example, Neter et al., 1996).

Notes on Exercises

At this point sufficient background is available to do the basic analysis of
variance for Exercises 1 through 8, 11, 14, 16, and 17.

6.4 Assumptions

As in all previously discussed inference procedures, the validity of any in-
ference depends on the fulfillment of certain assumptions about the nature
of the data. In most respects, the requirements for the analysis of variance
are the same as have been previously discussed for the one- and two-sample
procedures.

Assumptions Required

The assumptions in the analysis of variance procedure are usually expressed
in terms of the elements of the linear model, and especially the εij , the error
term. These assumptions can be briefly stated:

1. The specified model and its parameters adequately represent the behavior
of the data.

2. The εij ’s are normally distributed random variables with mean zero and
variance σ 2.

3. The εij ’s are independent in the probability sense; that is, the behavior of
one εij is not afffected by the behavior value of any other.

The necessity of the first assumption is self-evident. If the model is incorrect,
the analysis is meaningless. Of course, we never really know the correct model,
but all possible efforts should be made to ensure that the model is relevant to
the nature of the data and the procedures used to obtain the data. For exam-
ple, if the data collection involved a design more complex than the completely
randomized design and we attempted to use the one-way analysis of variance
procedure to analyze the results, then we would have spurious results and
invalid conclusions. As we shall see in later chapters, analysis of more com-
plex data structures requires the specification of more parameters and more
complex models. If some parameters have not been included, then the sums
of squares associated with them will show up in the error variance, and the
error is not strictly random. The use of an incorrect model may also result in
biased estimates of those parameters included in the model.

The normality assumption is required so that the distribution of the MSB/

MSW ratio will be the required F distribution (Section 2.6). Fortunately, the
ability of the F distribution to represent the distribution of a ratio of vari-
ances is not severely affected by relatively minor violations of the normality
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assumption. Because of this, the ANOVA test is known as a relatively robust
test. However, extreme nonnormality, especially extremely skewed distribu-
tions, or the existence of outliers may result in biased tests. Of course, in
such cases, the means may also not be the appropriate set of parameters for
description and inferences.

The second assumption also implies that each of the populations has the
same variance, which is, of course, the same assumption needed for the pooled
t test. As in that case, this assumption is necessary for the pooled variance
to be used as an estimate of the variance and, consequently, for the ratio
MSB/MSW to be a valid test statistic for the desired hypothesis. Again, minor
violations of the equal variance assumptions do not have a significant effect
on the analysis, while major violations may cast doubt on the usefulness of
inferences on means.

Finally, the assumption of independence is necessary so that the ratio used
as the test statistic consists of two independent estimates of the common vari-
ance. Usually the requirement that the samples be obtained in a random man-
ner assures that independence. The most frequent violation of this assumption
occurs when the observations are collected over some time or space coordi-
nate, in which case adjacent measurements tend to be related. Methodologies
for analysis of such data are beyond the scope of this text. See Freund and
Wilson (1998, Sections 4 and 5) and Steele and Torrie (1980, Section 11.6) for
additional examples.

Detection of Violated Assumptions

Since the assumptions are similar to those discussed previously, the detection
methods are also similar. Exploratory data tools, such as stem and leaf and
box plots, are useful in identifying outliers and highly skewed distributions.
However, in the case of multiple-population data, it is not appropriate to use
the observed values because the linear model specifies that these observed
values consist of several model components, only one of which is the random
error. For example, in the one-way analysis of variance, for the observed values
yij , the model specifies that the observations consist of (μ+τi +εij). Thus any
plot of the yij will exhibit the characteristics of the distribution of (τi + εij)
and may not reveal anything about the εij themselves.

For this reason, the plots that will aid us in detection of violations of the
assumptions must be made on estimates of the εij . These estimates of the
error terms are called “residuals,” and are obtained by subtracting from each
observation the estimate of (μ + τi), which, as we have noted, is ȳi.. That is,
the estimated residuals are (yij − ȳi.) for all observations.

The stem and leaf and box plots for the residuals for the data in Example
6.2 are shown in Table 6.9. Within the limitations imposed by having only 16
observations, these plots do not appear to indicate any serious difficulties.
That is, from the shape of the stem and leaf plot we can see no large deviations
from normality and the box plot indicates no apparent outliers. The same
conclusion is reached for the data in Example 6.3.
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Table 6.9

EDA Plots of Residuals
for the Rice Data

Stem–Leaf No. Box Plot

|
+
|||

0 567 3
0 1223344 7

−0 0 1
−0 555 3
−1 20 2

- - - - + - - - - + - - - - + - - - - +

Unequal variances among populations may not be detected by such plots,
unless separate plots are made for each sample. Such plots may not be useful
for small sample sizes (as in Example 6.2). Occasionally, unequal variances
may cause the distribution of the residuals to appear skewed; however, this is
not always the case. Therefore, if it is suspected that the variances are not the
same for each factor level, it may be advisable to conduct a hypothesis test to
verify that suspicion.

The Hartley F-Max Test

A test of the hypothesis of equal variances is afforded by the Hartley F -max
test. The test is performed by first calculating the individual variances and
computing the ratio of the largest to smallest of these. This ratio is then com-
pared with critical values obtained from Appendix Table A.5. More extensive
tables of the F -max distribution can be found in the Pearson and Hartley tables
(1972, p. 202).

For the data in Example 6.2 the variances of yields of the four varieties are

s2
1 = 3361.67,

s2
2 = 1289.58,

s2
3 = 4539.00,

s2
4 = 7435.00.

The hypotheses of interest are

H0: σ 2
1 = σ 2

2 = σ 2
3 = σ 2

4 ,

H1: at least two variances are not equal.

We specify α = 0.05. The parameters for the distribution of the test statistic are
t, the number of factor levels, and df, the degrees of freedom of the individual
estimated variances. (The test is strictly valid only for balanced data.) For this
example, then, t = 4 and df = 3, and the critical range of the F -max distribution
is 39.2 (Appendix Table A.5). The ratio of the largest to the smallest variance,
s2

4/s2
2 , provides the value

7435.00/1289.58 = 5.77.

Since this is less than the critical value, we have insufficient evidence to re-
ject the hypothesis of equal variances; hence we may conclude that the equal
variance assumption is not violated.
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While easy to use, the Hartley test strictly requires equal sample sizes and
is quite sensitive to departures from the assumption of normal populations.
Since the graphic statistics presented in Table 6.9 show no indication of non-
normality, it is appropriate to use the Hartley test. In the case where there is
concern about nonnormality, a viable alternative is the Levene test (Levene,
1960). The Levene test is robust against serious departures from normality, and
does not require equal sample sizes. To test the same hypothesis of equal vari-
ances, the Levene test computes the absolute difference between the value of
each observation and its cell mean and performs a one-way analysis of variance
on these differences. The ordinary F statistic from this analysis of variance
is used as a test for homogeneity of variances. Of course, we would normally
not do two tests for the same hypothesis, but for illustration purposes, we
present the results of the Levene test using SPSS on the data in Example 6.2.
The results are in Table 6.10.

Table 6.10

Test of Homogeneity of
Variances

YIELD

Levene

Statistic df 1 df 2 Sig.

0.909 3 12 0.465

Note that the p value for the test is 0.465, supporting the conclusion that
there is no reason to doubt the assumption of equal variances.

It may come as a surprise that such a wide dispersion of sample variances
does not imply heterogeneous population variances. This phenomenon is due
to the large dispersion of the sampling distribution of variances especially for
small sample sizes.

Violated Assumptions

If it appears that some assumptions may be violated, the first step is, as always,
to reexamine closely the data and data collection procedures to determine that
the data have been correctly measured and recorded. It is also important to
verify the model specification, since defects in the model often show up as
violations of assumptions. Since these are subjective procedures and often do
not involve any formal statistical analysis, they should be performed by an
expert in the subject area in conjunction with the person responsible for the
statistical analysis. If none of these efforts succeed in correcting the situation,
and a transformation such as that discussed later cannot be used, alternative
analyses may be necessary. For example, one of the nonparametric techniques
discussed in Chapter 13 may need to be considered.

Variance Stabilizing Transformations

Often when the assumption of unequal variances is not satisfied, the reason is
some relationship between the variation among the units and some character-
istic of the units themselves. For example, large plants or large animals vary
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more in size than do small ones. Economic variables such as income or price
vary by percentages rather than absolute values. In each of these cases, the
standard deviation may be proportional to the magnitude of the response vari-
able. If the response variable consists of frequencies or counts, the underlying
distribution may be related to the Poisson distribution (Section 2.3), for which
the variance is proportional to the mean. If the response variable consists of
percentages or proportions, the underlying distribution may be the binomial
(Section 2.3) where the variance is related to the population proportion.

If unequal variation among factor levels is a result of one of these condi-
tions, it may be useful to perform the analysis using transformed values of
the observations, which may satisfy the assumption of equal variances. Some
transformations that stabilize the variance follow:

1. If σ is proportional to the mean, use the logarithm of the yij (usually but
not necessarily to base e).

2. If σ 2 is proportional to the mean, take the positive square root of the yij .
3. If the data are proportions or percentages, use arcsin (

√
yij), where the yij

are the proportions.

Most computer software provides for such transformations.

EXAMPLE 6.4 (EXAMPLE 6.3 REVISITED) We noted in Chapter 1, especially Fig. 1.13,
that home prices in the higher priced zip areas seemed to be more variable.
Actually, it is quite common that prices behave in this manner: prices of high-
cost items vary more than those of items having lower costs. If the variances
of home prices are indeed higher for the high-cost zip area, the assumptions
underlying the analysis of variance may have been violated. Figure 6.3 is a plot
of the standard deviation against the price of homes for the four areas. The
association between price and standard deviation is apparent.

We perform the Levene test for homogeneous variances. The analysis of vari-
ance of absolute differences gives MSB = 9725.5, MSE = 2619.6, F = 3.71, the
p value is 0.0158, and we can conclude that variances are different.
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Figure 6.3

Plot of Standard
Deviations vs Prices
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Table 6.11

Means and Standard
Deviations

Variable n Mean Standard Deviation

zip = 1
price 6 86.892 26.877
lprice 4.42 0.324

zip = 2
price 13 147.948 67.443
lprice 4.912 0.427

zip = 3
price 16 96.455 50.746
lprice 4.445 0.5231

zip = 4
price 34 169.624 98.929
lprice 4.988 0.5386

Table 6.12

Analysis of Variance for
Logarithm of Prices

Dependent Variable: lprice
Sum of

Source df Squares Mean Square F Value Pr > F

Model 3 4.23730518 1.41243506 5.60 0.0018
Error 65 16.38771365 0.25211867
Corrected Total 68 20.62501883

Because of the obvious relationship between the mean and the standard de-
viation the logarithmic transformation is likely appropriate. The means and
the standard deviations of price and of the natural logarithms of the price,
labeled lprice, are given in Table 6.11. The results of the Levene test for the
transformed data are MSB = 0.0905, MSW = 0.0974, F = 0.93, which leads
to the conclusions that there is no evidence of unequal variances. We now
perform the analysis of variance on the logarithm of price (variable lprice)
with the results shown in Table 6.12. While both analyses indicate a difference
in prices among the four zip areas, in this analysis the p value is seen to be
considerably smaller than that obtained with the actual prices.

The use of transformations can accomplish more than just stabilizing the vari-
ance. Usually unequal variances go hand in hand with nonnormality. That is,
unequal variances often cause the underlying distribution to look nonnormal.
Thus the transformations listed in this section may often correct both unequal
variances and nonnormality at the same time. It should be stressed that just
because a transformation appears to have solved some problems, the resulting
data should still be examined for other possible violations of assumptions.

The major drawback with using transformed data is that inferences are based
on the means of the transformed values. The means of the transformed val-
ues are not necessarily the transformed means of the original values. In other
words, it is not correct to transform statistics calculated from transformed
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values back to the original scale. This is easily seen in the data from Example
6.4. The retransformed means of the logarithms are certainly not equal to the
means of the original observations (Table 6.11), although the relative mag-
nitudes have been maintained. This will not always be the case. For further
information on transformations, see Steel and Torrie (1980, Section 9.16).

Situations occur, of course, in which variable transformations are not helpful.
In such cases, inferences on means may not be useful and alternative proce-
dures may be appropriate. For Example 6.4, it may be appropriate to suggest
the nonparametric Kruskal–Wallis test, which is detailed in Chapter 13. This
method uses the ranks of the values in the data and tests the null hypothesis
that the four underlying populations have the same distribution. ■

Notes on Exercises

It is now possible to check assumptions on all exercises previously completed
and to perform remedial methods if necessary. In addition, the reader can now
do Exercise 9.

6.5 Specific Comparisons

A statistically significant F test in the analysis of variance simply indicates that
some differences exist among the means of the responses for the factor levels
being considered. That is, the overall procedure tests the null hypothesis

H0: τi = 0, i = 1, 2, . . . , t.

However, rejection of that hypothesis does not indicate which of the τi are
not zero or what specific differences may exist among the μi. In many cases
we desire more specific information on response differences for different fac-
tor levels and, in fact, often have some specific hypotheses in mind. Some
examples of specific hypotheses of interest follow:

1. Is the mean response for a specific level superior to that of the others?
2. Is there some trend in the responses to the different factor levels?
3. Is there some natural grouping of factor level responses?

Answers to questions such as these can be obtained by posing specific hypo-
theses, often called multiple comparisons. Multiple-comparison techniques
are of two general types:

1. those generated prior to the experiment being conducted, called pre-

planned comparisons, and
2. those that use the result of the analysis (usually the pattern of sample means)

to formulate hypotheses. These are called post hoc comparisons.

While the term “preplanned” might seem redundant, it is used to reinforce
the concept that these contrasts must be specified prior to conducting the
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experiment or collecting the data. We will adhere to this convention and refer
to them as preplanned contrasts throughout the discussion.

By and large, preplanned comparisons should be performed whenever pos-
sible. The reasons are as follows:

• Preplanned comparisons have more power. Because post hoc compar-
isons generate hypotheses from the data, rejection regions must be adjusted
in order to preserve some semblance of a correct type I error probability.
That means that a real difference between means may be found significant
using a preplanned comparison but may not be found significant using a
post hoc comparison.

• A post hoc comparison may not provide useful results. Comparisons
of special interest may simply not be tested by a post hoc procedure. For
example, if the factor levels are increasing levels of fertilizer on a crop, a
post hoc procedure may simply provide the rather uninformative conclusion
that the highest fertilizer level produces higher yields than the lowest level.
Of course, what we really want to know is by how much the yield increases
as we add specific amounts of fertilizer.

Most specific comparisons are based on certain types of linear combina-
tions of means called contrasts. The presentation of contrasts is organized as
follows:

• the definition of a contrast and its use in preplanned comparisons in hy-
pothesis tests using t and F statistics,

• the definition of a special class of contrasts called orthogonal contrasts and
how these are used in partitioning sums of squares for the testing of multiple
hypotheses, and

• the use of contrasts in a number of different post hoc comparisons that use
different statistics based on the “Studentized range.”

The various formulas used in this section assume the data are balanced,
that is, all ni = n. This is not always a necessary assumption, as we will see
in Section 6.7, but is used to simplify computations and interpretation. In fact,
most computer software for performing such comparisons do not require this
condition and makes appropriate modifications if data are unbalanced.

Contrasts

Consider the rice yield example discussed in Example 6.2 (data given in
Table 6.2). The original description simply stated that there are four varieties.
This description by itself does not provide a basis for specific preplanned com-
parisons. Suppose, however, that variety 4 was newly developed and we are
interested in determining whether the yield of variety 4 is significantly differ-
ent from that of the other three. The corresponding statistical hypotheses are
stated:

H0: μ4 = 1/3(μ1 + μ2 + μ3),

H1: μ4 
= 1/3(μ1 + μ2 + μ3).
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In other words, the null hypothesis is that the mean yield of the new variety
is equal to the mean yield of the other three. Rejection would then mean that
the new variety has a different mean yield.3 We can restate the hypotheses as

H0: L = 0,

H1: L 
= 0,

where

L = μ1 + μ2 + μ3 − 3μ4.

This statement of the hypotheses avoids fractions and conforms to the desir-
able null hypothesis format, which states that a linear function of parameters
is equal to 0. This function is estimated by the same function of the sample
means:

L̂ = ȳ1. + ȳ2. + ȳ3. − 3ȳ4..

Note that this is a linear function of random variables because each mean is a
random variable with mean μi and variance σ 2/n. The mean and variance of
this function are obtained using the properties of the distribution of a linear
function of random variables presented in Section 5.2. The constants (ai in
Section 5.2) of this linear function have the values (a1 = 1, a2 = 1, a3 = 1,
a4 = −3). Therefore, the mean of L̂ is

μ1 + μ2 + μ3 − 3μ4,

and the variance is

[12 + 12 + 12 + (−3)2]σ 2/n = 12σ 2/n,

where n = 4 for this example. Furthermore, the variable L̂ has a normal
distribution as long as each of the ȳi. are normally distributed. To test the
hypotheses

H0: L = μ1 + μ2 + μ3 − 3μ4 = 0,

H1: L = μ1 + μ2 + μ3 − 3μ4 
= 0,

we use the test statistic

t = L̂√
variance of L̂

= L̂√
12·MSW

n

,

where the substitution of MSW for σ 2 produces a test statistic that has the
Student t distribution with t(n−1) degrees of freedom. As always, the degrees
of freedom of the t statistic match those of MSW, the estimate of the variance.

In Example 6.2, n = 4 and t = 4 so the degrees of freedom are (3)(4) = 12.
The sample data yield

L̂ = 984.5 + 928.25 + 938.5 − 3(1116.5) = −498.4

3A one-sided alternative may be appropriate.
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and

t = −498.4/
√

(4156.31 × 12)/4 = −498.4/111.66 = −4.46.

To test the hypotheses using α = 0.01, we reject the null hypothesis if the t

value we calculate exceeds in absolute value 3.0545. Since 4.46 exceeds that
value, we reject the null hypothesis and conclude that the mean yield of variety
4 is different from the means of the other three varieties.

DEFINITION 6.1
A contrast is a linear function of means whose coefficients add to 0.

That is, a linear function of population means,

L =
∑

aiμi,

is a contrast if ∑
ai = 0.

The linear function of means discussed above satisfies this criterion since∑
ai = 1 + 1 + 1 − 3 = 0.

A contrast is estimated by the same linear function of sample means; hence
the estimate of L is

L̂ =
∑

ai ȳi.,

and the variance of L̂ is

var(L̂) = (σ 2/n)
∑

a2
i .

To test the hypothesis H0: L = 0 against any alternative, we substitute the
estimated variance, in this case MSW, for σ 2 and use the test statistic

t =
∑

ai ȳi.√
(MSW/n)

∑
a2

i

.

This test statistic has the t distribution if the distributions of the ȳi. are
approximately normal, and it has the same degrees of freedom as MSW, which
is t(n − 1) for the one-way ANOVA.

An equivalent and more informative method for testing hypotheses con-
cerning contrasts uses the fact that [t(ν)]2 = F(1, ν) and performs the test
with the F distribution. The appropriate test statistic is

t2 = F =
(∑

ai ȳi.

)2

(MSW/n)
∑

a 2
i

.

Remember that the usual expression for an F ratio has the mean square for the
hypothesis in the numerator and the error mean square in the denominator.
Placing all elements except the error mean square into the numerator produces
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the mean square due to the hypothesis specified by the contrast as follows:

MSL =
(∑

ai ȳi.

)2(∑
a2

i

/
n
) .

Since this mean square has 1 degree of freedom, it can also be construed as
the sum of squares due to the contrast (SSL) with 1 degree of freedom (that is,
SSL = MSL).

For the rice yield data, the sum of squares for the contrast for testing the
equality of the mean of variety 4 to the others is

SSL = 4(498.25)2/12 = 82,800.8.

The resulting F ratio is

F = 82,800.8/4156.31 = 19.92.

The critical value for the F distribution with 1 and 12 degrees of freedom
(α = 0.01) is 9.33, and the hypothesis is rejected. Note that

√
19.92 = 4.46 and√

9.33 = 3.055, which are the values obtained for the test statistic and critical
value when using the t statistic for testing the hypothesis.

Orthogonal Contrasts

Additional contrasts may be desired to test other hypotheses of interest. How-
ever, conducting a number of simultaneous hypotheses tests may compromise
the validity of the stated significance level as indicated in Section 6.2. One
method of alleviating this problem is to create a set of orthogonal contrasts.
(Methods for nonorthogonal contrasts are presented later in this section.)

DEFINITION 6.2
Two contrasts are orthogonal if the cross product of their coefficients
adds to 0.

Two contrasts,

L1 =
∑

aiμi

and

L2 =
∑

biμi,

are orthogonal if ∑
(aibi) = 0.

Sets of orthogonal contrasts have several interesting and very useful proper-
ties. If the data are balanced (all ni = n), then

1. Given t factor levels, it is possible to construct a set of at most (t − 1)
mutually orthogonal contrasts. By mutually orthogonal, we mean that every
pair of contrasts is orthogonal.

2. The sums of squares for a set of (t − 1) orthogonal contrasts will add to the
between sample or factor sum of squares (SSB).
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In other words, the (t − 1) orthogonal contrasts provide a partitioning of SSB
into single degree of freedom sums of squares, SSLi, each being appropriate
for testing one of (t −1) specific hypotheses. Finally, because of this additivity,
each of the resulting sums of squares is independent of the other, thus reducing
the problem of incorrectly stating the significance level.

The reason for this exact partitioning is that the hypotheses corresponding
to orthogonal contrasts are completely independent of each other. This is, the
result of a test of any one of a set of orthogonal contrasts is in no way related
to the result of the test of any other contrast.

Suppose that in Example 6.2, the problem statement indicated not only that
variety 4 was most recently developed, but also that variety 3 was developed
in the previous year, variety 2 was developed two years previously, while variety
1 was an old standard. The following hypotheses can be used to test whether
each year’s new variety provides a change in yield over the mean of those of
the previous years:

H01: μ4 = (μ1 + μ2 + μ3)/3,

that is, μ4 is the same as the mean of all other varieties;

H02: μ3 = (μ1 + μ2)/2,

that is, μ3 is the same as the mean of varieties 1 and 2; and

H03: μ1 = μ2.

The alternative hypotheses specify “not equal” in each case. The corresponding
contrasts are

L1 = μ1 + μ2 + μ3 − 3μ4.

L2 = μ1 + μ2 − 2μ3,

L3 = μ1 − μ2.

The orthogonality of the contrasts can be readily verified. For example, L1 and
L2 are orthogonal because of the sum of the cross products of the coefficients:

(1)(1) + (1)(1) + (1)(−2) + (−3)(0) = 0.

The independence of these contrasts is verified by noting that rejecting H01

implies nothing about any differences among the means of treatments 1, 2, and
3, which are tested by the other contrasts. Similarly, the test for H02 implies
nothing for H03.

The sums of squares for the orthogonal contrasts are

SSL1 = 4[984.50 + 928.25 + 938.50 − 3(1116.50)]2/(1 + 1 + 1 + 32)

= 82,751.0

SSL2 = 4[984.50 + 928.25 − 2(938.50)]2/(1 + 1 + 22) = 852.0

SSL3 = 4[984.50 − 928.25]2/(1 + 1) = 6328.1.
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Table 6.13

Analysis of Variance with
Contrasts

Source df SS MS F

Between varieties 3 89,931.1 29,977.1 7.21

μ4 versus others 1 82,751.0 82,751.0 19.91
μ3 versus μ1 and μ2 1 852.0 852.0 0.20
μ2 versus μ1 1 6,328.1 6,328.1 1.52

Within 12 49,875.75 4,156.3
Total 15 139,806.9

Note that SSL1 + SSL2 + SSL3 = 89,931.1, which is the same as SSB from
Table 6.6 (except for round-off).

Because each of the contrast sums of squares has 1 degree of freedom,
SSL i = MSL i, and the F tests for testing H01, H02, and H03 are obtained by
dividing each of the SSLi by MSW. The results of the entire analysis can be
summarized in a single table (Table 6.13). Only the first contrast is significant
at the 0.05 level of significance. Therefore we can conclude that the new variety
does have a different mean yield, but we cannot detect the specified differences
among the others.

Other sets of orthogonal contrasts can be constructed. The choice of con-
trasts is, of course, dependent on the specific hypotheses suggested by the
nature of the treatments. Additional applications of contrasts are presented in
the next section and in Chapter 9.

Note, however, that the contrast

L4 = μ1 − μ3

is not orthogonal to all of the above. The reason for the nonorthogonality is
that contrasts L1 and L2 partially test for the equality of μ1 and μ3, which is
the hypothesis tested by L4.

It is important to note that even though we used preplanned orthogonal
contrasts, we are still testing more than one hypothesis based on a single set of
sample data. That is, the level of significance chosen for evaluating each single
degree of freedom test is applicable only for that contrast, and not to the set
as a whole. In fact, in the previous example we tested three contrasts, each at
the 0.05 level of significance. Therefore, the probability that each test would
fail to reject a true null hypothesis is 0.95. Since the tests are independent, the
probability that all three would correctly fail to reject true null hypotheses is
(0.95)3 = 0.857. Therefore, the probability that at least one of the three tests
would falsely reject a true null hypothesis (a type I error) is 1 − 0.857 = 0.143,
not the 0.05 specified for each hypothesis test. This is discussed in more detail
in the section on post hoc comparisons.

Sometimes the nature of the experiment does not suggest a full set of (t−1)
orthogonal contrasts. Instead, only p orthogonal contrasts may be computed,
where p < (t − 1). In such cases it may be of interest of see if that set of
contrasts is sufficient to describe the variability among all t factor level means
as measured by the factor sum of squares (SSB). Formally the null hypothesis
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to be tested is that no contrasts exist other than those that have been computed;
hence rejection would indicate that other contrasts should be implemented.
This lack of fit is illustrated in the next section and also in Section 9.4.

Often in designing an experiment, a researcher will have in mind a specific
set of hypotheses that the experiment is designed to test. These hypothe-
ses may be expressed as contrasts, and these contrasts may not be orthog-
onal. In this situation, there are procedures that can be used to control the
level of significance to meet the researcher’s requirements. For example, we
might be interested in comparing a control group with all others, in which
case the Dunnett’s test would be appropriate. If we have a small group of
nonorthogonal preplanned contrasts we might use the Dunn–Sidak test. A de-
tailed discussion of multiple comparison tests can be found in Kirk (1995,
Section 4.1).

Fitting Trends

In many problems the levels of the factor represent varying values of a quanti-
tative factor. For example, we may examine the output of a chemical process
at different temperatures or different pressures, the effect of varying doses of
a drug on patients, or the effect on yield due to increased amounts of fertilizer
applied to crops. In such situations, it is logical to determine whether a trend
exists in the response variable over the varying levels of the quantitative factor.
This type of problem is a special case of multiple regression analysis, which is
presented in Section 8.6. However, in cases where the number of factor levels
is not large and the magnitudes of the levels are equally spaced, a special set
of orthogonal contrasts may be used to establish the nature of such a trend.
These contrasts are called “orthogonal polynomial contrasts.” The coefficients
for these contrasts are available in tables; a short table is given in Appendix
Table A.6.

Orthogonal polynomials were originally proposed as a method for fitting
polynomial regression curves without having to perform the laborious com-
putations for the corresponding multiple regression (Section 8.6). Although
the ready availability of computing power has decreased the usefulness of this
application of orthogonal polynomials, it nevertheless provides a method of
obtaining information about trends associated with quantitative factor levels
with little additional work.

The simplest representation of a trend is a straight line that relates the
levels of the factor to the mean response. A straight line is a polynomial of
degree 1. This linear trend implies a constant change in the response for a
given incremental change in the factor level. The existence of such a linear
trend can be tested by using the linear orthogonal polynomial contrast.

If we find that a straight line does not sufficiently describe the relation-
ship between response and factor levels, then we can examine a polynomial
of degree 2, called a “quadratic polynomial,” which provides a curved line
(parabola) to describe the trend. The existence of such a quadratic polyno-
mial can be tested by using the quadratic orthogonal polynomial contrast.
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In the same manner higher degree polynomial curves may be included by
adding the appropriate contrasts. Since a polynomial of degree (t − 1) may be
fitted to a set of t data points (or means), the process of increasing the degree
of the polynomial curve may be continued until a (t −1) degree curve has been
reached. Note that this corresponds to being able to construct at most (t − 1)
orthogonal contrasts for t factor levels.

However, most practical applications result in responses that can be ex-
plained by relatively low-degree polynomials. What we need is a method of
determining when to stop adding polynomial terms. Orthogonal polynomial
contrasts allow the implementation of such a process by providing the appro-
priate sums of squares obtained by adding polynomial terms in the fitting of
the trend.

The coefficients of these contrasts are given in Appendix Table A.6. A sepa-
rate set of contrasts is provided for each number of factor levels, ranging from
t = 3 to t = 10. Each column is a set of contrast coefficients, labeled Xi, where
the i subscript refers to the degree of the polynomial, whose maximum value
in the table is either (t − 1) or 4, whichever is smaller (polynomials of degrees
higher than 4 are rarely used). The sums of squares for the coefficients, which
are required to compute the test statistic, are provided at the bottom of each
column.

The question of when to stop adding terms is answered by testing for
the statistical significance of each additional contrast as it is added, as
well as a lack of fit to see whether additional higher order terms may be
needed.

EXAMPLE 6.5 To determine whether the sales of apples can be enhanced by increasing the
size of the apple display in supermarkets, 20 large supermarkets are randomly
selected from those in a large city. Four stores are randomly assigned to have
either 10, 15, 20, 25, or 30 ft2 of display for apples. Sales of apples per cus-
tomer for a selected week is the response variable. The data are shown in
Table 6.14.

The objective of this experiment is not only to determine whether a difference
exists for the five factor levels (display space size), but to determine whether
a trend exists and to describe it.

Table 6.14

Sales of Apples per
Customer

DISPLAY SPACE

10 15 20 25 30

0.778 0.665 0.973 1.003 1.125
0.458 0.830 1.029 1.073 1.184
0.638 0.716 1.106 0.979 0.904
0.602 0.877 0.964 0.981 0.951

Means 0.619 0.772 1.018 1.009 1.041
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Solution We will perform the analysis of variance test for differences
among means and, in addition, examine orthogonal contrasts to identify the
maximum degree of polynomial that best explains the relationship between
sales and display size. Using the method outlined in Section 6.2 we produce
the ANOVA table given in Table 6.15. The F ratio for testing the mean sales
for the five different display spaces (the line labeled “Space”) has a value of
13.72 and a p value of less than 0.0001. We conclude that the amount of dis-
play space does affect sales. A cursory inspection of the data (Fig. 6.4, data
values indicated by filled circles) indicates that sales appear to increase with
space up to 20 ft2 but sales response to additional space appears to level off.

Table 6.15

Analysis of Apple Sales
Data

Source df SS MS F

Space 4 0.5628 0.1407 13.72

Linear 1 0.4674 0.4674 45.58
Quadratic 1 0.0706 0.0706 6.88
Lack of fit 2 0.0248 0.0124 1.20

Error 15 0.1538 0.0103
Total 19 0.7166
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Data
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This type of response is typical of a quadratic polynomial. We will use orthog-
onal polynomials to test for the linear and quadratic effects and also perform
a lack of fit test to see if the quadratic polynomial is sufficient.

Contrasts for Trends First, the coefficients of the orthogonal contrasts
are obtained from Appendix Table A.6 using five factors (n = 5 in the table).
The contrasts are

L1 = −2μ1 − μ2 + μ4 + 2μ5 (linear),

L2 = 2μ1 − μ2 − 2μ3 − μ4 + 2μ5 (quadratic).

From the table we also find the sums of squares of the coefficients, which
are 10 and 14, respectively. The sums of squares for the contrasts are

SSL1 = 4[−2(0.619) − 0.772 + 1.009 + 2(1.041)]2/(10) = 0.4674,

SSL2 = 4[2(0.619) − 0.772 − 2(1.018) − 1.009 + 2(1.041)]2/(14) = 0.0706.

These sums of squares are also listed in Table 6.15 in the lines labeled “Linear”
and “Quadratic.” Using the MSW as the denominator for the F ratios we obtain
the values 45.58 and 6.88 for L1 and L2, respectively. Both these values are
greater than the critical value of 4.54 (α = 0.05); hence we can conclude that
a quadratic model may be useful; that is, our first impression is valid.

A graph of the quadratic trend4 is shown in Fig. 6.4 as the curved line. The
results of this analysis confirm the initial impression, which indicated that sales
increase with the increased size of the display space up to about 23 or 24 ft2

and then level off. This should allow supermarket managers to allocate space
to apples in such a way as to maximize their sales without using excessive
display space. ■

Lack of Fit Test

This test is performed to determine whether a higher degree polynomial is the
appropriate next step. We obtain the sums of squares for this test by subtracting
SSL1 + SSL2 from SSB. Remember that the sums of squares for a set of ortho-
gonal contrasts add to the treatment sum of squares. Hence this difference is
the sum of squares due to all other contrasts that could be proposed. Therefore,
the test using this sum of squares is the test of the null hypothesis that other
significant contrasts do not exist and, consequently, that the contrasts we have
proposed adequately fit the means.

In this example, we have fitted the linear and quadratic polynomials and
the other contrasts are those for the third- and fourth-degree polynomials. The
subtraction provides a sum of squares of 0.0248 with 2 degrees of freedom, and
the mean square for lack of fit is 0.0248/2 = 0.0124. Again using the MSW value
for the denominator we obtain a value for the F ratio of 0.0124/0.0103 = 1.20,

4This plot produced with SAS/GRAPH software.
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which is certainly not significant. Thus we can conclude that the quadratic
trend adequately describes the relationship of sales to display space.

Notes on Exercises

It is now possible to perform preplanned contrasts or orthogonal polynomials
where appropriate in previously worked exercises.

Computer Hint

Many statistical software packages do not have built-in provisions for doing
a lack of fit test. Generally you will need to do the analysis of variance first.
Then do the contrasts, which may not be available as part of the analysis of
variance program and may have to be done by manual calculations. Results of
the two analyses must then be combined manually.

Post Hoc Comparisons

In some applications the specifications of the factor levels do not suggest pre-
planned comparisons. For example, we have noted that the original treatment
specification of four unnamed varieties in Example 6.2 did not provide a logical
basis for preplanned comparisons. In such cases we employ post hoc com-

parisons, for which specific hypotheses are based on observed differences
among the estimated factor level means. That is, the hypotheses are based on
the sample data.

We noted in Section 3.6 that testing hypotheses based on the data is a form of
exploratory analysis for which the use of statistical significance is not entirely
appropriate. We also noted at the beginning of this chapter that the testing
of multiple hypotheses using a single set of data results in a distortion of the
significance level for the experiment as a whole. In other words, the type I error
rate for each comparison, called the comparison-wise error rate, may be, say,
0.05, but the type I error rate for the analysis of the entire experiment, called the
experiment-wise error rate, may be much larger. Finally, hypotheses based on
the data are usually not independent of each other, which means that rejecting
one hypothesis may imply the rejection of another, thereby further distorting
the true significance level.

However, tests of this type are often needed; hence a number of meth-
ods for at least partially overcoming these distortions have been developed.
Unfortunately, test procedures that more closely guarantee the stated exper-
imentwise significance level tend to be less powerful and/or versatile, thus
making more difficult the often desired rejection of null hypotheses. In other
words, comparison procedures that allow the widest flexibility in the choice
of hypotheses may severely compromise the stated significance level, while
procedures that guarantee the stated significance level may preclude testing
of useful hypotheses. For this reason a number of competing procedures,
each of which attempts to provide useful comparisons while making a rea-
sonable compromise between power and protection against the type I error
(conservatism), have been developed.
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Most post hoc comparison procedures are restricted to testing contrasts
that compare pairs of means, that is,

H0 : μi = μ j , for all values of i 
= j.

Actually, pairwise comparisons are not really that restrictive in that they enable
us to “rank” the means, and thus obtain much information about the structure
of the means. For example, we can compare all factor levels with a control,
determine whether a maximum or minimum value exists among the means, or
determine whether a certain group of means are really homogeneous.

Because there is no consensus for a “best” post hoc comparison procedure,
most computing packages offer an extensive menu of choices. Presenting such
a large number of alternatives is beyond the scope of this book so we will
present three of the more popular methods for making paired comparisons:

1. the Fisher LSD procedure, which simply does all possible t tests and is
therefore least protective in terms of the experiment-wise significance level;

2. the Tukey procedure, which indeed assures the stated (usually 5%)
experiment-wise significance level but is therefore not very powerful; and

3. the Duncan multiple range test, which is one of the many available com-
promises.

Finally, if the limitation to paired comparisons is too restrictive, the Scheffé

procedure provides the stated experiment-wise significance level when making
any and all possible post hoc contrasts. Of course, this procedure has the least
power of all such methods.

The Fisher LSD Procedure The procedure for making all possible pair-
wise comparisons is attributed to Fisher (1948) and is known as the least
significance difference or LSD test.

The LSD method performs a t test for each pair of means using the within
mean square (MSW) as the estimate of σ 2. Since all of these tests have the
same denominator, it is easier to compute the minimum difference between
means that will result in “significance” at some desired level. This difference
is known as the least significant difference, and is calculated

LSD = tα/2

√
2 · MSW

n
,

where tα/2 is the α/2 tail probability value from the t distribution, and the
degrees of freedom correspond to those of the estimated variance, which for
the one-way ANOVA used in this chapter are t(n−1). The LSD procedure then
declares as significantly different any pair of means for which the difference
between sample means exceeds the computed LSD value.

As we have noted, the major problem with using this procedure is that the
experiment-wise error rate tends to be much higher than the comparison-wise
error rate. To maintain some control over the experiment-wise error rate, it
is strongly recommended that the LSD procedure be implemented only if the
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hypothesis of equal means has first been rejected by the ANOVA test. This two-
step procedure is called the “protected” LSD test. Carmer and Swanson (1973)
conducted Monte Carlo simulation studies that indicate that the protected LSD
is quite effective in maintaining a reasonable control over false rejection.

For the rice yield data in Example 6.2, the 0.05 level LSD is

LSD = 2.179

√
2(4156.31)

4
= 99.33.

Any difference between a pair of sample means exceeding this value is con-
sidered to be statistically significant.

Results of paired comparison procedures are usually presented in a manner
for reducing the confusion arising from the large number of pairs. First, the
sample means are arranged from low to high:

Mean ȳ2. ȳ3. ȳ1. ȳ4.

Value 928.25 938.50 984.50 1116.50

A specified sequence of tests is used that employs the fact that no pair of means
can be significantly different if the two means fall between two other means
that have already been declared not to be significantly different.

We begin by comparing the largest mean to the other means. The first
comparison is between the largest and the smallest: ȳ4. and ȳ2. The actual
difference, 1116.50 − 928.25 = 188.25, exceeds the LSD critical value of 99.33;
hence we declare that μ4 
= μ2.

The next comparison is that between the largest and second smallest: ȳ4.

and ȳ3.. The actual difference of 178.00 exceeds the critical value 99.33; hence
we declare that μ4 
= μ3.. We likewise declare μ4 
= μ1. This completes all com-
parisons with ȳ4..

We next compare the second largest mean to the others. Again the first
comparison is to the smallest: ȳ1 and ȳ2. The difference is 56.25, which is
smaller than the critical value of 99.33; hence we cannot declare μ1 
= μ2. Since
all other comparisons involve means that fall between these two, no other
significant differences can be declared to exist.

It is convenient to summarize the results of paired comparisons by listing
sample means and connecting with a line those means that are not significantly
different. In our example, we found that μ4 is significantly different from the
other three, but that there were no other significant differences. The result can
be summarized as:

ȳ2. ȳ3. ȳ1. ȳ4.

928.25 938.50 984.50 1116.5

This presentation clearly shows that μ4 is significantly different from the other
three, but there are no other significant differences.

The above result is indeed quite unambiguous and therefore readily inter-
preted. This is not always true of a set of paired comparisons. For example,
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it is not unusual to have a pattern of differences result in a summary plot as
follows:

Factor Levels
A B C D E F

This pattern does not really separate groups of means, although it does allow
some limited inferences: Level A does have a different mean response from
levels C through F, etc. This does not mean that the results are not valid,
but does emphasize the fact that we are dealing with statistical rather than
numerical differences.

Another convention for presenting the results of a paired comparison pro-
cedure is to signify by a specific letter all means that are declared to be not
significantly different. An illustration is given in Table 6.16.

Table 6.16

Tukey HSD for Rice
Yields

Analysis of Variance Procedure
Tukey’s Studentized Range (HSD) Test for variable: YIELD
NOTE: This test controls the type I experiment-wise error rate,
but generally has a higher type II error rate than REGWQ.
Alpha = 0.05 df = 12 MSE = 4156.313
Critical Value of Studentized Range = 4.199
Minimum Significant Difference = 135.34
Means with the same letter are not significantly different.

Tukey Grouping Mean N VAR

A 1116.50 4 4
B A 984.50 4 1
B 938.50 4 3
B 928.25 4 2

Tukey’s Procedure As we have seen, the LSD procedure uses the t distri-
bution to declare two means significantly different if the sample means differ
by more than

LSD = tα/2

√
2 · MSW/n ,

which can be written

LSD = tα/2

√
2(standard error of ȳ).

It is reasonable to expect that using some value greater than
√

2tα/2 as a multi-
plier of the standard error of the mean will provide more protection in terms
of the experiment-wise significance level. The question is: How much larger?
One possibility arises through the use of the Studentized range.

The Studentized range is the sampling distribution of the sample range
divided by the estimated standard deviation. When the range is based on means
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from samples of size n, the statistic is denoted by

q = (ȳmax − ȳmin)√
s2/n

,

where for the one-way ANOVA, s2 = MSW. Using a critical value from this
distribution for a paired comparison provides the appropriate significance
level for the worst case; hence it is reasonable to assume that it provides the
proper experiment-wise significance level for all paired comparisons.

The distribution of the Studentized range depends on the number of means
being compared (t), the degrees of freedom for the error (within) mean square
(df), and the significance level (α). Denoting the critical value by qα(t,df),
we can calculate a Tukey W (sometimes called HSD for “honestly significant
difference”) statistic,

W = qα(t, df )
√

MSW/n,

and declare significantly different any pair of means that differs by an amount
greater than W .

For our rice yield data (Example 6.2), with α = 0.05, we use the tables
of critical values of the Studentized range given in Appendix Table A.7 for
two-tailed 0.05 significance level. For this example, q0.05(4, 12) = 4.20. Then,

W = 4.20

√
4156.31

4
= 135.38.

We use this statistic in the same manner as the LSD statistic. The results are
shown in Table 6.16 and we can see that this procedure declares μ4 different
only from μ2 and μ3. We can no longer declare μ4 different from μ1. (Table 6.16
was produced by PROC ANOVA of the SAS System.) That is, in guaranteeing a
0.05 experiment-wise type I error rate we have lost some power.

Duncan’s Multiple-Range Test It may be argued that the Tukey test guar-
antee of a stated experiment-wise significance level is too conservative and
therefore causes an excessive loss of power. A number of alternative pro-
cedures that retain some control over experiment-wise significance levels
without excessive power loss have been developed. One of the most popu-
lar of these is the Duncan multiple-range test. The justification for the Duncan
multiple-range test is based on two considerations (Duncan, 1957):

1. When means are arranged from low to high, the Studentized range statistic
is relevant only for the number of means involved in a specific comparison.
In other words, when comparing adjacent means, called “comparing means
two steps apart,” we use the Studentized range for two means (which is
identical to the LSD); for comparing means three steps apart we use the
Studentized range statistic for three means; and so forth. Since the critical
values of the Studentized range distribution are smaller with a lower num-
ber of means, this argument allows for smaller differences to be declared
significant. However, the procedure maintains the principle that no pair of
means is declared significantly different if the pair is within a pair already
declared not different.
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2. When the sample means have been ranked from lowest to highest, Duncan
defines the protection level as (1 − α)r−1 for two sample means r steps
apart. The probability of falsely rejecting the equality of two population
means when the sample means are r steps apart can be approximated by
1 − (1 − α)r−1. So, for adjacent means (r = 2) the protection level is 1 − α,
and the approximate experiment-wise significant level is 1 − (1 − α) = α.
Note that the protection level decreases with increasing r. Because of this
the Duncan multiple-range test is very powerful—one of the reasons that
this test has been extremely popular.

The result is a different set of multipliers for computing an LSD statistic. These
multipliers are given in Appendix Table A.8 and are a function of the number
of steps apart (r), the degrees of freedom for the variance (df), and the signif-
icance level for a single comparison (α).

EXAMPLE 6.4 REVISITED In Example 6.4 we determined that the standard deviation of
the home prices were proportionate to the means among the four zip areas. The
analysis of variance using the logarithms of prices indicated that the prices do
differ among the zip areas (reproduced in Table 6.17 for convenience). Because
there is no information to suggest preplanned comparisons, we will perform
a Duncan multiple-range test.

Table 6.17

Analysis of Variance for
Logarithm of Prices

Dependent Variable: lprice
Sum of

Source df Squares Mean Square F Value Pr > F

Model 3 4.23730518 1.41243506 5.60 0.0018
Error 65 16.38771365 0.25211867
Corrected Total 68 20.62501883

There are four factor levels, so we are comparing four means. The critical
values for the statistic can be obtained from Appendix Table A.8, with df =
60. The Duncan multiple-range test is normally applied when sample sizes are
equal, in which case the test statistic is obtained by multiplying these values
by

√
MSW/n, when n is the sample size. In this example the sample sizes are

not equal, but a procedure that appears to work reasonably well is to define n

as the harmonic mean of the sample sizes. This procedure is used by the SAS
System with the results in Table 6.18.

The results of the Duncan’s test indicate that home prices in zip areas 2 and 4
have prices that are not significantly different but are higher than zip areas 1
and 3.

A number of other procedures based on the Studentized range statistic can
be used for testing pairwise comparisons after the data have been examined.
One of these is called the Newman–Keuls test or sometimes the Student–

Newman–Keuls test. This test uses the Studentized range that depends on
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Table 6.18

Logarithm of Home
Prices: Duncan’s
Multiple Range Test

Duncan’s Multiple Range Test for lprice

Note: This test controls the Type I comparisonwise error rate, not
the experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 65
Error Mean Square 0.252119
Harmonic Mean of Cell Sizes 11.92245

Note: Cell sizes are not equal.

Number of Means 2 3 4
Critical Range .4107 .4321 .4462

Means with the same letter are not significantly different.

Duncan Grouping Mean N zip

A 4.9877 34 4
A
A 4.9119 13 2

B 4.4446 16 3
B
B 4.4223 6 1

the number of steps apart, but uses the stated significance level. This test is
thus less powerful than Duncan’s, but provides more protection against false
rejection.

There are also paired comparison tests that have special purposes. For
example, Dunnett’s multiple-range test is designed to compare only all “factor
levels” with a “control”; hence this procedure only makes (t − 1) comparisons
and therefore has more power, but for a more limited set of hypotheses. All of
these procedures, and more, are discussed by Kirk (1995). ■

The Scheffé Procedure So far we have restricted post hoc compari-
sons to comparing only pairs of means. If we desire to expand a post hoc
analysis to include any and all possible contrasts, additional adjustments are
required to maintain a satisfactory level of the experiment-wise type I error
protection.

Scheffé (1953) has proposed a method for comparing any set of contrasts
among factor level means. Scheffé’s method is the most conservative of all
multiple-comparison tests since it is designed so that the experiment-wise
level of significance for all possible contrasts is at most α.

To test the hypotheses

H0: L = 0,

H1: L 
= 0,
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where L is any desired contrast,

L =
∑

(aiμi),

compute the estimated value of the contrast,

L̂ =
∑

(ai ȳi),

and compare it with the critical value S, which is computed

S =
√

(t − 1)Fα

∑
a2

i

(
MSW

n

)
,

where all quantities are as previously defined and Fα is the desired α level
critical value of the F distribution with the degrees of freedom for the corre-
sponding ANOVA test, which is [(t − 1), t(n − 1)] for the one-way ANOVA. If
the value of |L̂| is larger than S, we reject H0.

Consider again the rice yield data given in Example 6.2. Suppose that we
decided after examining the data to determine whether the mean of the yields
of varieties 1 and 4, which had the highest means in this experiment, differ from
the mean of the yields of varieties 2 and 3. In other words, we are interested
in testing the hypotheses

H0: L = 0,

H1: L 
= 0,

where

L = 1
2

(μ1 + μ4) − 1
2

(μ2 + μ3),

which gives the same comparison of means as

L = μ1 − μ2 − μ3 + μ4.

We compute

L̂ = 984.5 − 928.25 − 938.5 + 1116.5 = 234.25.

The 0.05 level critical value of the Scheffé S statistic is

S =
√

(3)(3.49)(1 + 1 + 1 + 1)
(

4156.31
4

)
= 208.61.

The calculated value of the contrast is 234.25; hence we reject H0 and conclude
that the mean yield of varieties 4 and 1 is not equal to that of varieties 2 and 3.

Comments

The fact that we have presented four different multiple-comparison procedures
makes it obvious that there is no universally best procedure for making post
hoc comparisons. In fact, Kirk (1995) points out that there are more than 30
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multiple-comparison procedures currently used by researchers. As a result of
this, most computer programs offer a wide variety of options. For example, the
ANOVA procedure in SAS offers a menu of 16 choices! In general, the different
multiple-comparison procedures present various degrees of trade-off between
specificity and sensitivity. We trade power for versatility and must be aware
of the effect of this on our final conclusions. In any case, the most sensitive
(highest power) and most relevant inferences are those based on preplanned
orthogonal contrasts, which are tested with single degree of freedom F tests.
For this reason, preplanned contrasts should always be used if possible.
Unfortunately, in most computer packages it is far easier to perform post
hoc paired comparisons than to implement contrasts. For this reason, one
of the most frequent misuses of statistical methods is the use of post hoc
paired comparison techniques when preplanned contrasts should be used.
Again it must be emphasized that only one comparison method should be
used for a data set. For example, it is normally not recommended to first do
preplanned contrasts and then a post-hoc paired comparison, although we do
in Example 6.6 to illustrate the procedures.

The most versatile of the post hoc multiple-comparison tests is the Scheffé
procedure, which allows any number of post hoc contrasts. For pairwise com-
parisons after the data have been analyzed, Duncan’s multiple-range test seems
to be at least as powerful as any other, and is perhaps the most frequently used
such test. For a complete discussion, see Montgomery (1984).

As we have noted most statistical computer software offer a variety of post
hoc multiple-comparison procedures, often allowing the simultaneous use of
several methods, which is inappropriate. For reasons of convenience, we have
illustrated several multiple-comparison methods using only two sets of data;
however, it is appropriate to perform only one method on one set of data. The
method chosen will depend on the requirements of the study and should be
decided on prior to starting the statistical analysis.

The use of the analysis of variance as a first step in comparing two or more
populations is recommended in almost all situations, even though it is not
always necessary. It is, for example, possible to perform Duncan’s multiple-
range test without first doing the ANOVA. This does not affect the level of
significance of the test. However, as we saw in the illustration of Duncan’s
multiple-range test, it is possible to obtain apparently contradictory results.
This occurs because the power of the multiple-range tests is not defined in
the same terms as that of the F test. Because of this, we again emphasize that
the best results come from the thoroughly planned studies in which specific
hypotheses are built into both the design of the experiment and the subsequent
statistical analyses.

Solution to Example 6.1 We now return to Example 6.1. To compare
the eight sites, a one-way analysis of variance was done. The result of using
PROC ANOVA of the SAS System is shown in Table 6.19.

A p value of 0.0029 for the test of equal means is certainly small enough
to declare that there are some differences in silt content among the locations.
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Table 6.19

Example 6.1: Analysis of
Variance Procedure

Dependent Variable: SILT
Source df Sum of Squares F Value Pr > F

Model 7 600.12079545 3.43 0.0029
Error 80 1998.43636364
Corrected Total 87 2598.55715909

Source df Anova SS F Value Pr > F

SITE 7 600.12079545 3.43 0.0029

Table 6.20 Example 6.1: Analysis of Variance Procedure

Duncan’s Multiple Range Test for variable: SILT
NOTE: this test controls the type I comparisonwise error rate,

not the experimentwise error rate

Alpha=0.05 df=80 MSE=24.9805
Number of Means 2 3 4 5 6 7 8
Critical Range 4.246 4.464 4.607 4.711 4.799 4.870 4.929
Means with the same letter are not significantly different.

Duncan Grouping Mean N SITE

A 46.873 11 5
A 46.473 11 8

B A 44.527 11 7
B A C 43.600 11 6
B C 41.236 11 1
B C 41.018 11 2
B C 40.545 11 4

C 39.573 11 3

Because the locations are identified only by number, there is no information
on which to base specific preplanned contrasts. Therefore, to determine the
nature of the differences among the means, Duncan’s multiple-range test was
done, again using the SAS System. The results of this analysis are shown in
Table 6.20. Note that we really do not have a clearly separated set of sites.
The results of Duncan’s test indicate that sites 5, 8, 7, and 6 are all similar in
average silt content, that 7, 6, 1, 2, and 4 are similar, and that 6, 1, 2, 4, and 3 are
all similar. This overlapping pattern of means is not uncommon in a multiple-
comparison procedure. It simply means that the values of the sample means
are such that there is no clear separation. We can, for example, state that sites
5 and 8 do differ from site 3.

It may be argued that since the sites were contiguous, consideration should
be given to fitting some sort of trend. However, looking at the means in Ta-
ble 6.20 indicates that this would not be successful. This is confirmed by the
box plots in Fig. 6.5, which show no obvious trend across the sites. ■
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Confidence Intervals
for Means

We have repeatedly noted that any hypothesis test has a corresponding confi-
dence interval. It is sometimes useful to compute confidence intervals about
factor level means. Using MSW as the estimate of σ 2, such intervals are
computed

ȳi. ± tα/2

√
MSW/n,

where tα/2 is the α/2 critical value for the t distribution with t(n − 1) degrees
of freedom. An appealing graphical display consists of plotting the factor level
means with a superimposed confidence interval indicated. This is presented
for the rice data in Fig. 6.6. However, in viewing such a plot we must emphasize
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that the confidence coefficient is valid only for any one individual mean and
not the entire group of means! For this reason it is sometimes recommended
that, for example, the Tukey statistic (Studentized range) be used in place of
Student t for calculating intervals.

Before leaving the discussion of contrasts, it should be pointed out that
contrasts do not always give us the best look at the relationship between a set
of means. The following example is an illustration of just such a situation. In
addition, we demonstrate a method of using a computer program to calculate
the statistics needed to do a Scheffé procedure.

EXAMPLE 6.6 An experiment to determine the effect of various diets on the weight of a
certain type of shrimp larvae involved the following seven diets. Five 1-liter
containers with 100 shrimp larvae each were fed one of the seven diets in a
random assignment.

Experimental diets contained a basal compound diet and

1. corn and fish oil in a 1:1 ratio,
2. corn and linseed oil in a 1:1 ratio,
3. fish and sunflower oil in a 1:1 ratio, and
4. fish and linseed oil in a 1:1 ratio.

Standard diets were

5. basal compound diet (a standard diet),
6. live micro algae (a standard diet), and
7. live micro algae and Artemia nauplii.

After a period of time the containers were drained and the dry weight of the
100 larvae determined. The weight of each of the 35 containers is given in
Table 6.21.

Table 6.21

Shrimp Weights

Diet Weights

1. Corn and fish oil 47.0 50.9 45.2 48.9 48.2
2. Corn and linseed oil 38.1 39.6 39.1 33.1 40.3
3. Fish and sunflower oil 57.4 55.1 54.2 56.8 52.5
4. Fish and linseed oil 54.2 57.7 57.1 47.9 53.4
5. Basal compound 38.5 42.0 38.7 38.9 44.6
6. Live micro algae 48.9 47.0 47.0 44.4 46.9
7. Live micro algae and Artemia 87.8 81.7 73.3 82.7 74.8

Solution The analysis attempted to identify the diet(s) that resulted in
significantly higher weights in shrimp larvae. Note that the diets are broken
up into two groups, the experimental diets and the standard diets. Further,
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Table 6.22

Analysis of Variance for
Diets

Dependent Variable: Weight
Sum of

Source df Squares Mean Square F Value Pr > F

Model (diets) 6 5850.774857 975.129143 88.14 0.0001
Error 28 309.792000 11.064000
Corrected Total 34 6160.566857

we note that several diets have common ingredients—all of the experimental
diets contain the basal compound—hence, it would be useful to extend our
analysis to determine how the various diet components affected weight. This
is a problem that lends itself to the use of contrasts in the analysis of variance.
Even though the questions that we want to ask about the diets can be addressed
before the experiment is conducted, these questions will have to be stated in
the form of nonorthogonal contrasts. For this reason, our procedure will be to
first do the standard ANOVA, and then use the Scheffé procedure to test each
of the contrasts.

The analysis of variance results appear in Table 6.22. Note that the p value
for the test is 0.0001, certainly a significant result. Our first conclusion is that
there is a difference somewhere between the seven diets. To look at the rest
of the questions concerning diets, we use the following set of contrasts:

COEFFICIENTS OF DIETS

Contrast Interpretation Diet no.: 1 2 3 4 5 6 7

newold The first four against the three standards −3 −3 −3 −3 4 4 4
corn Diets containing corn oil against others 5 5 −2 −2 −2 −2 −2
fish Diets containing fish oil against others 4 −3 4 4 −3 −3 −3
lin Diets containing linseed oil against others −2 5 −2 5 −2 −2 −2
sun Diets containing sunflower oil against others −1 −1 6 −1 −1 −1 −1
mic Diets containing micro algae against others −2 −2 −2 −2 −2 5 5
art Diets containing Artemia against others −1 −1 −1 −1 −1 −1 6

As mentioned in the previous “Comments” section, the computation of test
statistics for contrasts using a computer program is often not straightforward.
The Scheffé procedure is available in the SAS System only for making paired
comparisons; however, we can use other procedures to eliminate most of the
computational effort and obtain the desired results. Remember that the test
for a contrast is

F =
(∑

ai ȳi

)2

MSW
n

∑
a2

i

= (L̂)2

MSW
n

∑
a2

i

.

Now the Scheffé procedure declares a contrast significant if

L̂2 > S2 = (t − 1)Fα

∑
a2

i

(
MSW

n

)
,



266 Chapter 6 Inferences for Two or More Means

Table 6.23

Estimates and Tests for
Contrasts

T For H0: Pr > |T| Std Error of
Parameter Estimate Parameter = 0 Estimate

newold 6.97833333 6.14 0.0001 1.13613379
corn −12.30000000 −9.88 0.0001 1.24457222
fish 1.06333333 0.94 0.3573 1.13613379
lin −8.08600000 −6.50 0.0001 1.24457222
sun 3.93666667 2.45 0.0208 1.60673582
mic 16.27400000 13.08 0.0001 1.24457222
art 32.94000000 20.50 0.0001 1.60673582

where Fα is the α level tabulated F value with t − 1 and t(n − 1) degrees of
freedom. A little manipulation is used to show that this relationship can be
restated as

F > (t − 1)Fα ,

where the F on the left-hand side is the calculated F statistic for the contrast.
In this example, (t − 1) = 6, and t(n − 1) = 28. Therefore F0.05(6, 28) =

2.495 so (6)(2.49) = 14.94. Hence the critical value is 14.94. The contrasts are
analyzed using the ESTIMATE statement of PROC GLM of the SAS System. The
results provide the estimates of the contrasts among the groups of means
and the corresponding t values used to test the hypothesis that the particular
contrast is equal to 0. The results are shown in Table 6.23. Note that the t

test for the contrasts is nothing but the square root of the F statistic given
above. Therefore, we get the appropriate Scheffé’s test by squaring the t value
given in the SAS output and comparing it to the critical value of 14.94. The
contrasts labeled newold, corn, lin, mic, and art are significantly different
from 0. From examination of the values listed in the “Estimate” column, we
observe that (1) the standard diets produce a higher mean weight than those
of the experimental group, (2) diets with corn or linseed produce significantly
lower mean weight that those without, (3) diets with fish oil or sunflower oil
produce weights not significantly different from those of other diets, and (4)
diets containing micro algae and Artemia produce an average weight higher
than those without.

In short, a clear picture of the nature of the relationship between diet and
weight cannot be obtained from the use of contrasts. It is, of course, possible
to choose other sets of contrasts, but at this point a pairwise comparison
may help to clarify the results. Because we have already performed one set
of comparison procedures we will use the conservative Tukey procedure to
do pairwise comparisons. That way, if any results are significant we can feel
confident that it will not be due to chance (recall the discussion in Section 6.2).
The results are shown in Table 6.24.

We can use this analysis to interpret the relationship between the diets
more readily. For example, diet 7, containing the micro algae and Artemia, is

5The closest available value in Table A.4A is that for (6, 25) degrees of freedom.
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Table 6.24

Tukey Procedure Results

Tukey’s studentized Range (HSD Test for variable: WEIGHT
Alpha = 0.05 df = 28 MSE = 11.064
Critical value of Studentized Range = 4.486
Minimum Significant Difference = 6.6733
Means with the same letter are not significantly different.

Tukey Grouping Mean N DIET

A 80.060 5 7
B 55.200 5 3
B

C B 54.060 5 4
C
C D 48.040 5 1

D
E D 46.840 5 6
E
E F 40.540 5 5

F
F 38.040 5 2

by far the best. Interestingly, the diets containing only the micro algae and the
basal compound diet do not fare well. Finally, diets with fish oil (diets 1, 3, and
4) do appear to provide some advantages.

Actually, one of the reasons that the results are not easily interpreted is that
this is not a very well-planned experiment. An experimental design that would
make the results easier to interpret (and might even give more information
about the diets) is the factorial experiment discussed in Chapter 9. However, to
use the factorial arrangement effectively, more diets would have to be included.
This example does illustrate the fact that planning the experiment prior to
conducting it pays tremendous dividends when the final analysis is performed.

■

6.6 Random Models

Occasionally we are interested in the effects of a factor that has a large number
of levels and our data represent a random selection of these levels. In this case
the levels of the factors are a sample from a population of such levels and the
proper description requires a random effects model, also called model II.
For example, if in Example 6.1 the soil samples were a random sample from a
population of such samples, the appropriate model for that experiment would
be the random effects model.

The objective of the analysis for a random effects model is altered by the
fact that the levels of the factor are not fixed. For example, inferences on the
effects of individual factor levels are meaningless since the factor levels in
a particular set of data are a randomly chosen set. Instead, the objective of
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Table 6.25

Data for Random Model

TEACHER

A B C D

84 75 72 88
90 85 76 98
76 91 74 70
62 98 85 95
72 82 77 86
81 75 60 80
70 74 62 75

the analysis of a random model is to determine the magnitude of the variation
among the population of factor levels.

Specifically, the appropriate inferences are on the variance of the factor
level effects. For example, if we consider Example 6.1 as a random model, the
inferences will be on the variance of the means of scores for the population of
soil samples.

The random effects model looks like that of the fixed effects model:

yij = μ + τi + εij , i = 1, . . . , t, j = 1, . . . , n.

However, the τi now represent a random variable whose distribution is
assumed normal with mean zero and variance σ 2

τ . It is this variance, σ 2
τ , that is

of interest in a random effects model. Specifically, the hypotheses to be tested
are

H0: σ 2
τ = 0,

H1: σ 2
τ > 0.

The arithmetic for the appropriate analysis of variance is the same as for the
fixed model. However, in the random effects model (and balanced data), the
expected mean squares are

E(MSB) = σ 2 + nσ 2
τ ,

E(MSW) = σ 2.

This implies that the F ratio used in the fixed model ANOVA is appropriate for
testing H0: σ 2

τ = 0; that is, there is no variation among population means.
If H0 is rejected, it is of interest to estimate the variances σ 2 and σ 2

τ , which
are referred to as variance components. One method of estimating these pa-
rameters is to equate the expected mean squares to the mean squares obtained
from the data and then solve the resulting equations. This method may occa-
sionally result in a negative estimate for σ 2

τ , in which case the estimate of σ 2
τ is

arbitrarily declared to be zero. An estimate “significantly” less than 0 may in-
dicate a special problem such as correlated errors. A discussion of this matter
is found in Ostle (1963).

EXAMPLE 6.7 Suppose that a large school district was concerned about the differences in
students’ grades in one of the required courses taught throughout the district.
In particular, the district was concerned about the effect that teachers had on
the variation in students’ grades. An experiment in which four teachers were
randomly selected from the population of teachers in the district was designed.
Twenty-eight students who had homogeneous backgrounds and aptitude were
then found. Seven of these students were randomly assigned to each of the
four teachers, and their final grade was recorded at the end of the year. The
grades are given in Table 6.25. Do the data indicate a significant variation in
student performance attributable to teacher difference?
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Table 6.26

Analysis of Variance,
Random Model

Source df SS MS F

Between sections 3 683.3 227.8 2.57
Within sections 24 2119.7 88.3
Total 27 2803.0

Solution The model for this set of data has the form

yij = μ + τi + εij , i = 1, 2, 3, 4, j = 1, . . . , 7,

where yij = grade of student j under teacher i, μ = overall mean grade, τi =
effect of teacher i, a random variable with mean zero and variance σ 2

τ , and
εij = a random variable with mean zero and variance σ 2.

We are interested in testing the hypotheses

H0: σ 2
τ = 0

H1: σ 2
τ > 0.

The null hypothesis states that the variability in grades among classes is due
entirely to the natural variability among students in these classes, while the
alternative hypothesis states that there is additional variability among classes,
due presumably to instructor differences.

The calculations are performed as in the fixed effects case and result in the
ANOVA table given in Table 6.26. The test statistic is computed in the same
manner as for the fixed model,6 that is, MSB/MSW. The computed F ratio, 2.57,
is less than the 0.05 level critical value of 3.01; hence, we cannot conclude that
there is variation in mean grades among teachers.

It is of interest to estimate the two variance components: σ 2
τ and σ 2. Since

we have not rejected the null hypothesis that σ 2
τ = 0, we would not normally es-

timate that parameter, but will do so here to illustrate the method. By equating
expected mean squares to sample mean squares we obtain the equations

227.8 = σ 2 + 7σ 2
τ ,

88.3 = σ 2.

From these we can solve for σ̂ 2
τ = 19.9 and σ̂ 2 = 88.3. The fact that the appar-

ently rather large estimated variance of 19.9 did not lead to rejection of a
zero value for that parameter is due to the rather wide dispersion of the
sampling distribution of variance estimates, especially for small samples (see
Section 2.6). ■

Confidence intervals for variance components may be obtained; see, for ex-
ample, Neter et al. (1996). Methods for obtaining these inferences are beyond
the scope of this book.

6This is not the case in all ANOVA models. When we have certain experimental designs (Chapter
10), we will see that having one or more random effects may alter the procedure used to construct
F ratios.
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The validity of an analysis of variance for a random model depends, as it
does for the fixed model, on some assumptions about the data. The assump-
tions for the random model are the same as those for the fixed with the addi-
tional assumption that the τi are indeed random and independent and have the
same variance for the entire population. Also, as in the case of the fixed model,
transformations may be used for some cases of nonhomogeneous variances,
and the same cautions apply when they are used.

6.7 Unequal Sample Sizes

In most of the previous sections, we have assumed that the number of sample
observations for each factor level is the same. This is described as having
“balanced” data. We have noted that having balanced data is not a requirement
for using the analysis of variance. In fact, the formulas presented for computing
the sums of squares (Section 6.2) correspond to the general case using the
individual ni for the sample sizes. However, a few complications do arise
when using unbalanced data:

• Contrasts that may be orthogonal with balanced data are usually not orthog-
onal for unbalanced data. That is, the total of the contrast sums of squares
does not add to the factor sum of squares.

• If the sample sizes reflect actual differences in population sizes, which may
occur in some situations, the sample sizes may need to be incorporated into
the contrasts:

L̂ =
∑

aini ȳi..

• Post hoc multiple-comparison techniques, such as Duncan’s, become com-
putationally more difficult, although computer software will usually per-
form these calculations.

• Although balanced data are not required for a valid analysis, they do provide
more powerful tests for a given total sample size.

6.8 Analysis of Means

The analysis of means procedure (ANOM) is a useful alternative to the anal-
ysis of variance (ANOVA) for comparing the means of more than two popula-
tions. The ANOM method is especially attractive to nonstatisticians because of
its ease of interpretation and graphic presentation of results. An ANOM chart,
conceptually similar to a control chart (discussed in Chapter 2), portrays deci-
sion lines so that magnitude differences and statistical significance may be as-
sessed simultaneously. The ANOM procedure was first proposed by Ott (1967)
and has been modified several times since. A complete discussion of the appli-
cations of the analysis of means is given in Ramig (1983). The analysis of means
uses critical values obtained from a sampling distribution called the multivari-

ate t distribution. Exact critical values for several common levels of signif-
icance are found in Nelson (1983) and reproduced in Appendix Table A.11.
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These critical values give the ANOM power comparable to that of the ANOVA
under similar conditions (see Nelson, 1985). While ANOM is not an optimal
test in any mathematical sense, its ease of application and explanation give it
some practical advantage over ANOVA.

This section discusses the application of the ANOM to problems similar to
those discussed in Section 6.1. In particular, we will examine an alternative
procedure for comparing means that arise from the one-way (or single factor)
classification model. The data consist of continuous observations (often called
variables data), yij , i = 1, . . . , t and j = 1, . . . , n. The factor level means are
ȳi. = ∑

yij/n. The assumptions on the means are the same as that of the
ANOVA; that is, they are assumed to be from normally distributed populations
with common variance σ 2. The grand mean is ȳ.. = ∑

ȳi./t, and the pooled
estimate of the common but unknown variance is

s2 =
∑

s2
i /t,

where s2
i =

∑
(yij − ȳi.)2/(n − 1).

Note that the pooled estimate of the variance is identical to MSW in the ANOVA.
Since the ANOVA calculations are not normally done when using the analysis
of means procedure, we will refer to the variance estimate as s2.

We can compare the factor level means with the grand mean using the
following steps:

1. Compute the factor level means, ȳi., i = 1, . . . , t.
2. Compute the grand mean, ȳ...

3. Compute s, the square root of s2.
4. Obtain the value hα from Appendix Table A.11 using (n − 1)t as degrees of

freedom (df).
5. Compute the upper and lower decision lines, UDL and LDL, where

UDL = ȳ.. + hαs
√

(t − 1)/(tn),

LDL = ȳ.. − hαs
√

(t − 1)/(tn).

6. Plot the means against the decision lines. If any mean falls outside the
decision lines, we conclude there is a statistically significant difference
among the means.

EXAMPLE 6.8 As an example of the analysis of means, we will again analyze the data from
the experiment described in Example 6.2. As always, it is important to say
that it is not good practice to do more than one analysis on a given set of
data, and we do so only to illustrate the procedure. In this case, the results
are the same; however, this is not always the case. Recall that the experiment
was a completely randomized design conducted to compare the yield of four
varieties of rice. The observations were yields in pounds per acre for each
of four different plots of each of the four varieties. The data and summary
statistics are given in Table 6.4. Even though the ANOM is a hypothesis test,
we rarely state the hypotheses. Instead, we examine the relationship among
the four means graphically using the following six steps:
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Solution

1. The factor level means are

variety 1: ȳ1. = 984.50,

variety 2: ȳ2. = 928.25,

variety 3: ȳ3. = 938.50,

variety 4: ȳ4. = 1116.50.

2. The grand mean is

ȳ.. = 991.94.

3. The pooled estimate of the variance is

s2
1 = (10085.00)/3 = 3361.67,

s2
2 = (3868.75)/3 = 1289.58,

s2
3 = (13617.00)/3 = 4539.00,

s2
4 = (22305.00)/3 = 7435.00,

s2 = (3361.67 + 1289.58 + 4539.00 + 7435.00)/4 = 4156.31 and s = 64.47.

Again, note that this is the same value that we obtained for MSW in the
analysis of variance procedure.

4. Using the standard level of significance of 0.05 and degrees of freedom =
4(3) = 12, we obtain the value h0.05 = 2.85 from Appendix Table A.11.

5. The upper and lower decision lines are

UDL = 991.94 + (64.47)(2.85)
√

3/16 = 1071.50,

LDL = 991.94 − (64.47)(2.85)
√

3/16 = 912.38.

6. The plot of the means against the decision lines is given in Fig. 6.7.
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We observe from Fig. 6.7 that only variety 4 has a value outside the deci-
sion limits. Therefore, our conclusion is that the first three varieties do not
significantly differ from the grand mean, but that the mean of variety 4 is sig-
nificantly higher than the grand mean. This is consistent with the results given
in Table 6.6 and Section 6.5. Note that we can also make some statements
based on this graphic presentation that we could not make without additional
analysis using the ANOVA procedure. For example, we might conclude that
varieties 1, 2, and 3 all average about the same yield while the fourth variety
has a sample average higher than all three. ■

ANOM for Proportions

Many problems arise when the variable of interest turns out to be an attribute,
such as a light bulb that will or will not light or a battery whose life is or is not
below standard. It would be beneficial to have a simple graphic method, like
the ANOM, for comparing the proportion of items with a particular character-
istic of this attribute. For example, we might want to compare the proportion
of light bulbs that last more than 100 h from four different manufacturers to
determine the best one to use in a factory. In Section 6.4 we discussed the
problem of comparing several populations when the variable of interest is a
proportion or percentage by suggesting a transformation of the data using the
arcsin transformation. This approach could be used to do the ANOM proce-
dure presented previously, simply substituting the transformed data for the
response variable. There is a simpler method available if the sample size is
such that the normal approximation to the binomial can be used.

In Section 2.5 we noted that the sampling distribution of a proportion was
the binomial distribution. We also noted that if np and n(1− p) are both greater
than 5, then the normal distribution can be used to approximate the sampling
distribution of a proportion. If this criterion is met, then we use the following
seven-step procedure:

1. Obtain samples of equal size n for each of the t populations. Let the number
of individuals having the attribute of interest in each of the t samples be
denoted by x1, x2, . . . , xt.

2. Compute the factor level proportions, pi = xi/n, i = 1, . . . , t.
3. Compute the overall proportion, pg = ∑

pi/t.
4. Compute s, an estimate of the standard deviation of pi:

s = √
pg(1 − pg)/n.

5. Obtain the value hα from Appendix Table A.11 using infinity as degrees of
freedom (because we are using the normal approximation to the binomial,
it is appropriate to use df = infinity).

6. Compute the upper and lower decision lines, UDL and LDL, where

UDL = pg + hαs
√

(t − 1)/(t),

LDL = pg − hαs
√

(t − 1)/(t).
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7. Plot the proportions against the decision lines. If any proportion falls out-
side the decision lines, we conclude there is a statistically significant differ-
ence in proportions among the t populations.

EXAMPLE 6.9 A problem concerning corrosion in metal containers during storage is dis-
cussed in Ott (1975, p. 106). The effect of copper concentration on the failure
rate of metal containers after storage is analyzed using an experiment in which
three levels of copper concentration, 5, 10, and 15 ppm (parts per million), are
used in the construction of containers. Eighty containers (n = 80) of each con-
centration are observed over a period of storage, and the number of failures
recorded. The data are given below:

Level of Copper, ppm Number of Failures, Xi Proportion of Failures, pi

5 14 0.175
10 36 0.450
15 47 0.588

Solution We will use the ANOM procedure to determine whether differ-
ences in the proportions of failures exist due to the level of copper in the
containers. The seven steps are as follows:

1. The three samples of size 80 each yielded

x1 = 14,

x2 = 36,

x3 = 47.

2. The proportions are

p1 = 0.175,

p2 = 0.450,

p3 = 0.588.

3. The overall proportion is

pg = (14 + 36 + 47)/247 = 0.404.

4. The estimate of the standard deviation is

s =
√

(0.404)(0.596)/80 = 0.055.

5. From Appendix Table A.11 using the 0.05 level of significance and df =
infinity we get

h0.05 = 2.34.

6. The decision lines are

LDL = 0.404 − (2.34)(0.055)
√

(2)/(3) = 0.404 − 0.105 = 0.299,

UDL = 0.404 + (2.34)(0.055)
√

(2)/(3) = 0.404 + 0.105 = 0.509.

7. The ANOM graph is given in Fig. 6.8.
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The results are very easy to interpret using the ANOM chart in Fig. 6.8. Even
though it was obvious from the data that the more copper in the container, the
larger the percent of failure, the ANOM procedure indicates that this difference
is indeed statistically significant. Further, we can see from the graph that the
increase in failure rate is monotonic with respect to the amount of copper.

That is, containers with 5 ppm copper have a significantly lower failure rate
than those with 10 ppm copper, and those with 15 ppm have a significantly
higher failure rate than the other two. ■

Analysis of Means for Count Data

Many problems arise in quality monitoring where the variable of interest is
the number of nonconformities measured from a sample of items from a pro-
duction line. If the sample size is such that the normal approximation to the
Poisson distribution can be used, an ANOM method for comparing count data
can be applied. This procedure is essentially the same as that given for pro-
portions in the previous section, ANOM for proportions, and follows these six
steps:

1. For each of the k populations of interest, an “inspection unit” is defined.
This inspection unit may be a period of time, a fixed number of items,
or a fixed unit of measurement. For example, an inspection unit of “1 h”
might be designated as an inspection unit in a quality control monitoring of
the number of defective items from a production line. Then a sample of k

successive inspection units could be monitored to evaluate the quality of
the product. Another example might be to define an inspection unit of “2 ft2”
of material from a weaving loom. Periodically a 2-ft2 section of material is
examined and the number of flaws recorded. The number of items with
the attribute of interest (defects) from the ith inspection unit is denoted as
ci, i = 1, . . . , k.
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2. The overall average number of items with the attribute is calculated as

c̄ =
∑

ci/k.

3. The estimate of the standard deviation of counts is

s = √
c̄.

4. Obtain the value hα from Appendix Table A.11 using df = infinity.
5. Compute the upper and lower decision lines, UDL and LDL, where

UDL = c̄ + hαs
√

(k − 1)/k.

LDL = c̄ − hαs
√

(k − 1)/k,

6. Plot the counts, ci, against the decision lines. If any count falls outside
the decision lines we conclude there is a statistically significant difference
among the counts.

EXAMPLE 6.10 Ott (1975, p. 107) presents a problem in which a textile mill is investigating an
excessive number of breaks in spinning cotton yarn. The spinning is done using
frames, each of which contains 176 spindles. A study of eight frames was made
to determine whether there were any differences among the frames. When a
break occurred, the broken ends were connected and the spinning resumed.
The study was conducted over a time period of 2.5 h during the day. The number
of breaks for each frame was recorded. The objective was to compare the eight
frames relative to the number of breaks using the ANOM procedure.

Solution The results were as follows:

1. The inspection unit was the 150-min. study period. The number of breaks
for each frame was recorded:

c1 = 140,

c2 = 99,

c3 = 96,

c4 = 151,

c5 = 196,

c6 = 124,

c7 = 89,

c8 = 188.

2. c̄ = (140 + 99 + 96 + 151 + 196 + 124 + 89 + 188)/8 = 135.4.
3. s = √

135.4 = 11.64.
4. From Appendix Table A.11 using α = 0.05, k = 8, and df = infinity, we get

h0.05 = 2.72.
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5. The decision lines are

LDL = 135.4 − (2.72)(11.64)
√

7/8 = 135.4 − 29.62 = 105.78,

UDL = 135.4 + (2.72)(11.64)
√

7/8 = 135.4 + 29.62 = 165.02.

6. The ANOM chart is
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From this plot we can see that there are significant differences among the
frames. Frames 2, 3, and 7 are particularly good, and frames 5 and 8 are
particularly bad. ■

Most of the time, the ANOVA and the ANOM methods reach the same con-
clusion. In fact, for only two factor levels the two procedures are identical.
However, there is a difference in the two procedures. The ANOM is more sen-
sitive than ANOVA for detecting when one mean differs significantly from the
others. The ANOVA is more sensitive when groups of means differ. Further,
the ANOM can only be applied to fixed effects models, not to random effects
models. The ANOM procedure can be extended to many types of experimen-
tal designs, including the factorial experiments of Chapter 9. A more detailed
discussion of ANOM applied to experimental design problems can be found in
Schilling (1973).

6.9 CHAPTER SUMMARY

The analysis of variance provides a methodology for making inferences for
means from any number of populations. In this chapter we consider inferences
based on data resulting from independently drawn samples from t populations.
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This data structure is called a one-way classification or completely randomized
design.

The analysis of variance is based on the comparison of the estimated vari-
ance among sample means (between mean square or MSB) to the estimated
variance of observations within the samples (within mean square or MSW). If
the variance among sample means is too large, differences may exist among
the population means. The estimated variances or mean squares are derived
from a partitioning of sums of squares into two parts corresponding to the vari-
ability among means and the variability within samples. The required variances
are called mean squares and are obtained by dividing the appropriate sums of
squares by their respective degress of freedom. The ratio of these variances
is compared to the F distribution to determine whether the null hypothesis of
equal means is to be rejected.

The linear model,

yij = μ + τi + εij ,

is used to describe observations for a one-way classification. In this model the
τi indicate the differences among the population means. It can be shown that
the analysis of variance does indeed test the null hypothesis that all τi are zero
against the alternative of any violation of equalities. In a fixed model, the τi

represent a fixed number of populations or factor levels occuring in the sample
data and inferences are made only for the parameters for those populations.
In a random model, the τi represent a sample from a population of τ ’s and
inferences are made on the variance of that population.

As for virtually all statistical analyses, some assumptions must be met in
order for the analysis to have validity. The assumptions needed for the analysis
of variance are essentially those that have been discussed in previous chap-
ters. Suggestions for detecting violations and some remedial procedures are
presented.

The analysis of variance tests only the general hypothesis of the equality of
all means. Hence procedures for making more specific inferences are needed.
Such inferences are obtained by multiple comparisons of which there are two
major types:

• preplanned comparisons, which are proposed before the data are col-
lected, and

• post hoc comparisons, in which the data are used to propose hypotheses.

Preplanned contrasts, and especially orthogonal contrasts, are preferred
because of their greater power and protection against making type I errors. Be-
cause post hoc comparisons use data to generate hypotheses, their use tends
to increase the so-called experiment-wise error rate, which is the probabil-
ity of one or more comparisons detecting a difference when none exists. For
this reason such methods must embody some means of adjusting stated signifi-
cance levels. Since no single principle of adjustment has been deemed superior
a number of different methods are available, each making some compromise
between power and protection against making type I errors. The important
message here is that careful considerations must be taken to assure that the
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most appropriate method is employed and that preplanned comparisons are
used whenever possible.

The chapter concludes with short sections covering the random model,
unequal sample sizes, analysis of means, and some computing considerations.

6.10 CHAPTER EXERCISES

CONCEPT

QUESTIONS

For the following true/false statements regarding concepts and uses of the
analysis of variance, indicate whether the statement is true or false and specify
what will correct a false statement.

1. If for two samples the conclusions from an ANOVA and t

test disagree, you should trust the t test.

2. A set of sample means is more likely to result in rejection
of the hypothesis of equal population means if the variability within the
populations is smaller.

3. If the treatments in a CRD consist of numeric levels of
input to a process, the LSD multiple comparison procedure is the most
appropriate test.

4. If every observation is multiplied by 2, then the value of
the F statistic in an ANOVA is multiplied by 4.

5. To use the F statistic to test for the equality of two vari-
ances, the sample sizes must be equal.

6. The logarithmic transformation is used when the variance
is proportional to the mean.

7. With the usual ANOVA assumptions, the ratio of two mean
squares whose expected values are the same has an F distribution.

8. One purpose of randomization is to remove experimental
error from the estimates.

9. To apply the F test in ANOVA, the sample size for each
factor level (population) must be the same.

10. To apply the F test for ANOVA, the sample standard devi-
ations for all factor levels must be the same.

11. To apply the F test for ANOVA, the population standard
deviations for all factor levels must be the same.

12. An ANOVA table for a one-way experiment gives the
following:

Source df SS

Between factors 2 810
Within (error) 8 720
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Answer true or false for the following six statements:

The null hypothesis is that all four means are equal.

The calculated value of F is 1.125.

The critical value for F for 5% significance is 6.60.

The null hypothesis can be rejected at 5% significance.

The null hypothesis cannot be rejected at 1% significance.

There are 10 observations in the experiment.

13. A “statistically significant F” in an ANOVA indicates that
you have identified which levels of factors are different from the others.

14. Two orthogonal comparisons are independent.

15. A sum of squares is a measure of dispersion.

EXERCISES

1. A study of the effect of different types of anesthesia on the length of
post-operative hospital stay yielded the following for cesarean patients:

Group A was given an epidural MS.
Group B was given an epidural.
Group C was given a spinal.
Group D was given general anesthesia.

The data are presented in Table 6.27. In general, the general anesthetic is
considered to be the most dangerous, the spinal somewhat less so, and the
epidural even less, with the MS addition providing additional safety. Note
that the data are in the form of distributions for each group.
(a) Test for the existence of an effect due to anesthesia type.
(b) Does it appear that the assumptions for the analysis of variance are

fulfilled? Explain.
(c) Compute the residuals to check the assumptions (Section 6.4). Do these

results support your answer in part (b)?

Table 6.27

Data for Exercise 1

Length of Stay Number of Patients

Group A 3 6
4 14

Group B 4 18
5 2

Group C 4 10
5 9
6 1

Group D 4 8
5 12
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(d) What specific recommendations can be made on the basis of these
data?

Table 6.28

Data for Exercise 2

Color Time

Red 9 11 10 9 15
Green 20 21 23 17 30
Black 6 5 8 14 7

2. Three sets of five mice were randomly selected to be placed in a standard
maze but with different color doors. The response is the time required to
complete the maze as seen in Table 6.28.
(a) Perform the appropriate analysis to test whether there is an effect due

to door color.
(b) Assuming that there is no additional information on the purpose of

the experiment, should specific hypotheses be tested by a multiple-
range test (Duncan’s) or orthogonal contrasts? Perform the indicated
analysis.

(c) Suppose now that someone told you that the purpose of the experiment
was to see whether the color green had some special effect. Does this
revelation affect your answer in part (b)? If so, redo the analysis.

3. A manufacturer of air conditioning ducts is concerned about the variability
of the tensile strength of the sheet metal among the many suppliers of this
material. Four samples of sheet metal from four randomly chosen suppliers
are tested for tensile strength. The data are given in Table 6.29.
(a) Perform the appropriate analysis to ascertain whether there is exces-

sive variation among suppliers.
(b) Estimate the appropriate variance components.

4. A manufacturer of concrete bridge supports is interested in determining
the effect of varying the sand content of concrete on the strength of the
supports. Five supports are made for each of five different amounts of sand
in the concrete mix and each support tested for compression resistance.
The results are as shown in Table 6.30.
(a) Perform the analysis to determine whether there is an effect due to

changing the sand content.
(b) Use orthogonal polynomial contrasts to determine the nature of the

relationship of sand content and strength. Draw a graph of the response
versus sand amount.

Table 6.29

Data for Exercise 3

SUPPLIER

1 2 3 4

19 80 47 90
21 71 26 49
19 63 25 83
29 56 35 78

Table 6.30

Data for Exercise 4

Percent Sand Compression Resistance (10,000 psi)

15 7 7 10 15 9
20 17 12 11 18 19
25 14 18 18 19 19
30 20 24 22 19 23
35 7 10 11 15 11
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Table 6.31

Data for Exercise 5

TREATMENT

1 2 3 4 5

11.6 8.5 14.5 12.3 13.9
10.0 9.7 14.5 12.9 16.1
10.5 6.7 13.3 11.4 14.3
10.6 7.5 14.8 12.4 13.7
10.7 6.7 14.4 11.6 14.9

Table 6.32

Data for Exercise 7

TREATMENT

1 2 3

5.6 8.4 10.6
5.7 8.2 6.6
5.1 8.8 8.0
3.8 7.1 8.0
4.6 7.2 6.8
5.1 8.0 6.6

5. The set of artificial data shown in Table 6.31 is used in several contexts
to provide practice in implementing appropriate analyses for different
situations. The use of the same numeric values for the different problems
will save computational effort.
(a) Assume that the data represent test scores of samples of students in

each of five classes taught by five different instructors. We want to
reward instructors whose students have higher test scores. Do the
sample results provide evidence to reward one or more of these in-
structors?

(b) Assume that the data represent gas mileage of automobiles resulting
from using different gasoline additives. The treatments are:
1. additive type A, made by manufacturer I
2. no additive
3. additive type B, made by manufacturer I
4. additive type A, made by manufacturer II
5. additive type B, made by manufacturer II
Construct three orthogonal contrasts to test meaningful hypotheses
about the effects of the additives.

(c) Assume the data represent battery life resulting from different amounts
of a critical element used in the manufacturing process.
The treatments are:
1. one unit of the element
2. no units of the element
3. four units of the element
4. two units of the element
5. three units of the element
Analyze for trend using only linear and quadratic terms. Perform a lack
of fit test.

6. Do Exercise 3 in Chapter 5 as an analysis of variance problem. You should
verify that t2 = F for the two-sample case.

7. In an experiment to determine the effectiveness of sleep-inducing drugs,
18 insomniacs were randomly assigned to three treatments:
1. placebo (no drug)
2. standard drug
3. new experimental drug
The response as shown in Table 6.32 is average hours of sleep per night for
a week. Perform the appropriate analysis and make any specific recom-
mendations for use of these drugs.

8. The data shown in Table 6.33 are times in months before the paint started
to peel for four brands of paint applied to a set of test panels. If all paints
cost the same, can you make recommendations on which paint to use?
This problem is an example of a relatively rare situation where only the
means and variances are provided. For computing the between group sum
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Table 6.33

Data for Exercise 8

Number

Paint of Panels ȳ s2

A 6 48.6 82.7
B 6 51.2 77.9
C 6 60.1 91.0
D 6 55.2 105.2

Table 6.34

Data for Exercise 9

INSECTICIDE

A B C D

85 90 93 98
82 92 94 98
83 90 96 100
88 91 95 97
89 93 96 97
92 81 94 99

of squares, simply compute the appropriate totals. For the within sum of
squares, remember that SSi = (ni − 1)s2

i , and SSW = ∑
SSi.

9. The data shown in Table 6.34 relate to the effectiveness of several insecti-
cides. One-hundred insects of a particular species were put into a chamber
and exposed to an insecticide for 15 s. The procedure was applied in ran-
dom order six times for each of four insecticides. The response is the
number of dead insects. Based on these data, can you make a recommen-
dation? Check assumptions!

10. The data in Table 6.35 are wheat yields for experimental plots having re-
ceived the indicated amounts of nitrogen. Determine whether a linear or
quadratic trend may be used to describe the relationship of yield to amount
of nitrogen.

Table 6.35

Data for Exercise 10

NITROGEN

40 80 120 160 200 240

42 45 46 49 50 46
41 45 48 45 44 45
40 44 46 43 45 45

11. Serious environmental problems arise from absorption into soil of metals
that escape into the air from different industrial operations. To ascertain if
absorption rates differ among soil types, six soil samples were randomly
selected from fields having five different soil types (A, B, C, D, and E) in an
area known to have relatively uniform exposure to the metals studied. The
30 soil samples were analyzed for cadmium (Cd) and lead (Pb) content.
The results are given in Table 6.36. Perform separate analyses to determine

Table 6.36

Data for Exercise 11

SOIL

A B C D E

Cd Pb Cd Pb Cd Pb Cd Pb Cd Pb

0.54 15 0.56 13 0.39 13 0.26 15 0.32 12
0.63 19 0.56 11 0.28 13 0.13 15 0.33 14
0.73 18 0.52 12 0.29 12 0.19 16 0.34 13
0.58 16 0.41 14 0.32 13 0.28 20 0.34 15
0.66 19 0.50 12 0.30 13 0.10 15 0.36 14
0.70 17 0.60 14 0.27 14 0.20 18 0.32 14
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whether there are differences in cadmium and lead content among the
soils. Assume that the cadmium and lead content of a soil directly affects
the cadmium and lead content of a food crop. Do the results of this study
lead to any recommendations?

Check the assumptions for both variables. Does this analysis affect the
results in the preceding? If any of the assumptions are violated, suggest an
alternative analysis.

Table 6.37

Data for Exercise 12

Medium Fungus Colony Diameters

WA 4.5 4.1 4.4 4.0
RDA 7.1 6.8 7.2 6.9
PDA 7.8 7.9 7.6 7.6
CMA 6.5 6.2 6.0 6.4
TWA 5.1 5.0 5.4 5.2
PCA 6.1 6.2 6.2 6.0
NA 7.0 6.8 6.6 6.8

12. For laboratory studies of an organism, it is important to provide a medium
in which the organism flourishes. The data for this exercise shown in
Table 6.37 are from a completely randomized design with four samples
for each of seven media. The response is the diameters of the colonies of
fungus.
(a) Perform an analysis of variance to determine whether there are

different growth rates among the media.
(b) Is this exercise appropriate for preplanned or post hoc comparisons?

Perform the appropriate method and make recommendations.

Table 6.38

Number of Pushups in
60 s by Time with
Department

TIME WITH DEPARTMENT (YEARS)

5 10 15 20

56 64 45 42
55 61 46 39
62 50 45 45
59 57 39 43
60 55 43 41

13. A study of firefighters in a large urban area centered on the physical fitness
of the engineers employed by the fire department. To measure the fitness,
a physical therapist sampled five engineers each with 5, 10, 15, and 20
years’ experience with the department. She then recorded the number
of pushups that each person could do in 60 s. The results are listed in
Table 6.38. Perform an analysis of variance to determine whether there are



6.10 Chapter Exercises 285

differences in the physical fitness of engineers by time with department.
Use α = 0.05.

14. Using the results of Exercise 13, determine what degree of polynomial
curve is required to relate fitness to time with the department. Illustrate
the results with a graph.

15. A local bank has three branch offices. The bank has a liberal sick leave
policy, and a vice-president was concerned about employees taking
advantage of this policy. She thought that the tendency to take advantage
depended on the branch at which the employee worked. To see whether
there were differences in the time employees took for sick leave, she asked
each branch manager to sample employees randomly and record the num-
ber of days of sick leave taken during 1990. Ten employees were chosen,
and the data are listed in Table 6.39.

Table 6.39

Sick Leave by Branch

Branch 1 Branch 2 Branch 3

15 11 18
20 15 19
19 11 23
14

(a) Do the data indicate a difference in branches? Use a level of significance
of 0.05.

(b) Use Duncan’s multiple-range test to determine which branches differ.
Explain your results with a summary plot.

16. In Exercise 4 an experiment was conducted to determine the effect of
the percent of sand in concrete bridge supports on the strength of these
supports. A set of orthogonal polynomial contrasts was used to determine
the nature of this relationship. The ANOVA results indicated a cubic poly-
nomial would best describe this relationship. Use the data given and do
an analysis of means (Section 6.8). Do the results support the conclusion
from the ANOVA? Explain.

17. In Exercise 8 a test of durability of various brands of paint was conducted.
The results are given in Table 6.33, which lists the summary statistics only.
Perform an analysis of means (Section 6.8) on these data. Do the results
agree with those of Exercise 8? Explain.

18. A manufacturing company uses five identical assembly lines to construct
one model of an electric toaster. All the toasters produced go to the
same retail outlet. A recent complaint from this outlet indicates that
there has been an increase in defective toasters in the past month. To
determine the location of the problem, complete inspection of the out-
put from each of the five assembly lines was done for a 22-day period.
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The number of defective toasters was recorded. The data are given
below:

Assembly Number of Defective

Line Toasters

1 123
2 140
3 165
4 224
5 98

Use the ANOM procedure discussed at the end of Section 6.8 to deter-
mine whether the assembly lines differ relative to the number of defective
toasters produced. Suggest ways in which the manufacturer could prevent
complaints in the future.



Chapter 7

Linear Regression

EXAMPLE 7.1 Are Suicide Rates Affected by Publicity? Many researchers have pro-
posed that some private plane accidents have a suicidal component. If this
conjecture is true, then the number of private airplane crashes should increase
significantly after a highly publicized murder–suicide by airplane. The data in
Table 7.1 (Phillips, 1978) give the number of multiple-fatality airplane accidents
(Crashes) that occurred during the week following a highly publicized murder–
suicide by airplane as well as values of a publicity index (Index) measuring the
amount, duration, and intensity of the publicity given the murder–suicide. The
objective of the study is to determine the nature of the relationship between
Crashes and Index.

A scatterplot of these data (see Section 1.7) as shown in Fig. 7.1 appears
to indicate an association between newspaper publicity and the number of
crashes. The questions to be addressed by a regression analysis are as follows:
• Is this relationship “real”?
• Can we describe this relationship with a model?
• Can we use these data to predict the rate of future crashes?

The regression analysis that provides answers to these questions is presented
in Section 7.9. ■

7.1 Introduction

Example 7.1 illustrates a relationship between two quantitative variables. As
we saw in Chapter 6, the analysis of variance model allowed us how to make
inferences on a population of a quantitative variable identified by levels of
a factor, but it does not provide a mechanism for making inferences for a

287
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Table 7.1

Plane Crashes
Adapted from Phillips, D. P.

(1979), “Airplane accident

fatalities increase just after

newspaper stories about

murder and suicide.”

Science 201, 748–750

Index Crashes Index Crashes Index Crashes

0 4 44 7 103 6
0 3 63 2 104 4
0 2 82 4 322 8
5 3 85 6 347 5
5 2 96 8 376 8

40 4 98 4
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Figure 7.1

Airplane Crashes

problem like Example 7.1. This chapter introduces the use of the regression

model, which is used to make inferences on means of populations identified by
specified values of one of more quantitative factor variables. For example, in
an analysis of variance model we may make inferences on the difference in the
number of insects killed by different insecticides while in a regression model
we want to know what happens to the death rate of insects as we increase the
application rate of a specific insecticide.

DEFINITION 7.1
Regression analysis is a statistical method for analyzing a relationship
between two or more variables in such a manner that one variable can
be predicted or explained by using information on the others.

The term “regression” was first introduced by Sir Francis Galton in the late
1800s to explain the relation between heights of parents and children. He
noted that the heights of children of both tall and short parents appeared
to “regress” toward the mean of the group. The procedure for actually con-
ducting the regression analysis, called ordinary least squares (see Section
7.3), is generally credited to Carl Friedrich Gauss, who used the procedure in
the early part of the nineteenth century. However, there is some controversy
concerning this discovery as Adrien Marie Legendre published the first work on
its use in 1805. Regression analysis and the method of least squares are gener-
ally considered synonymous terms. Note that the definition of regression does
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not explicitly define the nature of the relation. As we shall see, the relation may
take on many different forms and still be analyzed by regression methods.

In the previous chapters, our objective was to sample from one or more
populations and to compare certain parameters either with each other or with
a specified value. In a regression analysis, the objectives are slightly differ-
ent. The purpose of a regression analysis is to observe sample measurements
taken on different variables, called factors or independent variables, and
to examine the relationship between these variables and a response or de-

pendent variable. This relationship is then expressed as a statistical model
called the regression model. This and several subsequent chapters deal with
the regression model.

A regression analysis starts with an estimate of the population mean(s)
using a mathematical formula, called a function, which explains the relation-
ship between the factor variable(s) and the response variable. This function
is called the regression model or regression function. This function can
be described geometrically by a line if there is only one factor variable or a
multidimensional plane if there are several. As in all statistical models, the re-
gression model describes a statistical relationship, which we will see, is not
a perfect one. That is, if we plot the data (as in Fig. 7.1) and superimpose the
line representing the function estimated by a regression analysis, the observed
values will certainly not all fall directly on the line described by the regression
model.

Some examples of analyses using regression include

• estimating weight gain by the addition to children’s diets of different
amounts of a dietary supplement,

• predicting scholastic success (grade point ratio) based on students’ scores
on an aptitude or entrance test,

• estimating changes in sales associated with increased expenditures on
advertising,

• estimating fuel consumption for home heating based on daily temperatures,
or

• estimating changes in interest rates associated with the amount of deficit
spending.

In simple linear regression, which is the topic of this chapter, the relation-
ship is specified to have only one factor variable and the relationship is de-
scribed by a straight line. This is, as the name implies, the simplest of all
regression models. While most relationships between variables are not ex-
actly linear, a straight line often approximates the relationship, especially in
a limited or restricted range of values of the variables. For example, the rela-
tionship of age and height of children is obviously not linear through the first
15 years of age, but it may be reasonably close to linear from ages 10 to 12.

Symbolically we represent values of the variables involved in regression
as follows:

x represents observed values of the factor variable, such as pounds of
fertilizer, aptitude test score, or daily temperature. In the context of a
regression analysis this variable is called the independent variable.
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y represents observed values of the response variable, such as yield of
corn, grade point averages, or fuel consumption. This variable is called
the dependent variable.

In a simple linear regression analysis we use a sample of observations on
pairs of variables, x and y, to make inferences on the “model.” Actually the
inferences are made on the parameters that describe the model. These are dis-
cussed in Section 7.2 and the remainder of the chapter is devoted to various
inferences and further investigations on the appropriateness of the model.
Extensions to the use of more factor (independent) variables as well as curvi-
linear (nonlinear) relationships are presented in Chapter 8.

This chapter starts with the definition and uses of the linear regression
model, followed by procedures for estimation of the parameters of that model
and the subsequent inferences about those parameters. Also discussed are
inferences for the response variable, an introduction to diagnosing possible
difficulties in implementing the model, and some hints on computer usage.
The related concept of correlation is presented in Section 7.7.

Notes on Exercises

Section 7.3 contains the information and formulas necessary to obtain the
regression parameter estimates manually for Exercises 1–4 using a hand-held
calculator. Section 7.5 contains the information and formulas necessary to
do statistical inferences for these parameters. Using the Computer in Section
7.6 contains the information needed to perform the requested analyses on all
other assigned exercises. Section 7.8 provides the tools necessary to review
all exercises for possible violations of assumptions.

7.2 The Regression Model

The regression model is similar to the analysis of variance model discussed in
Chapter 6 in that it consists of two parts, a deterministic or functional term
and a random term. The simple linear regression model is of the form

y = β0 + β1x + ε,

where x and y represent values1 of the independent and dependent variables,
respectively. This model is often referred to as the regression of y on x.
The first portion of the model, β0 + β1x, is an equation of the regression line
involving the values of the two variables (x and y) and two parameters β0 and
β1. These two parameters are called the regression coefficients. Specifically:

β1 is the slope of the regression line, that is, the change in y corresponding
to a unit change in x.

1Many textbooks and other references add a subscript i to the symbols representing the variables
to indicate that the model applies to individual sample or population observations: i = 1, 2, . . . , n.
Since this subscript is always applicable it is not explicitly used here.
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β0, the intercept, is the value of the line when x = 0. This parameter has no
practical meaning if the condition x = 0 cannot occur, but is needed to
specify the model.

As in the analysis of variance model, the individual values of ε are assumed to
come from a population of random variables2 having the normal distribution
with mean zero and variance σ 2.

The interpretation of the model is aided by redefining it as a version of the
linear model used for the analysis of variance. Remember that the analysis of
variance model can be written

yij = μi + εij ,

where the μi refer to the means of the different populations and εij are the
random errors associated with the individual observations. Equivalently, the
regression model can be written

y = μy|x + ε,

where the symbol μy|x represents a mean of ycorresponding to a specific value
of x. This parameter is known as the conditional mean of y and is defined by
the relationship

μy|x = β0 + β1x.

We can now see that this deterministic portion of the model describes a
line that is the locus of values of the conditional mean μy|x corresponding to all
values of x. This is a straight line with an intercept (value of ywhen x = 0) of β0

and slope of β1. Combining the two model statements produces the complete
regression model:

y = β0 + β1x + ε.

The random error has a mean of zero and variance of σ 2; hence the observed
values of the response variable come from a normally distributed population
with a mean ofμy|x and variance ofσ 2. This formulation of the regression model
is illustrated in Fig. 7.2 with a regression line of y = x (β0 = 0 and β1 = 1) and
showing a normal distribution with unit variance at x = 2.5, 5, and 7.5.

In terms of the regression model we can see that the purpose of a regression
analysis is to use a set of observed values of x and y to estimate the param-
eters β0, β1, and σ 2, and further to perform hypothesis tests and/or construct
confidence intervals on these parameters and also to make inferences on the
values of the response variable.

As in previous chapters, the validity of the results of the statistical analysis
requires fulfillment of certain assumptions about the data. Those assumptions
dealing with the random error are basically the same as they are for the anal-
ysis of variance (Section 6.3), with a few additional wrinkles. Specifically we
assume the following:

1. The linear model is appropriate.
2. The error terms are independent.

2It is the randomness of ε that substitutes for the random sample assumption and allows the use
of statistical inferences even when the data are not strictly the result of a random sample.
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3. The error terms are (approximately) normally distributed.
4. The error terms have a common variance, σ 2.

Aids to the detection of violations of these and other assumptions and some
possible remedies are given in Section 7.8. Even if all assumptions are fulfilled,
regression analysis has some limitations:

• The fact that a regression relationship has been found to exist does not,
by itself, imply that x causes y. For example, many regression analyses
have shown that there is a clear relationship between smoking and lung
cancer, but because there are multiple factors affecting the incidence of
lung cancer, the results of these regression analyses cannot be used as the
sole evidence to prove that smoking causes lung cancer. Basically, to prove
cause and effect, it must also be demonstrated that no other factor could
cause that result.

• It is not advisable to use an estimated regression relationship for extrapo-
lation. That is, the estimated model should not be used to make inferences
on values of the dependent variable beyond the range of observed x values.
Such extrapolation is dangerous, because although the model may fit the
data quite well, there is no evidence that the model is appropriate outside
the range of the existing data.
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Table 7.2

Data on Size and Price

obs size price obs size price obs size price

1 0.951 30.00 21 1.532 93.500 41 2.336 129.90
2 1.036 39.90 22 1.647 94.900 42 1.980 132.90
3 0.676 46.50 23 1.344 95.800 43 2.483 134.90
4 1.456 48.60 24 1.550 98.500 44 2.809 135.90
5 1.186 51.50 25 1.752 99.500 45 2.036 139.50
6 1.456 56.99 26 1.450 99.900 46 2.298 139.99
7 1.368 59.90 27 1.312 102.000 47 2.038 144.90
8 0.994 62.50 28 1.636 106.000 48 2.370 147.60
9 1.176 65.50 29 1.500 108.900 49 2.921 149.99
10 1.216 69.00 30 1.800 109.900 50 2.262 152.55
11 1.410 76.90 31 1.972 110.000 51 2.456 156.90
12 1.344 79.00 32 1.387 112.290 52 2.436 164.00
13 1.064 79.90 33 2.082 114.900 53 1.920 167.50
14 1.770 79.95 34 . 119.500 54 2.949 169.90
15 1.524 82.90 35 2.463 119.900 55 3.310 175.00
16 1.750 84.90 36 2.572 119.900 56 2.805 179.00
17 1.152 85.00 37 2.113 122.900 57 2.553 179.90
18 1.770 87.90 38 2.016 123.938 58 2.510 189.50
19 1.624 89.90 39 1.852 124.900 59 3.627 199.00
20 1.540 89.90 40 2.670 126.900

EXAMPLE 7.2 (EXAMPLE 1.2 REVISITED) In previous chapters we have shown some
statistical tools the Modes used to investigate the housing market in anti-
cipation of moving to a new city. For example, they used the median test to
show that homes in that city appear to cost less than they do in their present
location. However, they also know that other factors may have caused that
apparent difference. In fact, the well-known association between home size
and cost has made the price per square foot a widely used measure of housing
costs. An estimate of this cost can be obtained by a regression analysis using
size as the independent and price as the dependent variable.

The scatterplot3 of home costs and sizes taken from Table 1.2 was shown in
Fig. 1.15. This plot shows a reasonably close association between cost and size,
except for the higher priced homes. The Modes already know that extreme
observations are often a hindrance for good statistical analyses, and besides,
those homes were out of their price range. So they decided to perform the
regression using only data for homes priced at less than $200,000. We will have
more to say about extreme observations later. The data of sizes and prices
for the homes, arranged in order of price, are shown in Table 7.2 and the
corresponding scatterplot is shown in Fig. 7.3.

Note that one observation does not provide data on size; that observation
cannot be used for the regression. The strong association between price and
size is evident.

3The concept of a scatterplot is presented in Section 1.7.
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For this example, the model can be written

price = β0 + β1 size + ε,

or in terms of the generic variable notation

y = β0 + β1x + ε.

In this model β1 indicates the increase in price associated with a square
foot increase in the size of a house.

In the next sections, we will perform the regression analysis in two steps:

1. Estimate the parameters of the model.
2. Perform statistical inferences on these parameters. ■

7.3 Estimation of Parameters β0 and β1

The purpose of the estimation step is to find estimates of β0 and β1 that produce
a set of μy|x values that in some sense “best” fit the data. One way to do
this would be to lay a ruler on the scatterplot and draw a line that visually
appears to provide the best fit. This is certainly not a very objective or scientific
method since different individuals would likely define different best fitting
lines. Instead we will use a more rigorous method.

Denote the estimated regression line by

μ̂y|x = β̂0 + β̂1x,

where the caret or “hat” over a parameter symbol indicates that it is an es-
timate. Note that μ̂y|x is an estimate of the mean4 of y for any given x. How
well the estimate fits the actual observed values of y can be measured by the
magnitudes of the differences between the observed y and the corresponding

4Many books use ŷ for the estimated conditional mean. We will use μ̂y|x to remind the reader that
we are estimating a mean. The symbol ŷ will have a special meaning later.
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μ̂y|x values, that is, the individual values of (y − μ̂y|x). These differences are
called residuals. Since smaller residuals indicate a good fit, the estimated line
of best fit should be the line that produces a set of residuals having the small-
est magnitudes. There is, however, no universal definition of “smallest” for a
collection of values; hence some arbitrary but hopefully useful criterion for
this property must first be defined. Some criteria that have been employed are
as follows:

1. Minimize the largest absolute residual.
2. Minimize the sum of absolute values of the residuals.

Although both of these (and other) criteria have merit and are occasionally
used, we will use the most popular criterion:

3. Minimize the sum of squared residuals.

This criterion is called least squares and results in an estimated line that min-
imizes the variance of the residuals. Since we use the variance as our primary
measure of dispersion, this estimation procedure minimizes the dispersion of
residuals. Estimation using the least squares criterion also has many other
desirable characteristics and is easier to implement than other criteria.

The least squares criterion thus requires that we choose estimates of β0

and β1 that minimize∑
(y − μ̂y|x)2 =

∑
(y − β̂0 − β̂1x)2.

It can be shown mathematically, using some elements of calculus, that these
estimates are obtained by finding values of β0 and β1 that simultaneously satisfy
a set of equations, called the normal equations:

β̂0n + β̂1

∑
x =

∑
y,

β̂0

∑
x + β̂1

∑
x2 =

∑
xy.

By means of a little algebra, the solution to this system of equations produces
the least squares estimators5:

β̂0 = ȳ − β̂1x̄,

β̂1 =
∑

xy − (∑
x
∑

y/n
)∑

x2 − [(∑
x
)2/

n
] .

The estimator of β1 can also be formulated

β̂1 =
∑

(x − x̄)(y − ȳ)∑
(x − x̄)2

.

This latter formula more clearly shows the structure of the estimate: the sum
of products of the deviations of observed values from the means of x and y

divided by the sum of squared deviations of the x values. Commonly we call

5An estimator is an algebraic expression that provides the actual numeric estimate for a specific
set of data.
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∑
(x − x̄)2 and

∑
(x − x̄)(y − ȳ) the corrected or means centered sums of

squares and cross products. Since these quantities occur frequently, we will
use the notation and computational formulas

Sxx =
∑

(x − x̄)2 =
∑

x2 −
(∑

x

)2/
n,

the corrected sum of squares for the independent variable x ;

Sxy =
∑

(x − x̄)(y − ȳ) =
∑

xy −
∑

x
∑

y/n,

the corrected sum of products of x and y ; and later

Syy =
∑

(y − ȳ)2 =
∑

y2 −
(∑

y

)2/
n,

the corrected sum of squares of the dependent variable y. Using this notation,
we can write

β̂1 = Sxy/Sxx.

The computations are illustrated using the data on homes in Table 7.2. We first
perform the preliminary calculations to obtain sums and sums of squares and
cross products for both variables:

n = 58,
∑

x = 109.212, and x̄ = 1.883,∑
x2 = 228.385, hence

Sxx = 228.385 − (109.212)2/58 = 22.743;∑
y = 6439.998, and ȳ = 111.034,∑

xy = 13,401.788, hence

Sxy = 13,401.788 − (109.212)(6439.998)/58 = 1275.494;∑
y2 = 808,293.767, hence

Syy = 808,293.767 − (6439.998)2/58 = 93,232.142.

We can now compute the parameter estimates

β̂1 = 1275.494/22.743 = 56.083,

β̂0 = 111.034 − (56.084)(1.883) = 5.432,

and the equation for estimating price is

μ̂y|x = 5.432 + 56.083x.

The estimated slope, β̂1, is a measure of the change in mean price (μ̂y|x)
for a unit change in size. In other words, the estimated price per square
foot is $56.08 (remember both price and space are in units of 1000).

The intercept, β̂0 = $5341.57, is the estimated price of a zero square foot
home, which may be interpreted as the estimated price of a lot. However, this
value is an extrapolation beyond the reach of the data (there are no lots without
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houses in this data set) and is of questionable value. We will have more to say
about extrapolation later.

A Note on Least Squares

In Chapter 3 we found that for a single sample, the sample mean, ȳ, was
the best estimate of the population mean, μ. Actually we can show that the
sample mean is a least squares estimator of the population mean. Consider the
regression model without the intercept parameter:

y = β1x + ε.

We will use this model on a set of data for which all values of the independent
variable, x, are unity. Now the model is

y = β1 + ε,

which is the model for a single population with mean μ = β1. For a model with
no intercept the formula for the least squares estimate of β1 is

β̂1 =
∑

xy∑
x2

=
∑

y

n
,

which result in the estimate β̂1 = ȳ. We will extend this principle to show the
equivalence of regression and analysis of variance models in Chapter 11.

7.4 Estimation of σ2 and the Partitioning of Sums of Squares

As we have seen in previous chapters, test statistics for performing inferences
require an estimate of the variance of the random error. We have emphasized
that any estimated variance is computed as a sum of squared deviations from
the estimated population mean(s) divided by the appropriate degrees of free-
dom. This variance is estimated by a mean square, which is computed as a sum
of squared deviations from the estimated population mean(s) divided by de-
grees of freedom. For example, in one-population inferences (Chapter 4), the
sum of squares is

∑
(y− ȳ)2 and the degrees of freedom are (n− 1), since one

estimated parameter, ȳ, is used in the computation of the sum of squares. Using
the same principles, in inferences on several populations, the mean square is
the sum of squared deviations from the sample means for each of the popula-
tions, and the degrees of freedom are the total sample size minus the number
of populations, since one parameter (mean) is estimated for each population.

The same principle is used in regression analysis. The estimated means are

μ̂y|x = β̂0 + β̂1x,

for each observed x, and the sum of squares, called the error or residual sum
of squares, is

SSE =
∑

(y − μ̂y|x)2.

This quantity describes the variation in yafter estimating the linear relationship
of y to x. The degrees of freedom for this sum of squares is (n − 2) since two
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Table 7.3

Estimating the Variance
(To Save Space, Only a
Few of the Observations
Are Presented)

Obs size price predict residual

1 0.951 30.0 58.767 -28.7668
2 1.036 39.9 63.534 -23.6338
3 0.676 46.5 43.344 3.1561
4 1.456 48.6 87.089 -38.4888
5 1.186 51.5 71.946 -20.4463

. . . .

. . . .

. . . .
53 1.920 167.5 113.111 54.3885
54 2.949 169.9 170.821 -0.9212
55 3.310 175.0 191.067 -16.0672
56 2.805 179.0 162.745 16.2548
57 2.553 179.9 148.612 31.2878
58 2.510 189.5 146.201 43.2994
59 3.627 199.0 208.846 -9.8456

estimates, β̂0 and β̂1, are used to obtain the values of the μ̂y|x. We then define
the mean square

MSE = SSE/df

=
∑

(y − μ̂y|x)2/(n − 2).

Table 7.3 provides the various elements needed for computing this estimate of
the variance from the house prices data. The first two columns are the observed
values of x and y. The third column contains the estimated values (μ̂y|x), which
are computed by substituting the individual x values into the model equation.

For example, for the first observation, μ̂y|x = 5.432 + 56.083(0.951) =
58.7668.

The last column contains the residuals (y− μ̂y|x). Again for the first obser-
vation,

(y − μ̂y|x) = 30.0 − 58.767 = −28.767.

The sum of squares of residuals is∑
(y − μ̂y|x)2 = (−28.767)2 + (−23.6338)2 + · · · (−9.8456)2 = 21698.27,

hence MSE = 21698.27/56 = 387.469. The square root of the variance is
the estimated standard deviation,

√
387.469 = 19.684. We can now use the

empirical rule to state that approximately 95% of all homes will be priced
within 2(19.684) = 39.368 (or $39,368) of the estimated value (μ̂y|x). Addition-
ally, the sum of residuals

∑
(y − μ̂y|x) equals zero, just as

∑
(y − ȳ) equals 0

for the one-sample situation.
This method of computing the variance estimate is certainly tedious, espe-

cially for large samples. Fortunately a computational procedure that uses the
principle of partitioning sums of squares similar to that found in the analysis
of variance exists (Section 6.2). We define the following:
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(y − ȳ) are the deviations of observed values from a model6 that does not
include the regression coefficient β1.

(y − μ̂y|x) are the deviations of observed values from the estimated values
of the regression model.

(μ̂y|x − ȳ) are the differences between the estimated population means of
the regression and no-regression models.

It is both mathematically and intuitively obvious that

(y − ȳ) = (y − μ̂y|x) + (μ̂y|x − ȳ).

This relationship is shown for one of the data points in Fig. 7.4 for a typical
small data set (the numbers are not reproduced here).

Some algebra and the use of the least squares estimates of the regression
parameters provide the not-so-obvious relationship∑

(y − ȳ)2 =
∑

(y − μ̂y|x)2 +
∑

(μ̂y|x − ȳ)2.

The first term is the sum of squared deviations from the mean. This quantity
provides the estimate of the total variation if there is only one mean, μ, that
does not depend on x ; that is, we assume that there is no regression. This is
called the TOTAL sum of squares and is denoted by TSS as it was for the analysis
of variance. The equation then shows that this total variation is partitioned into
two parts:

1.
∑

(y − μ̂y|x)2, which we have already defined as the numerator of the esti-
mated variance of the residuals from the means estimated by the regression.
This quantity is called the ERROR or RESIDUAL sum of squares and is usu-
ally denoted by SSE, and

6This model is y = β0 + ε, which is equivalent to y = μ + ε and the estimate of μ is ȳ.
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2.
∑

(μ̂y|x − ȳ)2, which is the difference between the TOTAL and ERROR sum
of squares. This difference is the reduction in the variation attributable to
the estimated regression and is called the REGRESSION (sometimes called
MODEL) sum of squares and is denoted by SSR.

Since these sums of squares are additive, that is, SSR + SSE = TSS, the
REGRESSION sum of squares is the indicator of the magnitude of reduction in
variance accomplished by fitting a regression. Therefore, large values of SSR
(or small values of SSE) relative to TSS indicate that the estimated regression
does indeed help to estimate y. Later we will use this principle to develop a
formal hypothesis test for the null hypothesis of no relationship.

Partitioning does not by itself assist in the reduction of computations for
estimating the variance. However, if we have used least squares, it can be
shown that

SSR = (Sxy)2/Sxx = β̂2
1 Sxx = β̂1Sxy,

all of which use quantities already calculated for the estimation of β1. It is not
difficult to compute TSS = ∑

y2 − (
∑

y)2/n = Syy; hence the partitioning
allows the computation of SSE by subtracting SSR from TSS.

For our example, we have already computed TSS = Syy = 93,232.142. The
regression sum of squares is

SSR = (Sxy)2/Sxx = (1275.494)2/22.743 = 71,533.436.

Hence,

SSE = TSS − SSR = 93,232.142 − 71,533.436 = 21,698.706,

which is the same value, except for round-off error, as that obtained directly
from the actual residuals (Table 7.3).

The estimated variance, usually called the error mean square, is computed
as before:

MSE = SSE/df = 21,698.706/56 = 387.477.

The notation of MSE (mean square error) for this quantity parallels the notation
for the error sum of squares and is used henceforth.

The formula for the error sum of squares can be represented by a single
formula

SSE =
∑

y2 −
(∑

y

)2/
n − S2

xy

/
Sxx,

where
∑

y2 = total sum of squares of the y values; (
∑

y)2/n = correction
factor for the mean, which can also be called the reduction in sum of squares
for estimating the mean; and (Sxy)2/Sxx = additional reduction in the sum of
squares due to estimation of a regression relationship.

This sequential partitioning of the sums of squares is sometimes used
for inferences for regressions involving several independent variables (see
Chapter 8).
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7.5 Inferences for Regression

The first step in performing inferences in regression is to ascertain if the es-
timated conditional means, μ̂y|x, provide for a better estimation of the mean
of the population of the dependent variable y than does the sample mean ȳ.
This is done by noting that if β1 = 0, the estimated conditional mean is the
ordinary sample mean, and if β1 
= 0, the estimated conditional mean will pro-
vide a better estimate. In this section we first provide procedures for testing
hypotheses and subsequently for constructing a confidence interval for β1.

Other inferences include the estimation of the conditional mean and pre-
diction of the response for individual observations having specific values of
the independent variable. Inferences on the intercept are not often performed
and are a special case of inference on the conditional mean when x = 0 as
presented later in this section.

The Analysis of Variance Test for β1

We have noted that if the regression sum of squares (SSR) is large relative to
the total or error sum of squares (TSS or SSE), the hypothesis that β1 = 0
is likely to be rejected.7 In fact, the regression and error sums of squares play
the same role in regression as do the factor (SSB) and error (SSW) sums of
squares in the analysis of variance for testing hypotheses about the equality
of several population means. In each case the sums of squares are divided by
the respective degrees of freedom, and the resulting regression or factor mean
square is divided by the error mean square to obtain an F statistic. This F

statistic is then used to test the hypothesis of no regression or factor effect.
Specifically, for the simple linear regression model, we compute the mean

square due to regression,

MSR = SSR/1,

and the error mean square,

MSE = SSE/(n − 2).

As we have noted, MSE is the estimated variance. The test statistic for the null
hypothesis β1 = 0 against the alternative that β1 
= 0, then, is F = MSR/MSE,
which is compared to the tabled F distribution with 1 and (n − 2) degrees of
freedom. Because the numerator of this statistic will tend to be large when the
null hypothesis is false, the rejection region is in the upper tail.

It is convenient to summarize the statistics resulting in the F statistic in
tabular form as was done in Chapter 6. Using the results obtained previously,
the analysis of the house prices data are presented in this format in Table 7.4.
The 0.01 critical value for the F distribution with df = (1, 55) is 7.12; hence the
calculated value of 184.62 clearly leads to rejection of the null hypothesis. This
means that we can conclude that home prices are linearly related to size as
expressed in square feet. This does not, however, indicate the precision with

7For hypothesis tests for nonzero values of β1, see the next subsection.
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Table 7.4

Analysis of Variance of
Regression

Source DF SS MS F

Regression 1 SSE = 71533.436 MSR = 71533.436 184.613
Error n - 2 = 56 SSE = 21698.706 MSE = 387.477
Total n - 1 = 57 TSS = 93232.142

which selling prices can be estimated by knowing the size of houses. We will
do this later.

A more rigorous justification of this procedure is afforded through the use
of expected mean squares as was done in Section 6.3 (again without Proof).
Using the already defined regression model

y = β0 + β1x + ε,

we can show that

E(MSR) = σ 2 + β2
1 Sxx,

E(MSE) = σ 2.

If the null hypothesis is true, that is, β1 is zero, the ratio of the two mean
squares is the ratio of two estimates of σ 2, and is therefore a random variable
with an F distribution with 1 and (n − 2) degrees of freedom. If the null hy-
pothesis is not true, that is, β1 
= 0, the numerator of the ratio will tend to be
larger, leading to values of the F statistic in the right tail of the distribution,
hence providing for rejection if the calculated value of the statistic is in the
right tail rejection region.

The (Equivalent) t Test for β1

An equivalent test of the hypothesis that β1 = 0 is based on the fact that
under the assumptions stated earlier, the estimate β̂1 is a random variable
whose distribution is (approximately) normal with mean = β1 and variance =
σ 2/Sxx.

The variance of the estimated regression coefficient can also be written

σ 2/(n − 1)s2
x,

where s2
x is the sample variance obtained from the observed set of x values.

This expression shows that the variance of β̂1 increases with larger values of
the population variance, and decreases with larger sample size and/or larger
dispersion of the values of the independent variable. This means that the slope
of the regression line is estimated with greater precision if

• the population variance is small,
• the sample size is large, and/or
• the independent variable has a large dispersion.

The square root of the variance of an estimated parameter is the standard error
of the estimate. Thus the standard error of β̂1 is

std error of β̂1 =
√

σ 2/Sxx.
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Hence the ratio

z = β̂1 − β1√
σ 2/Sxx

is a standard normal random variable. Substitution of the estimate MSE for
σ 2 in the formula for the standard error of β̂1 produces a random variable
distributed as Student t with (n−2) degrees of freedom. Thus, as in Chapter 4,
we have the test statistic necessary for a hypothesis test.

To test the null hypothesis H0: β1 = β∗
1 construct the test statistic

t = β̂1 − β∗
1√

MSE/Sxx

.

Letting β∗
1 = 0 provides the test for H0: β1 = 0. For the house price data, the

test of H0: β1 = 0 produces the values

t = 56.083 − 0√
387.477
22.743

= 56.083
4.128

= 13.587,

which leads to rejection for virtually any value of α. Note that t2 = 184.607 = F

(Table 7.4, except for round-off), confirming that the two tests are equivalent.
[Remember, t2(v) = F(1, v).]

Although the t and F tests are equivalent, the t test has some advantages:

1. It may be used to test a hypothesis for any given value of β1, not just for
β1 = 0. For example, in calibration experiments where the reading of a
new instrument (y) should be the same as that for the standard (x), the
coefficient β1 should be unity. Hence the test for H0: β1 = 1 is used to
determine whether the new instrument is biased.

2. It may be used for a one-tailed test. In many applications a regression coeffi-
cient is useful only if the sign of the coefficient agrees with the underlying
theory of the model. In this case, the increased power of the resulting one-
tailed test makes it appropriate.

3. Remember that the denominator of a t statistic is the standard error of the
estimated parameter in the numerator and provides a measure of the pre-
cision of the estimated regression coefficient. In other words, the standard
error of β̂1 is

√
MSE /Sxx.

Confidence Interval for β1

The sampling distribution of β̂1 presented in the previous section is used
to construct a confidence interval. Using the appropriate values from the
t distribution, the confidence interval for β1 is computed as

β̂1 ± tα/2

√
MSE
Sxx

.

For the home price data, β̂1 = 56.084, the standard error is 4.128; hence
the 0.95 confidence interval is

56.084 ± (2.004)(4.128),
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where t0.05(55) = 2.004, which is used to approximate t0.05(56) since our table
does not have an entry for 56 degrees of freedom. The resulting interval is
from 47.811 to 64.357. This means that we can state with 0.95 confidence
that the true cost per square foot is between $47.81 and $64.36. Here we can
see that although the regression can certainly be called statistically significant,
the reliability of the estimate may not be sufficient for practical purposes.
That is, the confidence interval is too wide to provide sufficient precision for
estimating house prices.

Inferences on the Response Variable

In addition to inferences on the individual parameters, we are also interested
in how well the model estimates the response variable. In this context there
are two different, but related, inferences:

1. Inferences on the mean response: In this case we are concerned with how
well the model estimates μy|x, the conditional mean of the population for
any given x value.

2. Inferences for prediction: In this case we are interested in how well the
model predicts the value of the response variable y for a single randomly
chosen future observation having a given value of the independent vari-
able x.

The point estimate for both of these inferences is the value of μ̂y|x for any
specified value of x. However, because the point estimate represents two differ-
ent inferences, we denote them by different symbols. Specifically, we denote
the estimated mean response by μ̂y|x, and the predicted single value by ŷy|x.
Because these estimates have a different implication, each of these estimates
has a different variance. For a specified value of x, say, x∗, the variance for the
estimated mean is

var(μ̂y|x) = σ 2
[

1
n

+ (x∗ − x̄)2

Sxx

]
,

and the variance for a single predicted value is

var(ŷy|x) = σ 2
[

1 + 1
n

+ (x∗ − x̄)2

Sxx

]
.

Both of these variances have their minima when x∗ = x̄. In other words, when
x takes the value x̄, the estimated conditional mean is ȳ and the variance of
the estimated mean is indeed the familiar σ 2/n . The response is estimated
with greatest precision when the independent variable is at its mean, with the
variance of the estimate increasing as x deviates from its mean. It is also seen
that var(ŷy|x) > var(μ̂y|x) because a mean is estimated with greater precision
than is a single value.

Substituting the error mean square, MSE, for σ 2 provides the estimated vari-
ance. The square root is the corresponding standard error used in hypothesis
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testing or (more commonly) interval estimation with the appropriate value
from the t distribution with (n − 2) degrees of freedom.8 We will obtain the
interval estimate for mean and individual predicted values for homes similar
to the first home, which had a size of 951 ft2 for which the estimated price has
already been computed to be $58,767.

All elements of the variance have been obtained previously. The variance
of the estimated mean is

var(μ̂y|x) = 387.469
[

1
58

+ (0.951 − 1.883)2

22.743

]
= 387.469[0.0172 + 0.0382]

= 21.466.

The standard error
√

21.466 = 4.633. We now compute the 0.95 confidence
interval

58.767 ± (2.004)(4.633),

which results in the limits from 49.482 to 68.052. Thus we can state with 0.95
confidence that the mean price of homes with 951 ft2 of space is between
$49,482 and $68,052. The width of this interval reinforces the contention that
the precision of this regression may be inadequate for practical purposes.
The predicted line and confidence interval bands are shown in Fig. 7.5. The
tendency for the interval to be narrowest at the center is evident.

The prediction interval for a single observation for the same home is

var(μ̂y|x) = 387.469
[

1 + 1
n

+ (0.951 − 1.883)2

22.743

]
= 387.469[1 + 0.0172 + 0.0382]

= 408.935,

resulting in a standard error of 20.222. The 0.95 prediction interval is

58.767 ± (2.004)(20.222),

or from 18.242 to 99.292. Thus we can say with 0.95 confidence that a randomly
picked home with 951 ft2 will be priced between $18,242 and $99,292. Again,
this interval may be considered too wide to be of practical use.

EXAMPLE 7.3 One aspect of wildlife science is the study of how various habits of wildlife are
affected by environmental conditions. This example concerns the effect of air
temperature on the time that the “lesser snow geese” leave their overnight roost

8Letting x̄ = 0 in the variance of μ̂y|x provides the variance for β̂0, which can be used for hypothesis
tests and confidence intervals for this parameter. As we have noted, in most applications β0
represents an extrapolation and is thus not a proper candidate for inferences. However, because a
computer does not know whether the intercept is a useful statistic for any specific problem, most
computer programs do provide that standard error as well as the test for the null hypothesis that
β0 = 0.
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sites to fly to their feeding areas. The data shown in Table 7.5 give departure
time (TIME in minutes before (−) and after (+) sunrise) and air temperature
(TEMP in degrees Celsius) at a refuge near the Texas Coast for various days of
the 1987/88 winter season. A scatterplot of the data, as provided in Fig. 7.6, is
useful. The plot does appear to indicate a relationship showing that the geese
depart later in warmer weather.

Solution A linear regression relating departure time to temperature should
provide useful information on the relationship of departure times. To perform
this analysis, the following intermediate results are obtained from the data,∑

x = 334, x̄ = 8.79,
∑

y = −186, ȳ = −4.89,

Sxx = 1834.31, Sxy = 3082.84, Syy = 8751.58,

resulting in the estimates

β̂0 = −19.667 and β̂1 = 1.681.

The resulting regression equation is

TIM̂E = −19.667 + 1.681(TEMP).

In this case the intercept has a practical interpretation because the condi-
tionTEMP= 0 (freezing) does indeed occur, and the intercept estimates that the
time of departure is approximately 20 min. before sunrise at that temperature.
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Table 7.5

Departure Times of
Lesser Snow Geese

OBS DATE TEMP TIME

1 11/10/87 11 11
2 11/13/87 11 2
3 11/14/87 11 -2
4 11/15/87 20 -11
5 11/17/87 8 -5
6 11/18/87 12 2
7 11/21/87 6 -6
8 11/22/87 18 22
9 11/23/87 19 22
10 11/25/87 21 21
11 11/30/87 10 8
12 12/05/87 18 25
13 12/14/87 20 9
14 12/18/87 14 7
15 12/24/87 19 8
16 12/26/87 13 18
17 12/27/87 3 -14
18 12/28/87 4 -21
19 12/30/87 3 -26
20 12/31/87 15 -7
21 01/02/88 15 -15
22 01/03/88 6 -6
23 01/04/88 5 -23
24 01/05/88 2 -14
25 01/06/88 10 -6
26 01/07/88 2 -8
27 01/08/88 0 -19
28 01/10/88 -4 -23
29 01/11/88 -2 -11
30 01/12/88 5 5
31 01/14/88 5 -23
32 01/15/88 8 -7
33 01/16/88 15 9
34 01/20/88 5 -27
35 01/21/88 -1 -24
36 01/22/88 -2 -29
37 01/23/88 3 -19
38 01/24/88 6 -9

The regression coefficient indicates that the estimated departure time is 1.681
min. later for each 1◦ increase in temperature.

The partitioning of the sums of squares and F test for the hypothesis of no
regression, that is, H0: β1 = 0, is provided in Table 7.6. This table is adapted
from computer output, which also provides the p value. We can immediately
see that we reject the null hypothesis β1 = 0. The error mean square of 99.18
is the estimate of the variance of the residuals. According to the empirical
rule, the resulting standard deviation of 9.96 indicates that 95% of all observed
departure times are within approximately 20 min. of the time estimated by the
model.
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Table 7.6

Analysis of Variance for
Goose Data

Sum of Mean
Source DF Squares Square F Value Prob > F

Regression 1 5181.17736 5181.17736 52.241 0.0001
Error 36 3570.40158 99.17782
Total 37 8751.57895
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Scatterplot of
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The variance of the estimated regression coefficient, β̂1, is 99.178/1834.31 =
0.0541, resulting in a standard error of 0.2325. We can use this for the t statistic

t = 1.681/0.2325 = 7.228,

which is the square root of the F value (52.241) and equivalently results in the
rejection of the hypothesis that β1 = 0. The standard error and 0.05 two-tailed
t value of 2.028 for 36 degrees of freedom, obtained from Appendix Table A.2
by interpolation, can be used to compute the 0.95 confidence interval for β1

1.681 ± (2.028)(0.2325),

which results in the interval

1.209 to 2.153.

In other words, we are 95% confident that the true slope of the regression
is between 1.209 and 2.153 minutes per degree of temperature increase.

For inferences on the response variable (TIME), We consider the case
for which the temperature is 0◦C (freezing). The point estimate for the mean
response as well as for predicting a single individual is μ̂y|x= 0 = β̂0 = −19.67
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min. after sunrise. The variance of the estimated mean at zero degrees is

99.178
[

1
38

+ (0 − 8.79)2

1834.31

]
= 6.786,

resulting in a standard error of 2.605. The 95% confidence interval, then, is

−19.67 ± (2.028)(2.605),

or from −24.95 to −14.38 min. In other words, we are 95% confident that the
true mean departure time at 0◦C is between 14.38 and 24.95 min. before sunrise.

The plot of the data with the estimated regression line and 95% prediction
intervals as produced by SAS PROC REG is shown in Fig. 7.7. In the legend,
PRED represents the prediction line and U95 and L95 represent the 0.95 upper
and lower prediction intervals, respectively. (When the plot is shown on a
computer monitor, the prediction intervals have different colors.)

The 95% prediction interval for 0◦C is from −40.54 to +1.21 minutes. This
means that we are 95% confident that any randomly picked goose will leave
within this time frame at 0◦C. ■

EXAMPLE 7.4 One interesting application of simple linear regression is to use it to compare
two measuring devices or tests relative to their precision and their accuracy.
If we define the true value of the characteristic that we are measuring as the
independent variable in a regression equation, and the measured value as the
response variable, then we can use the procedures previously discussed to
evaluate the relative precision and accuracy of the measuring device or test.
We define the accuracy of the device or test as its ability to “hit the target.” That
is, if a test or device is accurate, then we would expect the measured value, on
average, to be very close to the actual value. In statistical terms, this is known
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as unbiasedness, and the amount of bias in a test or device is used as a measure
of accuracy. Perfect accuracy would result in a regression equation relating the
measured value to the true value that had a zero intercept and a slope of 1. The
precision of a measuring device or test is defined as the variation among values
recorded by the device or test. In statistical terms, we use the standard devia-
tion as a measure of precision. A very precise measuring device or test would
have almost no variation from measurement to measurement. In the regression
context, we use the square root of the mean square error from the analysis of
variance as a measure of the precision of the device or test. The procedure for
comparing two tests or measuring devices would be to compute the accuracy
and precision of each, and compare them.

We illustrate these concepts with an example comparing two types of temp-
erature-measuring devices. Suppose that a company is considering two such
devices (one labeled A, the other B) to be used to control a temperature-
sensitive process. Because no device always records the absolutely correct
temperature, we specify that the superior device should be unbiased (i.e., on
the average, it records the correct temperature) and also that the device must
be precise (i.e., there should be very little variation among readings at any
constant temperature). An experiment is conducted by exposing each device
randomly three times to each of six known temperatures. The data are shown
in Table 7.7. To evaluate these two devices and pick the superior one, we per-
form a regression analysis using the measured temperature as the response
variable and the correct temperature as the independent variable.

Solution The analysis consists of estimating the regression equation for
both types of devices, and then performing the hypotheses tests to determine
whether β1 = 1 and β0 = 0. Abbreviated output from PROC REG of the SAS
System for the two devices is shown in Table 7.8. Note that the analyses as-
sume the straight line (linear) regression models are adequate. The reader is
encouraged to perform the lack of fit test, which will support this assump-
tion. Obviously the regressions are significant, but our primary focus is on the
regression coefficients. The tests for the hypotheses β1 = 1 and β0 = 0 are
identified as Test: BIAS SLO and Test: BIAS INT, respectively. We see
that both hypotheses are rejected for device A but not for device B. Thus
it would appear that device B is unbiased and therefore accurate. Our first
inclination might be to recommend device B.

Table 7.7

Temperature Readings
for Two Devices

Correct Readings for Device
Temperature A B

50 50.2 50.4 50.4 49.6 49.9 50.1
70 70.3 70.1 69.9 71.0 70.2 69.2
90 89.6 89.3 89.8 89.1 89.7 90.1
110 109.1 109.2 109.3 110.0 111.1 109.2
130 128.7 129.1 129.1 131.2 131.5 128.9
150 148.5 148.5 148.9 151.2 150.2 149.4
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Table 7.8 Comparing Two Temperature Measuring Devices

DEVICE = A
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB > F

MODEL 1 20270.44876 20270.44876 588361.332 0.0001
ERROR 16 0.55124 0.03445
C TOTAL 17 20271.00000

PARAMETER ESTIMATES
PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB > |T|

INTERCEP 1 1.219048 0.13535109 9.007 0.0001
TEMP 1 0.982476 0.00128086 767.047 0.0001

DEPENDENT VARIABLE: READING
TEST: BIAS SLO

NUMERATOR: 6.4488 DF: 1 F VALUE: 187.1790
DENOMINATOR: 0.034452 DF: 16 PROB > F: 0.0001

DEPENDENT VARIABLE: READING
TEST: BIAS INT

NUMERATOR: 2.7947 DF: 1 F VALUE: 81.1181
DENOMINATOR: 0.034452 DF: 16 PROB > F: 0.0001

DEVICE = B
ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB > F

MODEL 1 21220.57619 21220.57619 31905.881 0.0001
ERROR 16 10.64159 0.66510
C TOTAL 17 21231.21778

PARAMETER ESTIMATES
PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB > |T|

INTERCEP 1 -0.434921 0.59469645 -0.731 0.4752
TEMP 1 1.005238 0.00562773 178.622 0.0001

DEPENDENT VARIABLE: READING
TEST: BIAS SLO

NUMERATOR: 0.5762 DF: 1 F VALUE: 0.8663
DENOMINATOR: 0.665099 DF: 16 PROB > F: 0.3658

DEPENDENT VARIABLE: READING
TEST: BIAS INT

NUMERATOR: 0.3557 DF: 1 F VALUE: 0.5348
DENOMINATOR: 0.665099 DF: 16 PROB > F: 0.4752
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Scatterplots of
Differences

Looking more closely at the parameter estimates, we see that the estimated
slope for device A is only 0.0052 units too high, whereas that for device B is
0.0175 units too low. In other words although device A has been shown to be
biased, the estimate of the bias (β̂1 − 1.0) has a value smaller than that for
device B. The reason for the apparent contradiction is that the standard error
of the estimated coefficient is much smaller for device A than for device B,
resulting in an inflated test statistic. The same applies to the intercept. Note
that the square root of the MSE for device A is 0.186, while that for device B is
0.8155, almost five times larger.

What we have here, then, is that device A is biased, but much more precise,
while device B is apparently not biased9 but has much less precision. This is
shown in Fig. 7.8, which gives the scatterplots for the differences between the
reading and the true temperatures for the two devices. Clearly, readings for
device A have much less variability but are biased, while those for device B
have more variability but are not biased. Now in many cases it is not difficult
to recalibrate a device, and if this can be done, device A is a clear winner.
However, even if that is not possible, device A may yet be chosen because, as
the reader may wish to calculate, the 0.95 prediction interval will always be
closer to the true line for device A than that for device B. ■

7.6 Using the Computer

Most statistical calculations, and especially those for regression analyses, are
performed on computers. The formulas needed for manual computation of
estimates and other inferences are presented in this chapter primarily as a
pedagogical device and will not often be used in practice.

As we have noted, most regression analyses are performed by comput-
ers using preprogrammed computing software packages. Virtually all such
programs for regression analysis are written for a wide variety of analyses of

9Remember that we have not accepted the null hypothesis that the device is unbiased.
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Table 7.9

Computer Output for
Home Price Regression

Dependent Variable: price
Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 71534 71534 184.62 <.0001
Error 56 21698 387.46904
Corrected Total 57 93232

Root MSE 19.68423 R-Square 0.7673
Dependent Mean 111.03445 Adj R-Sq 0.7631
Coeff Var 17.72804

Parameter Estimates
Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 5.43157 8.19061 0.66 0.5100
Size 1 56.08328 4.12758 13.59 <.0001

which simple linear regression is only a special case. This means that these
programs provide options and output statistics that may not be useful for this
simple case. The computer output for the regression of selling prices of houses
on dwelling square feet, produced by the SAS System PROC REG, is given in
Table 7.9. There are three sections of this output. The first refers to the par-
titioning of the sums of squares and the analysis of variance (Table 7.4). The
various portions of the output are reasonably well labeled, but we see that the
nomenclature is not exactly as we have described in the text.

The second portion contains some miscellaneous statistics:

Root MSE, the residual standard deviation,
R-square, the coefficient of determination (Section 7.7),
Dependent mean, the mean of the dependent variable,
Coeff var, the coefficient of variation, which is the residual standard

deviation divided by the mean of the dependent variable, and
Adj R-sq, a variant of the coefficient of determination, which is useful for

multiple-regression models (see Chapter 8).

The last portion of the output contains statistics associated with the re-
gression coefficients, which are called here Parameter Estimates. Each
line contains statistics for one coefficient, which is identified at the beginning
of the line: Intercept refers to β̂0 and Size, the name of the independent
variable, refers to β̂1. The column headings identify the statistics, which are
self-explanatory. Note that the output gives the standard error and test for zero
value of the intercept. The reader should compare all of these results with those
given in previous sections. Programs such as this one usually have a number
of options for additional statistics and further analyses. For example, options
specifying the predicted and residual values and the 95% confidence intervals
for the conditional mean produce the results shown in Table 7.10. Note that
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Table 7.10 Home Prices Regression: Predicted and Residual Values and Confidence Limits

Dep Var Predicted Std Error
Obs price Value Mean Predict 95% CL Mean Residual

1 30.0000 58.7668 4.6344 49.4828 68.0507 -28.7668
2 39.9000 63.5338 4.3476 54.8245 72.2432 -23.6338
3 46.5000 43.3439 5.6124 32.1008 54.5869 3.1561
4 48.6000 87.0888 3.1283 80.8221 93.3556 -38.4888
5 51.5000 71.9463 3.8673 64.1991 79.6936 -20.4463
6 56.9900 87.0888 3.1283 80.8221 93.3556 -30.0988
7 59.9000 82.1535 3.3464 75.4498 88.8572 -22.2535
8 62.5000 61.1783 4.4882 52.1874 70.1693 1.3217
9 65.5000 71.3855 3.8982 63.5766 79.1944 -5.8855
10 69.0000 73.6288 3.7761 66.0643 81.1934 -4.6288
11 76.9000 84.5090 3.2391 78.0203 90.9976 -7.6090
12 79.0000 80.8075 3.4102 73.9760 87.6389 -1.8075
13 79.9000 65.1042 4.2553 56.5799 73.6285 14.7958
14 79.9500 104.6990 2.6264 99.4377 109.9603 -24.7490
15 82.9000 90.9025 2.9792 84.9344 96.8706 -8.0025
16 84.9000 103.5773 2.6423 98.2842 108.8705 -18.6773
17 85.0000 70.0395 3.9728 62.0809 77.9981 14.9605
18 87.9000 104.6990 2.6264 99.4377 109.9603 -16.7990
19 89.9000 96.5108 2.7970 90.9078 102.1138 -6.6108
20 89.9000 91.7998 2.9469 85.8964 97.7033 -1.8998
21 93.5000 91.3512 2.9629 85.4157 97.2866 2.1488
22 94.9000 97.8007 2.7621 92.2676 103.3338 -2.9007
23 95.8000 80.8075 3.4102 73.9760 87.6389 14.9925
24 98.5000 92.3607 2.9273 86.4965 98.2248 6.1393
25 99.5000 103.6895 2.6406 98.3997 108.9792 -4.1895
26 99.9000 86.7523 3.1423 80.4575 93.0472 13.1477
27 102.0000 79.0128 3.4978 72.0059 86.0198 22.9872
28 106.0000 97.1838 2.7784 91.6180 102.7497 8.8162
29 108.9000 89.5565 3.0297 83.4872 95.6257 19.3435
30 109.9000 106.3815 2.6073 101.1585 111.6044 3.5185
31 110.0000 116.0278 2.6107 110.7980 121.2576 -6.0278
32 112.2900 83.2191 3.2972 76.6141 89.8241 29.0709
33 114.9000 122.1970 2.7121 116.7640 127.6299 -7.2970
34 119.5000 . . . . .
35 119.9000 143.5647 3.5231 136.5070 150.6224 -23.6647
36 119.9000 149.6778 3.8431 141.9792 157.3763 -29.7778
37 122.9000 123.9355 2.7535 118.4195 129.4516 -1.0355
38 123.9380 118.4955 2.6424 113.2022 123.7887 5.4425
39 124.9000 109.2978 2.5878 104.1138 114.4818 15.6022
40 126.9000 155.1739 4.1513 146.8578 163.4900 -28.2739
41 129.9000 136.4421 3.1902 130.0514 142.8328 -6.5421
42 132.9000 116.4765 2.6155 111.2370 121.7160 16.4235
43 134.9000 144.6863 3.5797 137.5153 151.8574 -9.7863
44 135.9000 162.9695 4.6141 153.7262 172.2127 -27.0695
45 139.5000 119.6171 2.6607 114.2870 124.9472 19.8829
46 139.9900 134.3109 3.1008 128.0992 140.5227 5.6791
47 144.9000 119.7293 2.6627 114.3953 125.0633 25.1707
48 147.6000 138.3489 3.2744 131.7895 144.9084 9.2511
49 149.9900 169.2508 5.0038 159.2270 179.2747 -19.2608

(Continued)
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Table 7.10 (continued)

Dep Var Predicted Std Error
Obs Price Value Mean Predict 95% CL Mean Residual

50 152.5500 132.2919 3.0213 126.2396 138.3443 20.2581
51 156.9000 143.1721 3.5036 136.1536 150.1906 13.7279
52 164.0000 142.0504 3.4484 135.1425 148.9583 21.9496
53 167.5000 113.1115 2.5892 107.9247 118.2982 54.3885
54 169.9000 170.8212 5.1031 160.5984 181.0439 -0.9212
55 175.0000 191.0672 6.4323 178.1817 203.9528 -16.0672
56 179.0000 162.7452 4.6005 153.5293 171.9610 16.2548
57 179.9000 148.6122 3.7854 141.0291 156.1952 31.2878
58 189.5000 146.2006 3.6577 138.8733 153.5279 43.2994
59 199.0000 208.8456 7.6486 193.5236 224.1676 -9.8456

Sum of residuals 0
Sum of squared residuals 21698
Predicted residual SS (PRESS) 23201

Note. The observation with the missing space value is shown. An interesting feature of PROC REG is that if the only dependent
variable is missing, the program will provide a predicted value and confidence interval. Also the values of the confidence limits for
the first home are somewhat different from those obtained above. The difference is due to round-off, which is more pronounced
with manual calculations.

Table 7.11

Minitab Output for
Goose Departure Data

The regression equation is
C1 = -19.7” + ”1.68 C2

Predictor Coef Stdev t- ratio p

Constant −19.667 2.605 −7.55 0.000
C2 1.6806 0.2325 7.23 0.000
s = 9.959 R-sq = 59.2% R-sq(adj) = 58.1%

Analysis of Variance
SOURCE DF SS MS F p

Regression 1 5181.2 5181.2 52.24 0.000
Error 36 3570.4 99.2
Total 37 8751.6

in addition to the requested statistics, a summary, showing that the sum of
residuals is indeed zero and that the sum of squared residuals is the same as
that computed by the partitioning of sums of squares as seen in Table 7.9, is
given. The statistic labeled PRESS is briefly discussed in Chapter 8.

There are, of course, other computer programs for performing statistical
analyses. One that is often used as an adjunct to statistics classes is Minitab.
Table 7.11 reproduces the output from theREGRESS statement available in this
package using the snow geese data presented in Example 7.3. In this output, the
variableC1 is time andC2 is temperature, which are default variable names that
may be changed by the user with additional programming. It is readily seen that
the format of the output is somewhat different from that in Table 7.9, but it does
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provide essentially the same information. Obviously, the results are identical
to those obtained in the original presentation of the example (Table 7.6).

The SAS System requires the submission of a program, which consists of a
set of written instruction that requests certain actions by the software. The in-
creasing use of Windows operating systems has given rise to software that use
menus and the “point and click” approach to perform statistical analyses. Typ-
ically such software provides a menu of analysis options from which a choice
is made by a point and click. This produces another menu for specifying the
variables to be used and additional menus for specifying other analysis and
output options. Final results are, of course, equivalent. This approach is indeed
very convenient and avoids the consequences of typographical or other syntax
errors. On the other hand, it does not provide the flexibility of the program
approach.

Another differences among packages is the default for output options. The
SAS System, for example, provides relatively minimal output as the default;
additional outputs must be specified as options. Other packages may have a
fixed output with no options, while yet others may require specifications of
output that are not desired.

7.7 Correlation

The purpose of a regression analysis is to estimate the response variable y for
a specified value of the independent variable x. Not all relationships between
two variables lend themselves to this type of analysis. For example, if we have
data on the verbal and quantitative scores on a college entrance exam, we are
not usually interested in estimating or predicting one score from another, but
are simply interested in ascertaining the strength of the relationship between
the two scores.

DEFINITION 7.2
The correlation coefficient, measures the strength of the linear rela-
tionship between two quantitative (usually ratio or interval) variables.

The correlation coefficient has the following properties:

1. Its value is between +1 and −1 inclusive.
2. Values of +1 and −1 signify an exact positive and negative relationship,

respectively, between the variables. That is, a plot of the values of x and y

exactly describes a straight line with a positive or negative slope depending
on the sign.

3. A correlation of zero indicates no linear relationship exists between the
two variables. This condition does not, however, imply that there is no
relationship since correlation does not measure the strength of curvilinear
relationships.
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4. The correlation coefficient is symmetric with respect to x and y. It is thus a
measure of the strength of a linear relationship regardless of whether x or
y is the independent variable.

The population correlation coefficient is denoted by ρ. An estimate of ρ may
be obtained from a sample of n pairs of observed values of the two variables
by Pearson’s product moment correlation coefficient, denoted by r. Using the
notation of this chapter, this estimate is

r =
∑

(x − x̄)(y − ȳ)√∑
(x − x̄)2

∑
(y − ȳ)2

= Sxy√
SxxSyy

.

The sample correlation coefficient is also a useful statistic in a regression
analysis. If we compute the square of r, called “r-square,” we get

r 2 = (Sxy)2

SxxSyy

.

In Section 7.4 we determined that TSS = Syy and that SSR = (Sxy)2

Sxx
. Therefore

it can be seen that

r 2 = SSR/TSS.

In this context the value of r2 is known as the coefficient of determination,
and is a measure of the relative strength of the corresponding regression.
It is therefore widely used to describe the effectiveness of linear regression
models. In fact, r2 is interpreted as the proportional reduction of total variation
associated with the regression on x. It can also be shown that

F = MSR
MSE

= (n − 2)r2

(1 − r2)
,

where F is the F statistic from the analysis of variance test for the hypothesis
that β1 = 0. This relationship shows that large values of the correlation coef-
ficient generate large values of the F statistic, both of which imply a strong
linear relationship.

For the home price data, the correlation is computed using quantities pre-
viously obtained for the regression analysis

r = 1275.494√
(22.743)(93232.142)

= 1275.494
1456.152

= 0.876.

Equivalently, from Table 7.4 the ratio of SSR to TSS is 0.7673, for which the
square root is 0.876, which is the same result. Thus, as noted above,r2 = 0.7673,
indicating that approximately 77% of the variation in home prices can be
attributed to the linear relationship to space.
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The sampling distribution of r cannot be used directly for testing of non-
zero values or computing confidence intervals for ρ. Therefore, these tasks are
performed by an approximate procedure. The Fisher z transformation states
that the random variable

z′ = 1/2 loge

[
1 + r

1 − r

]
is an approximately normally distributed variable with mean

1/2 loge

[
1 + ρ

1 − ρ

]
and variance of [1/(n− 3)]. The use of this transformation for hypothesis test-
ing is quite straightforward, but the inversion of the transformation required for
computing confidence intervals is easiest done using special tables (e.g., Neter
et al., 1996, Table B.8).

A confidence interval is obtained by first computing the interval using the
z′ statistic

z′ ± zα/2

√
1

n − 3

and using the aforementioned table to obtain the interval for ρ.

EXAMPLE 7.5 The correlation between scores on a traditional aptitude test and scores on
a final test is known to be approximately 0.6. A new aptitude test has been
developed and is tried on a random sample of 100 students, resulting in a
correlation of 0.65. Does this result imply that the new test is better?

Solution The question is answered by testing the hypotheses

H0: ρ = 0.6,

H1: ρ > 0.6.

Substituting 0.65 forr in the formula for z′ gives the value 0.775; substituting the
null hypothesis value of 0.6 provides the value 0.693, and the standard error
[1/

√
n − 3] = 0.101. Substituting these in the standard normal test statistic

gives the value 0.81, which does not lead to rejection (one-sided p value is
0.3783).

We can now calculate a 95% confidence interval on ρ. The necessary quan-
tities have already been computed; that is, z′ = 0.775 and the standard error is
0.101. Assuming a two-sided 0.05 interval, zα/2 = 1.96 and the interval is from
0.576 to 0.973. The aforementioned table provides the corresponding values of
ρ, which are 0.52 and 0.75. Thus we are 0.95 confident that the true correlation
between the scores on the new aptitude test and the final test is between 0.52
and 0.75. ■
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7.8 Regression Diagnostics

In Section 7.2 we listed the assumptions necessary to assure the validity of the
results of a regression analysis and noted that these are essentially the ones
that have been used since Chapter 4.10 As we will see in Chapter 11, this is due
to the fact that all of these methods are actually based on linear models.

Violations of these assumptions occur more frequently with regression than
with the analysis of variance because regression analyses are often applied to
data from operational studies, secondary data, or data that simply “occur.”
These sources of data may be subject to more unknown phenomena than are
found in the results of experiments. In this section we present some diagnostic
tools that may assist in detecting such violations, and some suggestions on
remedial steps if violations are found. (Additional methodology is presented
in Section 8.9.)

In order to carry out these diagnostics, we rearrange assumptions 1, 3, and
4 into four categories that correspond to different diagnostic tools. Violations
of assumption 2 (independent errors) occur primarily in studies of time series,
which is a topic beyond the scope of this book. See, for example, Freund and
Wilson (1998, Section 4.5). The four categories are as follows:

1. The model has been properly specified.
2. The variance of the residuals is σ 2 for all observations.
3. There are no outliers, that is, unusual observations that do not fit in with

the rest of the observations.
4. The error terms are at least approximately normally distributed.

If the model is not correctly specified, the analysis is said to be subject to spec-
ification error. This error most often occurs when the model should contain
additional parameters. It can be shown that a specification error causes esti-
mates of the variance as well as the regression coefficients to be biased, and
since the bias is a function of the unknown additional parameters, the magni-
tude of the bias is not known. A common example of a specification error is
for the model to describe a straight line when a curved line should be used.

The assumption of equal variances is, perhaps, the one most frequently
violated in practice. The effect of this type of violation is that the estimates of
the variances for estimated means and predicted values will be incorrect. The
use of transformations for this type of violation was presented in Section 6.4.
However, the use of such transformations for regression analysis also changes
the nature of the model (an extensive discussion of this topic along with an
example is given in Section 8.6). Other remedies include the use of weighted
least squares (Section 11.7) and robust estimation, which are beyond the scope
of this book (see, for example, Koopmans, 1987).

10Not discussed here is the assumption that x is fixed and measured without error. Although this
is an important assumption, it is not very frequently violated to the extent that it would greatly
influence the results of the analysis. Also diagnostic and remedial methods for violations of this
assumption are beyond the scope of this book (Seber, 1977).
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Outliers or unusual observations may be considered a special case of un-
equal variances, but outliers can cause biased estimates of coefficients as well
as incorrect estimates of the variance. It is, however, very important to em-
phasize that simply discarding observations that appear to be outliers is not
good statistical practice. Since any of these violations of assumptions may
cast doubt on estimates and inferences, it is important to see whether such
violations may have occurred.

A popular tool for detecting violations of assumptions is an analysis of
the residuals. Recall that the residuals are the differences between the actual
observed yvalues and the estimated conditional means, μ̂y|x, that is, (y−μ̂y|x).
An important part of an analysis of residuals is a residual plot, which is a
scatterplot featuring the individual residual values (y − μ̂y|x) on the vertical
axis and either the predicted values (μ̂y|x) or x values on the horizontal axis.
(See Fig. 7.9.) Occasionally residuals may also be plotted against possible
candidates for additional independent variables.

Additional analyses of residuals consist of using descriptive methods,
especially the exploratory data analysis techniques such as stem and leaf or box
plots described in Chapter 1. Virtually all computer programs for regression
provide for the relatively easy implementation of such analyses. Other methods
particularly useful for more complicated models are introduced in Section 8.9.

To examine the assumption of normality, we use the Q–Q plot discussed
in Section 4.5 and a box plot using the residuals. The Q–Q and box plots for
house prices are given in Fig. 7.10.

These three plots do not suggest that any of the assumptions are violated,
even though the Q–Q plot does look a little suspicious. It is, however, im-
portant to note that the absence of such patterns does not guarantee that
there are no violations. For example, outliers may sometimes “pull” the re-
gression line toward themselves, resulting in a biased estimate of that line
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and consequently showing relatively small residuals for those observations.
Additional techniques for the detection and treatment of the violations of as-
sumptions are given in Chapter 8, especially Section 8.9.

We illustrate residual plots for some typical violations of assumptions in
Figures 7.11, 7.12, and 7.13. For our first example we have generated a set of
artificial data using the model

y = 4 + x − 0.1x2 + ε,

where ε is a normally distributed random variable with mean zero and standard
deviation of 0.5. (Implementation of such models is presented in Section 8.6.)
This model describes a downward curving line. However, assume we have
used an incorrect model,

y = β0 + β1x + ε,

which describes a straight line. The plot of residuals against predicted y, shown
in Fig. 7.11, shows a curvature pattern typical of this type of misspecification.
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For the second example we have generated data using the model

y = x + ε,

where the standard deviation of ε increases linearly with μy|x. The resulting
residuals, shown in Fig. 7.12, show a pattern often described as “fan shaped,”
which clearly shows larger magnitudes of residuals associated with the larger
values of μ̂y|x.

For the last example we have generated data using the model

y = x + ε,

where the standard deviation of ε is 0.5, but two values of yare 1.5 units (or 6σ )
too large. These two observations are outliers, since they are approximately
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three standard deviations above the mean (zero) of the residuals. The residual
plot is given in Fig. 7.13. The two very large residuals clearly show on this plot.

EXAMPLE 6.5 REVISITED The purpose of the experiment resulting in the data for
Example 6.5 was to relate display space to sales of apples in stores. The anal-
ysis of variance showed that display space did affect apple sales and the use
of orthogonal polynomial contrasts showed that a quadratic trend was appro-
priate to describe the relationship. Can we use the methods of this chapter to
analyze the data?

Solution This data set can also be used for a regression. Using the 20
pairs of observed values of SPACE (the independent variable) and SALES (the
dependent variable) we obtain the simple linear regression

SAL̂ES = 0.459 + 0.0216 · (SPACE).

The sum of squares due to regression is 0.4674, which is seen to agree with the
sum of squares for the linear orthogonal contrast (Table 6.14). The error mean
square is 0.0135, and the resulting F statistic is 33.766, easily rejecting the null
hypothesis of no linear regression. This F value is not the same as that obtained
for the linear contrast because the latter uses the within (or pure error, see Sec-
tion 6.5 on fitting trends) mean square in the denominator. The regression co-
efficient indicates an increase of 0.0216 lbs. of apples per square foot of space.

Of course, this regression implies a straight line relationship, while we
demonstrated in Chapter 6 that a quadratic model is necessary. In the regres-
sion context this misspecification can be verified by the plot of residuals from
the linear regression given in Fig. 7.14. The need for a curved line response is
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evident, although it is not particularly strong. As we have noted, this agrees
with the conclusions of the analysis presented in Chapter 6.

Note that the regression provides the sum of squares for the linear trend
obtained by the linear contrast in Section 6.5, reinforcing the statement that
these contrasts are indeed a form of regression. In fact, with most computer
programs, it is easier to obtain the sums of squares for trends by a regression
and the pure error by an analysis of variance and manually combine the results
for the lack of fit test. Additional examples are found in Chapter 9. ■

7.9 CHAPTER SUMMARY

Solution to Example 7.1 The effect of newspaper coverage of murder–
suicides by airplane crashes on the number of succeeding multiple fatality
crashes provides a relatively straightforward application of regression analy-
sis. Using a linear regression model with CRASH as the dependent variable and
INDEX as the independent variable produces the computer output using PROC
REG from the SAS System shown in Table 7.12.

The F value for testing the model is 10.053 and certainly implies that there
is a relationship between these variables and that the index can be used to
estimate or predict the number of crashes. The estimated prediction equation
is ̂CRASHES = 3.57 + 0.011 · INDEX.
This equation estimates about 3.6 crashes when there is no publicity, with
about one additional crash for every 100 units of the publicity index.

Table 7.12

Regression for Airplane
Crash Data

Model: MODEL1
Dependent Variable: CRASH

Analysis of Variance
Sum of Mean

Source df Squares Square F Value Prob > F

Model 1 28.70256 28.70256 10.053 0.0063
Error 15 42.82685 2.85512
C Total 16 71.52941

Root MSE 1.68971 R-square 0.4013
Dep Mean 4.70588 Adj R-sq 0.3614

C.V. 35.90636

Parameter Estimates
Parameter Standard T for H0:

Variable df Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 3.574149 0.54346601 6.577 0.0001
INDEX 1 0.010870 0.00342825 3.171 0.0063
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The relatively low value of the coefficient of determination suggests that
considerable variation remains in crashes not explained by the model. A plot of
prediction intervals (not given here) confirms this result. The residual plot,
given in Fig. 7.15, does not indicate any obvious violations of assumptions. ■

The linear regression model,

y = β0 + β1x + ε,

is used as the basis for establishing the nature of a relationship between values
of an independent or factor variable, x, and values of a dependent or response
variable, y. The model specifies that y is a random variable with a mean that
is linearly related to x and has a variance specified by the random variable ε.

The first step in a regression analysis is to use n pairs of observed x and y

values to obtain least squares estimates of the model parameters β0 and β1.
The next step is to estimate the variance of the random error. This quantity

is defined as the variance of the residuals from the regression but is computed
from a partitioning of sums of squares. This partitioning is also used for the
test of the null hypothesis that the regression relationship does not exist.

An alternate and equivalent test for the hypothesis β1 = 0 is provided by a
t statistic, which can be used for one-tailed tests and to test for any specified
value of β1 and to construct a confidence interval.

Inferences on the response variable include confidence intervals for the
conditional mean as well as prediction intervals for a single observation.

The correlation coefficient is a measure of the strength of a linear rela-
tionship between two variables. This measure is also useful when there is no
independent/dependent variable relationship. The square of the correlation
coefficient is used to describe the effectiveness of a linear regression.

As for most statistical analyses, it is important to verify that the assumptions
underlying the model are fulfilled. Of special importance are the assumptions
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of proper model specification, homogeneous variance, and lack of outliers.
In regression, this can be accomplished by examining the residuals. Additional
methods are provided in Chapter 8.

7.10 CHAPTER EXERCISES

CONCEPT

QUESTIONS

For the following true/false statements regarding concepts and uses of simple
linear regression analysis, indicate whether the statement is true or false and
specify what will correct a false statement.

1. The need for a nonlinear regression can only be deter-
mined by a lack of fit test.

2. The correlation coefficient indicates the change in y

associated with a unit change in x.

3. To conduct a valid regression analysis, both x and y must
be approximately normally distributed.

4. Rejecting the null hypothesis of no linear regression im-
plies that changes in x cause changes in y.

5. In linear regression we may extrapolate without danger.

6. If x and y are uncorrelated in the population, the
expected value of the estimated linear regression coefficient (slope) is
zero.

7. If the true regression of y on x is curvilinear, a linear
regression still provides a good approximation to that relationship.

8. The x values must be randomly selected in order to use
a regression analysis.

9. The error or residual sum of squares is the numerator
portion of the formula for the variance of y about the regression line.

10. The term μ̂y|x serves as the point estimate for estimating
both the mean and individual prediction of y for a given x.

11. Useful prediction intervals for y can be obtained from a
regression analysis.

12. In a regression analysis, the estimated mean of the dis-
tribution of y is the sample mean (ȳ).

13. All data points will fit the regression line exactly if the
sample correlation is either +1 or −1.

14. The prediction interval for y is widest when x is at its
mean.
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15. The standard error of the estimated slope of a regression
model becomes larger as the dispersion of x increases.

16. When there is no linear relationship between two vari-
ables, a horizontal regression line best describes the relationship.

17. If r > 0, then as x increases, y tends to increase.

18. If a regression line is computed for data where x ranges
from 0 to 30, you may safely predict y for x = 40.

19. The correlation coefficient can be used to detect any
relationship between two variables.

20. If r is very close to either +1 or −1, then there is a cause
and effect relationship between x and y.

EXERCISES Note: Exercises 1 through 5 contain very few observations and are suitable for
manual computation, which can be checked against computer outputs. The
remainder of the problems are best performed by a computer.

1. The data of Table 7.13 represent the thickness of oxidation on a metal
alloy for different settings of temperature in a curing oven. The values of
temperature have been coded so that zero is the “normal” temperature,
which makes manual computation easier.
(a) Calculate the estimated regression line to predict oxidation based on

temperature. Explain the meaning of the coefficients and the variance
of residuals.

(b) Calculate the estimated oxidation thickness for each of the tempera-
tures in the experiment.

(c) Calculate the residuals and make a residual plot. Discuss the distribu-
tion of residuals.

(d) Test the hypothesis that β1 = 0, using both the analysis of variance and
t tests.

Table 7.13

Data for Exercise 1

Oxidation Temperature

4 −2
3 −1
3 0
2 1
2 2

2. The data of Table 7.14 show the sugar content of a fruit (Sugar) for different
numbers of days after picking (Days).
(a) Obtain the estimated regression line to predict sugar content based on

the number of days the fruit is left on the tree.
(b) Calculate and plot the residuals against days. Do the residuals suggest

a fault in the model?

3. The grades for 15 students on midterm and final examinations in an
English course are given in Table 7.15.
(a) Obtain the least-squares regression to predict the score on the final

examination from the midterm examination score. Test for significance
of the regression and interpret the results.

(b) It is suggested that if the regression is significant, there is no need to
have a final examination. Comment. (Hint: Compute one or two 95%
prediction intervals.)

Table 7.14

Data for Exercise 2

Days Sugar

0 7.9
1 12.0
3 9.5
4 11.3
5 11.8
6 11.3
7 4.2
8 0.4
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Table 7.15

Data for Exercise 3

Midterm Final

82 76
73 83
95 89
66 76
84 79
89 73
51 62
82 89
75 77
90 85
60 48
81 69
34 51
49 25
87 74

Table 7.16

Data for Exercise 4

x y

−1 7
−1 3
−1 6
−1 6
−1 7
−1 4
−1 2

1 5
1 8
1 12
1 8
1 6
1 8
1 9

(c) Plot the estimated line and the actual data points. Comment on these
results.

(d) Predict the final score for a student who made a score of 82 on the
midterm. Check this calculation with the plot made in part (c).

(e) Compute r and r2 and compare results with the partitioning of sums
of squares in part (a).

4. Given the values in Table 7.16 for the independent variable xand dependent
variable y:
(a) Perform the linear regression of y on x. Test H0: β1 = 0.
(b) Note that half of the observations have x = −1 and the rest have

x = +1. Does this suggest an alternate analysis? If so, perform such
an analysis and compare results with those of part (a).

5. It is generally believed that taller persons make better basketball players
because they are better able to put the ball into the basket. Table 7.17 lists
the heights of a sample of 25 nonbasketball athletes and the number of
successful baskets made in a 60-s time period.
(a) Perform a regression relating Goals to Height to ascertain whether

there is such a relationship and, if there is, estimate the nature of that
relationship.

(b) Estimate the number of goals to be made by an athlete who is 60 in.
tall. How much confidence can be assigned to that estimate?

6. Table 7.18 gives latitudes (Lat) and the mean monthly range (Range) be-
tween mean monthly maximum and minimum temperatures for a selected
set of U.S. cities.
(a) Perform a regression using Range as the dependent and Lat as the inde-

pendent variable. Does the resulting regression make sense? Explain.
(b) Compute the residuals; find the largest positive and negative residuals.

Do these residuals suggest a pattern? Describe a phenomenon that may
explain these residuals.

7. In an effort to determine the cost of air conditioning, a resident in College
Station, TX, recorded daily values of the variables

Tavg = mean temperature
Kwh = electricity consumption

for the period from September 19 through November 4 (Table 7.19).
(a) Make a scatterplot to show the relationship of power consumption and

temperature.
(b) Using the model

Kwh = β0 + β1(Tavg) + ε,

estimate the parameters, test appropriate hypotheses, and write a short
paragraph stating your findings.

(c) If you are doing this with a computer, make a residual plot to see
whether the model appears to be appropriately specified.
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Table 7.17

Data for Exercise 5:
Basket Goals

Obs Height Goals

1 71 15
2 74 19
3 70 11
4 71 15
5 69 12
6 73 17
7 72 15
8 75 19
9 72 16

10 74 18
11 71 13
12 72 15
13 73 17
14 72 16
15 71 15
16 75 20
17 71 15
18 75 19
19 78 22
20 79 23
21 72 16
22 75 20
23 76 21
24 74 19
25 70 13

8. In Example 5.1 we posed the question of whether audit fees charged by
the Big Eight accounting firms were higher than those charged by others.
Perform separate regressions using the audit fee as the dependent variable
and population as the independent variable for the cities using the Big Eight
and the other cities. Does this analysis shed any light on the question of
audit fees for the two groups? (A formal test to answer this question can
be obtained by methods presented in Chapter 11.)

9. It has been argued that many cases of infant mortality rates are caused by
teenage mothers who, for various reasons, do not receive proper prenatal
care. From the Statistical Abstract of the United States we have statistics
on the teenage birth rate (per 1000) and the infant mortality rate (per 1000
live births) for the 48 contiguous states. The data are given in Table 7.20,
where Teen denotes the birthrate for teenage mothers and Mort denotes
the infant mortality rate.
(a) Perform a regression to estimate Mort using Teen as the independent

variable. Do the results confirm the stated hypothesis? Interpret the
results.

(b) Construct a residual plot. Comment on the results.

10. In Exercise 13 of Chapter 1, the half-life of aminoglycosides was measured
on 43 patients given either Amikacin or Gentamicin. The data are repro-
duced in different form in Table 7.21.
(a) Perform a regression to estimate HALF-LIFE using DO MG KG for

each type of drug separately. Do the drugs seem to have parallel re-
gression lines (a formal test for parallelism is presented in Chapter
11)?

(b) Perform the appropriate inferences on both lines to determine whether
the relationship between half-life and dosage is significant. Use α =
0.05. Completely explain your results.

(c) Draw a scatter diagram of HALF-LIFE versus DO MG KG indexed by
type of drug (use A’s and G’s). Draw the regression lines obtained in
part (a) on the same graph.

11. An experimenter is testing a new pressure gauge against a standard (a
gauge known to be accurate) by taking three readings each at 50, 100, 150,
200, and 250 lbs./in.2. The purpose of the experiment is to ascertain the
precision and accuracy of the new gauge. The data are shown in Table 7.22.

As we saw in Example 7.4 both precision and accuracy are impor-
tant factors in determining the effectiveness of a measuring instrument.
Perform the appropriate analysis to determine the effectiveness of this
instrument. However, this device has a shortcoming of a slightly different
nature. Perform the appropriate analyses to find the shortcoming.

12. Instructors often suspect that the better students finish tests early. To test
this hypothesis an instructor noted both the order (ORDER) and actual
time (TIMES) in which students in three sections (SECTN) of a class,
numbering 29, 28, and 28 students, respectively, handed in a particular test.
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Table 7.18

Data for Exercise 6:
Latitudes and
Temperature Ranges for
U.S. Cities

City State Lat Range City State Lat Range

Montgome AL 32.3 18.6 Tuscon AZ 32.1 19.7
Bishop CA 37.4 21.9 Eureka CA 40.8 5.4
San Dieg CA 32.7 9.0 San Fran CA 37.6 8.7
Denver CO 39.8 24.0 Washington DC 39.0 24.0
Miami FL 25.8 8.7 Talahass FL 30.4 15.9
Tampa FL 28.0 12.1 Atlanta GA 33.6 19.8
Boise ID 43.6 25.3 Moline IL 41.4 29.4
Ft wayne IN 41.0 26.5 Topeka KS 39.1 27.9
Louisv KY 38.2 24.2 New Orl LA 30.0 16.1
Caribou ME 46.9 30.1 Portland ME 43.6 25.8
Alpena MI 45.1 26.5 St cloud MN 45.6 34.0
Jackson MS 32.3 19.2 St Louis MO 38.8 26.3
Billings MT 45.8 27.7 N PLatte NB 41.1 28.3
L Vegas NV 36.1 25.2 Albuquer NM 35.0 24.1
Buffalo NY 42.9 25.8 NYC NY 40.6 24.2
C Hatter NC 35.3 18.2 Bismark ND 46.8 34.8
Eugene OR 44.1 15.3 Charestn SC 32.9 17.6
Huron SD 44.4 34.0 Knoxvlle TN 35.8 22.9
Memphis TN 35.0 22.9 Amarillo TX 35.2 23.7
Brownsvl TX 25.9 13.4 Dallas TX 32.8 22.3
SLCity UT 40.8 27.0 Roanoke VA 37.3 21.6
Seattle WA 47.4 14.7 Grn bay WI 44.5 29.9
Casper WY 42.9 26.6

Table 7.19

Data for Exercise 7:
Heating Costs

Mo Day Tavg Kwh Mo Day Tavg Kwh

9 19 77.5 45 10 13 68.0 50
9 20 80.0 73 10 14 66.5 37
9 21 78.0 43 10 15 69.0 43
9 22 78.5 61 10 16 70.5 42
9 23 77.5 52 10 17 63.0 25
9 24 83.0 56 10 18 64.0 31
9 25 83.5 70 10 19 64.5 31
9 26 81.5 69 10 20 65.0 32
9 27 75.5 53 10 21 66.5 35
9 28 69.5 51 10 22 67.0 32
9 29 70.0 39 10 23 66.5 34
9 30 73.5 55 10 24 67.5 35
10 1 77.5 55 10 25 75.0 41
10 2 79.0 57 10 26 75.5 51
10 3 80.0 68 10 27 71.5 34
10 4 79.0 73 10 28 63.0 19
10 5 76.0 57 10 29 60.0 19
10 6 76.0 51 10 30 64.0 30
10 7 75.5 55 10 31 62.5 23
10 8 79.5 56 11 1 63.5 35
10 9 78.5 72 11 2 73.5 29
10 10 82.0 73 11 3 68.0 55
10 11 71.5 69 11 4 77.5 56
10 12 70.0 38
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Table 7.20

Data for Exercise 9:
Birth Rate Statistics

State Teen Mort State Teen Mort State Teen Mort

AL 17.4 13.3 MA 8.3 8.5 OH 13.3 10.6
AR 19.0 10.3 MD 11.7 11.7 OK 15.6 10.4
AZ 13.8 9.4 ME 11.6 8.8 OR 10.9 9.4
CA 10.9 8.9 MI 12.3 11.4 PA 11.3 10.2
CO 10.2 8.6 MN 7.3 9.2 RI 10.3 9.4
CT 8.8 9.1 MO 13.4 10.7 SC 16.6 13.2
DE 13.2 11.5 MS 20.5 12.4 SD 9.7 13.3
FL 13.8 11.0 MT 10.1 9.6 TN 17.0 11.0
GA 17.0 12.5 NB 8.9 10.1 TX 15.2 9.5
IA 9.2 8.5 NC 15.9 11.5 UT 9.3 8.6
ID 10.8 11.3 ND 8.0 8.4 VA 12.0 11.1
IL 12.5 12.1 NH 7.7 9.1 VT 9.2 10.0
IN 14.0 11.3 NJ 9.4 9.8 WA 10.4 9.8
KS 11.5 8.9 NM 15.3 9.5 WI 9.9 9.2
KY 17.4 9.8 NV 11.9 9.1 WV 17.1 10.2
LA 16.8 11.9 NY 9.7 10.7 WY 10.7 10.8

Table 7.21

Half-Life of
Aminoglycosides: By
Dosage and Drug Type

Drug = Amikacin Drug = Gentamicin

Half-Life DO MG KG Half-Life DO MG KG

2.50 7.90 1.60 2.10
2.20 8.00 1.90 2.00
1.60 8.30 2.30 1.60
1.30 8.10 2.50 1.90
1.20 8.60 1.80 2.00
1.60 7.60 1.70 2.86
2.20 6.50 2.86 2.89
2.20 7.60 2.89 2.96
2.60 10.00 1.98 2.86
1.00 9.88 1.93 2.86
1.50 10.00 1.80 2.86
3.15 10.29 1.70 3.00
1.44 9.76 1.60 3.00
1.26 9.69 2.20 2.86
1.98 10.00 2.20 2.86
1.98 10.00 2.40 3.00
1.87 9.87 1.70 2.86
2.31 10.00 2.00 2.86
1.40 10.00 1.40 2.82
2.48 10.50 1.90 2.93
2.80 10.00 2.00 2.95
0.69 10.00

The dependent variable is the students’ average grade (AVERG) at the end
of the semester. The data for this exercise are found on the data disk in file
FW07P12. For each section as well as for the entire data set perform the
regression of final average on both time and order. Do the results confirm
instructors’ impressions?
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Table 7.22

Calibration Data for
Exercise 7.11

Standard Gauge 50 100 150 200 250

New gauge 48 100 154 201 247
44 100 154 200 245
46 106 154 205 246

13. Use all of the home data given in Table 1.2 to do a regression of price
on space. Plot the residuals vs the predicted values and comment on the
effect the higher priced homes have on the assumptions. Construct a Q–Q
plot for the residuals. Does the normality assumption appear to be satisfied
with the entire data set? Does the cost per square foot change a lot? What
might be the cause of this change?



Chapter 8

Multiple Regression

EXAMPLE 8.1 What Factors Win Baseball Games? The game of baseball generates an
unbelievable amount of descriptive statistics. Although most of us give these
statistics only casual scrutiny, baseball managers may find them quite useful
tools for analyzing team performance and consequently implementing policies
to improve their team’s standing.

Table 8.1 shows some summary statistics about the 10 National League base-
ball teams for the 1965 through 1968 seasons (Reichler, 1985). The variables
collected for this study are

YEAR: the season: 1965–1968,
WIN: the team’s winning percentage,
RUNS: the number of runs scored by the team,
BA: the team’s overall batting percentage,
DP: the total number of double plays,
WALK: the number of walks given to the other team, and
SO: the number of strikeouts by the team’s pitcher.

Obviously the study of the relationships among several variables is much more
complicated than that between two variables discussed in Chapter 7. How-
ever, it is still useful to examine graphically the relationships among the pairs
of variables in this example. Figure 8.1 is a “table” of scatterplots among all
pairs of variables in Example 8.1 produced by SAS/INSIGHT. The entries in the
diagonal elements (top left to bottom right) identify the variable in the scatter-
plots on the corresponding rows and columns and the numbers in the corners
show the minimum and maximum values of those variables. For example, the
first scatterplot in the first row is that between WIN on the vertical axis and

333
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Table 8.1

Winning Baseball Games

OBS YEAR WIN RUNS BA DP WALK SO

1 1965 0.599 608 0.245 135 425 1079
2 1965 0.586 682 0.252 124 408 1060
3 1965 0.556 675 0.265 189 469 882
4 1965 0.549 825 0.273 142 587 1113
5 1965 0.531 708 0.256 145 541 996
6 1965 0.528 654 0.250 153 466 1071
7 1965 0.497 707 0.254 152 467 916
8 1965 0.444 635 0.238 166 481 855
9 1965 0.401 569 0.237 130 388 931

10 1965 0.309 495 0.221 153 498 776
11 1966 0.586 606 0.256 128 356 1064
12 1966 0.578 675 0.248 131 359 973
13 1966 0.568 759 0.279 215 463 898
14 1966 0.537 696 0.258 147 412 928
15 1966 0.525 782 0.263 139 485 884
16 1966 0.512 571 0.251 166 448 892
17 1966 0.475 692 0.260 133 490 1043
18 1966 0.444 612 0.255 126 391 929
19 1966 0.410 587 0.239 171 521 773
20 1966 0.364 644 0.254 132 479 908
21 1967 0.627 695 0.263 127 431 956
22 1967 0.562 652 0.245 149 453 990
23 1967 0.540 702 0.251 143 463 888
24 1967 0.537 604 0.248 124 498 1065
25 1967 0.506 612 0.242 174 403 967
26 1967 0.500 679 0.277 186 561 820
27 1967 0.475 631 0.240 148 449 862
28 1967 0.451 519 0.236 144 393 967
29 1967 0.426 626 0.249 120 485 1060
30 1967 0.377 498 0.238 147 536 893
31 1968 0.599 583 0.249 135 375 971
32 1968 0.543 599 0.239 125 344 942
33 1968 0.519 612 0.242 149 392 894
34 1968 0.512 690 0.273 144 573 963
35 1968 0.500 514 0.252 139 362 871
36 1968 0.494 583 0.252 162 485 897
37 1968 0.469 470 0.230 144 414 994
38 1968 0.469 543 0.233 163 421 935
39 1968 0.451 473 0.228 142 430 1014
40 1968 0.444 510 0.231 129 479 1021

RUNS on the horizontal axis, and the values of the variable WIN range from
0.309 to 0.627 and RUNS ranges from 470 to 825. Note that each scatterplot is
reproduced twice with the axes interchanged.

In this example the focus is on determining the effects of the independent
variables (RUNS, BA, DP, WALK, SO) on the winning percentages (WIN). This
means that we are interested in the relationships depicted in the first row (or
column) of scatterplots. These appear to indicate moderately strong positive
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Figure 8.1

Scatterplots of Variables
in Example 8.1

relationships of WIN to RUNS, BA, and SO, which appear reasonable. However,
looking at the other scatterplots, we see a very strong positive relationship
between RUNS and BA. This raises the question whether either or both are
responsible for increased winning percentages, since these two variables are
closely related. There is also a relatively strong negative relationship between
WALK and SO. Could this relationship possibly change the effect of either on
the winning percentages?

We will see that multiple regression analysis is designed to help answer these
questions. However, because the interplay of so many variables can be very
complex, the answers are not always as clear as we would like them to be. The
solution to this example is provided in Section 8.10. ■

Notes on Exercises

Computations for all exercises in this chapter require statistical software. In
most cases, the same program used for the exercises in Chapter 7 will suffice,
the only difference being that more than one independent variable must be
specified. After Section 8.2, Exercise 1 can be worked, using software options
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for the various outputs requested in that exercise. Referring to those outputs
will help in understanding the material in Sections 8.1 through 8.4. Section 8.4
is a short review of the interpretation of computer outputs, after which all other
assigned exercises except 8.7, 8.9, and 8.10 can be worked. These exercises
can be worked after covering Section 8.6.

8.1 The Multiple Regression Model

In Chapter 7 we observed that the simple linear regression model

y = β0 + β1x + ε,

which relates observed values of the dependent or response variable y to
values of a single independent variable x, had limited practical application.
The extension of this model to allow a number of independent variables is
called a multiple linear regression model. The multiple regression model
is written

y = β0 + β1x1 + β2x2 + · · · + βm xm + ε.

As in simple linear regression, y is the dependent or response variable, and
the xi, i = 1, 2, . . . , m, are the m independent variables. The βi are the (m)
parameters or regression coefficients, one for each independent variable, and
β0 is the intercept. Also as in simple linear regression, ε is the random error.

The model is called linear regression because the model is linear in the
parameters; that is, the coefficients (βi) are simple (linear) multipliers of the
independent variables and the error term (ε) is added (linearly) to the model.
As we will see later, the model need not be linear in the independent variables.
Although the model contains (m + 1) parameters, it is often referred to as
an m-variable model since the intercept coefficient does not correspond to a
variable in the usual sense.

We have already alluded to applications of multiple regression models in
Chapter 7. Some other applications include the following:

• A refinement of the fertilizer application example in Section 6.2, which
relates yield to amounts applied of the three major fertilizer components:
nitrogen, phosphorous, and potash.

• The number of “sick days” of school children is related to various charac-
teristics such as waist circumference, height, weight, and age.

• Students’ performances are related to scores on a number of different apti-
tude or mental ability tests.

• Amount of retail sales by an appliance manufacturer is related to expendi-
tures for radio, television, newspaper, magazine, and direct mail advertising.

• Daily fuel consumption for home heating or cooling is related to tempera-
ture, cloud cover, and wind velocity.

In many ways, multiple regression is a relatively straightforward extension
of simple linear regression. All assumptions and conditions underlying simple
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linear regression as presented in Chapter 7 remain essentially the same. The
computations are more involved and tedious but computers have made these
easier. The use of matrix notation and matrix algebra (Appendix B) makes
the computations easier to understand and also illustrates the relationship
between simple and multiple linear regression.

The potentially large number of parameters in a multiple linear regression
model makes it useful to distinguish three different but related purposes for
the use of this model:

1. To estimate the mean of the response variable (y) for a given set of values
for the independent variables. This is the conditional mean, μy|x, presented
in Section 7.4, and estimated by μ̂y|x. For example, we may want to estimate
the mean fuel consumption for a day having a given set of values for the
climatic variables. Associated with this purpose of a regression analysis is
the question of whether all of the variables in the model are necessary to
adequately estimate this mean.

2. To predict the response of a single unit for a given set of values of the
independent variables. The point estimate is μ̂y|x, but, because we are not
estimating a mean, we will denote this predicted value by ŷ.

3. To evaluate the relationships between the response variable and the indi-
vidual independent variables. That is, to make practical interpretations on
the values of the regression coefficients, the βi. For example, what would
it mean if the coefficient for temperature in the above fuel consumption
example were negative?

The Partial Regression Coefficient

The interpretation of the individual regression coefficients gives rise to an
important difference between simple and multiple regression. In a multiple
regression model the regression parameters, βi, called partial regression co-
efficients, are not the same, either computationally or conceptually, as the
so-called total regression coefficients obtained by individually regressing y

on each x.

DEFINITION 8.1
The partial regression coefficients obtained in a multiple regression
measure the change in the average value of y associated with a unit
change in the corresponding x, holding constant all other variables.

This means that normally the individual coefficients of an m-variable multiple
regression model will not have the same values nor the same interpretations
as the coefficients for the m separate simple linear regressions involving the
same variables. Many difficulties in using and interpreting the results of mul-
tiple regression arise from the fact that the definition of “holding constant,”
related to the concept of a partial derivative in calculus, is somewhat difficult
to understand.

For example, in the application on estimating sick days of school children,
the coefficient associated with the height variable measures the increase in
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sick days associated with a unit increase in height for a population of children
all having identical waist circumference, weight, and age. In this application,
the total and partial coefficients for height would differ because the total coeffi-
cient for height would measure not only the effect of height, but also indirectly
measure the effect of the other related variables.

The application on estimating fuel consumption provides a similar sce-
nario: The total coefficient for temperature would indirectly measure the effect
of wind and cloudcover. Again this coefficient will differ from the partial re-
gression coefficient because cloud cover and wind are often associated with
lower temperatures.

We will see later that the inferential procedures for the partial coefficients
are constructed to reflect this characteristic. We will also see that these infer-
ences and associated interpretations are often made difficult by the existence
of strong relationships among the several independent variables, a condition
known as multicollinearity (Section 8.7).

Do We Really Need to Study Formulas? All multiple regression analy-
ses are now performed with computers and all examples in this chapter are
illustrated with computer outputs. It would therefore seem that the only peo-
ple who need to know something about the formulas for doing these analyses
are professional statisticians and computer programmers who write regres-
sion programs. However, we provide these formulas here in order to provide
a feel for how multiple regression results are actually obtained and thus make
the computer and its software look less like a magic box that somehow di-
gests the data and provides all the necessary answers. We suggest verifying
manually some of the computational procedures, although they should not be
memorized with the idea that they will be extensively used.

Because the use of multiple regression models entails many different as-
pects, this chapter is quite long. Section 8.2 presents the procedures for esti-
mating the coefficients, and Section 8.3 presents the procedure for obtaining
the error variance and the inferences about model parameter and other esti-
mates. Section 8.4 contains brief descriptions of correlations that describe the
strength of linear relationships involving several variables. Section 8.5 provides
some ideas on computer usage and presents computer outputs for examples
used in previous sections. The last four sections deal with special models and
problems that arise in a regression analysis.

8.2 Estimation of Coefficients

In Chapter 7, we showed that the least squares estimates of the parameters of
the simple linear regression model are obtained by the solutions to the normal
equations:

β0n + β1
∑

x = ∑
y,

β0
∑

x + β1
∑

x2 = ∑
xy.
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Since there are only two equations in two unknowns, the solutions can be
expressed in closed form, that is, as simple algebraic formulas involving the
sums, sums of squares, and sums of products of the observed data values of
the two variables x and y. These formulas are also used for the partitioning of
sums of squares and the resulting inference procedures.

For the multiple regression model with m partial coefficients plus β0 the
least squares estimates are obtained by solving the following set of (m + 1)
normal equations in (m+ 1) unknown parameters:

β0n + β1
∑

x1 + β2
∑

x2 + · · · + βm

∑
xm = ∑

y,

β0
∑

x1 + β1
∑

x2
1 + β2

∑
x1x2 + · · · + βm

∑
x1xm = ∑

x1 y,

β0
∑

x2 + β1
∑

x2x1 + β2
∑

x2
2 + · · · + βm

∑
x2xm = ∑

x2 y,
. . . . . . . . .

β0
∑

xm + β1
∑

xm x1 + β2
∑

xm x2 + · · · + βm

∑
x2

m = ∑
xmy.

The solution to these normal equations provides the estimated coefficients,
which are denoted by β̂0, β̂1, . . . , β̂m. This set of equations is a straightforward
extension of the set of two equations for the simple linear regression model.
However, because of the large number of equations and variables, it is not
possible to obtain simple formulas that directly compute the estimates of the
coefficients as we did for the simple linear regression model in Chapter 7.
In other words, the system of equations must be specifically solved for each
application of this method. Although procedures are available for performing
this task with hand-held or desk calculators, the solution is almost always
obtained by computers using methods beyond the scope of this book. We do,
however, need to represent symbolically the solutions to the set of equations.
This is done with matrices and matrix notation.

Appendix B contains a brief introduction to matrix notation and the use of
matrices for representing operations involving systems of linear equations. We
will not actually be performing many matrix calculations; however, an under-
standing and appreciation of this material will make more understandable
the material in the remainder of this chapter (as well as that of Chapter 11).
Therefore, it is recommended Appendix B be reviewed before continuing.

Simple Linear Regression with Matrices

Estimating the coefficients of a simple linear regression produces a system of
two equations in two unknowns, which can be solved explicitly and therefore
do not require the use of matrix expressions. However, matrices can be used
and we will do so here to illustrate this method.

Recall from Chapter 7 that the simple linear regression model for an indi-
vidual observation is

yi = β0 + β1xi + εi, i = 1, 2, . . . , n.
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Using matrix notation, the regression model is written

Y = XB + E,

where Y = n× 1 matrix1 of observed values of the dependent variable y; X =
n × 2 matrix in which the first column consists of a column of ones2 and the
second column contains the values of the independent variable x; B = 2 × 1
matrix of the two parameters β0; and β1, and E = n× 1 matrix of the n values
of the random error εi.

Placing these matrices in the above expression results in the matrix
equation ⎡⎢⎢⎢⎣

y1

y2
...

yn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 x1

1 x2
...

...

1 xn

⎤⎥⎥⎥⎦ ·
[
β0

β1

]
+

⎡⎢⎢⎢⎣
ε1

ε2
...

εn

⎤⎥⎥⎥⎦.
Using the principles of matrix multiplication, we can verify that any row of
the resulting matrices reproduces the simple linear regression model for an
observation:

yi = β0 + β1xi + εi.

We want to estimate the parameters of the regression model resulting in the
estimating equation

M̂y|x = XB̂,

where M̂y|x is an n × 1 matrix of the μ̂y|x values, and B̂ is the 2 × 1 matrix of
the estimated coefficients β̂0 and β̂1. The set of normal equations that must be
solved to obtain the least squares estimates is

(X′X)B̂ = X′Y,

where

X′X =
[

1 1 . . . 1
x1 x2 . . . xn

]
·

⎡⎢⎢⎢⎣
1 x1

1 x2
...

...

1 xn

⎤⎥⎥⎥⎦ =
[

n
∑

x∑
x

∑
x2

]
,

X′Y =
[

1 1 . . . 1
x1 x2 . . . xn

]
·

⎡⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎦ =
[ ∑

y∑
xy

]
.

1We use the convention that a matrix is denoted by the capital letter of the elements of the matrix.
Unfortunately, the capital letters corresponding to β and μ are almost indistinguishable from B

and M.
2This column may be construed as representing values of an artificial or dummy variable associated
with the intercept coefficient, β0.
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The equations can now be written[
n

∑
x∑

x
∑

x2

]
·
[
β̂0

β̂1

]
=
[∑

y∑
xy

]
.

Again, using the principles of matrix multiplication, we can see that this ma-
trix equation reproduces the normal equations for simple linear regression
(Section 7.3). The matrix representation of the solution of the normal equa-
tions is

B̂ = (X′X)−1X′Y.

Since we will have occasion to refer to individual elements of the matrix
(X′X)−1, we will refer to it as the matrix C, with the subscripts of the ele-
ments corresponding to the regression coefficients. Thus

C =
[

c00 c01

c10 c11

]
.

The solution can now be represented by the matrix equation

B̂ = CX′Y.

For the one-variable regression, the X′X matrix is a 2×2 matrix and, as we have
noted in Appendix B, the inverse of such a matrix is not difficult to compute.
Define the matrix

A =
[

a11 a12

a21 a22

]
.

Then the inverse is

A−1 =
⎡⎣ a22

k

−a12
k

−a21
k

a11
k

⎤⎦,

where k = a11a22 − a12a21. Substituting the elements of X′X, we have

(X′X−1) = C =
⎡⎣
∑

x2

k

−∑ x

k

−∑ x

k

n

k

⎤⎦,

where k = n
∑

x2 − (
∑

x)2 = nSxx. Multiplying the matrices to obtain the
estimates,

B̂ = (X′X)−1X′Y =
⎡⎣
∑

x2 ∑ y

nSxx
+ −∑ x

∑
xy

nSxx

−∑ x
∑

y

nSxx
+ n

∑
xy

nSxx

⎤⎦.
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The second element of B̂ is

n
∑

xy −∑
x
∑

y

nSxx

=
∑

xy − (
∑

x
∑

y/n)
Sxx

= Sxy

Sxx

,

which is the formula for β̂1 given in Section 7.3. A little more algebra (which is
left as an exercise for those who are so inclined) shows that the first element
is (ȳ − β̂1x̄), which is the formula for β̂0.

We illustrate the matrix approach with the home price data used to illustrate
simple linear regression in Chapter 7 (data in Table 7.2). The data matrices
(abbreviated to save space) are

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.951
1 1.036
1 0.676
1 1.456
1 1.186
...

...

1 1.920
1 2.949
1 3.310
1 2.805
1 2.553
1 2.510
1 3.627

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

30.0
39.9
46.5
48.6
51.5

...

167.5
169.9
175.0
179.0
179.9
189.5
199.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using the transpose and multiplication rules,

X′X =
[

58 109.212

109.212 228.385

]
, and X′Y =

[
6439.998

13401.788

]
.

The elements of these matrices are the uncorrected or uncentered sums of
squares and cross products of the variables x and y and the “variable” repre-
sented by the column of ones. For this reason the matrices X′X and X′Y are
often referred to as the sums of squares and cross-products matrices. Note
that X′X is symmetric. The inverse is

(X′X)−1 = C =
[

0.17314 −0.08279

−0.08279 0.04397

]
,

which can be verified using the special inversion method for a 2 × 2 matrix, or
multiplying X′X by (X′X)−1, which will result in an identity matrix (except for
round-off error). Finally,

B̂ = (X′X)−1X′Y =
[

5.4316

56.0833

]
,

which reproduces the estimated coefficients obtained using ordinary algebra
in Section 7.3.
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Estimating the Parameters of a Multiple Regression Model

The use of matrix methods to estimate the parameters of a simple linear re-
gression model may appear to be a rather cumbersome method for getting the
same results obtained in Section 7.3. However, if we define the matrices X and
B as

X =

⎡⎢⎢⎣
1 x11 x12 · · · x1m

1 x21 x22 · · · x2m

· · · · · · ·
1 xn1 xn2 · · · xnm

⎤⎥⎥⎦, and B =

⎡⎢⎢⎢⎢⎣
β0

β1

β2

·
βm

⎤⎥⎥⎥⎥⎦,

then the multiple regression model,

y = β0 + β1x1 + β2x2 + · · · + βm xm + ε,

can be expressed as

Y = XB + E,

and the parameter estimates as

B̂ = (X′X)−1X′Y.

Note that these expressions are valid for a multiple regression with any num-
ber of independent variables. That is, for a regression with m independent
variables, the X matrix has n rows and (m + 1) columns. Consequently, ma-
trices B and X′Y are of order [(m+ 1) × 1] and X′X and (X′X)−1 are of order
[(m+ 1) × (m+ 1)].

The procedure for obtaining the estimates of the parameters of a multiple
regression model is thus a straightforward application of using matrices to
show the solution of a set of linear equations. First compute the X′X matrix

X′X =

⎡⎢⎢⎢⎢⎢⎣
n

∑
x1

∑
x2 · · · ∑

xm∑
x1

∑
x2

1

∑
x1x2 · · · ∑

x1 xm∑
x2

∑
x2x1

∑
x2

2 · · · ∑
x2 xm

· · · · · · ·∑
xm

∑
xmx1

∑
xmx2 · · · ∑

x2
m

⎤⎥⎥⎥⎥⎥⎦,

that is, the matrix of sums of squares and cross products of all the independent
variables. Next compute the X′Y matrix

X′Y =

⎡⎢⎢⎢⎢⎢⎢⎣

∑
y∑

x1 y∑
x2 y
...∑
xmy

⎤⎥⎥⎥⎥⎥⎥⎦.
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The next step is to compute the inverse of X′X. As we indicated earlier, we do
not present here a procedure for this task; instead we assume the inverse has
been obtained by a computer, which also provides the estimates by the matrix
multiplication

B̂ = (X′X)−1X′Y = CX′Y,

where, as previously noted, C = (X′X)−1.

Correcting for the Mean, an Alternative Calculating Method

Recall that the formula for simple linear regression in Chapter 7 used two steps
to calculate the estimates of the regression coefficients. That is, the centered
or “corrected” sums of squares and cross products was used to calculate β̂1,
and β̂0 was obtained by a separate calculation that involved β̂1. This approach
can also be used for multiple regression. If we define the elements of X′X, X′Y,
and Y′Y as the corresponding corrected sums of squares and cross products
(omitting the elements corresponding to the column of ones in X) and compute
the coefficients as shown in the preceding, then B̂ is the m×1 matrix containing
all of the coefficients except β̂0. The intercept is calculated separately as

β̂0 = ȳ − β̂1x̄1 − β̂2x̄2 − · · · − β̂m x̄m.

This method actually corresponds to the usual statistical analyses where the
focus is on parameters other than the mean or intercept. In fact using the
matrices of corrected sums of squares and cross products was the standard
procedure for doing multiple regression calculations before computers. This
was because the matrix elements were usually of smaller magnitudes and the
order of the matrix to be inverted was one less, which resulted in a moderate
saving of calculation time. However, when using computers, it is easier to use
the variable represented by the column of ones to incorporate the intercept
into the calculation for all coefficients, and is therefore the method we present
here.

EXAMPLE 8.2 In Example 7.2 we showed how home prices can be estimated using infor-
mation on sizes by the use of linear regression. We noted that although the
regression was significant, the error of estimation was too large to make the
model useful.

It was suggested that the use of other characteristics of houses could make
such a model more useful.

Solution In Chapter 7 we used size as the single independent variable in
a simple linear regression to estimate price. To illustrate multiple regression
we will estimate price using the following five variables:

age: age of home, in years,
bed: number of bedrooms,
bath: number of bathrooms,
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size: size of home in 1000 ft2, and
lot: size of lot in 1000 ft2.

In terms of the mnemonic variable names, the model is written

price = β0 + β1(age) + β2(bed) + β3(bath) + β4(size) + β5(lot) + ε.

The data for this example are shown in Table 8.2. Note that there is one ob-
servation that has no data for size as well as several observations with no
data on lot. Because these observations cannot be used for this regression,
the model will be applied to the remaining 51 observations.

Figure 8.2 is a scatterplot matrix of the variables involved in this regression
using the same format as in Figure 8.1, except that the dependent variable is in
the last row and column. The only strong relationship appears to be between
price and size, and there are weaker relationships among size, bed, bath,
and price.

The first step is to compute the sums of squares and cross products needed
for the X′X and X′Y matrices. Note that for this purpose the X matrix must
contain the column of ones, the dummy variable used for the intercept. Since
most computer programs automatically generate this variable, it is not usually
listed as part of the data. The results of these computations are shown in the
top half of Table 8.3. Normally the intermediate calculations presented in this
table are not printed by most software and are available with special options
invoked here with PROC REG of the SAS System. In this table, each element is
the sum of products of the variables listed in the row and column headings.
For example, the sum of products of lot and size is 3558.9235. Note that the
first row and column, labeled intercept, correspond to the column of ones
used to estimate β0, and the last row and column, labeled price, correspond
to the dependent variable. Thus the first six rows and columns are X′X, the first
six rows of the last column comprise X′Y, the first six columns of the last row
comprise Y′X while the last element is Y′Y, which is the sum of squares of the
dependent variable price. Note also that the sum of products of intercept
and another variable is the sum of values of that variable; the first element is
the number of observations used in the analysis, which we have noted is only
51 because of the missing data.

As we have noted, the elements of X′X and X′Y comprise the coefficients
of the normal equations. Specifically, the first equation is

51β0 + 1045β1 + 162β2 + 109β3 + 96.385β4 + 1708.838β5 = 5580.958.

The other equations follow.
The inverse as well as the solution of the normal equations comprise the

second half of Table 8.3. Again the row and column variable names identify
the elements. The first six rows and columns are the elements of the inverse,
(X′X)−1, which we also denote by C. The first six rows of the last column are
the matrix of the estimated coefficients (B̂), the first six columns of the last
row are the transpose of the matrix of coefficient estimates (B̂′), and the last
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Table 8.2

Data on Home Prices for
Multiple Regression

Obs age bed bath size lot price

1 21 3 3.0 0.951 64.904 30.000
2 21 3 2.0 1.036 217.800 39.900
3 7 1 1.0 0.676 54.450 46.500
4 6 3 2.0 1.456 51.836 48.600
5 51 3 1.0 1.186 10.857 51.500
6 19 3 2.0 1.456 40.075 56.990
7 8 3 2.0 1.368 . 59.900
8 27 3 1.0 0.994 11.016 62.500
9 51 2 1.0 1.176 6.256 65.500
10 1 3 2.0 1.216 11.348 69.000
11 32 3 2.0 1.410 25.450 76.900
12 2 3 2.0 1.344 . 79.000
13 25 2 2.0 1.064 218.671 79.900
14 31 3 1.5 1.770 19.602 79.950
15 29 3 2.0 1.524 12.720 82.900
16 16 3 2.0 1.750 130.680 84.900
17 20 3 2.0 1.152 104.544 85.000
18 18 4 2.0 1.770 10.640 87.900
19 28 3 2.0 1.624 12.700 89.900
20 27 3 2.0 1.540 5.679 89.900
21 8 3 2.0 1.532 6.900 93.500
22 19 3 2.0 1.647 6.900 94.900
23 3 3 2.0 1.344 43.560 95.800
24 5 3 2.0 1.550 6.575 98.500
25 5 4 2.0 1.752 8.193 99.500
26 27 3 1.5 1.450 11.300 99.900
27 33 2 2.0 1.312 7.150 102.000
28 4 3 2.0 1.636 6.097 106.000
29 0 3 2.0 1.500 . 108.900
30 36 3 2.5 1.800 83.635 109.900
31 5 4 2.5 1.972 7.667 110.000
32 0 3 2.0 1.387 . 112.290
33 27 4 2.0 2.082 13.500 114.900
34 15 3 2.0 . 269.549 119.500
35 23 4 2.5 2.463 10.747 119.900
36 25 3 2.0 2.572 7.090 119.900
37 24 4 2.0 2.113 7.200 122.900
38 1 3 2.5 2.016 9.000 123.938
39 34 3 2.0 1.852 13.500 124.900
40 26 4 2.0 2.670 9.158 126.900
41 26 3 2.0 2.336 5.408 129.900
42 31 3 2.0 1.980 8.325 132.900
43 24 4 2.5 2.483 10.295 134.900
44 29 5 2.5 2.809 15.927 135.900
45 21 3 2.0 2.036 16.910 139.500
46 10 3 2.0 2.298 10.950 139.990
47 3 3 2.0 2.038 7.000 144.900
48 9 3 2.5 2.370 10.796 147.600
49 29 5 3.5 2.921 11.992 149.990
50 8 3 2.0 2.262 . 152.550
51 7 3 3.0 2.456 . 156.900
52 1 4 2.0 2.436 52.000 164.000

(Continued)
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Table 8.2 (continued) Obs age bed bath size lot price

53 27 3 2.0 1.920 226.512 167.500
54 5 3 2.5 2.949 11.950 169.900
55 32 4 3.5 3.310 10.500 175.000
56 29 3 3.0 2.805 16.500 179.000
57 1 3 3.0 2.553 8.610 179.900
58 1 3 2.0 2.510 . 189.500
59 33 3 4.0 3.627 17.760 199.000

51

age

0

5

bed

1

4.0

bath

1.0
3.627

size

0.676

269.599

lot

5.408

199.000

price

30.000

Figure 8.2

Scatterplot Matrix for
Home Price Data

element corresponding to the row and column labeled with the dependent
variable (price) is the residual sum of squares, which is defined in the next
section.

A sharp-eyed reader will see the number −2.476418E−6 in the second
column of row 6. This is shorthand for saying that the number is to be multiplied
by 10−6.
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Table 8.3 Matrices for Multiple Regression

The REG Procedure

Model Crossproducts X′X X′Y Y′Y
Variable Intercept age bed bath size lot price

Intercept 51 1045 162 109 96.385 1708.838 5580.958
age 1045 29371 3313 2199.5 1981.721 36060.245 112308.608
bed 162 3313 538 355 318.762 4981.272 18230.154
bath 109 2199.5 355 250 219.4685 3558.9235 12646.395
size 96.385 1981.721 318.762 219.4685 203.085075 2683.133101 11688.513058
lot 1708.838 36060.245 4981.272 3558.9235 2683.133101 202858.09929 165079.36843
price 5580.958 112308.608 18230.154 12646.395 11688.513058 165079.36843 690197.14064

X′X Inverse, Parameter Estimates, and SSE

Intercept 0.6510931798 −0.003058625 −0.130725187 −0.097462177 0.0383208773 −0.000527955 35.287921644
age −0.003058625 0.0001293154 0.0000396856 0.0006649237 −0.000558371 −2.476418E−6 −0.349804533
bed −0.130725187 0.0000396856 0.0640254429 −0.007028134 −0.03218064 0.0000709189 −11.23820158
bath −0.097462177 0.0006649237 −0.007028134 0.1314351128 −0.087657959 −0.00027108 −4.540152056
size 0.0383208773 −0.000558371 −0.03218064 −0.087657959 0.1328335042 0.0003475797 65.946466578
lot −0.000527955 −2.476418E−6 0.0000709189 −0.00027108 0.0003475797 8.2341898E−6 0.0620508107
price 35.287921644 −0.349804533 −11.23820158 −4.540152056 65.946466578 0.0620508107 13774.049724
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It is instructive to verify the calculation for the estimated coefficients. For
example, the estimated coefficient for age is

β̂1 = (−0.003058625)(5580.958) + (0.0001293154)(112308.608)

+ (0.0000396856)(18230.154) + (0.0006649237)(12646.3950)

+ (−0.000558371)(11688.513) + (−2.476418E−6)(165079.37)

= −0.349804.

If you try to verify this on a calculator, the result may differ due to round-off.
You may also wish to verify some of the other estimates.

We can now write the equations for the estimated regression:

ˆprice = 35.288 − 0.350(age) − 11.238(bed)

− 4.540(bath) + 65.946(size) + 0.062(lot).

This equation may be used to estimate the price for a home having specific
values for the independent variables, with the caution that these values are in
the range of the values observed in the data set. For example we can estimate
the price of the first home shown in Table 8.2 as

ˆprice = 35.288 − 0.349(21) − 11.238(3) − 4.540(3)

+ 65.946(0.951) + 0.062(64.904)

= 47.349,

or $47,349, compared to the actual price of $30,000.
The estimated coefficients are interpreted as follows:

• The intercept (β̂0 = 35.288) is the estimated mean price (in $1000) of a
home for which the values of all independent variables are zero. As in many
applications this coefficient has no practical value, but is necessary in order
to specify the equation.

• The coefficient for age (β̂1 = −0.350) estimates a decrease of $350 in the
average price for each additional year of age, holding constant all other
variables.

• The coefficient for bed (β̂2 = −11.238) estimates a decrease in price of
$11,238 for each additional bedroom, holding constant all other variables.

• The coefficient for bath (β̂3 = −4.540) estimates a decrease in price of
$4540 for each additional bathroom, holding constant all other variables.

• The coefficient for size (β̂4 = 65.946) estimates an increase in price of
$65.95 for each additional square foot of the home, holding constant all
other variables.

• The coefficient for lot (β̂5 = 0.062) estimates an increase in price of
62 cents for each additional square foot of lot, holding constant all other
variables.
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The coefficients for bed and bath appear to contradict expectations, as
one would expect additional bedrooms and bathrooms to increase the price
of a home. However, because these are partial coefficients, the coefficient
for bed estimates the change in price for an additional bedroom holding

constant size (among others). Now if you increase the number of bedrooms
without increasing the size of the home, the bedrooms are smaller and the home
seems more crowded and less attractive, hence a lower price. The reason for
a negative coefficient for bath is not as obvious.

The values of the partial coefficients are therefore generally different from
the corresponding total coefficients obtained with simple linear regression. For
example, the coefficient for size in the one variable regression in Chapter 7
was 56.083, which is certainly different from the value of 65.946 in the mul-
tiple regression. You may want to verify this for some of the other variables;
for example, the coefficient for the regression of price on bed will almost
certainly result in a positive coefficient.

Comparison of coefficients across variables can be made by the use of
standardized coefficients. These are obtained by standardizing all variables
to have mean zero and unit variance and using these to compute the regression
coefficients. However, they are more easily computed by the formula

β̂∗
i = β̂i

sxi

sy

,

where β̂i are the usual coefficient estimates, sxi
is the sample standard devia-

tion of xi, and sy is the standard deviation of y. This relationship shows that the
standardized coefficient is the usual coefficient multiplied by the ratio of the
standard deviations of xi and y. This coefficient shows the change in standard
deviation units of y associated with a standard deviation change in xi, holding
constant all other variables. Standardized coefficients are not often used and
are available as special options in most regression programs.

The standardized coefficients for Example 8.2 are shown here as provided
by the STB option of SAS System PROC REG:

Standardized
Variable Estimate

Intercept 0
age −0.11070
bed −0.19289
bath −0.06648
size 1.07014
lot 0.08399

The intercept is zero, by definition. We can now see that size has by far
the greatest effect, while bath and lot have the least. We will see, however,
that this does not necessarily translate into degree of statistical significance
(p value). ■
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8.3 Inferential Procedures

Having estimated the parameters of the regression model, the next step is to
perform the associated inferential procedures. As in simple linear regression,
the first step is to obtain an estimate of the variance of the random error ε,
which is required for performing these inferences.

Estimation of σ2 and the Partitioning of the Sums of Squares

As in the case of simple linear regression, the variance of the random error σ 2

is estimated from the residuals

s2
y|x = SSE

df
=
∑

(y − μ̂y|x)2

(n − m− 1)
,

where the denominator degrees of freedom (n−m− 1) = [n− (m+ 1)] results
from the fact that the estimated values, μ̂y|x, are based on (m+ 1) estimated
parameters: β̂0, β̂1, . . . , β̂m.

As in simple linear regression we do not compute the error sum of squares
by direct application of the above formula. Instead we use a partitioning of
sums of squares: ∑

y2 =
∑

μ̂2
y|x +

∑
(y − μ̂y|x)2.

Note that, unlike the partitioning of sums of squares for simple linear regres-
sion, the left-hand side is the uncorrected sum of squares for the dependent
variable.3 Consequently, the term corresponding to the regression sum of
squares includes the contribution of the intercept and is therefore not nor-
mally used for inferences (see the next subsection).

As with simple linear regression, a shortcut formula is available for the sum
of squares due to regression, which is then subtracted from

∑
y2 to provide

the error sum of squares. Also as in simple linear regression, several equivalent
forms are available for computing this quantity, which we will denote by SSR.
The most convenient for manual computing is

SSR = B̂′X′Y,

which results in the algebraic expression

SSR = β̂0

∑
y + β̂1

∑
x1 y + · · · + β̂m

∑
xmy.

3This way of defining these quantities corresponds to the use of matrices consisting of uncorrected
sums of squares and cross products with the column of ones for the intercept term. However,
using matrices with corrected sums of squares and cross products results in defining TSS and
SSR in a manner analogous to those shown in Chapter 7. These different definitions cause minor
modifications in computational procedures but the ultimate results are the same.
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Note that the individual terms are similar to SSR for the simple linear regres-
sion model; other equations for this quantity are

SSR = Y′X(X′X)−1X′Y = B̂′X′XB̂.

The quantities needed for the more convenient formula are available in
Table 8.3 as∑

y2 = 690,197.14,

SSR = (35.288)(5580.958) + (−0.3498)(112308.6) + (−11.2382)(18230.1)

+ (−4.5402)(12646.4) + (65.9465)(11688.5) + (0.06205)(165079.4)

SSR = 676,423.09;
hence by subtraction

SSE = 690,197.14 − 676,423.09 = 13,774.05.

This is the same quantity printed as the last element of the inverse matrix
portion of the output in Table 8.3. As in simple linear regression, it can also be
computed directly from the residuals, which are shown later in Table 8.6. The
error degrees of freedom are

(n − m− 1) = 51 − 5 − 1 = 45,

and the resulting mean square (MSE) provides the estimated variance

s2
y|x = 13774.05/45 = 306.09,

resulting in an estimated standard deviation of 17.495. This is somewhat
smaller than the value of 19.684, which was obtained in Chapter 7 using only
size as the independent variable. This relatively small decrease suggests that
the other variables may contribute only marginally to the fit of the regression
equation. The formal test for this is presented in the next subsection.

This estimated standard deviation is interpreted as it was in Section 1.5,
and is an often overlooked statistic for assessing the goodness of fit of a regres-
sion model. Thus if the distribution of the residuals is reasonably bell shaped,
approximately 95% of the residuals will be within two standard deviations of
the regression estimates. In the house prices data, the standard deviation is
17.495 ($17,495). Hence using the empirical rule, it follows that approximately
95% of homes are within 2($17,495) or within approximately $35,000 of the
values estimated by the regression model.

The Coefficient of Variation

In Section 1.5 we defined the coefficient of variation as the ratio of the
standard deviation to the mean expressed as a percentage. This measure can
also be applied as a measure of residual variation from an estimated regression
model. In the house prices example, the mean price of homes is $111,034, and
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the estimated standard deviation is $17,495; hence the coefficient of variation
is 0.1773, or 17.73%. Again, using the empirical rule, approximately 95% of
homes are priced within 35% of the value estimated by the regression model.
It should be noted that this statistic is useful primarily when the values of
the dependent variable do not span a large range relative to the mean and is
useless for variables that can take negative values.

Inferences for Coefficients

We have already noted that we do not get estimates of the partial coefficients
by performing m simple linear regressions using the individual independent
variables. Likewise we cannot do the appropriate inferences for the partial
coefficients by direct application of simple linear regression methods for the
individual coefficients.

Instead we will base our inferences on a general principle for testing hy-
potheses in a linear statistical model for which regression is a special case.

What we do is to define inferences for these parameters in terms of the
effect on the model of imposing certain restrictions on the parameters. The
following discussion explains this general principle, which is often called
the “general linear test.”

General Principle for Hypothesis Testing Consider two models: a full or
unrestricted model containing all parameters and a reduced or restricted

model, which places some restrictions on the values of some of these param-
eters. The effects of these restrictions are measured by the decrease in the
effectiveness of the restricted model in describing a set of data. In regression
analysis the decrease in effectiveness is measured by the increase in the error
sum of squares.

The most common inference is to test the null hypothesis that one or more
of the coefficients are restricted to a value of 0. This is equivalent to saying
that the corresponding independent variables are not used in the restricted
model. The measure of the reduction in effectiveness of the restricted model
is the increase in the error sum of squares (or, equivalently, the decrease in the
model sum of squares) due to imposing the restriction, that is, due to leaving
those variables out of the model.

In more specific terms the testing procedure is implemented as follows:

1. Divide the coefficients in B into two sets represented by matrices B1 and
B2. That is,

B =
⎡⎣ B1

- - -
B2

⎤⎦ .

We want to test the hypotheses

H0: B2 = 0,

H1: at least one element of B2 
= 0.
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Denote the number of coefficients in B1 by q and the number of coefficients
in B2 by p. Note that p + q = m+ 1. Since the ordering of elements in the
matrix of coefficients is arbitrary, B2 may contain any desired subset of the
entire set of coefficients.4

2. Perform the regression using all coefficients, that is, using the full model
Y = XB + E. The error sum of squares for the full model is SSE(B). As we
have noted, this sum of squares has (n − m− 1) degrees of freedom.

3. Perform the regression using only the coefficients in B1, that is, using the
restricted model Y = X1B1+E, which is the model specified by H0. The error
sum of squares for the restricted model is SSE(B1). This sum of squares has
(n − q) degrees of freedom.

4. The difference, SSE(B1)−SSE(B), is the increase in the error sum of squares
due to the restriction that the elements in B2 are zero. This is defined as the
partial contribution of the coefficients in B2. Since there are p coefficients
in B2, this sum of squares has p degrees of freedom, which is the difference
between the number of parameters in the full and reduced models. For any
model TSS = SSR + SSE; hence this difference can also be described as the
decrease in the regression (or model) sum of squares due to the deletion of
the coefficients in B2. Dividing the resulting sum of squares by its degrees
of freedom provides the corresponding mean square.

5. As before, the ratio of mean squares is the test statistic. In this case the
mean square due to the partial contribution of B2 is divided by the error
mean square for the full model. The resulting statistic is compared to the F

distribution with (p, n − m− 1) degrees of freedom.

We illustrate with the home prices data. We have already noted that the error
mean square for the five variable multiple regression was not much smaller
than that using only size. It is therefore reasonable to test the hypothesis
that the additional four variables do not contribute significantly to the fit of
the model. In other words, we want to test the hypothesis that the coefficients
for age, bed, bath, and lot are all zero.

Formally,

H0: βage = 0, βbed = 0, βbath = 0, β lot = 0,

H1: at least one coefficient is not 0.

Let

B1 =
[

β0

βsize

]
,

and

B2 =

⎡⎢⎢⎢⎣
βage

βbed

βbath

β lot

⎤⎥⎥⎥⎦.
4We seldom perform inferences on β0; hence this coefficient is normally included in B1.
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We have already obtained the full model error sum of squares:

SSE(B) = 13774.05 with 45 degrees of freedom.

The restricted model is the one obtained for the example in Chapter 7 that
used only size as the independent variable. However, we cannot use that
result directly because that regression was based on 58 observations while
the multiple regression was based on the 51 observations that had data on
lot and size. Redoing the simple linear regression with size using the 51
observations results in

SSE(B1) = 17253.47 with 49 degrees of freedom.

The difference

SSE(B1) − SS(B) = 17253.47 − 13774.05 = 3479.42 with 4 degrees of freedom

is the increase in the error sum of squares due to deleting age, bed, bath,
and lot from the model and is therefore the partial sum of squares due to
those four coefficients. The resulting mean square is 869.855. We use the error
mean square for the full model as the denominator for testing the hypothesis
that these coefficients are zero, resulting in F(4, 45) = 869.855/306.09 = 2.842.
The 0.05 critical value for that distribution is 2.58; hence we can reject the
hypothesis that all of these coefficients are zero.

Tests Normally Provided by Computer Outputs

Although most computer programs have provisions for requesting almost any
kinds of inferences on the regression model, most provide two sets of hypoth-
esis tests as default. These are as follows:

1. H0: (β1, β2, . . . , βm) = 0, that is, the hypothesis that the entire set of co-
efficients associated with the m independent variables is zero, with the
alternate being that any one or more of these coefficients are not zero. This
test is often referred to as the test for the model.

2. Hoj : β j = 0, j = 1, 2, . . . , m, that is, the m separate tests that each partial
coefficient is zero.

The Test for the Model The null hypothesis is

H0: (β1, β2, . . . , βm) = 0.

For this test then, the reduced model contains only β0. The model is

y = β0 + ε

or, equivalently,

y = μ + ε.

The parameter μ is estimated by the sample mean ȳ, and the error sum of
squares of this reduced model is

SSE(B1) =
∑

(y − ȳ)2 =
∑

y2 −
(∑

y

)2/
n,
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with (n − 1) degrees of freedom.5 The error sum of squares for the full model
is

SSE(B) =
∑

y2 − B̂′X′Y

and the difference yields

SSR(regression model) = B̂X′Y −
(∑

y

)2/
n,

which has mdegrees of freedom. Dividing by the degrees of freedom produces
the mean square, which is then divided by the error mean square to provide
the F statistic for the hypothesis test.

For the home price data the test for the model is

H0 :

⎡⎢⎢⎢⎢⎢⎣
βage

βbed

βbath

βsize

β lot

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0
0
0
0
0

⎤⎥⎥⎥⎥⎦ .

We have already computed the full model error sum of squares: 13,744.05.
The error sum of squares for the restricted model using the information from
Table 8.3 is

690197.14 − (5580.96)2/51 = 690194.14 − 610727.74 = 79,469.40,

the difference

SS(model) = 79,469.40 − 13,774.05 = 65,695.36 with 5 degrees of freedom,

resulting in a mean square of 13,139.07 with 5 degrees of freedom. Using the
full model error mean square of 306.09,

F(5, 45) = 42.926,

which easily leads to rejection of the null hypothesis and we can conclude that
at least one of the coefficients in the model is statistically significant.

Although we have presented this test in terms of the difference in error
sums of squares, it is normally presented in terms of the partitioning of sums
of squares as presented for simple linear regression in Chapter 7. In this pre-
sentation the total corrected sum of squares is partitioned into the model sum
of squares and error sum of squares. The test is, of course, the same.

For our example then, the total corrected sum of squares is∑
y2 −

(∑
y

)2/
n = 690197.14 − (5580.96)2/51 = 690197.14 − 610727.74

= 79,469.40,

which is, of course, the error sum of squares for the restricted model with
no coefficients (except the intercept). The full model error sum of squares is

5We can now see that what we have called the correction factor for the mean (Section 1.5) is really
a sum of squares due to the regression for the coefficient μ or, equivalently, β0.
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13,774.05; hence the model sum of squares is the difference, 65,695.34. The
results of this procedure are conveniently summarized in the familiar analysis
of variance table, which, for this example, is shown in the section dealing with
computer outputs (Table 8.6 in Section 8.5).

Tests for Individual Coefficients The testing of hypothesis on the indi-
vidual partial regression coefficients would seem to require the estimation of
mmodels, each containing (m− 1) coefficients. Fortunately a shortcut exists.

It can be shown that the partial sum of squares due to a single partial
coefficient, say, β j , can be computed

SSR(β j) = β̂2
j

/
c jj , j = 1, 2, . . . , m,

where c jj is the element on the main diagonal of C = (X′X)−1 corresponding
to the variable xj . This sum of squares has 1 degree of freedom. This can be
used for the test statistic

F =
(
β̂2

j

/
c jj

)
MSE

,

which has (1, n − m− 1) degrees of freedom.6

The estimated coefficients and diagonal elements of C = (X′X)−1 for the
home prices data are found in Table 8.3 as

age: β̂1 = −0.3498, c11 = 0.0001293,
bed: β̂2 = −11.2383, c22 = 0.064025,
bath: β̂3 = −4.5401, c33 = 0.131435,
size: β̂4 = 65.9465, c44 = 0.132834,
lot: β̂5 = −0.0621, c55 = 8.2341E−6.

The partial sums of squares and F statistics are

age: SS = (−0.3498)2/0.0001293 = 946.327, F = 946.327/306.09 = 3.091,
bed: SS = (−11.2383)2/0.64025 = 1972.657, F = 1972.657/306.09 = 6.445,
bath: SS = (−4.5401)2/0.131435 = 156.827, F = 156.827/306.09 = 0.512,
size: SS = (65.9465)2/0.132834 = 32739.7, F = 32739.7/306.09 = 106.961,
lot: SS = (0.06205)2/8.23418E − 6 = 467.60, F = 467.59/306.09 = 1.528.

The 0.05 critical value for F(1, 45) is 4.06, and we reject the hypotheses that
the coefficients for bed and size are zero, but cannot reject the correspond-
ing hypotheses for the other variables. This means that the readily explained
negative coefficient for bed really exists while evidence for the negative coef-
ficient for bath is not necessarily confirmed. Note that we can use this same
test for H0: β0 = 0, but because the intercept usually has no practical meaning,
the test is not often used, although it is normally printed in computer output.

Note that these partial sums of squares do not constitute a partitioning
of the model sum of squares. In other words, the sums of squares for the

6As labeled in Section 8.2, the first row and column of C = (X′X)−1 correspond to β0; hence
the row and column corresponding to the jth independent variable will be the ( j + 1)st row and
column, respectively. If the computer output uses the names of the independent variable (as in
Table 8.3), the desired row and column are easily located.
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partial coefficients do not sum to the model sum of squares as was the case
with orthogonal contrasts (Section 6.5). This means that, for example, simply
because lot and age cannot individually be deemed significantly different
from zero, it does not necessarily follow that the simultaneous addition of
these coefficients will not significantly contribute to the model (although they
do not in this example).

The Equivalent t Statistic for Individual Coefficients

We noted in Chapter 7 that the F test for the hypothesis that the coefficient
is zero can be performed by an equivalent t test. The same relationship holds
for the individual partial coefficients in the multiple regression model. The t

statistic for testing H0: β j = 0 is

t = β̂ j√
c jjMSE

,

where c jj is the jth diagonal element of C, and the degrees of freedom are
(n− m− 1). It is easily verified that these statistics are the square roots of the
F values obtained earlier and they will not be reproduced here. As in simple
linear regression, the denominator of this expression is the standard error (or
square root of the variance) of the estimated coefficient, which can be used to
construct confidence intervals for the coefficients.

In Chapter 7 we noted that the use of the t statistic allowed us to test for
specific (nonzero) values of the parameters, allowed the use of one-tailed tests
and the calculation of confidence intervals. For these reasons, most computers
provide the standard errors and t tests. A typical computer output for Example
8.2 is shown in Table 8.6. We can use this output to compute the confidence
intervals for the coefficients in the regression equation as follows:

age: Std. error = √
(0.0001293)(306.09) = 0.199

0.95 Confidence interval: −0.3498 ± (2.0141)(0.199): from −0.7506
to 0.051

bed: Std. error = √
(0.64025)(306.09) = 4.427

0.95 Confidence interval: −11.2382 ± (2.0141)(4.427): from −20.1546
to −2.3218

bath: Std. error = √
(0.131435)(306.09) = 6.328

0.95 Confidence interval: −4.5401 ± (2.0141)(6.328): from −17.2853
to 8.2051

size: Std. error= √
(0.132834)(306.09) = 6.376

0.95 Confidence interval: 65.9465 ± (2.0141)(6.376): from 53.1045
to 78.7884

lot: Std. error = √
(8.234189E − 6)(306.09) = 0.0502

0.95 Confidence interval: 0.06205 ± (2.0141)(0.0502): from 0.0391
to 0.1632.

As expected, the confidence intervals of those coefficients deemed statis-
tically significant at the 0.05 level do not include zero.
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Finally, note that the tests we have presented are special cases of tests for
any linear function of parameters. For example, we may wish to test

H0: β4 − 10β5 = 0,

which for the home price data tests the hypothesis that the size coefficient
is ten times larger than the lot coefficient. The methodology for this more
general hypothesis testing is beyond the scope of this book (see, for example,
Freund and Wilson, 1998).

Inferences on the Response Variable

As in the case of simple linear regression, we may be interested in the precision
of the estimated conditional mean as well as predicted values of the dependent
variable (see Section 7.5). The formulas for obtaining the variances needed for
these inferences in multiple regression are quite cumbersome and are not
suitable for hand calculation; hence we do not reproduce them here. Most
computer programs have provisions for computing confidence and prediction
intervals and also for providing the associated standard errors. A computer
output showing 95% confidence intervals is presented in Section 8.5. A word
of caution: Some computer program documentation may not be clear on which
interval (confidence on the conditional mean or prediction) is being produced,
so read instructions carefully!

The following example is provided as a review of the various steps for a
multiple regression analysis.

EXAMPLE 8.3 Example 7.3 provided a regression model to explain how the departure times
(TIME) of lesser snow geese were affected by temperature (TEMP). Although
the results were reasonably satisfactory, it is logical to expect that other envi-
ronmental factors affect departure times.

Solution Since information on other factors was also collected, we can
propose a multiple regression model with the following additional environ-
mental variables:

HUM, the relative humidity,
LIGHT, light intensity, and
CLOUD, percent cloud cover.

The data are given in Table 8.4.
An inspection of the data shows that two observations have missing values

(denoted by . ) for a variable. This means that these observations cannot be
used for the regression analysis. Fortunately, most computer programs recog-
nize missing values and will automatically ignore such observations. Therefore
all calculations in this example will be based on the remaining 36 observations.

The first step is to compute X′X and X′Y. We then compute the inverse and
the estimated coefficients. As before, we will let the computer do this with the
results given in Table 8.5 in the same format as that of Table 8.3.
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Table 8.4

Snow Goose Departure
Times

DATE TIME TEMP HUM LIGHT CLOUD

11/10/87 11 11 78 12.6 100
11/13/87 2 11 88 10.8 80
11/14/87 −2 11 100 9.7 30
11/15/87 −11 20 83 12.2 50
11/17/87 −5 8 100 14.2 0
11/18/87 2 12 90 10.5 90
11/21/87 −6 6 87 12.5 30
11/22/87 22 18 82 12.9 20
11/23/87 22 19 91 12.3 80
11/25/87 21 21 92 9.4 100
11/30/87 8 10 90 11.7 60
12/05/87 25 18 85 11.8 40
12/14/87 9 20 93 11.1 95
12/18/87 7 14 92 8.3 90
12/24/87 8 19 96 12.0 40
12/26/87 18 13 100 11.3 100
12/27/87 −14 3 96 4.8 100
12/28/87 −21 4 86 6.9 100
12/30/87 −26 3 89 7.1 40
12/31/87 −7 15 93 8.1 95
01/02/88 −15 15 43 6.9 100
01/03/88 −6 6 60 7.6 100
01/04/88 −23 5 . 8.8 100
01/05/88 −14 2 92 9.0 60
01/06/88 −6 10 90 . 100
01/07/88 −8 2 96 7.1 100
01/08/88 −19 0 83 3.9 100
01/10/88 −23 −4 88 8.1 20
01/11/88 −11 −2 80 10.3 10
01/12/88 5 5 80 9.0 95
01/14/88 −23 5 61 5.1 95
01/15/88 −7 8 81 7.4 100
01/16/88 9 15 100 7.9 100
01/20/88 −27 5 51 3.8 0
01/21/88 −24 −1 74 6.3 0
01/22/88 −29 −2 69 6.3 0
01/23/88 −19 3 65 7.8 30
01/24/88 −9 6 73 9.5 30

The five elements in the last column, labeled TIME, of the inverse portion
contain the estimated coefficients, providing the equation:

ˆTIME = − 52.994 + 0.9130(TEMP) + 0.1425(HUM)

+ 2.5160(LIGHT) + 0.0922(CLOUD).

Unlike the case of the regression involving only TEMP, the intercept now has
no real meaning since zero values for HUM and LIGHT cannot exist. The re-
mainder of the coefficients are positive, indicating later departure times for
increased values of TEMP, HUM, LIGHT, and CLOUD. Because of the dif-
ferent scales of the independent variables, the relative magnitudes of these
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Table 8.5

Snow Goose Departure
Times

Model Crossproducts X′X X′Y Y′Y
X′X INTERCEP TEMP HUM

INTERCEP 36 319 3007
TEMP 319 4645 27519
HUM 3007 27519 257927
LIGHT 326.2 3270.3 27822
CLOUD 2280 23175 193085
TIME −157 1623 −9662
X′X LIGHT CLOUD TIME

INTERCEP 326.2 2280 −157
TEMP 3270.3 23175 1623
HUM 27822 193085 −9662
LIGHT 3211.9 20079.5 −402.8
CLOUD 20079.5 194100 −3730
TIME −402.8 −3730 9097

X′X Inverse, Parameter Estimates, and SSE
INTERCEPT TEMP HUM

INTERCEP 1.1793413621 0.0085749149 −0.010464297
TEMP 0.0085749149 0.0010691752 0.0000605688
HUM −0.010464297 0.0000605688 0.0001977643
LIGHT −0.028115838 −0.00192403 −0.000581237
CLOUD −0.001558842 −0.000089595 −0.000020914
TIME −52.99392938 0.9129810924 0.1425316971

LIGHT CLOUD TIME

INTERCEP −0.028115838 −0.001558842 −52.99392938
TEMP −0.00192403 −0.000089595 0.9129810924
HUM −0.000581237 −0.000020914 0.1425316971
LIGHT 0.0086195605 0.0002464973 2.5160019069
CLOUD 0.0002464973 0.0000294652 0.0922051991
TIME 2.5160019069 0.0922051991 2029.6969929

coefficients have little meaning and also are not indicators of relative statisti-
cal significance.

Note that the coefficient for TEMP is 0.9130 in the multiple regression
model, while it was 1.681 for the simple linear regression involving only the
TEMP variable. In this case, the so-called total coefficient for the simple linear
regression model includes the indirect effect of other variables, while in the
multiple regression model, the coefficient measures only the effect of TEMP
by holding constant the effects of other variables.

For the second step we compute the partitioning of the sums of squares.
The residual sum of squares

SSE =
∑

y2 − B̂′X′Y

= 9097 − [(−52.994)(−157) + (0.9123)(1623) + (0.1425)(−9662)

+ (2.5160)(−402.8) + (0.09221)(−3730)],
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which is available in the computer output as the last element of the inverse
portion and is 2029.70. The estimated variance is MSE = 2029.70/(36 − 5) =
65.474, and the estimated standard deviation is 8.092. This value is somewhat
smaller than the 9.96 obtained for the simple linear regression involving only
TEMP.

The model sum of squares is

SSR(regression model) = B̂′X′Y −
(∑

y

)2/
n

= 7067.30 − 684.69 = 6382.61.

The degrees of freedom for this sum of squares is 4; hence the model mean
square is 6382.61/4 = 1595.65. The resulting F statistic is 1595.65/65.474 =
24.371, which clearly leads to the rejection of the null hypothesis of no regres-
sion. These results are summarized in an analysis of variance table shown in
Table 8.7 in Section 8.5.

In the final step we use the standard errors and t statistics for inferences
on the coefficients. For the TEMP coefficient, the estimated variance of the
estimated coefficient is

ˆvar(β̂TEMP) = cTEMP,TEMPMSE

= (0.001069)(65.474)

= 0.0700,

which results in an estimated standard error of 0.2646. The t statistic for the
null hypothesis that this coefficient is zero is

t = 0.9130/0.2646 = 3.451.

Assuming a desired significance level of 0.05, the hypothesis of no temperature
effect is clearly rejected. Similarly, the t statistics for HUM, LIGHT, and CLOUD
are 1.253, 3.349, and 2.099, respectively. When compared with the tabulated
two-tailed 0.05 value for the t distribution with 31 degrees of freedom of 2.040,
the coefficient for HUM is not significant, while LIGHT and CLOUD are. The
p values are shown later in Table 8.7, which presents computer output for
this problem. Basically this means that departure times appear to be affected
later with increasing levels of temperature, light, and cloud cover, but there is
insufficient evidence to state that humidity affects the departure times. ■

8.4 Correlations

In Section 7.6 we noted that the correlation coefficient provides a convenient
index of the strength of the linear relationship between two variables. In multi-
ple regression, two types of correlations describe strengths of linear relation-
ships among the variables in a regression model:

1. multiple correlation, which describes the strength of the linear relationship
of the dependent variable with the set of independent variables, and
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2. partial correlation, which describes the strength of the linear relationship
associated with a partial regression coefficient.

Other types of correlations used in some applications but not presented here
are multiple partial and part (or semipartial) correlations (Kleinbaum et al.,
1998, Chapter 10).

Multiple Correlation

DEFINITION 8.2
Multiple correlation describes the maximum strength of a linear rela-
tionship of one variable with a linear function of a set of variables.

In Section 7.6, the sample correlation between two variables x and y was
defined as

rxy = Sxy√
Sxx · Syy

.

With the help of a little algebra it can be shown that the absolute value of
this quantity is equal to the correlation between the observed values of y and
μ̂y|x, the values of the variable y estimated by the linear regression of y on x.
Thus, for example, the correlation coefficient can also be calculated using the
values in the columns labeled size and Predict in Table 7.3. This definition
of the correlation coefficient can be applied to a multiple linear regression
and the resulting correlation coefficient is called the multiple correlation

coefficient, which is usually denoted by R. Also, as in simple linear regression,
the square of R, the coefficient of determination, is

R2 = SS due to regression model
total SS for y corrected for the mean

.

In other words, the coefficient of determination measures the proportional
reduction in variability about the mean resulting from the fitting of the multiple
regression model. As in simple linear regression there is a correspondence
between the coefficient of determination and the F statistic for testing the
existence of the model:

F = (n − m− 1)R2

m(1 − R2)
.

Also as in simple linear regression, the coefficient of determination must take
values between and including 0 and 1 where a value of 0 indicates the lin-
ear relationship is nonexistent, and a value of 1 indicates a perfect linear
relationship.

How Useful Is the R2 Statistic?

The apparent simplicity of this statistic, which is often referred to as “R-
square,” makes it a popular and convenient descriptor of the effectiveness
of a multiple regression model. This very simplicity has, however, made the
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coefficient of determination an often abused statistic. There is no rule or guide-
line as to what value of this statistic signifies a good regression. For some data,
especially that from the social and behavioral sciences, coefficients of deter-
mination of 0.3 are often considered quite good, while in fields where random
fluctuations are of smaller magnitudes, for example, engineering, coefficients
of determination of less than 0.95 may imply an unsatisfactory fit. Incidentally,
for the home prices model, the coefficient of determination is 0.9035. This is
certainly considered to be high for many applications, yet the residual standard
deviation of $4525 leaves much to be desired.

An additional feature of the coefficient of determination is that when a small
number of observations are used to estimate an equation, the coefficient of
determination may be inflated by having a relatively large number of indepen-
dent variables. In fact, if nobservations are used for an (n−1) variable equation,
the coefficient of determination is, by definition, unity! An “adjusted R-square”
statistic, which indicates the proportional reduction in the mean square (rather
than in the sum of squares), is available to overcome this feature of the coef-
ficient of determination. However, this statistic, although usually available in
computer printouts (Section 8.5), has limited usefulness. It also has an inter-
pretive problem due to the fact that it can assume negative values.

As noted in Section 8.3, the residual standard deviation may be a better
indicator of the fit of the model.

Partial Correlation

DEFINITION 8.3
A partial correlation coefficient describes the strength of a linear
relationship between two variables, holding constant a number of other
variables.

As noted in Section 7.6, the strength of the linear relationship between x and y

was measured by the simple correlation between these variables, and the sim-
ple linear regression coefficient described their relationship. Just as a partial
regression coefficient shows the relationship of y to one of the independent
variables, holding constant the other variables, a partial correlation coef-
ficient measures the strength of the relationship between y and one of the
independent variables, holding constant all other variables in the model. This
means that the partial correlation measures the strength of the linear relation-
ship between two variables after “adjusting” for relationships involving all the
other variables.

A partial correlation coefficient has the properties of any correlation coeffi-
cient: It takes a value from −1 to +1, with a value of 0 indicating no relationship
and values of −1 and +1 indicating a perfect linear relationship.

In the context of a regression model, the relationship of a partial correlation
coefficient to a partial regression coefficient is the same as the relationship
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between a (simple) correlation coefficient and a regression coefficient in a
one-variable regression. Specifically:

• There is an exact relationship to the test statistic of the corresponding
regression coefficient. In this case the equivalence is to the t statistic for
testing whether a regression coefficient is zero,

|t| =
√

(n − m− 1)r2

(1 − r2)
,

where r is the partial correlation coefficient corresponding to the coefficient
involved in the t statistic.

• The square of the partial correlation of, say, y and xj , holding constant
all other variables in the regression model, is the ratio of the partial sum of
squares explained by the estimated coefficient β̂ j to the error sum of squares
remaining after fitting the model that contains all the other coefficients in the
model. Thus the partial correlation coefficient has the property of the other
correlation coefficients: Its square indicates the portion of the variability
explained by a regression. In this case it is the portion of the variability
explained by that variable after all the other variables have been included
in the model.

For example, suppose that x1 is the age of a child, x2 is the number of hours
spent watching television, and y is the child’s score on an achievement test.
The simple correlation between y and x2 would include the indirect effect of
age on the test score and could easily cause that correlation to be positive.
However, the partial correlation between y and x2, holding constant x1, is the
“age-adjusted” correlation between the number of hours spent watching TV
and the achievement test score.

The test for the null hypothesis of no partial correlation is the same as
that for the corresponding partial regression coefficient. Other inferences are
made by an adaptation of the Fisher z transformations (Section 7.6), where
the variance of z is [1/(n − q − 3)], where q is the number of variables being
held constant [usually (m− 2)].

As an illustration of calculating partial correlation coefficients, we use the
data in Example 8.2, for finding the partial correlation between price and
size, holdingage,bed,bath, andlotfixed. We use the following procedure:

1. Perform the regression of price on age, bed, bath, and lot. The error
sum of squares is 47,747.4.

2. Perform the regression of price on size, age, bed, bath, and lot. The
partial sum of squares for size is 32,739.7.

3. The square of the partial correlation forprice andsize, holdingage,bed,
bath, and lot constant, is 32,739.7/47,747.4 = 0.686; the corresponding
correlation coefficient is 0.828.

Various more efficient procedures exist for calculating the partial correla-
tion coefficients, but they are not presented here (see, for example, Kleinbaum
et al., 1998, Section 10.5). The partial correlation coefficient is not widely used
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but has application in special situations, such as path analysis (Loehlin, 1987).
Finally, partial correlation indicates the strength of a linear relationship
between any two variables, holding constant a number of other variables.

8.5 Using the Computer

As noted, almost all statistical analyses are performed on computers using sta-
tistical software packages. A comprehensive statistical software package may
have several different programs for performing multiple regression. Usually
any one of these can be used for performing the analyses presented in previous
sections. However, some of these programs may have features designed for
special applications or may be quite cumbersome to implement and/or expen-
sive to use in terms of computer resources. It is therefore important to read
the documentation of available software systems and pick the program most
suited to the desired analysis. For example, one of the available programs may
implement a variable selection procedure as described in Section 8.7. If this
is not needed for a particular analysis, such a program will provide informa-
tion that will not be useful and at the same time omit information that may be
needed.

Even programs designed for an ordinary regression analysis often have
provisions for a number of special options. Using unnecessary options for a
particular analysis is a waste of computer resources. Thus it is again important
to read the documentation carefully and request only those options germane
to the analysis at hand.

EXAMPLE 8.2 REVISITED Table 8.6 contains the output from PROC REG of the SAS Sys-
tem for the multiple regression model for the home price data we have been
using as an example (we have omitted some of the output to save space). The
implementation of this program required the following specifications:

1. The name of the program; in this case it is PROC REG.
2. The name of the dependent and independent variables; in this case price

is the dependent variable and age, bed, bath, size, and lot are the
independent variables. The intercept is not specified since most computer
programs automatically assume that an intercept will be included in the
model.

3. Options to print, in addition to the standard or default output, the predicted
and residual values, the standard errors of the estimated mean, and the 95%
confidence intervals for the estimated means.

Although much of the output in Table 8.6 is self-explanatory, a brief summary
is presented here. The reader should verify all results that compare with those
presented in the previous sections. Also useful are comparisons with output
from other computer packages, if available.

Solution The output begins by giving the name of the dependent vari-
able. This identifies the output in case several analyses have been run in one
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Table 8.6 Output for Multiple Regression

The REG Procedure
Model: MODEL1

Dependent Variable: price

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 5 65696 13139 42.93 <.0001
Error 45 13774 306.08999
Corrected Total 50 79470

Root MSE 17.49543 R-Square 0.8267
Dependent Mean 109.43055 Adj R-Sq 0.8074
Coeff Var 15.98770

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 35.28792 14.11712 2.50 0.0161
age 1 −0.34980 0.19895 −1.76 0.0855
bed 1 −11.23820 4.42691 −2.54 0.0147
bath 1 −4.54015 6.34279 −0.72 0.4778
size 1 65.94647 6.37644 10.34 <.0001
lot 1 0.06205 0.05020 1.24 0.2229

Output Statistics

Dep Var Predicted Std Error
Obs price Value Mean Predict 95% CL Mean Residual

1 30.0000 47.3494 10.2500 26.7049 67.9939 −17.3494
2 39.9000 66.9823 9.0854 48.6834 85.2812 −27.0823
3 46.5000 65.0194 8.9813 46.9302 83.1087 −18.5194
4 48.6000 89.6287 4.1333 81.3039 97.9535 −41.0287
5 51.5000 58.0793 8.0053 41.9557 74.2029 −6.5793
6 56.9900 84.3515 3.1288 78.0498 90.6532 −27.3615
7 59.9000 . . . . .
8 62.5000 53.8228 5.9133 41.9127 65.7329 8.6772
9 65.5000 68.3728 8.5338 51.1849 85.5606 −2.8728
10 69.0000 73.0383 5.7938 61.3689 84.7076 −4.0383
11 76.9000 75.8630 4.3441 67.1135 84.6124 1.0370
. . . . . . . . .
. . . . (Observations Omitted) . . . .
. . . . . . . . .
49 149.9900 146.4358 8.4156 129.4858 163.3858 3.5542
50 152.5500 . . . . .
51 156.9000 . . . . .
52 164.0000 144.7772 7.1999 130.2760 159.2785 19.2228
53 167.5000 123.7208 10.2462 103.0839 144.3576 43.7792
54 169.9000 183.6916 7.1420 169.3068 198.0763 −13.7916

(Continued)
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Table 8.6 (continued)

Dep Var Predicted Std Error
Obs price Value Mean Predict 95% CL Mean Residual

55 175.0000 182.1852 7.0512 167.9834 196.3870 −7.1852
56 179.0000 163.8122 5.9526 151.8230 175.8014 15.1878
57 179.9000 156.4986 6.3606 143.6877 169.3096 23.4014
58 189.5000 . . . . .
59 199.0000 212.1590 10.5356 190.9392 233.3788 −13.1590

Sum of Residuals 0
Sum of Squared Residuals 13774
Predicted Residual SS (PRESS) 19927

computer job. The first tabular presentation contains the overall partitioning
of the sums of squares and the F test for the model. The notation Corrected
Total is used to denote that this is the total sum of squares corrected for the
mean; hence the model sum of squares is presented in the manner we used for
simple linear regression. That is, it is the sum of squares due to the regression
after the mean has already been estimated.

The next section gives some miscellaneous statistics. Root MSE is the
residual standard deviation, which is the square root of the error mean square.
Dependent Mean is ȳ and R-Square is the coefficient of determination.
Adj R-Sq is the adjusted coefficient of determination. Coeff Var is the
coefficient of variation (in %) as defined in Section 8.3.

The third portion contains the parameter (coefficient) estimates and asso-
ciated statistics: the standard errors and t statistics and their p values, which
are labeled Pr > |t|. The parameter estimates are identified by the names of
the corresponding independent variables, and the estimate of β0 is labeled
Intercept.

The last portion contains some optional statistics for the individual obser-
vations. The values in the columns labeled Dep Var price and Predicted
Value are self-explanatory. The column labeled Std Error Mean Predict
contains the standard errors of the estimated conditional means. The headings
95% CL Mean are the 0.95 confidence limits of the conditional mean.

Finally the sum and sum of squares of the actual residuals are given. The
sum should be zero, which it is, and the Sum of Squared Residuals
should be equal to the error sum of squares obtained in the analysis of variance
table.7 ■

EXAMPLE 8.3 REVISITED Table 8.7 shows the results of implementing the lesser snow
geese departure regression on Minitab using the REGRESS command. This
command required the specification of the name of the dependent variable

7If there is more than a minimal difference between the two, severe round-off errors have probably
occurred.
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Table 8.7 Snow Goose Regression with Minitab

The regression equation is time = −53.0 + 0.913 temp + 0.143 hum + 2.52
light + 0.0922 cloud 36 cases used 2 cases contain missing values

Predictor Coef Stdev t-ratio p

Constant −52.994 8.787 −6.03 0.000
temp 0.9130 0.2646 3.45 0.002
hum 0.1425 0.1138 1.25 0.220
light 2.5160 0.7512 3.35 0.002
cloud 0.09221 0.04392 2.10 0.044

s = 8.092 R-sq = 75.9% R-sq(adj) = 72.8%

Analysis of Variance

SOURCE df SS MS F p

Regression 4 6382.6 1595.7 24.37 0.000
Error 31 2029.7 65.5
Total 35 8412.3

SOURCE df SEQ SS

temp 1 4996.6
hum 1 633.3
light 1 464.2
cloud 1 288.5

Unusual Observations
Obs. temp time Fit Stdev. Fit Residual St. Resid

4 20.0 −11.00 12.40 2.84 −23.40 −3.09R
12 18.0 25.00 8.93 2.65 16.07 2.10R

R denotes an obs. with a large st. resid.

and the number of independent variables in the model followed by a listing of
names of these variables. No additional options were requested.

Solution As we have noted before, the output is somewhat similar to that
obtained with the SAS System, and the results are the same as those presented
in Example 8.3. This output actually gives the estimated model in equation form
as well as a listing of coefficients and their inference statistics. Also the output
states that two observations could not be used because of missing values. In
the SAS System, this information is given in output we did not present for that
example.

In addition, the Minitab output contains two items that were not in the
SAS output: a set of sequential sums of squares (SEQ SS) and a listing of
two unusual observations. The sequential sums of squares are not particularly
useful for this example but will be used in polynomial regression, which is
presented in Section 8.6. Because these have a special purpose, they must be
specifically requested when using the SAS System.
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The two unusual observations are identified as having large “Studentized
residuals,” which are residuals that have been standardized to look like t statis-
tics; hence values exceeding a critical value of t are deemed to be unusual. A
discussion of unusual observations is presented in Section 8.9.

Listings of all predicted and residual values, confidence intervals, etc., can
be obtained as options for both of these computer programs. In general, we
can see that different computer packages generally provide equivalent results,
although they may provide different automatic and optional outputs. ■

8.6 Special Models

It is rather well known that straight line relationships of the type described by
a multiple linear regression model do not often occur in the real world. Nev-
ertheless, such models enjoy wide use, primarily because they are relatively
easy to implement, but also because they provide useful approximations for
other functions, especially over a limited range of values of the independent
variables. However, strictly linear regression models are not always effective;
hence we present in this section some methods for implementing regression
models that do not necessarily imply straight line relationships.

As we have noted a linear regression model is constrained to be linear
in the parameters, that is, the βi and ε, but not necessarily linear in the
independent variables. Thus, for example, the independent variables may be
nonlinear functions of observed variables that describe curved responses, such
as x2, 1/x,

√
x, etc.

The Polynomial Model

The most popular such function is the polynomial model, which involves
powers of the independent variables. Fitting a polynomial model is usually
referred to as “curve fitting” because it is used to fit a curve rather than to
explain the relationship between the dependent and independent variable(s).
That is, the interest is in the nature of the fitted response curve rather than in
the partial regression coefficients. The polynomial model is very useful for this
purpose, as it is easy to implement and provides a reasonable approximation
to virtually any function within a limited range.

Given observations on a dependent variable y and two independent vari-
ables x1 and x2, we can estimate the parameters of the polynomial model

y = β0 + β1x1 + β2x2
1 + β3x2 + β4x2

2 + β5x1x2 + ε,

by redefining variables

w1 = x1,

w2 = x2
1 ,

w3 = x2,
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w4 = x2
2 ,

w5 = x1x2,

and performing a multiple linear regression using the model

y = β0 + β1w1 + β2w2 + β3w3 + β4w4 + β5w5 + ε.

This is an ordinary multiple linear regression model using the w’s as indepen-
dent variables.

EXAMPLE 8.4 Biologists are interested in the characteristics of growth curves, that is, finding
a model for describing how organisms grow with time. Relationships of this
type tend to be curvilinear in that the rate of growth decreases with age and
eventually stops altogether. A polynomial model is sometimes used for this
purpose.

This example concerns the growth of rabbit jawbones. Measurements were
made on lengths of jawbones for rabbits of various ages. The data are given
in Table 8.8, and the plot of the data is given in Fig. 8.3 where the line is the
estimated polynomial regression line described below.

Solution We will use a fourth-degree polynomial model for estimating the
relationship of LENGTH to AGE. This model contains as independent variables
the first four powers of the variable AGE. Since we will use computer output
to show the results, we use the following variable names:

LENGTH, the dependent variable, is the length (in mm) of the jawbone.
AGE is the age (in days) of the rabbits divided by 100. The computations for a

polynomial regression model may be subject to considerable round-off
error, especially when the independent variable contains both very large
and small numbers. Round-off error is reduced if the independent variable
can be scaled so that values lie between 0.1 and 10. In this example only
one scaled value is outside that recommended range.

A2 = (AGE)2.
A3 = (AGE)3.
A4 = (AGE)4.

Table 8.8

Rabbit Jawbone Length

AGE LENGTH AGE LENGTH AGE LENGTH

0.01 15.5 0.41 29.7 2.52 49.0
0.20 26.1 0.83 37.7 2.61 45.9
0.20 26.3 1.09 41.5 2.64 49.8
0.21 26.7 1.17 41.9 2.87 49.4
0.23 27.5 1.39 48.9 3.39 51.4
0.24 27.0 1.53 45.4 3.41 49.7
0.24 27.0 1.74 48.3 3.52 49.8
0.25 26.0 2.01 50.7 3.65 49.9
0.26 28.6 2.12 50.6
0.34 29.8 2.29 49.2
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In terms of the computer,8 the linear regression model now is

LENGTH = β0 + β1(AGE) + β2(A2) + β3(A3) + β4(A4) + ε.

The results of the regression analysis using this model, again obtained by
PROC REG of the SAS System, are shown in Table 8.9. The overall statistics
for the model in the top portion of the output clearly show that the model
is statistically significant, F(4, 23) = 291.35, p value < 0.0001. The estimated
polynomial equation is

LEN̂GTH = 18.58 + 36.38(AGE) − 15.69(AGE)2 + 2.86(AGE)3 − 0.175(AGE)4.

The individual coefficients in a polynomial equation usually have no practical
interpretation; hence the test statistics for these coefficients also have little
use. In fact, a pth-degree polynomial should always include all terms with
lower powers. It is of interest, however, to ascertain the lowest degree of poly-
nomial required to describe the relationship adequately. To assist in answering
this question, many computer programs provide a set of sequential sums of
squares, which show how the model sum of squares is increased (or error sum
of squares is decreased) as higher order polynomial terms are added to the
model.9 In the computer output in Table 8.9, these sequential sums of squares

8The powers of AGE are computed in the data input stage. Some computer programs allow the
specifications of polynomial terms as part of the regression program.
9Sequential sums of squares of this type are automatically provided by orthogonal polynomial
contrasts as discussed in Section 6.5. Of course, they cannot be used here because the values of
the independent variable are not equally spaced. Furthermore, the ease of direct implementation
of polynomial regression on computers make orthogonal polynomials a relatively unattractive
alternative except for small experiments such as those presented in Section 6.5 and also Chapter 9.
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Table 8.9

Polynomial Regression

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob > F

Model 4 3325.65171 831.41293 291.346 0.0001
Error 23 65.63507 2.85370
C Total 27 3391.28679

Root MSE 1.68929 R-square 0.9806
Dep mean 39.26071 Adj R-sq 0.9773
C.V. 4.30275

Parameter Estimates

Parameter Standard T for H0:
Variable df Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 18.583478 1.27503661 14.575 0.0001
AGE 1 36.380515 6.44953987 5.641 0.0001
A2 1 −15.692308 7.54002073 −2.081 0.0487
A3 1 2.860487 3.13335286 0.913 0.3708
A4 1 −0.175485 0.42335354 −0.415 0.6823

Variable df Type I SS

INTERCEP 1 43159
AGE 1 2715.447219
A2 1 552.468707
A3 1 57.245461
A4 1 0.490324

are called Type I SS.10 Since these are 1 degree of freedom sums of squares,
we can use them to build the most appropriate model by sequentially using an
F statistic to test for the significance of each added polynomial term. For this
example these tests are as follows:

1. The sequential sum of squares for INTERCEP is the correction for the mean
of the dependent variable. This quantity can be used to test the hypothesis
that the mean of this variable is zero; this is seldom a meaningful test.

2. The sequential sum of squares for AGE (2715.4) is divided by the error mean
square (2.8537) to get an F ratio of 951.55. We use this to test the hypothesis
that a linear regression does not fit the data better than the mean. This hypo-
thesis is rejected.

3. The sequential sums of squares for A2, the quadratic term in AGE, is divided
by the error mean square to test the hypothesis that the quadratic term is
not needed. The resulting F ratio of 193.60 rejects this hypothesis.

4. In the same manner, the sequential sums of squares for A3 and A4 produce
F ratios that indicate that the cubic term is significant but the fourth-degree
term is not.

10Remember that these were automatically printed with Minitab, while PROC REG of the SAS
System required a special option. Also in the Minitab output they were called SEQ SS. This
should serve as a reminder that not all computer programs produce the same default output or
use identical terminology!
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Sequential sums of squares are additive: They add to the sum of squares for a
model containing all coefficients. Therefore they can be used to reconstruct
the model and error sums of squares for any lower order model. For example,
if we want to compute the mean square error for the third-degree polynomial,
we can subtract the sequential sums of squares for the linear, quadratic, and
cubic coefficients from the corrected total sum of squares,

3391.29 − 2715.44 − 552.47 − 57.241 = 66.12,

and divide by the proper degrees of freedom (n−1−3 = 24). The result for our
example is 2.755.11 It is of interest to note that this is actually smaller than the
error mean square for the full fourth-degree model (2.8537 from Table 8.9). For
this reason it is appropriate to reestimate the equation using only the linear,
quadratic, and cubic terms. This results in the equation

LEN̂GTH = 18.97 + 33.99(AGE) − 12.67(AGE)2 + 1.57(AGE)3.

This equation can be used to estimate the average jawbone length for any age
within the range of the data. For example, for AGE = 0.01 (one day) the esti-
mated jawbone length is 19.2, compared with the observed value of 15.5. The
plot of the estimated jawbone lengths is shown as the solid line in Fig. 8.3. The
estimated curve is reasonably close to the observed values with the possible
exception of the first observation where the curve overestimates the jawbone
length. The nature of the fit can be examined by a residual plot, which is not
reproduced here.

We have repeatedly warned that estimated regression equations should not
be used for extrapolation. This is especially true of polynomial models, which
may exhibit drastic fluctuations in the estimated response beyond the range
of the data. For example, using the estimated polynomial regression equation,
estimated jawbone lengths for rabbits aged 500 and 700 days are 68.31 and
174.36 mm, respectively!

Although polynomial models are frequently used to estimate responses that
cannot be described by straight lines, they are not always useful. For example,
the cubic polynomial for the rabbit jawbone lengths shows a “hook” for the
older ages, a characteristic not appropriate for growth curves. For this reason,
other types of response models are available.

The Multiplicative Model

Another model that describes a curved line relationship is the multiplicative

model

y = e β0 x
β1

1 x
β2
2 . . . xβm

m eε,

11Equivalently, the sequential sum of squares for the fourth power coefficient may be added to the
full model error sum of squares.
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where e refers to the Naperian constant used as the basis for natural loga-
rithms. This model is quite popular and has many applications. The coefficients,
sometimes called elasticities, indicate the percent change in the dependent
variable associated with a one-percent change in the independent variable,
holding constant all other variables.

Note that the error term eε is a multiplicative factor. That is, the value of
the deterministic portion is multiplied by the error. The expected value of this
error, when ε = 0, is one. When the random error is positive the multiplicative
factor is greater than 1; when negative it is less than 1. This type of error is quite
logical in many applications where variation is proportional to the magnitude
of the values of the variable.

The multiplicative model can be made linear by the logarithmic transfor-
mation,12 that is,

log(y) = β0 + β1log(x1) + β2 log(x2) + · · · + βm log(xm) + ε.

This model is easily implemented. Most statistical software have provisions
for making transformations on the variables in a set of data. ■

EXAMPLE 8.5 We illustrate the multiplicative model with a biological example. It is desired
to study the size range of squid eaten by sharks and tuna. The beak (mouth) of
squid is indigestible hence it is found in the digestive tracts of harvested fish;
hence, it may be possible to predict the total squid weight with a regression
that uses various beak dimensions as predictors. The beak measurements and
their computer names are

RL = rostral length,
WL = wing length,
RNL = rostral to notch length,
NWL = notch to wing length,
W = width.

The dependent variable WT is the weight of squid.

Data are obtained on a sample of 22 specimens. The data are given in Table 8.10.
The specific definitions or meaning of the various dimensions are of little
importance for our purposes except that all are related to the total size of the
squid.

For simplicity we illustrate the multiplicative model by using only RL and W to
estimate WT (the remainder of the variables are used later). First we perform
the linear regression with the results in Table 8.11 and the residual plot in
Fig. 8.4.

12The logarithm base e is used here. The logarithm base 10 (or any other base) may be used; the
only difference will be in the intercept.
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Table 8.10

Squid Data

Obs RL WL RNL NWL W WT

1 1.31 1.07 0.44 0.75 0.35 1.95
2 1.55 1.49 0.53 0.90 0.47 2.90
3 0.99 0.84 0.34 0.57 0.32 0.72
4 0.99 0.83 0.34 0.54 0.27 0.81
5 1.05 0.90 0.36 0.64 0.30 1.09
6 1.09 0.93 0.42 0.61 0.31 1.22
7 1.08 0.90 0.40 0.51 0.31 1.02
8 1.27 1.08 0.44 0.77 0.34 1.93
9 0.99 0.85 0.36 0.56 0.29 0.64
10 1.34 1.13 0.45 0.77 0.37 2.08
11 1.30 1.10 0.45 0.76 0.38 1.98
12 1.33 1.10 0.48 0.77 0.38 1.90
13 1.86 1.47 0.60 1.01 0.65 8.56
14 1.58 1.34 0.52 0.95 0.50 4.49
15 1.97 1.59 0.67 1.20 0.59 8.49
16 1.80 1.56 0.66 1.02 0.59 6.17
17 1.75 1.58 0.63 1.09 0.59 7.54
18 1.72 1.43 0.64 1.02 0.63 6.36
19 1.68 1.57 0.72 0.96 0.68 7.63
20 1.75 1.59 0.68 1.08 0.62 7.78
21 2.19 1.86 0.75 1.24 0.72 10.15
22 1.73 1.67 0.64 1.14 0.55 6.88

Table 8.11

Linear Regression for
Squid Data

Analysis of Variance

Sum of Mean
Source DF Squares Square F value Pr > F

Model 2 206.74216 103.37108 213.89 <.0001
Error 19 9.18259 0.48329
Corrected Total 21 215.92475

Root MSE 0.69519 R-Square 0.9575
Dependent Mean 4.19500 Adj R-Sq 0.9530
Coeff Var 16.57196

Parameter Estimates

Parameter Standard
Variable df Estimate Error t Value Pr > |t|

Intercept 1 −6.83495 0.76476 −8.94 <.0001
RL 1 3.27466 1.41606 2.31 0.0321
W 1 13.40078 3.38003 3.96 0.0008

The regression appears to fit well and both coefficients are significant, although
the p value for RL is only 0.032. However, the residual plot reveals some
problems:

• The residuals have a curved pattern: positive at the extremes and negative
in the center. This pattern suggests a curved response.
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Residual Plot for Linear
Regression

• The residuals are less variable with smaller values of the predicted value
and then become increasingly dispersed as values increase. This pattern
reveals a heteroscedasticity problem of the type discussed in Section 6.4
where we noted that the logarithmic transformation should be used when
the standard deviation is proportional to the mean.

The pattern of residuals for the linear regression would appear to suggest that
the variability is proportional to the size of the squid. This type of variability is
logical for variables related to sizes of biological specimens, which suggests a
multiplicative error. In addition, the multiplicative model itself is appropriate
for this example. The dependent variable, the weight of squid, is related to
volume, which is a product of its dimension. For example, the volume of a
cube is d3, where d is the dimension of a side. The basic shape of a squid is in
the form of a cylinder for which the volume is πr2l, where r is the radius and
l is the length.

To fit the multiplicative model we first create the variables LWT, LW, and LRL
to be the logarithms of WT, W, and RL, respectively, and do a linear regression.
The results of fitting the two-variable model using logarithms for the squid
data are shown in Table 8.12 and the residual plot is shown in Fig. 8.5.

This model certainly fits better and both coefficients are highly significant. The
multiplicative model is

ŴT = e1.169(RL)2.278(W)1.109.

Note that the estimated exponents are close to 2 and unity, which are suggested
by the formula for the volume of a cylinder. Finally the residuals appear to have
a uniformly random pattern. ■
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Table 8.12

Multiplicative Model for
Squid Data

Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 17.82601 0.91301 400.52 <.0001
Error 19 0.42281 0.02225
Corrected Total 21 18.24883

Root MSE 0.14918 R-Square 0.9768
Dependent Mean 1.07156 Adj R-Sq 0.9744
Coeff Var 13.92142

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t|

Intercept 1 1.16889 0.47827 2.44 0.0245
LRL 1 2.27849 0.49330 4.62 0.0002
LW 1 1.10922 0.37361 2.97 0.0079
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Nonlinear Models

In some cases no models that are linear in the parameters can be found to
provide an adequate description of the data. One such model is the negative
exponential model, which is, for example, used to describe the decay of a
radioactive substance

y = α + βeγ t + ε,

where y is the remaining weight of the substance at time t. According to the
model, (α + β) is the initial weight when t = 0, α is the ultimate weight of the
nondecaying portion of the substance at t = ∞, and γ indicates the speed of
the decay and is related to the half-life of the substance. Implementation of
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nonlinear models such as these require methodology beyond the scope of this
book (see, for example, Freund and Wilson, 1998).

8.7 Multicollinearity

Often in a multiple regression model, several of the independent variables are
measures of similar phenomena. This can result in a high degree of correlation
among the set of independent variables. This condition is known as multi-

collinearity. For example, a model used to estimate the total biomass of a
plant may include independent variables such as the height, stem diameter,
root depth, number of branches, density of canopy, and aerial coverage. Many
of these measures are related to the overall size of the plant. All tend to have
larger values for larger plants and smaller values for smaller plants and will
therefore tend to be highly correlated.

Before the widespread availability of massive computing power made re-
gression analyses easy to perform, much effort was expended in selecting a
useful set of independent variables for a regression model. Now, however, it has
become customary to put into such a model all possibly relevant variables, as
well as polynomial and other curvilinear terms, and then expect the computer
to magically reveal the nature of the most appropriate regression model. A
natural consequence of having too many variables in a model is the existence
of multicollinearity, although this phenomenon is not restricted to this type of
situation.

It is certainly true that computers make it easy to perform regressions
with large numbers of independent variables. It is also logical to expect that
the significance tests for the partial coefficients may be used to determine
which of the many variables are actually needed in the model. Unfortunately,
the ability of these statistics to perform this task is severely hampered by the
existence of multicollinearity.13

Remember that a partial coefficient is the change in the dependent vari-
able associated with the change in one of the independent variables, holding
constant all other variables. If several variables are closely related it is, by defi-
nition, difficult to vary one while holding the others constant. In such cases the
partial coefficient is attempting to estimate a phenomenon not exhibited by
the data. In a sense such a model is extrapolating beyond the reach of the data.

This extrapolation is reflected by large variances (hence standard errors)
of the estimated regression coefficients and a subsequent reduction in the
ability to detect statistically significant partial coefficients. A typical result
of a regression analysis of data exhibiting multicollinearity is that the overall
model is highly significant (has small p value) while few, if any, of the individual
partial coefficients are significant (have large p values).

A number of statistics are available for measuring the degree of multi-
collinearity in a data set. An obvious set of statistics for this purpose is the

13In a polynomial regression (Section 8.6), the powers of x are often highly correlated. Technically,
this also leads to multicollinearity, which in this case does not have the same implications.
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pairwise correlations among all the independent variables. Large magnitudes
of these correlations certainly do signify the existence of multicollinearity;
however, the lack of large-valued correlations does not guarantee the absence
of multicollinearity and for this reason these correlations are not often used
to detect multicollinearity.

A very useful set of statistics for detecting multicollinearity is the set of
variance-inflation factors (VIF), which indicate, for each independent vari-
able, how much larger the variance of the estimated coefficient is than it would
be if the variable were uncorrelated with the other independent variables.
Specifically, the VIF for a given independent variable, say, xj , is 1/(1 − R2

j),
where R2

j is the coefficient of determination of the regression of xj on all other
independent variables. If R2

j is zero, the VIF value is unity and the variable xj

is not involved in any multicollinearity. Any nonzero value of R2
j causes the

VIF value to exceed unity and indicates the existence of some degree of multi-
collinearity. For example, if the coefficient of determination for the regression
of xj on all other variables is 0.9, the variance inflation factor will be 10.

There is no universally accepted criterion for establishing the magnitude
of a VIF value necessary to identify serious multicollinearity. It has been pro-
posed that VIF values exceeding 10 serve this purpose. However, in cases
where the model R2 is small, smaller VIF values may create problems and vice
versa. Finally, if any R2

j is 1, indicating an exact linear relationship, VIF = ∞,
which indicates that X′X is singular and thus there is no unique estimate of
the regression coefficients.

EXAMPLE 8.5 REVISITED We illustrate multicollinearity with the squid data, using the
logarithms of all variables. Because all of these variables are measures of
size, they are naturally correlated, suggesting that multicollinearity may be
a problem. Figure 8.6 shows the matrix of pairwise scatterplots among the
logarithms of the variables. Obviously all variables are highly correlated, and
in fact, the correlations with the dependent variable appear no stronger than
those among the independent variables. Obviously multicollinearity is a prob-
lem with this data set.

We request PROC REG of the SAS System to compute the logarithm-based
regression using all beak measurements, adding the option for obtaining the
variance inflation factors. The results of the regression are shown in Table 8.13.
The results are typical of a regression where multicollinearity exists. The test
for the model gives a p value of less than 0.0001, while none of the partial
coefficients has a p value of less than 0.05. Also, one of the partial coefficient
estimates is negative, which is certainly an unexpected result. The variance
inflation factors, in the column labeled VARIANCE INFLATION, are all in ex-
cess of 20 and thus exceed the proposed criterion of 10. The variance inflation
factor for the intercept is by definition zero. ■

The course of action to be taken when multicollinearity is found depends on
the purpose of the analysis. The presence of multicollinearity is not a violation
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Table 8.13 Regression for Squid Data

DEP VARIABLE: WT
SUM OF MEAN

SOURCE DF SQUARES SQUARE F VALUE PROB > F

MODEL 5 17.927662 3.585532 178.627 0.0001
ERROR 16 0.321163 0.020073
C TOTAL 21 18.248825

ROOT MSE 0.141678 R-SQUARE 0.9824
DEP MEAN 1.071556 ADJR-SQ 0.9769
C.V. 13.22173

PARAMETER STANDARD T FOR H0: VARIANCE
VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB > |T| INFLATION

INTERCEP 1 2.401917 0.727617 3.301 0.0045 0.000000
RL 1 1.192555 0.818469 1.457 0.1644 43.202506
WL 1 −0.769314 0.790315 −0.973 0.3448 45.184233

RNL 1 1.035553 0.666790 1.553 0.1400 31.309370
NWL 1 1.073729 0.582517 1.843 0.0839 27.486102

W 1 0.843984 0.439783 1.919 0.0730 21.744851

of assumptions and therefore does not, in general, inhibit our ability to obtain
a good fit for the model. This can be seen in the above example by the large
R-square value and the small residual mean square. Furthermore, the presence
of multicollinearity does not affect the inferences about the mean response or
prediction of new observations as long as these inferences are made within the
range of the observed data. Thus, if the purpose of the analysis is to estimate
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or predict, then one or more of the independent variables may be dropped
from the analysis, using the procedures presented in Section 8.8, to obtain
a more efficient model. The purpose of the analysis of the squid data has
this objective in mind, and therefore the equation shown in Table 8.10 or the
equation resulting from variable selection (Table 8.12) could be effectively
used, although care must be taken to avoid any hint of extrapolation.

On the other hand, if the purpose of the analysis is to determine the effect of
the various independent variables, then a procedure that simply discards vari-
ables is not effective. After all, an important variable may have been discarded
because of multicollinearity.

Redefining Variables

One procedure for counteracting the effects of multicollinearity is to redefine
some of the independent variables. This procedure is commonly applied in the
analysis of national economic statistics collected over time, where variables
such as income, employment, savings, etc., are affected by inflation and in-
creases in population and are therefore correlated. Deflating these variables
by a price index and converting them to a per capita basis greatly reduces the
multicollinearity.

EXAMPLE 8.5 REVISITED In the squid data, all measurements are related to overall size
of the beak. It may be useful to retain one measurement of size, say, W, and
express the rest as ratios to W. The resulting ratios may then measure shape
characteristics and exhibit less multicollinearity. Since the variables used in
the regression are logarithms, the logarithms of the ratios are differences. For
example, log(RL/W) = log(RL) − log(W). Using these redefinitions and keeping
log(W) as is, we obtain the results shown in Table 8.14.

Solution A somewhat unexpected result is that the overall model
statistics—the F test for the model, R2, and the error mean square—have not
changed. This is because a linear regression model is not really changed by a lin-
ear transformation that retains the same number of variables, as demonstrated
by the following simple example. Assume a two-variable regression model:

y = β0 + β1x1 + β2x2 + ε.

Define x3 = x1 − x2, and use the model

y = γ0 + γ1x1 + γ2x2 + ε.

In terms of the original variables, this model is

y = γ0 + (γ1 + γ2)x1 − γ2x3 + ε,

which is effectively the same model where β1 = (γ1 + γ2) and β1 = −γ2.
In the new model for the squid data, we see that the overall width variable

(W) clearly stands out as the main contributor to the prediction of weight, and
the degree of multicollinearity has been decreased. At the bottom is a test of
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Table 8.14 Regression with Redefined Variables

Model: MODEL 1
Dependent Variable: WT

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob > F

Model 5 17.92766 3.58553 178.627 0.0001
Error 16 0.32116 0.02007
C Total 21 18.24883

Root MSE 0.14168 R-square 0.9824
Dep Mean 1.07156 Adj R-sq 0.9769
C.V. 13.22173

Parameter Estimates
Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 2.401917 0.72761686 3.301 0.0045
RL 1 1.192555 0.81846940 1.457 0.1644
WL 1 −0.769314 0.79031542 −0.973 0.3448
RNL 1 1.035553 0.66679027 1.553 0.1400
NWL 1 1.073729 0.58251746 1.843 0.0839
W 1 3.376507 0.17920582 18.842 0.0001

Variance
Variable DF Inflation

INTERCEP 1 0.00000000
RL 1 8.53690485
WL 1 7.15487734
RNL 1 4.35395220
NWL 1 4.94314166
W 1 3.61063657

Dependent Variable: WT
Test: ALLOTHER Numerator: 0.1441 df: 4 F value: 7.1790

Denominator: 0.020073 df: 16 Prob > F: 0.0016

the hypothesis that all other variables contribute nothing to the regression
involving W. This test shows that hypothesis to be rejected, indicating the
need for at least one of these other variables, although none of the individual
coefficients in this set are significant (all p values > 0.05). Variable selection
(Section 8.8) may be useful for determining which additional variable(s) may
be needed. ■

Other Methods

Another approach is to perform multivariate analyses such as principal com-
ponents or factor analysis on the set of independent variables to obtain ideas
on the nature of the multicollinearity. These methods are beyond the scope of
this book (see Freund and Wilson, 1998, Section 5.4).

An entirely different approach is to modify the method of least squares to
allow biased estimators of the regression coefficients. Some biased estimators
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effectively reduce the effect of multicollinearity so that, although the estimates
are biased, they have a much smaller variance and therefore have a larger prob-
ability of being close to the true parameter value. One such biased regression
procedure is called ridge regression (see Freund and Wilson, 1998, Section 5.4).

8.8 Variable Selection

One of the benefits of modern computers is the ability to handle large data sets
with many variables. One objective of many experiments is to “filter” these
variables to identify those that are most important in explaining a process.
In many applications this translates into obtaining a good regression using
a minimum number of independent variables. Although the search for this
set of variables should use knowledge about the process and its variables, the
power of the computer may be useful in implementing a data-driven search for
a subset of independent variables that provides adequately precise estimation
with a minimum number of variables, which may incidentally provide for less
multicollinearity than the full set.

Finding such a model may be accomplished by means of one of a number
of variable selection techniques. Unfortunately, variable selection is not the
panacea it is sometimes ascribed to be. Rather, variable selection is a sort of
data dredging that may provide results of spurious validity. Furthermore, if the
purpose of the regression analysis is to establish the partial regression rela-
tionships, discarding variables may be self-defeating. In other words, variable
selection is not always appropriate for the following reasons:

1. It does not help to determine the structure of the relationship among the
variables.

2. It uses the power of the computer as a substitute for intelligent study of the
problem.

3. The decisions on whether to keep or drop an independent variable from
the model are based on the test statistics of the estimated coefficients.
Such a procedure is generating hypotheses based on the data, which we
have already indicated plays havoc with the specified significance levels.
Therefore, just as it is preferable to use preplanned contrasts to automatic
post hoc comparisons in the analysis of variance, it is preferable to use
knowledge-based selection instead of automatic data-driven selection in
regression.

However, despite all these shortcomings, variable selection is widely used,
primarily because computers have made it so easy to do. Often there seems
to be no reasonable alternative and it actually can produce useful results. For
these reasons we present here some variable selection methods together with
some aids that may be useful in selecting a useful model.

The purpose of variable selection is to find that subset of the variables
in the original model that will in some sense be “optimum.” There are two
interrelated factors in determining that optimum:
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1. For any given subset size (number of variables in the model) we want the
subset of independent variables that provides the minimum residual sum
of squares. Such a model is considered “optimum” for that subset size.

2. Given a set of such optimum models, select the most appropriate subset
size.

One aspect of this problem is that to guarantee optimum subsets; all possible
subsets must be examined. Hypothetically this method requires that the error
sum of squares be computed for 2m subsets! For example, if m = 10, there will
be 1024 subsets; for m = 20, there will be 1,048,576 subsets!

Modern computers and highly efficient computational algorithms allow
some shortcuts, so this problem is not as insurmountable as it may seem. Thus,
for example, using the SAS System, the guaranteed optimum subset method
can be used for models containing as many as 30 variables. Useful alternatives
for models that exceed available computing power are discussed at the end of
this selection.

We illustrate the guaranteed optimum subset method with the squid data
using the logarithms of the original variables. The program used is PROC REG
from the SAS System, implementing theRSQUARE selection option. The results
are given in Table 8.15.

This procedure has examined 31 subsets (not including the null subset), but
we have requested that it print results for only the best five for each subset size,

Table 8.15

Variable Selection for
Squid Data

Dependent Variable: WT
R-Square Selection Method

Number in
Model R-Square C(p) Variables in Model

1 0.9661 12.8361 RL
1 0.9517 25.8810 RNL
1 0.9508 26.7172 W
1 0.9461 30.9861 WL
1 0.9399 36.6412 NWL

2 0.9768 5.0644 RL W
2 0.9763 5.5689 NWL W
2 0.9752 6.5661 RL RNL
2 0.9732 8.3275 RNL NWL
2 0.9682 12.9191 RL NWL

3 0.9797 4.4910 RL NWL W
3 0.9796 4.5603 RNL NWL W
3 0.9786 5.4125 RL RNL W
3 0.9775 6.4971 RL RNL NWL
3 0.9770 6.8654 RL WL W

4 0.9814 4.9478 RL RNL NWL W
4 0.9801 6.1232 WL RNL NWL W
4 0.9797 6.4120 RL WL NWL W
4 0.9787 7.3979 RL WL RNL W
4 0.9783 7.6831 RL WL RNL NWL

5 0.9824 6.0000 RL WL RNL NWL W
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which are listed in order from best (optimum) to fifth best. Although we focus
on the optimum subsets, the others may be useful, for example, if the second
best is almost optimum and contains variables that cost less to measure. For
each of these subsets, the procedure prints the R2 values, the C(p) statistic
which is discussed below, and the listing of variables in each selected model.

There are no truly objective criteria for choosing subset size. Statistical
significance tests are inappropriate since we generate hypotheses from data.
The usual procedure is to plot the behavior of some goodness-of-fit statistic
against the number of variables and choose the minimum subset size before the
statistic indicates a deterioration of the fit. Virtually any statistic such as MSE or
R2 can be used, but the most popular one currently in use is the C( p) statistic.

The C(p) statistic, proposed by Mallows (1973), is a measure of total
squared error for a model containing p(<m) independent variables. This total
squared error is a measure of the error variance plus a bias due to an under-
specified model, that is, a model that excludes variables that should be in the
“true” model. Thus, if C(p) is “large” then there is bias due to an underspecified
model. The formula for C(p) is of little interest but it is structured so that for a
p-variable model:

• if C( p) > (p + 1), the model is underspecified, and
• if C(p) < (p + 1), the model is overspecified; that is, it most likely contains

unneeded variables.

By definition, when p = m (the full model), C(p) = m+ 1. The plot of C(p)
values for the variable selections in Table 8.15 is shown in Fig. 8.7; the line plots
C(p) against (p+ 1), which is the boundary between over- and underspecified
models.

Mallows C(p)
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1 2
Number of regressors in model
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Figure 8.7

C(p) Plot for Variable
Selection
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The C(p) plot shows that the four-variable model is slightly overspeci-
fied, the three-variable model is slightly underspecified, and the two-variable
model is underspecified (the C(p) values for the one-variable model are off the
scale). The choice would seem to be the three-variable model. However, note
that there are two almost identically fitting “optimum” three-variable models,
suggesting that there is still too much multicollinearity. Thus the two-variable
model would appear to be a better choice, which is the one used to illustrate
the multiplicative model (Table 8.12 and Fig. 8.5). This decision is, of course,
somewhat subjective and the researcher can examine the two competing three-
variable models and use the one which makes the most sense relative to the
problem being addressed.

Other Selection Procedures

We have noted that the guaranteed optimum subset method can be quite expen-
sive to perform. For this reason several alternative procedures that provide
nearly optimum models by combining the two aspects of variable selection
into a single process exist. Actually these procedures do provide optimum
subsets in many cases, but it is not possible to know whether this has actually
occurred.

These alternative procedures are also useful as screening devices for mod-
els with many independent variables. For example, applying one of these for
a 30-variable case may indicate that only about 5 or 6 variables are needed. It
is then quite feasible to perform the guaranteed optimum subset method for
subsets of size 5 or 6.

The most frequently used alternative methods for variable selection are as
follows:

1. Backward elimination: Starting with the full model, delete the variable
whose coefficient has the smallest partial sum of squares (or smallest mag-
nitude t statistic). Repeat with the resulting (m− 1) variable equation, and
so forth. Stop deleting variables when all variables contribute some speci-
fied minimum partial sum of squares (or have some minimum magnitude t

statistic).
2. Forward selection: Start by selecting the variable that, by itself, provides

the best-fitting equation. Add the second variable whose additional contri-
bution to the regression sum of squares is the largest, and so forth. Con-
tinue to add variables, one at a time, until any variable when added to the
model contributes less than some specified amount to the regression sum
of squares.

3. Stepwise: This is an adaptation of forward selection in which, each time a
variable has been added, the resulting model is examined to see whether
any variable included makes a sufficiently small contribution so that it can
be dropped (as in backward elimination).

None of these methods is demonstrably superior for all applications and do
not, of course, provide the power of the “all possible” search method.

Although the step methods are usually not recommended for problems with
a small number of variables, we illustrate the forward selection method with
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the transformed squid data, using the forward selection procedure in SPSS
Windows. The output is shown in Table 8.16.

The first box in the output summarizes the forward selection procedure. It
indicates that two “steps” occurred resulting in two models. The first contained
only the variable RL. The second model added W. The box also specifies the
method and the criteria used for each step. The next box contains the Model
Summary for each model. This box indicates that the R Square for model 1
had a value of .966 and that adding the variable W increased the R Square only
to .977.

The third box contains the ANOVA results for both models. Both are
significant with a p-value (labeled Sig.) listed as .000 which is certainly less
than 0.05.14 The next box lists the coefficients for the two regression models
and the t test for them. Notice that the values of the coefficients for Model 2
are the same as those in Table 8.12.

The final box lists the variables excluded from each model and some addi-
tional information about these variables. This table displays information about
the variables not in the model at each step.Beta in is the standardized regres-
sion coefficient that would result if the variable were entered into the equation
at the next step. For example, if we used the model which only contained RL,
the variableRNLwould result in a regression that had a coefficient forRNLwith
a value of .382 resulting in a p-value of .016. However, the forward procedure
dictated that a better two-variable model would be RL and W. Then when RNL
was considered for bringing into the model, it would have a coefficient of .211
but the p-value would be .232.

The last box also includes the partial correlation coefficients (with WT),
and something called the “tolerance” which is the reciprocal of the VIF. If the
criteria for the VIF is anything larger than 10 then the criteria for the tolerance
would be anything less than 0.10.

The forward selection procedure resulted in two “steps” and terminated
with a model that contained the variables RL and W. This is, of course, consis-
tent with previous analyses. Normally two different variable selection proce-
dures will result in the same conclusion, but not always, particularly if there
is a great deal of multicollinearity present.

In conclusion we emphasize again that variable selection, although very
widely used, should be employed with caution. There is no substitute for in-
telligent, nondata-based variable choices.

8.9 Detection of Outliers, Row Diagnostics

We have repeatedly emphasized that failures of assumptions about the nature
of the data may invalidate statistical inferences. For this reason we have en-
couraged the use of exploratory data analysis of observed or residual values to
aid in the detection of failures in assumptions and the use of alternate methods
if such failures are found.

14Remember that this is not a “true” significance level!
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Table 8.16 Results of Forward Selection

Variables Entered/Removeda

Variables Variables
Model Entered Removed Method
1 Forward

(Criterion:
Probabilit

RL y-of-F-to-e Model Summary
nter <=
.050) Adjusted Std. Error of

2 Forward Model R R Square R Square the Estimate
(Criterion: 1 .983a .966 .964 .17592
Probabilit 2 .988b .977 .974 .14918

W y-of-F-to-e
nter <= a. Predictors: (Constant), RL
.050) b. Predictors: (Constant), RL, W

a. Dependent Variable: WT
ANOVAc

Sum of
Model Squares df Mean Square F Sig.
1 Regression 17.630 1 17.630 569.664 .000a

Residual .619 20 .031
Total 18.249 21

2 Regression 17.826 2 8.913 400.524 .000b

Residual .423 19 .022
Total 18.249 21

a. Predictors: (Constant), RL
b. Predictors: (Constant), RL, W
c. Dependent Variable: WT

Coefficientsa

Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.
1 (Constant) −.241 .067 -3.622 .002

RL 3.690 .155 .983 23.868 .000
2 (Constant) 1.169 .478 2.444 .024

RL 2.279 .493 .607 4.619 .000
W 1.109 .374 .390 2.969 .008

a. Dependent Variable: WT
Excluded Variablesc

Collinearity

Partial Statistics
Model Beta In t Sig. Correlation Tolerance
1 WL .230a 1.099 .285 .245 3.835E-02

RNL .382a 2.639 .016 .518 6.237E-02
NWL .212a 1.122 .276 .249 4.698E-02
W .390a 2.969 .008 .563 7.064E-02

2 WL .079b .414 .684 .097 3.493E-02
RNL .211b 1.238 .232 .280 4.087E-02
NWL .246b 1.583 .131 .350 4.675E-02

a. Predictors in the Model: (Constant), RL
b. Predictors in the Model: (Constant), RL, W
c. Dependent Variable: WT
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As data and models become more complex, opportunities increase for un-
detected violations and inappropriate analyses. For example, in regression
analysis the misspecification of the model, such as leaving out important inde-
pendent variables or neglecting the possibility of curvilinear responses, may
lead to estimates of parameters exhibiting large variances. The fact that data
for regression analysis are usually observed, rather than the result of carefully
designed experiments, makes the existence of misspecification, violation of
assumptions, and inappropriate analysis more difficult to detect.

For these types of data it is also more difficult to detect outliers. We first
discuss the basic reason for this and subsequently present some methodologies
that may aid in overcoming the problem.

A Physical Analogue to Least Squares A fundamental law of physics,
called Hooke’s law, specifies that the tension of a coil spring is proportional
to the square of the length that the spring has been stretched (assuming a
perfect spring). The least squares estimate of a one-variable regression line is
equivalent to hooking a set of springs, perpendicular to the x axis, from the
data points to a rigid rod. The equilibrium position of the rod represents the
minimum total tension of the springs and thus represents the least squares line
(assuming no gravity). This is illustrated in Fig. 8.8.

This analogue is useful for illustrating a number of characteristics of least
squares estimation. For example, the amount of force required to pull the rod
into a horizontal position (β1 = 0) represents the strength or statistical signif-
icance of the linear regression of y on x. Remember the estimated variance
of β1 is (s2

y|x/Sxx), which increases in magnitude as the x values span a nar-
rower range (Section 7.5). Similarly, the force required to pull the rod into the
horizontal position is lower if the data values occupy a narrow range in the x

direction when the springs are close to the center of the rod.
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Figure 8.8

Illustration of
Hooke’s Law
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Effect of an Outlier

The spring analogue also illustrates the effect of the location of individual
observations on the estimated coefficients. For example, an unusual or ex-
treme value for the dependent variable y will tend to exert a relatively large
influence or leverage on the equilibrium location of the regression line as
illustrated in Fig. 8.9, where the data are identical to those of Fig. 8.8 except
that the response for x = 6 has been decreased by 3 units, making this an
outlier. In this case the outlier occurs at the extreme of the range of the x

values; hence, the point exerts extreme leverage so that the line is forced to
pass quite close to that point. Hence the largest observed residual is actually
for x = 5, which is not an outlier. On the other hand an outlier at the center of
the range of x values will not exert such a large leverage on the location of the
line. However, the outlier may create a large residual, which when squared,
contributes to an overestimate of the variance.

This example shows that the effect of outliers in the response variable
depends on where the observation lies in the space of the independent vari-
able(s). This effect is relatively easy to visualize in the case of a simple lin-
ear regression but is, obviously, more difficult to “see” when there are many
independent variables. While outlier detection statistics tend to focus on out-
liers in the dependent variable, other statistics focus on outliers in the indepen-
dent variable, which we have identified as observations having a high degree
of leverage. Yet other statistics provide information on both of these aspects.
While examining a large number of such statistics can be quite useful, the
scope of this book limits our presentation to one of the most frequently used
combination statistics. A more complete discussion can be found in Belsley
et al. (1980).

One important class of statistics that investigate the combined effects of
outliers and leverage is known as influence statistics. These statistics are
based on the question: “What happens if the regression is estimated using the



392 Chapter 8 Multiple Regression

Table 8.17

Data for Outlier
Detection

OBS Y X1 X2 X3

1 763 19.8 128 86
2 650 20.9 110 72
3 554 15.1 95 62
4 742 19.8 123 82
5 470 21.4 77 52
6 651 19.5 107 72
7 756 25.2 123 84
8 563 26.2 95 83
9 681 26.8 116 76

10 579 28.8 100 64
11 716 22.0 110 80
12 650 24.2 107 71
13 761 24.9 125 81
14 549 25.6 89 61
15 641 24.7 103 71
16 606 26.2 103 67
17 696 21.0 110 77
18 795 29.4 133 83
19 582 21.6 96 65
20 559 20.0 91 62

data without a particular observation?” We present one such influence statistic
and give an example of how it may be useful. The statistic, known as the DFFITS
statistic, is the difference between the predicted value for each observation
using the model estimated with all data and that using the model estimated with
that observation omitted (Belsley et al., 1980). This difference is standardized,
using the residual variance as estimated with the observation omitted. Large
values of this statistic may indicate suspicious observations. Generally, values
exceeding 2

√
(m+ 1)/n are considered large for this purpose.15 Actually this

criterion is not often needed since outliers having serious effects on model
estimates usually have DFFITS values greatly exceeding this criterion.

EXAMPLE 8.6 The production levels of a finished product (produced from sheets of stainless
steel) have varied quite a bit, and management is trying to devise a method
for predicting the daily amount of finished product. The ability to predict pro-
duction is useful for scheduling labor, warehouse space, and shipment of raw
materials and also to suggest a pricing strategy.

The number of units of the product (Y) that can be produced in a day depends
on the width (X1) and the density (X2) of the sheets being processed, and the
tensile strength of the steel (X3). The data are taken from 20 days of production.
The observations are given in Table 8.17.

15Fortunately, it is not necessary to recompute the regression equation omitting each observation
in turn. Special algorithms are available that make these computations quite feasible even for
rather large problems. We also emphasize that other outlier detection statistics are available and
that the DFFITS statistic is not necessarily the best. However, this statistic is quite popular, and
to present other statistics at this point may confuse the issue.
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Table 8.18 Analysis of Steel Data

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB > F

MODEL 3 146684.105 48894.702 133.750 0.0001
ERROR 16 5849.095 365.568
C TOTAL 19 152533.200

ROOT MSE 19.119844 R-SQUARE 0.9617
DEP MEAN 648.200 ADJ R-SQ 0.9545
C.V. 2.949683

PARAMETER STANDARD T FOR H0: VARIANCE
VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB > |T| INFLATION

INTERCEP 1 6.383762 40.701546 0.157 0.8773 0.000000
X1 1 −0.916131 1.243010 −0.737 0.4718 1.042464
X2 1 5.409022 0.595196 9.088 0.0001 3.906240
X3 1 1.157731 0.909244 1.273 0.2211 3.896413

OBS Y RESIDUALS DFFITS

1 763 −17.164 −0.596
2 650 −15.586 −0.259
3 554 −24.187 −1.198
4 742 −6.488 −0.175
5 470 6.525 0.263
6 651 0.359 0.007
7 756 10.144 0.218
8 563 −29.330 −12.535
9 681 −16.266 −0.334

10 579 −15.996 −0.592
11 716 42.160 1.138
12 650 4.822 0.064
13 761 7.524 0.167
14 549 14.045 0.380
15 641 17.916 0.261
16 606 −11.078 −0.230
17 696 24.717 0.450
18 795 0.059 0.003
19 582 0.886 0.015
20 559 6.938 0.155

Solution We perform a linear regression of Y on X1, X2, and X3, using
PROC REG of the SAS System. The analysis, including the residuals and
DFFITS statistics, is shown in Table 8.18. The results appear to be quite rea-
sonable. The regression is certainly significant. Only one coefficient appears to
be important and there is little multicollinearity. Thus one would be inclined
to suggest a model that includes only X2 and would probably show increased
production with increased values of X2. The residuals, given in the column la-
beledRESIDUALS, also show no real surprises. The residual for observation 11
appears quite large, but the residual plot (not reproduced here) does not show
it as an extreme value. However, the DFFITS statistics show a different story.
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Table 8.19 Results When Outlier Is Omitted

DEP VARIABLE: Y
SUM OF MEAN

SOURCE df SQUARES SQUARE F VALUE PROB > F

MODEL 3 143293.225 47764.408 448.105 0.0001
ERROR 15 1598.880 106.592
C TOTAL 18 144892.105

ROOT MSE 10.324340 R−square 0.9890
DEP MEAN 652.684 Adj R−sq 0.9868
C.V. 1.581828

PARAMETER STANDARD T FOR H0: VARIANCE
VARIABLE df ESTIMATE ERROR PARAMETER = 0 PROB > |T| INFLATION

INTERCEP 1 −42.267607 23.289383 −1.815 0.0896 0.000000
X1 1 0.982466 0.735468 1.336 0.2015 1.202123
X2 1 1.738216 0.664253 2.617 0.0194 16.053214
X3 1 6.738637 1.011032 6.665 0.0001 15.420233

The value of that statistic for observation 8 is about 10 times that for any
other observation. By any criterion this observation is certainly a suspicious
candidate.

The finding of a suspicious observation does not, however, suggest what
the proper course of action should be. Simply discarding such an observa-
tion is usually not recommended. Serious efforts should be made to verify
the validity of the data values or to determine whether some unusual event
did occur. However, for purposes of illustration here, we do reestimate the
regression without that observation. The results of the analysis are given in
Table 8.19, where it becomes evident that omitting observation number 8 has
greatly changed the results of the regression analysis. The residual variance
has decreased from 366 to 106, the F statistic for testing the model has in-
creased from 134 to 448, the estimated coefficients and their p values have
changed drastically so that now X3 is the dominant independent variable, and
the degree of multicollinearity between X2 and X3 has also increased. In other
words, the conclusions about the factors affecting production have changed
by eliminating one observation.

The change in the degree of multicollinearity provides a clue to the reasons
for the apparent outlier. Figure 8.10 shows the matrix of scatterplots for these
variables. The plotting symbol is a period except for observation 8, whose
symbol is “8.” These plots clearly show that the observed values for X2 and X3
as well as Y and X3 are highly correlated except for observation 8. However,
that observation appears not to be unusual with respect to the other variables.
The conclusion to be reached is that the unusual combination of values x2 and
x3 that occurred in observation 8 is a combination that does not conform to
the normal operating conditions. Or it could be a recording error. ■

Finding and identifying outliers or influential observations does not answer the
question of what to do with such observations. Simply discarding or changing
such observations is bad statistical practice since it may lead to self-fulfilling
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prophesies. Sometimes, when an outlier can be traced to sloppiness or mis-
takes, deletion or modification may be justified. In the above example, the
outlier may have resulted from an unusual product mix that does not often
occur. In this case, omission may be justified, but only if the conclusions state
that the equation may only be used for the usual product mix and that a close
watch must be posted to detect unusual mixes whose costs cannot be pre-
dicted by that model. In the previous example, predicting the number of units
produced for day 8 without using that day’s values provides a predicted value
of 702.9, certainly a very bad prediction!

8.10 CHAPTER SUMMARY

Solution to Example 8.1 The effect of performance factors on winning
percentages of baseball teams can be studied by a multiple regression using
WIN as the dependent variable and the team performance factors as indepen-
dent variables. Although the data are certainly not random, it is reasonable
to assume that the residuals from the model are random and otherwise ad-
here reasonably to the required assumptions. The output for the regression as
produced by PROC REG of the SAS System is shown in Table 8.20.

Starting at the top, it is evident that the regression is certainly significant,
although the coefficient of determination may not be considered particularly
large. The residual standard deviation of 0.045 indicates that about 95% of
observed proportion of wins are within 0.09 of the predicted values, which
indicates that there are obviously some other factors affecting the winning
percentages. The coefficients all have the expected signs, but it appears that
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Table 8.20 Regression for Winning Baseball Games

Model: MODEL1
Dependent Variable: WIN

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob > F

Model 5 0.12324 0.02465 12.410 0.0001
Error 34 0.06753 0.00199
C Total 39 0.19076

Root MSE 0.04457 R-square 0.6460
Dep Mean 0.50000 Adj R-sq 0.5940
C.V. 8.91323

Parameter Estimates
Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Prob > |T|
INTERCEP 1 −0.277675 0.19131508 −1.451 0.1558
RUNS 1 0.000278 0.00014660 1.895 0.0666
BA 1 1.741999 0.92847059 1.876 0.0692
DP 1 0.000737 0.00045021 1.637 0.1108
WALK 1 −0.000590 0.00012916 −4.566 0.0001
SO 1 0.000346 0.00010441 3.315 0.0022

Variance
Variable DF Inflation

INTERCEP 1 0.00000000
RUNS 1 2.93207465
BA 1 3.05405561
DP 1 1.61208141
WALK 1 1.21916888
SO 1 1.46815334

the only important factors relate to pitching. The variance inflation factors are
relatively small, although there appears to be an expected degree of correlation
between number of runs and batting average.

It is interesting to investigate the relative importance of the offensive
(RUNS, BA) and defensive (DP, WALK, SO) factors. These questions can be
answered with this computer program by the so-called TEST commands. The
first test, labeled OFFENSE, tests the hypothesis that the coefficients for RUNS
and BA are both zero, and the second, labeled DEFENSE, tests the null hypoth-
esis that the coefficients of DP, WALK, and SO are all zero. These commands
produce the following results:

Test: OFFENSE Numerator: 0.0304 DF: 2 F value: 15.3263
Denominator: 0.001986 DF: 34 Prob > F: 0.0001

Test: DEFENSE Numerator: 0.0226 DF: 3 F value: 11.3990
Denominator: 0.001986 DF: 34 Prob > F: 0.0001

It appears that both offense and defense contribute to winning, but offense
may be more important. This conclusion is not quite consistent with the tests
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Table 8.21

Variable Selection for
Baseball Regression

The REG Procedure
Model: MODEL1

Dependent Variable: WIN
R-Square Selection Method

Number in
Model R-Square C(p) Variables in Model

1 0.2625 34.8352 BA
1 0.2606 35.0174 RUNS
1 0.1793 42.8268 SO
1 0.0691 53.4079 WALK

2 0.4829 15.6621 BA WALK
2 0.4769 16.2464 RUNS WALK
2 0.4069 22.9662 BA SO
2 0.3882 24.7608 RUNS SO

3 0.5856 7.8051 BA WALK SO
3 0.5612 10.1473 RUNS WALK SO
3 0.5313 13.0186 RUNS BA WALK
3 0.4852 17.4423 BA DP WALK

4 0.6181 6.6800 RUNS BA WALK SO
4 0.6094 7.5201 RUNS DP WALK SO
4 0.6086 7.5919 BA DP WALK SO
4 0.5316 14.9882 RUNS BA DP WALK

5 0.6460 6.0000 RUNS BA DP WALK SO

on individual coefficients, a result that may be due to the existence of some
correlation among the variables.

Since a number of the individual factors appear to have little effect on the
winning percentage, variable selection may be useful. The RSQUARE selection
of PROC REG provides the results shown in Table 8.21. The selection process
indicates little loss in the error mean square associated with dropping double
plays and runs; hence the remaining three variables may provide a good model.
The resulting regression is summarized in Table 8.22.

The model with the three remaining variables fits almost as well as the
one with all five variables, and now the effects of the performance factors are
more definitive. Additional analysis includes the residual plot, which is shown
in Fig. 8.11. Although one team has a rather large negative residual, the overall
pattern of residuals shows no major cause for concern about assumptions. ■

The multiple linear regression model

y = β0 + β1x1 + · · · + βm xm + ε

is the extension of the simple linear regression model to more than one inde-
pendent variable. The basic principles of a multiple regression analysis are the
same as for the simple case, but many of the details are different.

The least squares principle for obtaining estimates of the regression coeffi-
cients requires the solution of a set of linear equations that can be represented
symbolically by matrices and is solved numerically, usually by computers.
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Table 8.22

Selected Model for
Baseball Regression

Model: MODEL1
Dependent Variable: WIN

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob > F

Model 6 0.11171 0.03724 16.955 0.0001
Error 36 0.07906 0.00220
C Total 39 0.19076

Root MSE 0.04686 R-Square 0.5856
Dep Mean 0.50000 Adj R-sq 0.5510
C.V. 9.37245

Parameter Estimates
Parameter Standard T for H0:

Variable DF Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 −0.356943 0.15890423 −2.246 0.0309
BA 1 3.339829 0.60054220 5.561 0.0001
WALK 1 −0.000521 0.00013230 −3.940 0.0004
SO 1 0.000274 0.00009178 2.986 0.0051
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Residual Plot for
Baseball Regression

As in simple linear regression, the variance of the random error is based
on the sum of squares of residuals and is computed through a partitioning of
sums of squares.

Because the partial regression coefficients in a multiple regression model
measure the effect of a variable in the presence of all other variables in
the model, estimates and inferences for these coefficients are different from
the total regression coefficients obtained by the corresponding simple linear
regressions. Inference procedures for the partial regression coefficients are
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therefore based on the comparison of the full model, which includes all coeffi-
cients and the restricted model, with the restrictions relating to the inference
on specific coefficients.

Inferences for the response have the same connotation as they have for the
simple linear regression model.

The multiple correlation coefficient is a measure of the strength of a mul-
tiple regression model. The square of the multiple regression coefficient is the
ratio of the regression to total sum of squares, as it was for the simple linear
regression model. A partial correlation coefficient is a measure of the strength
of the relationship associated with a partial regression coefficient.

Although the multiple regression model must be linear in the model param-
eters, it may be used to describe curvilinear relationships. This is accomplished
primarily by polynomial regression, but other forms may be used. A regression
linear in the logarithms of the variables has special uses.

Often a proposed regression model has more independent variables than
necessary for an adequate description of the data. A side effect of such model
specification is that of multicollinearity, which is defined as the existence of
large correlations among the independent variables. This phenomenon causes
the individual regression coefficients to have large variances, often resulting
in an estimated model that has good predictive power but with little statistical
significance for the regression coefficients.

One possible solution to an excessive number of independent variables is
to select a subset of independent variables for use in the model. Although this
is very easy to do, it should be done with caution, because such procedures
generate hypotheses with the data.

As in all statistical analyses, it is important to check assumptions. Because
of the complexity of multiple regression, simple residual plots may not be
adequate. Some additional methods for checking assumptions are presented.

8.11 CHAPTER EXERCISES

CONCEPT

QUESTIONS

1. Given that SSR = 50 and SSE = 100, calculate R2.

2. The multiple correlation coefficient can be calculated as the simple corre-
lation between and .

3. (a) What value of R2 is required so that a regression with five independent
variables is significant if there are 30 observations? [Hint: Use the 0.05
critical value for F(5, 24)].

(b) Answer part (a) if there are 500 observations.
(c) What do these results tell us about the R2 statistic?

4. If x is the number of inches and y is the number of pounds, what is the unit
of measure of the regression coefficient?

5. What is the common feature of most “influence” statistics?
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6. Under what conditions is least squares not the best method for estimating
regression coefficients?

7. What is the interpretation of the regression coefficient when using loga-
rithms of all variables?

8. What is the basic principle underlying inferences on partial regression
coefficients?

9. Why is multicollinearity a problem?

10. List some reasons why variable selection is not always an appropriate
remedial method when multicollinearity exists.

EXERCISES

1. This exercise is designed to provide a review of the mechanics for per-
forming a regression analysis. The data are:

OBS X1 X2 Y

1 1 5 5.4
2 2 6 8.5
3 4 6 9.4
4 6 5 11.5
5 6 4 9.4
6 8 3 11.8
7 10 3 13.2
8 11 2 12.1

First we compute X′X and X′Y, the sums of squares and cross products as
in Table 8.3. Verify at least two or three of these elements.

MODEL CROSSPRODUCTS X′X X′Y Y′Y
X′X INTERCEP X1 X2 Y

INTERCEP 8 48 34 81.3
X1 48 378 171 544.9
X2 34 171 160 328.7
Y 81.3 544.9 328.7 870.27

Next we invert X′X and compute B̂ = (X′X)−1X′Y, again as in Table 8.3.

X′X INVERSE B, SSE
INVERSE INTERCEP X1 X2 Y

INTERCEP 12.73103 −0.762255 −1.89706 −1.44424
X1 −0.762255 0.05065359 0.1078431 1.077859
X2 −1.89706 1.1078431 0.2941176 1.209314
Y −1.44424 1.077859 1.209314 2.859677

Verify that at least two elements of the matrix product (X′X)(X′X)−1 are
elements of an identity matrix. We next perform the partitioning of sums
of squares and perform the tests for the model and the partial coefficients.
Verify these computations.
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DEP VARIABLE: Y
SUM OF MEAN

SOURCE DF SQUARES SQUARE F VALUE PROB > F

MODEL 2 41.199073 20.599536 36.017 0.0011
ERROR 5 2.859677 0.571935
C TOTAL 7 44.058750

ROOT MSE 0.756264 R-SQUARE 0.9351
DEP MEAN 10.162500 ADJ R-SQ 0.9091
C.V. 7.441714

PARAMETER STANDARD T FOR H0:
VARIABLE DF ESTIMATE ERROR PARAMETER = 0 PROB > |T|

INTERCEPT 1 −1.444240 2.701571 −0.535 0.6158
X1 1 1.077859 0.170207 6.333 0.0014
X2 1 1.209314 0.410142 2.949 0.0319

Finally, we compute the predicted and residual values:

PREDICT
OBS ACTUAL VALUE RESIDUAL

1 5.400 5.680 −.280188
2 8.500 7.967 0.532639
3 9.400 10.123 −.723080
4 11.500 10.069 0.430515
5 9.400 9.860 −.460172
6 11.800 10.807 0.993423
7 13.200 12.962 0.237704
8 12.100 12.831 −.730842

SUM OF RESIDUALS 1.e−14
SUM OF SQUARED RESIDUALS 2.859677

Verify at least two of the predicted and residual values and also that the
sum of residuals is zero and that the sum of squares of the residuals is the
ERROR sum of squares given in the partitioning of the sums of squares.

2. The complete data set on energy consumption given for Exercise 7 in
Chapter 7 contains other factors that may affect power consumption. The
following have been selected for this exercise:

TMAX: maximum daily temperature,
TMIN: minimum daily temperature,
WNDSPD: windspeed, coded “0” if less than 6 knots and “1” if 6 or more

knots,
CLDCVR: cloud cover coded as follows:

0.0—clear
1.0—less than 0.6 covered
2.0—0.6 to 0.9 covered
3.0—cloudy (increments of 0.5 are used to denote variable cloud

cover between indicated codes), and
KWH: electricity consumption.

The data are given in Table 8.23.
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Table 8.23

Data for Exercise 2

OBS MO DAY TMAX TMIN WNDSPD CLDCVR KWH

1 9 19 87 68 1 2.0 45
2 9 20 90 70 1 1.0 73
3 9 21 88 68 1 1.0 43
4 9 22 88 69 1 1.5 61
5 9 23 86 69 1 2.0 52
6 9 24 91 75 1 2.0 56
7 9 25 91 76 1 1.5 70
8 9 26 90 73 1 2.0 69
9 9 27 79 72 0 3.0 53

10 9 28 76 63 0 0.0 51
11 9 29 83 57 0 0.0 39
12 9 30 86 61 1 1.0 55
13 10 1 85 70 1 2.0 55
14 10 2 89 69 0 2.0 57
15 10 3 88 72 1 1.5 68
16 10 4 85 73 0 3.0 73
17 10 5 84 68 1 3.0 57
18 10 6 83 69 0 2.0 51
19 10 7 81 70 0 1.0 55
20 10 8 89 70 1 1.5 56
21 10 9 88 69 1 0.0 72
22 10 10 88 76 1 2.5 73
23 10 11 77 66 1 3.0 69
24 10 12 75 65 1 2.5 38
25 10 13 72 64 1 3.0 50
26 10 14 68 65 1 3.0 37
27 10 15 71 67 0 3.0 43
28 10 16 75 66 1 3.0 42
29 10 17 74 52 1 0.0 25
30 10 18 77 51 0 0.0 31
31 10 19 79 50 0 0.0 31
32 10 20 80 50 0 0.0 32
33 10 21 80 53 0 0.0 35
34 10 22 81 53 1 0.0 32
35 10 22 80 53 0 0.0 34
36 10 24 81 54 1 2.0 35
37 10 25 83 67 0 2.0 41
38 10 26 84 67 1 1.5 51
39 10 27 80 63 1 3.0 34
40 10 28 73 53 1 1.0 19
41 10 29 71 49 0 0.0 19
42 10 30 72 56 1 3.0 30
43 10 31 72 53 1 0.0 23
44 11 1 79 48 1 0.0 35
45 11 2 84 63 1 1.0 29
46 11 3 74 62 0 3.0 55
47 11 4 83 72 1 2.5 56
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Table 8.24

Data for Exercise 3:
Asphalt Data

Obs X1 X2 X3 Y1 Y2

1 5.3 0.02 77 42 3.20
2 5.3 0.02 32 481 0.73
3 5.3 0.02 0 543 0.16
4 6.0 2.00 77 609 1.44
5 7.8 0.20 77 444 3.68
6 8.0 2.00 104 194 3.11
7 8.0 2.00 77 593 3.07
8 8.0 2.00 32 977 0.19
9 8.0 2.00 0 872 0.00

10 8.0 0.02 104 35 5.86
11 8.0 0.02 77 96 5.97
12 8.0 0.02 32 663 0.29
13 8.0 0.02 0 702 0.04
14 10.0 2.00 77 518 2.72
15 12.0 0.02 77 40 7.35
16 12.0 0.02 32 627 1.17
17 12.0 0.02 0 683 0.14
18 12.0 0.02 104 22 15.00
19 14.0 0.02 77 35 11.80

Perform a regression analysis to determine how the factors affect
fuel consumption (KWH). Include checking for multicollinearity, variable
selection (if appropriate), and outlier detection. Finally, interpret the re-
sults and assess their usefulness.

3. The data in Table 8.24 represent the results of a test for the strength of an
asphalt concrete mix. The test consisted of applying a compressive force
on the top of different sample specimens. Two responses occurred: the
stress and strain at which a sample specimen failed. The factors relate
to mixture proportions, rates of speed at which the force was applied,
and ambient temperature. Higher values of the response variables indicate
stronger materials.

The variables are:

X1: percent binder (the amount of asphalt in the mixture),
X2: loading rate (the speed at which the force was applied),
X3: ambient temperature,
Y1: the stress at which the sample specimen failed, and
Y2: the strain at which the specimen failed.

Perform separate regressions to relate stress and strain to the factors of the
experiment. Check the residuals for possible specification errors. Interpret
all results.

4. The data in Table 8.25 were collected in order to study factors affecting
the supply and demand for commercial air travel. Data on various aspects
of commercial air travel for an arbitrarily chosen set of 74 pairs of cities
were obtained from a 1966 (before deregulation) CAB study. Other data
were obtained from a standard atlas. The variables are:
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Table 8.25

Data for Exercise 4

CITY1 CITY2 PASS MILES INM INS POPM POPS AIRL

ATL AGST 3.546 141 3.246 2.606 1270 279 3
ATL BHM 7.016 139 3.246 2.637 1270 738 4
ATL CHIC 13.300 588 3.982 3.246 6587 1270 5
ATL CHST 5.637 226 3.246 3.160 1270 375 5
ATL CLBS 3.630 193 3.246 2.569 1270 299 4
ATL CLE 3.891 555 3.559 3.246 2072 1270 3
ATL DALL 6.776 719 3.201 3.245 1359 1270 2
ATL DC 9.443 543 3.524 3.246 2637 1270 5
ATL DETR 5.262 597 3.695 3.246 4063 1270 4
ATL JAX 8.339 285 3.246 2.774 1270 505 4
ATL LA 5.657 1932 3.759 3.246 7079 1270 3
ATL MEM 6.286 336 3.246 2.552 1270 755 3
ATL NO 7.058 424 3.245 2.876 1270 1050 4
ATL NVL 5.423 214 3.246 2.807 1270 534 3
ATL ORL 4.259 401 3.246 2.509 1270 379 3
ATL PHIL 6.040 666 3.243 3.246 4690 1270 5
ATL PIT 3.345 521 3.125 3.246 2413 1270 2
ATL RAL 3.371 350 3.246 2.712 1270 198 3
ATL SF 4.624 2135 3.977 3.246 3075 1270 3
ATL SVNH 3.669 223 3.246 2.484 1270 188 1
ATL TPA 7.463 413 3.246 2.586 1270 881 5
DC NYC 150.970 205 3.962 2.524 11698 2637 12
LA BOSTN 16.397 2591 3.759 3.423 7079 3516 4
LA CHIC 55.681 1742 3.759 3.982 7079 6587 5
LA DALL 18.222 1238 3.759 3.201 7079 1359 3
LA DC 20.548 2296 3.759 3.524 7079 2637 5
LA DENV 22.745 830 3.759 3.233 7079 1088 4
LA DETR 17.967 1979 3.759 3.965 7079 4063 4
LA NYC 79.450 2446 3.962 3.759 11698 7079 5
LA PHIL 14.705 2389 3.759 3.243 7079 4690 5
LA PHNX 29.002 356 3.759 2.841 7079 837 5
LA SACR 24.896 361 3.759 3.477 7079 685 3
LA SEAT 33.257 960 3.759 3.722 7079 1239 2
MIA ATL 14.242 605 3.246 3.024 1270 1142 4
MIA BOSTN 21.648 1257 3.423 3.024 3516 1142 5
MIA CHIC 39.316 1190 3.982 3.124 6587 1142 5
MIA CLE 13.669 1089 3.559 3.124 2072 1142 4
MIA DC 14.499 925 3.524 3.024 2637 1142 6
MIA DETR 18.537 1155 3.695 3.024 4063 1142 5
MIA NYC 126.134 1094 3.962 3.024 11698 1142 7
MIA PHIL 21.117 1021 3.243 3.024 4690 1142 7
MIA TPA 18.674 205 3.024 2.586 1142 881 7
NYC ATL 26.919 748 3.962 3.246 11698 1270 5
NYC BOSTN 189.506 188 3.962 3.423 11698 3516 8
NYC BUF 43.179 291 3.962 3.155 11698 1325 4
NYC CHIC 140.445 711 3.962 3.982 11698 6587 7
NYC CLE 53.620 404 3.962 3.559 11698 2072 7
NYC DETR 66.737 480 3.962 3.695 11698 4063 8
NYC PIT 53.580 315 3.962 3.125 11698 2413 7
NYC RCH 31.681 249 3.962 3.532 11698 825 3
NYC STL 27.380 873 3.962 3.276 11698 2320 5
NYC SYR 32.502 193 3.962 2.974 11698 515 3

(Continued)
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Table 8.25 (continued) CITY1 CITY2 PASS MILES INM INS POPM POPS AIRL

SANDG CHIC 6.162 1731 3.982 3.149 6587 1173 3
SANDG DALL 2.592 1181 3.201 3.149 1359 1173 2
SANDG DC 3.211 2271 3.524 3.149 2637 1173 4
SANDG LA 21.642 111 3.759 3.149 7079 1173 4
SANDG LVEG 2.760 265 3.149 3.821 1173 179 5
SANDG MINP 2.776 1532 3.621 3.149 1649 1173 2
SANDG NYC 6.304 2429 3.962 3.149 11698 1173 4
SANDG PHNX 6.027 298 3.149 2.841 1173 837 3
SANDG SACR 2.603 473 3.149 3.477 1173 685 3
SANDG SEAT 4.857 1064 3.722 3.149 1239 1173 2
SF BOSTN 11.933 2693 3.423 3.977 3516 3075 4
SF CHIC 33.946 1854 3.982 3.977 6587 3075 4
SF DC 16.743 2435 3.977 3.524 3075 2637 5
SF DENV 14.742 947 3.977 3.233 3075 1088 3
SF LA 148.366 347 3.759 3.977 7079 3075 7
SF LVEG 16.267 416 3.977 3.821 3075 179 6
SF LVEG 9.410 458 3.977 3.149 3075 1173 5
SF NYC 57.863 2566 3.962 3.977 11698 3075 5
SF PORT 23.420 535 3.977 3.305 3075 914 4
SF RENO 18.400 185 3.977 3.899 3075 109 3
SF SEAT 41.725 679 3.977 3.722 3075 1239 3
SF SLC 11.994 598 3.977 2.721 3075 526 3

CITY1 and CITY2: a pair of cities,
PASS: the number of passengers flying between the cities in a sample

week,
MILES: air distance between the pair of cities,
INM: per capita income in the larger city,
INS: per capita income in the smaller city,
POPM: population of the larger city,
POPS: population of the smaller city, and
AIRL: the number of airlines serving that route.

(a) Perform a regression relating the number of passengers to the other
variables. Check residuals for possible specification errors. Do the
results make sense?

(b) Someone suggests using the logarithms of all variables for the regres-
sion. Does this recommendation make sense? Perform the regression
using logarithms; answer all questions as in part (a).

(c) Another use of the data is to use the number of airlines as the dependent
variable. What different aspect of the demand or supply of airline travel
is related to this model? Implement that model and relate the results
to those of parts (a) and (b).

5. It is beneficial to be able to estimate the yield of useful product of a tree
based on measurements of the tree taken before it is harvested. Measure-
ments on four such variables were taken on a sample of trees, which sub-
sequently was harvested and the actual weight of product determined. The
variables are:
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DBH: diameter at breast height (about 4′ from ground level), in inches,
HEIGHT: height of tree, in feet,
AGE: age of tree, in years,
GRAV: specific gravity of the wood, and
WEIGHT: the harvested weight of the tree (lbs.).

The first two variables (DBH and HEIGHT) are logically the most important
and are also the easiest to measure. The data are given in Table 8.26.
(a) Perform a linear regression relating weight to the measured quantities.

Plot residuals. Is the equation useful? Is the model adequate?
(b) If the results appear to not be very useful, suggest and implement an

alternate model. (Hint: Weight is a product of dimensions.)

6. Data were collected to discern environmental factors affecting health stan-
dards. For 21 small regions we have data on the following variables:

POP: population (in thousands),
VALUE: value of all residential housing, in millions of dollars; this is the

proxy for economic conditions,
DOCT: the number of doctors,
NURSE: the number of nurses,
VN: the number of vocational nurses, and
DEATHS: number of deaths due to health-related causes (i.e., not

accidents); this is the proxy for health standards.

The data are given in Table 8.27.
(a) Perform a regression relating DEATHS to the other variables, excluding

POP. Compute the variance-inflation factors; interpret all results.
( b) Obviously multicollinearity is a problem for these data. What is the

cause of this phenomenon? It has been suggested that all variables
should be converted to a per capita basis. Why should this solve the
multicollinearity problem?

(c) Perform the regression using per capita variables. Compare results
with those of part (a). Is it useful to compare R2 values? Why or why
not?

7. We have data on the distance covered by irrigation water in a furrow of
a field. The data are to be used to relate the distance covered to the time
since watering began. The data are given in Table 8.28.
(a) Perform a simple linear regression relating distance to time. Plot the

residuals against time. What does the plot suggest?
( b) Perform a regression using time and the square of time. Interpret the

results. Are they reasonable?
(c) Plot residuals from the quadratic model. What does this plot suggest?

8. Twenty-five volunteer athletes participated in a study of cross-disciplinary
athletic abilities. The group was comprised of athletes from football, base-
ball, water polo, volleyball, and soccer. None had ever played organized
basketball, but did acknowledge interest and some social participation in
the game.
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Table 8.26

Data for Exercise 5:
Estimating Tree Weights

OBS DBH HEIGHT AGE GRAV WEIGHT

1 5.7 34 10 0.409 174
2 8.1 68 17 0.501 745
3 8.3 70 17 0.445 814
4 7.0 54 17 0.442 408
5 6.2 37 12 0.353 226
6 11.4 79 27 0.429 1675
7 11.6 70 26 0.497 1491
8 4.5 37 12 0.380 121
9 3.5 32 15 0.420 58

10 6.2 45 15 0.449 278
11 5.7 48 20 0.471 220
12 6.0 57 20 0.447 342
13 5.6 40 20 0.439 209
14 4.0 44 27 0.394 84
15 6.7 52 21 0.422 313
16 4.0 38 27 0.496 60
17 12.1 74 27 0.476 1692
18 4.5 37 12 0.382 74
19 8.6 60 23 0.502 515
20 9.3 63 18 0.458 766
21 6.5 57 18 0.474 345
22 5.6 46 12 0.413 210
23 4.3 41 12 0.382 100
24 4.5 42 12 0.457 122
25 7.7 64 19 0.478 539
26 8.8 70 22 0.496 815
27 5.0 53 23 0.485 194
28 5.4 61 23 0.488 280
29 6.0 56 23 0.435 296
30 7.4 52 14 0.474 462
31 5.6 48 19 0.441 200
32 5.5 50 19 0.506 229
33 4.3 50 19 0.410 125
34 4.2 31 10 0.412 84
35 3.7 27 10 0.418 70
36 6.1 39 10 0.470 224
37 3.9 35 19 0.426 99
38 5.2 48 13 0.436 200
39 5.6 47 13 0.472 214
40 7.8 69 13 0.470 712
41 6.1 49 13 0.464 297
42 6.1 44 13 0.450 238
43 4.0 34 13 0.424 89
44 4.0 38 13 0.407 76
45 8.0 61 13 0.508 614
46 5.2 47 13 0.432 194
47 3.7 33 13 0.389 66



408 Chapter 8 Multiple Regression

Table 8.27

Data for Exercise 6

POP VALUE DOCT NURSE VN DEATHS

100 141.83 49 76 221 661
110 246.80 103 250 378 1149
130 238.06 76 140 207 1333
142 265.90 95 150 381 1321
202 397.63 162 324 554 2418
213 464.32 194 282 560 2039
246 409.95 130 211 465 2518
280 556.03 205 383 942 3088
304 711.61 222 461 723 1882
316 820.52 304 469 598 2437
328 709.86 267 525 911 2177
330 829.84 245 639 739 2593
337 465.15 221 343 541 2295
379 839.11 330 714 330 2119
434 792.02 420 865 894 4294
434 883.72 384 601 1158 2836
436 939.71 363 530 1219 4637
447 1141.80 511 180 513 3236

1087 2511.53 1193 1792 1922 7768
2305 6774.16 3450 5357 4125 14590
2637 8318.92 3131 4630 4785 19044

Table 8.28

Distance Covered by
Irrigation Water

Obs Distance Time

1 85 0.15
2 169 0.48
3 251 0.95
4 315 1.37
5 408 2.08
6 450 2.53
7 511 3.20
8 590 4.08
9 664 4.93

10 703 5.42
11 831 7.17
12 906 8.22
13 1075 10.92
14 1146 11.92
15 1222 13.12
16 1418 15.78
17 1641 18.83
18 1914 21.22
19 1864 21.98

Height, weight, and speed in the 100-yard dash was recorded for each
subject. The basketball test consisted of the number of field goals that
could be made in a 60-min. period. The data are given in Table 8.29.
(a) Perform the regression relating GOALMADE to the other variables.

Comment on the results.
(b) Is there multicollinearity?
(c) Check for outliers.
(d) If appropriate, develop and implement an alternative model.

9. In an effort to estimate the plant biomass in a desert environment, field
measurements on the diameter and height and laboratory determination
of oven dry weight were obtained for a sample of plants in a sample of
transects (area). Collections were made at two times, in the warm and
cool seasons. The data are to be used to see how well the weight can be
estimated by the more easily determined field observations, and further
whether the model for estimation is the same for the two seasons. The
data are given in Table 8.30.
(a) Perform separate linear regressions for estimating weight for the two

seasons. Plot residuals. Interpret results.
( b) Transform width, height, and weight using the natural logarithm trans-

form discussed in Section 8.6. Perform separate regressions for esti-
mating log–weight for the two seasons. Plot residuals. Interpret results.
Compare results with those from part (a). (A formal method for com-
paring the regressions for the two seasons is presented in Chapter 11
and is applied to this exercise as Exercise 10, Chapter 11.)
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Table 8.29

Basket Goals Related to
Physique

OBS WEIGHT HEIGHT DASH100 GOALMADE

1 130 71 11.50 15
2 149 74 12.23 19
3 170 70 12.26 11
4 177 71 12.65 15
5 188 69 10.26 12
6 210 73 12.76 17
7 223 72 11.89 15
8 170 75 12.32 19
9 145 72 10.77 16

10 132 74 11.31 18
11 211 71 12.91 13
12 212 72 12.55 15
13 193 73 11.72 17
14 146 72 12.94 16
15 158 71 12.21 15
16 154 75 11.81 20
17 193 71 11.90 15
18 228 75 11.22 19
19 217 78 10.89 22
20 172 79 12.84 23
21 188 72 11.01 16
22 144 75 12.18 20
23 164 76 12.37 21
24 188 74 11.98 19
25 231 70 12.23 13

10. In this problem we are trying to estimate the survival of liver transplant
patients using information on the patients collected before the operation.
The variables are:

CLOT: a measure of the clotting potential of the patient’s blood,
PROG: a subjective index of the patient’s prospect of recovery,
ENZ: a measure of a protein present in the body,
LIV: a measure relating to white blood cell count and the response, and
TIME: a measure of the survival time of the patient.

The data are given in Table 8.31.
(a) Perform a linear regression for estimating survival times. Plot residuals.

Interpret and critique the model used.
( b) Because the distributions of survival times are often quite skewed, a

logarithmic model is often used for such data. Perform the regression
using such a model. Compare the results with those of part (a).

11. Considerable variation occurs among individuals in their perception of
what specific acts constitute a crime. To obtain an idea of factors that
influence this perception, 45 college students were given the following
list of acts and asked how many of these they perceived as constituting a
crime. The acts were:
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Table 8.30

Data for Exercise 9

COOL WARM

Width Height Weight Width Height Weight

4.9 7.6 0.420 20.5 13.0 6.840
8.6 4.8 0.580 10.0 6.2 0.400
4.5 3.9 0.080 10.1 5.9 0.360

19.6 19.8 8.690 10.5 27.0 1.385
7.7 3.1 0.480 9.2 16.1 1.010
5.3 2.2 0.540 12.1 12.3 1.825
4.5 3.1 0.400 18.6 7.2 6.820
7.1 7.1 0.350 29.5 29.0 9.910
7.5 3.6 0.470 45.0 16.0 4.525

10.2 1.4 0.720 5.0 3.1 0.110
8.6 7.4 2.080 6.0 5.8 0.200

15.2 12.9 5.370 12.4 20.0 1.360
9.2 10.7 4.050 16.4 2.1 1.720
3.8 4.4 0.850 8.1 1.2 1.495

11.4 15.5 2.730 5.0 23.1 1.725
10.6 6.6 1.450 15.6 24.1 1.830

7.6 6.4 0.420 28.2 2.2 4.620
11.2 7.4 7.380 34.6 45.0 15.310

7.4 6.4 0.360 4.2 6.1 0.190
6.3 3.7 0.320 30.0 30.0 7.290

16.4 8.7 5.410 9.0 19.1 0.930
4.1 26.1 1.570 25.4 29.3 8.010
5.4 11.8 1.060 8.1 4.8 0.600
3.8 11.4 0.470 5.4 10.6 0.250
4.6 7.9 0.610 2.0 6.0 0.050

18.2 16.1 5.450
13.5 18.0 0.640
26.6 9.0 2.090

6.0 10.7 0.210
7.6 14.0 0.680

13.1 12.2 1.960
16.5 10.0 1.610
23.1 19.5 2.160

9.0 30.0 0.710

aggravated assault armed robbery arson
atheism auto theft burglary
civil disobedience communism drug addiction
embezzlement forcible rape gambling
homosexuality land fraud Nazism
payola price fixing prostitution
sexual abuse of child sex discrimination shoplifting
striking strip mining treason
vandalism

The number of activities perceived as crimes is measured by the variable
CRIMES. Variables describing personal information that may influence
perception are:
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Table 8.31

Survival of Liver
Transplants

OBS CLOT PROG ENZ LIV TIME

1 3.7 51 41 1.55 34
2 8.7 45 23 2.52 58
3 6.7 51 43 1.86 65
4 6.7 26 68 2.10 70
5 3.2 64 65 0.74 71
6 5.2 54 56 2.71 72
7 3.6 28 99 1.30 75
8 5.8 38 72 1.42 80
9 5.7 46 63 1.91 80

10 6.0 85 28 2.98 87
11 5.2 49 72 1.84 95
12 5.1 59 66 1.70 101
13 6.5 73 41 2.01 101
14 5.2 52 76 2.85 109
15 5.4 58 70 2.64 115
16 5.0 59 73 3.50 116
17 2.6 74 86 2.05 118
18 4.3 8 119 2.85 120
19 6.5 40 84 3.00 123
20 6.6 77 46 1.95 124
21 6.4 85 40 1.21 125
22 3.7 68 81 2.57 127
23 3.4 83 53 1.12 136
24 5.8 61 73 3.50 144
25 5.4 52 88 1.81 148
26 4.8 61 76 2.45 151
27 6.5 56 77 2.85 153
28 5.1 67 77 2.86 158
29 7.7 62 67 3.40 168
30 5.6 57 87 3.02 172
31 5.8 76 59 2.58 178
32 5.2 52 86 2.45 181
33 5.3 51 99 2.60 184
34 3.4 77 93 1.48 191
35 6.4 59 85 2.33 198
36 6.7 62 81 2.59 200
37 6.0 67 93 2.50 202
38 3.7 76 94 2.40 203
39 7.4 57 83 2.16 204
40 7.3 68 74 3.56 215
41 7.4 74 68 2.40 217
42 5.8 67 86 3.40 220
43 6.3 59 100 2.95 276
44 5.8 72 93 3.30 295
45 3.9 82 103 4.55 310
46 4.5 73 106 3.05 311
47 8.8 78 72 3.20 313
48 6.3 84 83 4.13 329
49 5.8 83 88 3.95 330
50 4.8 86 101 4.10 398
51 8.8 86 88 6.40 483
52 7.8 65 115 4.30 509
53 11.2 76 90 5.59 574
54 5.8 96 114 3.95 830
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AGE: age of interviewee,
SEX: coded 0: female, 1: male,
COLLEGE: year of college, coded 1 through 4, and
INCOME: income of parents ($1000).

Perform a regression to estimate the relationship between the number of
activities perceived as crimes and the personal characteristics of the inter-
viewees. Check assumptions and perform any justifiable remedial actions.
Interpret the results. The data are given in Table 8.32.

12. Many architects have different tastes compared to the users of their prod-
ucts. This disagreement may result in the design and consequent construc-
tion of buildings not appreciated by the public. To provide some idea of the
structure of peoples’ tastes, a graduate student conducted a survey of 40
individuals (SUBJ) who had no special knowledge of architecture. In the
survey the respondents were asked to judge five structures for satisfac-
tion on seven specific characteristics and also give an overall satisfaction
index. All responses are on a nine-point scale as shown here. Satisfaction
indexes for the seven specific characteristics and overall satisfaction were
scored on a scale from 1 to 9, recorded by the variable names as follows:

Scoring

Characteristic Var 1 2 3 4 5 6 7 8 9

Beauty B ugly to beautiful
Function N useless to useful
Intimacy I strange to friendly
Dignity D humble to dignified
Cost C cheap to expensive
Fashion F classic to modern
Overall S bad to good

A condensed version of the data is shown in Table 8.33. (The data set for
analysis purposes has 200 records with the scores for each building as rated
by each subject.) Perform a regression relating to the specific preferences.
Ignore the subjects for now; the variation due to subjects will be discussed
in Chapters 10 and 11. Interpret the results.

13. An apartment complex owner is performing a study to see what improve-
ments or changes in her complex may bring in more rental income. From
a sample of 34 complexes she obtains the monthly rent on single-bedroom
units and the following characteristics:

AGE: the age of the property,
SQFT: square footage of unit,
SD: amount of security deposit,
UNTS: number of units in complex,
GAR: presence of a garage (0–no, 1–yes),
CP: presence of carport (0–no, 1–yes),



8.11 Chapter Exercises 413

Table 8.32

Crimes Perception
Data--Exercise 11

OBS AGE SEX COLLEGE INCOME CRIMES

1 19 0 2 56 13
2 19 1 2 59 16
3 20 0 2 55 13
4 21 0 2 60 13
5 20 0 2 52 14
6 24 0 3 54 14
7 25 0 3 55 13
8 25 0 3 59 16
9 27 1 4 56 16

10 28 1 4 52 14
11 38 0 4 59 20
12 29 1 4 63 25
13 30 1 4 55 19
14 21 1 3 29 8
15 21 1 2 35 11
16 20 0 2 33 10
17 19 0 2 27 6
18 21 0 3 24 7
19 21 1 2 53 15
20 16 1 2 63 23
21 18 1 2 72 25
22 18 1 2 75 22
23 18 0 2 61 16
24 19 1 2 65 19
25 19 1 2 70 19
26 20 1 2 78 18
27 19 0 2 76 16
28 18 0 2 53 12
29 31 0 4 59 23
30 32 1 4 62 25
31 32 1 4 55 22
32 31 0 4 57 25
33 30 1 4 46 17
34 29 0 4 35 14
35 29 0 4 32 12
36 28 0 4 30 10
37 27 0 4 29 8
38 26 0 4 28 7
39 25 0 4 25 5
40 24 0 3 33 9
41 23 0 3 26 7
42 23 1 3 28 9
43 22 0 3 38 10
44 22 0 3 24 4
45 22 0 3 28 6

SS: security system (0–no, 1–yes),
FIT: fitness facilities (0–no, 1–yes), and
RENT: monthly rental.

The data are presented in Table 8.34, and are available on the data disk file
FW08P13.
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Table 8.33 Architectural Preferences--Exercise 12

STRUCTURES

1 2 3 4 5

SUBJ S B N I D C F S B N I D C F S B N I D C F S B N I D C F S B N I D C F

1 2 4 2 3 4 7 3 5 3 3 4 3 3 7 6 6 7 7 6 6 4 5 7 3 2 6 7 7 7 8 7 7 8 7 6
2 5 3 4 7 4 3 3 6 8 7 4 8 8 3 6 4 8 5 4 6 4 7 8 8 6 8 8 5 4 4 3 7 3 3 3
3 4 4 4 7 3 3 4 7 8 7 7 8 8 4 3 7 7 3 7 7 8 6 8 8 6 8 9 4 7 8 4 4 4 5 8
4 6 6 4 5 5 5 3 4 4 4 5 5 5 6 7 5 8 6 6 6 5 5 3 4 3 4 5 6 7 7 6 8 6 6 5
5 2 1 3 3 2 2 5 6 7 6 6 6 6 5 4 4 3 5 5 3 4 7 5 7 7 7 8 5 5 4 4 5 5 4 6
6 4 3 5 5 4 3 3 6 4 6 6 6 7 4 7 5 7 6 6 6 8 5 6 7 5 7 8 3 3 2 5 4 4 4 5
7 7 7 6 8 8 7 3 5 2 6 2 3 5 6 5 3 7 3 4 5 5 7 7 4 7 8 7 7 4 5 5 7 6 4 5
8 3 3 6 3 3 2 6 7 8 7 8 8 6 4 6 1 5 3 4 5 7 7 7 6 6 6 6 4 6 5 5 6 6 5 7
9 6 3 6 7 5 4 5 7 7 7 7 7 7 6 8 8 6 8 8 6 7 6 6 8 7 7 6 6 3 5 5 4 4 5 5

10 5 7 3 5 5 6 4 3 6 5 2 4 6 7 3 6 7 5 6 4 3 5 8 2 3 3 5 6 6 8 3 6 6 6 5
11 3 3 4 3 2 2 5 6 8 3 6 6 5 5 4 3 7 4 3 3 6 4 4 6 3 5 8 2 3 6 5 2 1 3 8
12 3 6 5 4 2 3 2 6 7 6 7 5 7 4 7 8 6 7 5 5 7 5 6 6 4 7 8 3 3 3 4 3 2 4 6
13 4 8 4 4 6 8 7 1 1 6 2 2 2 2 7 5 7 6 6 6 6 1 2 4 3 3 7 6 6 6 7 7 7 6 6
14 4 4 6 3 3 2 7 6 8 4 6 6 6 5 8 7 8 7 6 6 7 5 6 6 6 5 5 5 1 1 1 1 1 2 6
15 4 5 5 6 3 3 3 4 4 6 6 5 5 4 4 5 3 3 3 3 3 5 6 5 4 7 7 3 5 3 5 4 3 4 5
16 8 9 5 9 7 8 1 5 3 6 2 2 9 9 9 9 9 9 7 9 4 9 7 3 6 5 9 8 5 7 7 6 5 5 4
17 5 3 3 3 3 5 7 5 8 8 7 7 7 2 6 5 5 5 2 8 8 7 7 8 7 8 8 2 5 3 2 5 2 7 9
18 5 3 7 5 4 5 3 4 6 8 6 7 7 1 6 6 7 6 6 8 4 6 7 9 7 8 8 1 6 4 8 5 2 6 8
19 2 7 2 2 7 7 2 5 2 8 2 5 4 8 6 8 8 7 7 3 2 2 7 2 2 2 8 2 8 8 7 7 2 5 2
20 2 2 6 2 2 3 8 8 7 8 7 5 2 2 7 8 8 8 8 7 8 8 8 8 7 8 8 2 2 2 1 2 3 2 8
21 8 7 2 8 6 4 2 8 8 8 8 8 8 2 8 8 8 8 8 3 8 8 9 9 9 9 9 1 3 5 1 2 2 2 8
22 5 7 8 4 7 7 2 4 2 3 2 1 1 9 4 5 7 6 7 6 4 3 3 2 2 3 4 7 5 5 7 7 6 6 6
23 6 3 2 8 2 2 9 6 8 7 9 6 7 1 6 5 4 7 4 4 9 6 7 8 7 8 8 3 4 3 3 2 3 3 8
24 3 4 5 6 3 3 5 5 5 6 6 5 5 6 8 8 8 7 6 7 8 5 6 8 4 6 7 9 6 4 7 9 5 5 8
25 6 7 6 6 8 8 4 2 2 5 2 2 3 7 5 5 7 7 4 4 5 7 5 8 8 3 3 6 6 6 5 4 6 4 5
26 2 3 5 5 2 2 7 7 7 7 7 6 6 5 4 3 5 4 3 5 5 7 5 7 8 6 6 6 2 3 4 4 3 4 7
27 7 4 7 7 6 5 7 7 7 7 7 7 6 5 7 5 6 7 4 5 6 7 6 7 7 7 6 5 7 6 6 7 5 6 7
28 8 8 6 7 6 7 3 5 5 5 5 5 4 8 5 6 5 3 6 4 3 6 7 5 5 5 6 7 3 6 3 3 4 4 3
29 2 2 2 4 3 1 5 6 6 5 6 6 6 3 7 6 5 6 7 5 8 4 7 7 6 8 5 4 5 4 3 3 5 4 7
30 1 4 1 1 1 1 4 5 4 7 5 5 6 3 5 5 4 4 4 3 6 6 6 7 7 6 7 3 6 4 3 3 4 4 6
31 9 8 8 5 5 8 1 7 4 8 2 4 7 9 8 6 8 5 8 3 2 2 3 3 3 2 3 2 8 6 7 9 3 4 8
32 6 3 7 2 4 6 9 9 9 9 8 5 8 1 1 2 9 1 2 7 9 8 9 9 9 9 9 1 4 3 5 7 2 1 9
33 2 1 8 1 2 2 9 6 6 9 9 9 8 1 8 9 8 9 4 4 9 9 9 9 9 9 9 1 8 9 9 1 3 9 9
34 8 7 3 3 6 8 3 4 8 8 2 6 5 8 3 2 7 7 2 3 2 3 3 3 3 7 8 8 9 8 6 8 8 8 8
35 2 2 8 2 2 2 6 7 8 4 8 8 7 8 2 2 8 3 3 2 8 9 9 7 7 8 9 9 2 2 6 2 2 3 8
36 2 4 8 2 2 2 2 9 9 7 8 9 9 8 1 2 8 2 2 2 2 8 7 7 8 8 8 7 3 7 7 2 3 7 6
37 7 8 5 8 2 5 3 2 2 3 3 7 8 8 3 3 3 3 3 3 3 3 2 2 2 6 7 7 6 7 3 6 3 3 3
38 3 3 5 3 4 2 7 7 9 3 9 6 6 3 3 3 3 3 3 3 7 2 6 3 3 7 4 2 2 3 2 2 2 3 7
39 3 5 3 3 3 3 3 3 4 3 6 3 3 3 5 8 4 4 7 7 7 3 8 4 3 8 7 3 3 7 3 3 6 3 8
40 9 9 9 8 9 9 2 5 7 8 2 4 6 7 8 6 9 7 9 8 7 7 7 7 5 6 8 8 8 8 9 8 7 8 8

(a) Perform a regression and make recommendations to the apartment
complex owner.

(b) Because there is no way to change some of these characteristics, some-
one recommends using a model that contains only characteristics that
can be modified. Comment on that recommendation.
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Table 8.34

Apartment Rent Data

OBS AGE SQFT SD UNTS GAR CP SS FIT RENT

1 7 692 150 408 0 0 1 0 508
2 7 765 100 334 0 0 1 1 553
3 8 764 150 170 0 0 1 1 488
4 13 808 100 533 0 1 1 1 558
5 7 685 100 264 0 0 0 0 471
6 7 710 100 296 0 0 0 0 481
7 5 718 100 240 0 1 1 1 577
8 6 672 100 420 0 1 0 1 556
9 4 746 100 410 1 1 1 1 636

10 4 792 100 404 1 0 1 1 737
11 8 797 150 252 0 0 1 1 546
12 7 708 100 276 0 0 1 0 445
13 8 797 150 252 0 0 0 1 533
14 6 813 100 416 0 1 0 0 617
15 7 708 100 536 0 0 1 1 475
16 16 658 100 188 1 1 1 1 525
17 8 809 150 192 0 0 1 0 461
18 7 663 100 300 0 0 0 1 495
19 1 719 100 300 1 1 1 1 601
20 1 689 100 224 0 1 1 1 567
21 1 737 175 310 1 1 1 1 633
22 1 694 150 476 1 0 1 1 616
23 7 768 150 264 0 0 1 1 507
24 6 699 150 150 0 0 0 0 454
25 6 733 100 260 0 0 1 0 502
26 7 592 100 264 0 0 1 1 431
27 6 589 150 516 0 0 1 1 418
28 8 721 75 216 0 0 1 0 538
29 5 705 75 212 1 0 1 1 506
30 6 772 150 460 0 0 1 1 543
31 7 758 100 260 0 0 1 0 534
32 7 764 100 269 0 0 1 0 536
33 6 722 125 216 0 0 0 1 520
34 1 703 100 248 0 0 1 0 530

14. (a) Use the data set on home prices given in Table 8.2 to do the following:
(i) Use price as the dependent variable and the rest of the varia-

bles as independent variables and determine the best regression
using the stepwise variable selection procedure. Comment on the
results.

(ii) The Modes decided to not use the data on homes whose price ex-
ceeded $200,000, because the relationship of price to size seemed
to be erratic for these homes. Perform the regression using all
observations, and compute the outlier detection statistics. Also
compare the results of the regression with that obtained using
only the under $200,000 homes. Comment on the results. Which
regression would you use?
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(iii) Compute and study the residuals for the home price regression.
Could these be useful for someone who was considering buying
one of these homes?

(b) The data originally presented in Chapter 1 (Table 1.2) also included
the variables garage and fp. Perform variable selection that includes
these variables as well. Explain the results.
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Factorial Experiments

EXAMPLE 9.1 What Makes a Wiring Harness Last Longer? Many electrical wiring har-
nesses, such as those used in automobiles and airplanes, are subject to con-
siderable stress. Therefore, it is important to design such harnesses to prolong
their useful life. The objective of this experiment is to investigate factors affect-
ing the failure of an electrical wiring harness. The factors of the experiment are

STRANDS: the number of strands in the wire, levels are 7 and 9,
SLACK: length of unsoldered, uninsulated wire in 0.01 in., levels are 0, 3, 6, 9,

and 12, and
GAGE: a reciprocal measure of the diameter of the wire, levels are 24, 22,

and 20.

The response, Cycles, is the number of stress cycles to failure, in 100 s.
The experiment is a completely randomized design with two independent

samples for each combination of levels of the three factors, that is, an experi-
ment with a total of 2 · 5 · 3 = 30 factor levels. The objective of the experiment
is to see what combination of these factor levels maximizes the number of
cycles to failure. The data are given in Table 9.1, which shows, for example,
that 2 and 4 cycles to failure were reported for SLACK= 0, STRANDS= 7, and
GAGE = 24 (source: Enrick, 1976). ■

9.1 Introduction

In Chapter 6 we presented the methodology for comparing means of popula-
tions that represent levels of a single factor. This methodology is based on a
one-way or single-factor analysis of variance model. Many data sets, however,

417
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Table 9.1 Cycles to Failure of a Wire Harness
Adapted from Enrick (1976)

NUMBER OF STRANDS

Wire Slack 7 9

Wire Gage 24 22 20 24 22 20

0 2 4 14 9 6 8 3 3 10 14 12 11
3 5 2 6 15 5 7 2 5 17 17 16 8
6 6 3 7 7 5 1 5 5 10 10 10 8
9 9 16 12 12 8 12 6 4 16 11 13 7

12 14 12 10 14 12 11 13 15 20 17 12 15

involve two or more factors. This chapter and Chapter 10 present models and
procedures for the analysis of multifactor data sets. Such data sets arise from
two types of situations:

1. Factorial experiments: In many experiments it is desirable to examine the
effect of two or more factors on the same type of unit. For example, a crop
yield experiment may be conducted to examine the differences in yields of
several varieties as well as different levels of fertilizer application. In this ex-
periment, variety is one factor and fertilizer is the other. An experiment that
has each combination of all factor levels applied to the experimental units
is called a factorial experiment. Although data exhibiting a multifactor
structure arise most frequently from designed experiments, they may occur
in other contexts. For example, data on test scores from a sample survey
of students of different ethnic backgrounds from each of several univer-
sities may be considered a factorial “experiment,” which can be used to
ascertain differences on, say, mean test scores among schools and ethnic
backgrounds.

2. Experimental design: It is often desirable to subdivide the experimental
units into groups before assigning them to different factor levels. These
groups are defined in such a way as to reduce the estimate of variance used
for inferences. This procedure is usually referred to as “blocking,” and also
results in multifactor data sets. Procedures for the analysis of data arising
from experimental designs are presented in Chapter 10.

Actually, a data set may have both a factorial structure and include blocking
factors. Such situations are also presented in Chapter 10.

As in the one-way analysis of variance, the analysis of any factorial ex-
periment is the same whether we are considering a designed experiment or
an observational study. The interpretation may, however, be different. Also,
as in the one-way analysis of variance, the factors in a factorial experiment
may have qualitative or quantitative factor levels that may suggest contrasts
or trends, or in other cases may be defined in a manner requiring the use of
post hoc paired comparisons.
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9.2 Concepts and Definitions

In a factorial experiment we apply several factors simultaneously to each
experimental unit, which we will again assume to be synonymous with an
observational unit.

DEFINITION 9.1
A factorial experiment is one in which responses are observed for
every combination of factor levels.

We assume (for now) that there are two or more independently sampled
experimental units for each combination of factor levels and also that each
factor level combination is applied to an equal number of experimental units,
resulting in a balanced factorial experiment. We relax the assumption of mul-
tiple samples per combination in Section 9.5. Lack of balance in a factorial
experiment does not alter the basic principles of the analysis of factorial exper-
iments, but does require a different computational approach (see Chapter 11).
A factorial experiment may require a large number of experimental units, espe-
cially if we have many factors with many levels. Alternatives are briefly noted
in Sections 9.6 and 10.5.

A classical illustration of a factorial experiment concerns a study of the
crop yield response to fertilizer. The factors are the three major fertilizer
ingredients: N (nitrogen), P (phosphorus), and K (potassium). The levels are
the pounds per acre of each of the three ingredients, for example:

N at four levels: 0, 40, 80, and 120 lbs. per acre,
P at three levels: 0, 80, and 160 lbs. per acre, and
K at three levels: 0, 40, and 80 lbs. per acre.

The response is yield, which is the variable to be analyzed.
The set of factor levels in the factorial experiment consists of all combi-

nations of these levels, that is, 4 × 3 × 3 = 36 combinations. In other words,
there are 36 treatments. This experiment is called a 4 × 3 × 3 factorial ex-
periment, and in this case all three factors have quantitative levels. In this
experiment one of these 36 combinations has no fertilizer application, which
is referred to as a control. However, not all factorial experiments have a
control.

The experiment consists of assigning the 36 combinations randomly to
experimental units, as was done for the one-way (or CRD) experiment. If five
experimental plots are assigned to each factor level combination, 180 such
plots would be needed for this experiment.

Consider another experiment intended to evaluate the relationship of the
amount of knowledge of statistics to the number of statistics courses to which
students have been exposed. The factors are
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the number of courses in statistics taken, with levels of 1, 2, 3, or 4, and
the curriculum (major) of the students, with levels of engineering, social

science, natural science, and agriculture.

The response variable is the students’ scores on a comprehensive statistics
test. The resulting data comprise a 4 × 4 factorial experiment. In this exper-
iment the number of courses is a quantitative factor and the curriculum is a
qualitative factor. Note that this data set is not the result of a designed experi-
ment; however, the characteristics of the factorial data set remain.

The statistical analysis of data from a factorial experiment is intended to
examine how the behavior of the response variable is affected by the different
levels of the factors. This examination takes the form of inferences on two
types of phenomena.

DEFINITION 9.2
Main effects are the differences in the mean response across the levels
of each factor when viewed individually.

In the fertilizer example, the main effects “nitrogen,” “phosphorus,” and
“potassium” separately compare the mean response across levels of N, P, and
K, respectively.

DEFINITION 9.3
Interactions effects are differences or inconsistencies of the main
effect responses for one factor across levels of one or more of the other
factors.

For example, when applying fertilizer, it is well known that increasing amounts
of only one nutrient, say, nitrogen, will have only limited effect on yield. How-
ever, in the presence of other nutrients, substantial yield increases may result
from the addition of more nitrogen. This result is an example of an interaction
among these factors.

In the preceding example of student performance on the test in statistics,
interaction may exist because students in disciplines that stress quantitative
reasoning will probably show greater improvement with the number of statis-
tics courses taken than will students in curricula having little emphasis on
quantitative reasoning.

We will see that the existence of interactions modifies and sometimes even
nullifies inferences on main effects. Therefore it is important to conduct ex-
periments that can detect interactions. Experiments that consider only one
factor at a time or include only selected combinations of factor levels usually
cannot detect interactions. Example 6.6 actually studied seven factors, whose
levels were considered in some combinations, but the structure and number
of combinations were insufficient to be able to detect interactions among all
the factors. Only factorial experiments that simultaneously examine all com-
binations of factor levels should be used for this purpose.
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Table 9.2

Data for Motor Oil
Experiment

Oil Miles Per Gallon Mean

STANDARD 23.6 21.7 20.3 21.0 22.0 21.72
MULTI 23.5 22.8 24.6 24.6 22.5 23.60
GASMISER 21.4 20.7 20.5 23.2 21.3 21.42

EXAMPLE 9.2 Recently an oil company has been promoting a motor oil that is supposed
to increase gas mileage. An independent research company conducts an ex-
periment to test this claim. Fifteen identical cars are used: five are randomly
assigned to use a standard single-weight oil (STANDARD), five others a multi-
weight oil (MULTI), and the remaining five the new oil (GASMISER). All 15 cars
are driven 1000 miles over a controlled course and the gas mileage (miles per
gallon) is recorded. This is a one-factor CRD of the type presented in Chapter 6.
The data are given in Table 9.2.

Solution We use the analysis of variance to investigate the nature of dif-
ferences in average gas mileage due to the use of different motor oils. The
analysis (not reproduced here) for factor level differences produces an F

ratio of 5.75, which has 2 and 12 degrees of freedom. The p value is 0.0177,
which provides evidence that the oil types do affect gas mileage. The use of
Duncan’s multiple range test indicates that at the 5% significance level the
only difference is that between MULTI and GASMISER and that between
MULTI and STANDARD. Thus, there is insufficient evidence to support the
claim of superior gas mileage with the GASMISER oil.

Suppose someone points out that the advertisements for GASMISER also
state “specially formulated for the new smaller engines,” but it turns out that
the experiment was conducted with cars having larger six-cylinder engines.
In these circumstances, the decision is made to repeat the experiment using
a sample of 15 identical cars having four-cylinder engines. The data from this
experiment are given in Table 9.3.

Table 9.3

Data for Motor Oil
Experiment on
Four-Cylinder Engines

Oil Miles Per Gallon Mean

STANDARD 22.6 24.5 23.1 25.3 22.1 23.52
MULTI 23.7 24.6 25.0 24.0 23.1 24.08
GASMISER 26.0 25.0 26.9 26.0 25.4 25.86

The analysis of the data from this experiment produces an F ratio of 7.81
and a p value of 0.0067, and we may conclude that for these engines there is
also a difference due to oils. Applications of Duncan’s range test shows that
for these cars, the GASMISER oil does produce higher mileage, but that there
is apparently no difference between STANDARD and MULTI.

The result of these analyses is that the recommendation for using an oil
depends on the engine to be used. This is an example of an interaction

between engine size and type of oil. The existence of this interaction means
that we may not be able to make a universal inference of motor oil effect.
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That is, any recommendations for oil usage depend on which type of engine
is to be used. However, the results of the two separate experiments cannot be
used to establish the significance of the interaction because the possible exis-
tence of different experimental conditions for the two separate experiments
may introduce a confounding effect and thus cloud the validity of inferences.
Therefore, such an inference can only be made if a single factorial experi-

ment is conducted using both engine types and motor oils as the factors. Such
an experiment would be a 2 × 3 (called “two by three”) factorial. ■

9.3 The Two-Factor Factorial Experiment

We present here the principles underlying the analysis of a two-factor factorial
experiment and the definitional formulas for performing that analysis. The
two factors are arbitrarily labeled A and C. Factor A has levels 1, 2, . . . , a,
and factor C has levels 1, 2, . . . , c, which is referred to as an a × c factorial
experiment. At this point it does not matter if the levels are quantitative or
qualitative. There are n independent sample replicates for each of the a × c

factor level combinations; that is, we have a completely randomized design
with a · c treatments and a · c · n observed values of the response variable.

The Linear Model

As in the analysis of the completely randomized experiment, the representa-
tion of the data by a linear model (Section 6.3) facilitates understanding of the
analysis. The linear model for the two-factor factorial experiment specified
above is

yijk = μ + αi + γ j + (αγ )ij + εijk,

where yijk = kth observed value, k = 1, 2, . . . , n of the response variable y

for the “cell” defined by the combination of the ith level of factor A and the
jth level of factor C; μ = reference value, usually called the “grand” or over-
all mean; αi, i = 1, 2, . . . , a = main effect of factor A, and is the difference
between the mean response of the subpopulation comprising the ith level of
factor A and the reference value μ; γ j , j = 1, 2, . . . , c = main effect of factor
C, and is the difference between the mean response of the subpopulation com-
prising the jth level of factor C and the reference value μ; (αγ )ij = interaction
between factors A and C, and is the difference between the mean response in
the subpopulation defined by the combination of the Ai and C j factor levels
and the main effects αi and γ j ; and εijk = random error representing the vari-
ation among observations that have been subjected to the same factor level
combinations. This component is a random variable having an approximately
normal distribution with mean zero and variance1 σ 2.

1These assumptions about ε were first introduced in Chapter 6. Methods for detection of violations
and remedial measures remain the same.
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In the linear model for the factorial experiment we consider all factors,
including interactions, to be fixed effects (Section 6.3). Occasionally some
factors in a factorial experiment may be considered to be random, in which
case the inferences are akin to those from certain experimental designs pre-
sented in Chapter 10. As in Section 6.4, we add the restrictions2∑

i

αi =
∑

j

γ j =
∑

i

(αγ )ij =
∑

j

(αγ )ij = 0,

which makes μ the overall mean response and αi, γi, and (αγ )ij , the main and
interaction effects, respectively.

We are interested in testing the hypotheses

H0: αi = 0,

H0: γ j = 0,

H0: (αγ )ij = 0, for all i and j.

We have noted that the existence of interaction effects may modify conclu-
sions about the main effects. For this reason it is customary to first perform
the test for the existence of interaction and continue with inferences on main
effects only if the interaction can be ignored or is too small to hinder the
inferences on main effects.

As in the single-factor analysis of variance in Chapter 6, we are also
interested in testing specific hypotheses using preplanned contrasts or making
post hoc multiple comparisons for responses to the various factor levels (see
Sections 9.4 and 9.5).

Notation

The appropriate analysis of data resulting from a factorial experiment is an
extension of the analysis of variance presented in Chapter 6. Partitions of
the sums of squares are computed using factor level means, and the ratios of
corresponding mean squares are used as test statistics, which are compared
to the F distribution. The structure of the data from a factorial experiment
is more complicated than that presented in Chapter 6; hence the notation
presented in Section 6.2 must be expanded.

Consistent with our objective of relying primarily on computers for per-
forming statistical analyses, we present in detail only the definitional formulas
for computing sums of squares. These formulas are based on the use of devia-
tions from means and more clearly show the origin of the computed quantities,
but are not convenient for manual calculations.

As defined for the linear model, yijk represents the observed value of the
response of the kth unit for the factor level combination represented by the ith
level of factor A and jth level of factor C. For example, y213 is the third ob-
served value of the response for the treatment consisting of level 2 of factor A
and level 1 of factor C. As in the one-way analysis, the computations for the

2The notation
∑
i

is used to signify summation across the i subscript, etc.
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analysis of variance are based on means. In the multifactor case, we calculated
a number of means and totals in several different ways. Therefore, we adopt
a notation that is a natural extension of the “dot” notation used in Section 6.2:

ȳij. denotes the mean of the observations occurring in the ith level of factor
A and jth level of factor C, and is called the mean of the AiC j cell,

ȳi.. denotes the mean of all observations for the ith level of factor A, called
the Ai main effect mean,

ȳ. j. likewise denotes the C j main effect mean, and
ȳ... denotes the mean of all observations, which is called the grand or overall

mean.

This notation may appear awkward but is useful for distinguishing the various
means, as well as getting a better understanding of the various formulas we
will be using. Three important properties underlie this notational system:

1. When a subscript is replaced with a dot, that subscript has been summed
over.

2. The number of observations used in calculating a mean is the product of the
number of levels (or replications) of the model components represented by
the dotted subscripts.

3. It is readily extended to describe data having more than two factors.

Computations for the Analysis of Variance

As in the analysis of variance for the one-way classification, test statistics are
based on mean squares computed from factor level means. The computations
for performing the analysis of variance for a factorial experiment can be de-
scribed in two stages:

1. The between cells analysis, which is a one-way classification or CRD with
factor levels defined by the cells. The cells consist of all combinations of
factor levels.

2. The factorial analysis, which determines the existence of factor and in-
teraction effects.

This two-stage definition of a factorial experiment provides a useful guide for
performing the computations of the sums of squares needed for the analysis
of such an experiment. It is also reflected by most computer outputs.

Between Cells Analysis

The first stage considers the variation among the cells for which the model
can be written,

yijk = μij + εijk,

which is the same as it is for the one-way classification, except that μij has
two subscripts corresponding to the ij cell. The null hypothesis is

H0: μij = μkl , all i, j 
= k, l;
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that is, all cell means are equal. The test for this hypothesis is obtained using
the methodology of Chapter 6 using the cells as treatments. The total sum of
squares,

TSS =
∑
ijk

(yijk − ȳ...)2,

represents the variation of observations from the overall mean. The between
cell sum of squares,

SSCells = n
∑

ij

(ȳij. − ȳ...)2,

represents the variation among the cell means. The within cell or error sum of
squares,

SSW =
∑
ijk

(yijk − ȳij.)2,

represents the variation among units within cells. This quantity can be obtai-
ned by subtraction:

SSW = TSS − SSCells.

The corresponding degrees of freedom are

total: the number of observations minus 1, df(total) = acn − 1.
between cells: the number of cells minus 1, df(cells) = ac − 1.
within cells: (n− 1) degrees of freedom for each cell, df(within) = ac(n− 1).

These quantities provide the mean squares used to test the null hypothesis of
no differences among cell means. That is,

F = MSCells / MSW, with df = [(ac − 1), ac(n − 1)].

This test is sometimes referred to as the test for the model. If the hypothesis
of equal cell means is rejected, the next step is to determine whether these
differences are due to specific main or interaction effects.3

The Factorial Analysis

The linear model for the factorial experiment defines the cell means in terms
of the elements of the factorial experiment model as follows:

μij = μ + αi + γ j + (αγ )ij.

This model shows that the between cells analysis provides an omnibus test
for all the elements of the factorial model, that is,

H0: αi = 0,

H0: γ j = 0,

H0: (αγ )ij = 0, for all i and j.

3Failure to reject the hypothesis of equal cell means does not automatically preclude finding
significant main effects or interactions, but this is usually the case.
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The test for the individual components of the factorial model is accomplished
by partitioning the between cells sum of squares into components correspond-
ing to the specific main and interaction effects. This partitioning is accom-
plished as follows:

1. The sum of squares due to main effect A is computed as if the data came
from a completely randomized design with c ·n observations for each of the
a levels of factor A. Thus,

SSA = cn
∑

i

(ȳi.. − ȳ...)2.

2. Likewise, the sum of squares for main effect C is computed as if we had
a completely randomized design with a · n observations for each of the c

levels of factor C:

SSC = an
∑

j

(ȳ. j. − ȳ...)2.

3. The sum of squares due to the interaction of factors A and C is the variation
among all cells not accounted for by the main effects. The definitional for-
mula is

SSAC = n
∑

ij

[(ȳij. − ȳ...) − (ȳi.. − ȳ...) − (ȳ. j. − ȳ...)]2.

Note that this represents the variation among cells minus the variation due
to the main effects. Thus this quantity is most conveniently computed by
subtraction:

SSAC = SSCells − SSA − SSC.

The degrees of freedom for the main effects are derived as are those for a
factor in the one-way case. Specifically,

df(A) = a − 1,

df(C) = c − 1.

For the interaction, the degrees of freedom are the number of cells minus 1,
minus the degrees of freedom for the two corresponding main effects, or
equivalently the product of the degrees of freedom for the corresponding
main effects:

df(AC) = (ac − 1) − (a − 1) − (c − 1) = (a − 1)(c − 1).

As before, all sums of squares are divided by their corresponding degrees
of freedom to obtain mean squares, and ratios of mean squares are used as
test statistics having the F distribution.

Expected Mean Squares

Since there are now several mean squares that may be used in F ratios, it
may not be immediately clear which ratios should be used to test the de-
sired hypotheses. The expected mean squares are useful for determining the
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appropriate ratios to use for hypothesis testing. Using the already defined
model,

yijk = μ + αi + γ j + (αγ )ij + εijk,

where μ, αi, γ j , and (αγ )ij are fixed effects and εijk are random with mean
zero and variance σ 2, the expected mean squares are4

E(MSA) = σ 2 + cn

a − 1

∑
i

α2
i ,

E(MSC) = σ 2 + an

c − 1

∑
j

γ 2
j ,

E(MSAC) = σ 2 + n

(a − 1)(c − 1)

∑
ij

(αγ )2
ij ,

E(MSW) = σ 2.

As illustrated for the CRD in Section 6.3, the use of expected mean squares
to justify the use of the F ratio is based on the following conditions:

• If the null hypothesis is true, both numerator and denominator are estimates
of the same variance.

• If the null hypothesis is not true, the numerator contains an additional
component, which is a function of the sums of squares of the parameters
being tested.

Now if we want to test the hypothesis

H0: αi = 0, for all i,

the expected mean squares show that the ratio MSA / MSW fulfills these criteria.
As noted in Section 6.3, we are really testing the hypothesis that

∑
α2

i = 0,
which is equivalent to the null hypothesis as originally stated.

Likewise, ratios using MSC and MSAC are used to test for the existence
of the other effects of the model. The results of this analysis are conveniently
summarized in tabular form in Table 9.4.

Table 9.4

Analysis of Variance
Table for Two-Factor
Factorial

Source df SS MS F

Between cells ac − 1 SSCells MSCells MSCells / MSW

Factor A a − 1 SSA MSA MSA / MSW
Factor C c − 1 SSC MSC MSC / MSW
Interaction A*C (a − 1)(c − 1) SSAC MSAC MSAC / MSW

Within cells (error) ac(n − 1) SSW MSW

Total acn − 1 TSS

4Algorithms for obtaining these expressions are available (for example, in Ott, 1988, Section 16.5).
They may also be obtained by some computer programs such as PROC GLM of the SAS System.
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Table 9.5

Data from Factorial
Motor Oil Experiment
Note: Variable is MPG.

Engine

MOTOR OIL Means

Engine STANDARD MULTI GASMISER ȳi..

Six cylinder 23.6 23.5 21.4 22.247
21.7 22.8 20.7
20.3 24.6 20.5
21.0 24.6 23.2
22.0 22.5 21.3

Cell means ȳij. 21.72 23.60 21.42

Four cylinder 22.6 23.7 26.0 24.487
24.5 24.6 25.0
23.1 25.0 26.9
25.3 24.0 26.0
22.1 23.1 25.4

Cell means ȳij. 23.52 24.08 25.86

ȳ... =
Oil means ȳ. j. 22.620 23.840 23.640 23.367

EXAMPLE 9.3 To illustrate the computations for the analysis of a two-factor factorial experi-
ment we assume that the two motor oil experiments were actually performed
as a single 2 × 3 factorial experiment. In other words, treatments correspond
to the six combinations of the two engine types and three oils in a single
completely randomized design. For the factorial we define

factor A: type of engine with two levels: 4 and 6 cylinders, and
factor C: type of oil with three levels: STANDARD, MULTI, and GASMISER.

The data, together with all relevant means are given in Table 9.5.

Solution The computations for the analysis proceed as follows:

1. The between cells analysis:
a. The total sum of squares is

TSS =
∑
ijk

(yijk − ȳ...)2

= (23.6 − 23.367)2 + (21.7 − 23.367)2 + · · · + (25.4 − 23.367)2

= 92.547.

b. The between cells sum of squares is

SSCells = n
∑

ij

(ȳij. − ȳ...)2

= 5[(21.72 − 23.367)2 + (23.60 − 23.367)2

+ · · · + (25.86 − 23.367)2]

= 66.523.
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c. The within cells sum of squares is

SSW = TSS − SSCells

= 92.547 − 66.523

= 26.024.

The degrees of freedom for these sums of squares are

(a)(c)(n) − 1 = (2)(3)(5) − 1 = 29 for TSS,

(a)(c) − 1 = (2)(3) − 1 = 5 for SSCells, and

(a)(c)(n − 1) = (2)(3)(5 − 1) = 24 for SSW.

2. The factorial analysis:
a. The sum of squares for factor A (engine types) is

SSA = cn
∑

i

(ȳi.. − ȳ...)2

= 15[(22.247 − 23.367)2 + (24.487 − 23.367)2]

= 37.632.

b. The sum of squares for factor C (oil types) is

SSC = an
∑

j

(ȳ. j. − ȳ...)2

= 10[(22.620 − 23.367)2 + (23.840 − 23.367)2 + (23.640 − 23.367)2]

= 8.563.

c. The sum of squares for interaction, A × C (engine types by oil types), by
subtraction is

SSAC = SSCells − SSA − SSC

= 66.523 − 37.623 − 8.563

= 20.328.

The sum of these is the same as that for the between sum of squares in part
(1).5 The degrees of freedom are

(a − 1) = (2 − 1) = 1 for SSA,

(c − 1) = (3 − 1) = 2 for SSC, and

(a − 1)(c − 1) = (1)(2) = 2 for SSAC.

The mean squares are obtained by dividing sums of squares by their respec-
tive degrees of freedom. The F ratios for testing the various hypotheses are

5As in Chapter 6, computational formulas are available for computing these sums of squares.
These formulas use the cell, factor level, and grand totals, and have the now familiar format of a
“raw” sum of squares minus a “correction factor.” For details see, for example, Kirk (1995).
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Table 9.6 Results of the Analysis of Variance for the Factorial Experiment Analysis
of Variance Procedure

Dependent Variable: MPG
Source df Sum of Squares Mean Square F value PR > F

Model 5 66.52266667 13.30453333 12.27 0.0001
Error 24 26.02400000 1.08433333
Corrected Total 29 92.54666667

R-Square C.V. Root MSE MPG Mean

0.718801 4.4564 1.04131327 23.36666667

Source df Anova SS F Value PR > F

Cyl 1 37.63200000 34.71 0.0001
Oil 2 8.56266667 3.95 0.0329
Cyl*Oil 2 20.32800000 9.37 0.0010

computed as previously discussed. We confirm the computations for the sums
of squares and show the results of all tests by presenting the computer output
from the analysis using PROC ANOVA from the SAS System as seen in Table 9.6.
In Section 6.1 we presented some suggestions for the use of computers in an-
alyzing data using the analysis of variance. The factorial experiment is simply
a logical extension of what was presented in Chapter 6, and the suggestions
made in Section 6.1 apply here as well. The similarity of the output to that for
regression (Chapter 8) is quite evident and is natural since both the analysis
of variance and regression are special cases of linear models (Chapter 11).

The first portion of the output corresponds to what we have referred to as
the partitioning of sums of squares due to cells. Here is it referred to as the
MODEL, since it is the sum of squares for all parameters in the factorial analysis
of variance model. Also, as seen in Chapter 6, ERROR is used for what we have
called Within. The resulting F ratio of 12.27 has a p value of less than 0.0001;
thus we can conclude that there are some differences among the populations
represented by the cell means. Hence it is logical to expect that some of the
individual components of the factorial model will be statistically significant.

The next line contains some of the same descriptive statistics we saw in
the regression output. They have equivalent implications here.

The final portion is the partitioning of sums of squares for the main effects
and interaction. These are annotated by the computer names given the vari-
ables that describe the factors: CYL for the number of cylinders in the engine
type and OIL for oil type. The interaction is denoted as the product of the two
names: CYL*OIL.

We first test for the existence of the interaction. The F ratio of 9.37 with
(2,24) degrees of freedom has a p value of 0.0010; hence we may conclude that
the interaction exists. The existence of this interaction makes it necessary to
be exceedingly careful when making statements about the main effects, even
though both may be considered statistically significant (engine types with a
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Interaction Plots

p value of 0.0001 and oil types with p = 0.0329). The nature of the conclusions
also depends on the relative magnitudes of the interaction and individual
main effects.

Graphical representation of the cell means is extremely useful in interpret-
ing the consequences of interaction. A useful plot for illustrating this interac-
tion is provided by a block chart (Section 1.7), where the heights of the blocks
represent the means as shown in Fig. 9.1.

The plot shows that four-cylinder engines always get better gas mileage, but
the difference is quite small when using the MULTI oil. There is, however, no
consistent differentiation among the oil types as the relative mileages reverse
themselves across the two engine types. More definitive statements about
these interactions are provided by the use of contrasts, which are presented
in Section 9.4.6 ■

Notes on Exercises

Exercises 2, 4, 5, 9, and 10 and the basic ANOVA analysis of other exercises
can now be worked using the procedures discussed in this section.

9.4 Specific Comparisons

As in Chapter 6 we present techniques for testing two types of hypotheses
about differences among means:

1. preplanned hypotheses based on considerations about the structure of the
factor levels themselves, and

2. hypotheses generated after examining the data.

6These plots were obtained by first creating a data set containing the cell means.
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We noted in Chapter 6 that it is generally preferable to use preplanned hy-
potheses, and this preference is even more pronounced in the case of factorial
experiments. Actually, a factorial experiment is a structure imposed on the
total set of factor levels. That is, the partitioning of the between cells sum
of squares into portions corresponding to main and interaction effects is dic-
tated by the factorial structure. We now want to provide for tests of additional
specific hypotheses for both main effects and interactions. As in Chapter 6,
the specific structure of main effect factor levels usually suggests certain con-
trasts or polynomial trends, while the lack of structure may suggest the use
of post hoc multiple comparison procedures. And, as before, only one set of
comparisons should be performed on any specific problem.

Preplanned Contrasts

We continue the analysis of the motor oil experiment for illustrating the use
of contrasts in a factorial experiment. (Refer to the beginning of Section 6.5
for principles of constructing contrasts.) The principles underlying the use of
contrasts extend to the factorial experiment, but implementation is somewhat
more difficult, especially when performing contrasts for interactions.

Computing Contrast Sums of Squares

In Chapter 6 we presented formulas for manually computing sums of squares
for contrasts, and obviously analogous formulas exist for the factorial exper-
iment. However, because we normally perform analyses with computers, we
prefer to do the contrasts as part of the computer solution. Unfortunately not
all statistical computer software have provisions for directly computing con-
trast statistics, and programs that do have this capability are sometimes not
easy to implement.

Contrast statistics can, however, be computed by the use of regression
analysis programs because contrasts are actually regressions using the con-
trast coefficients as independent variables. Most statistical computer programs
have provisions for modifying and creating variables in a data set to be used
for an analysis, and these can be used with a multiple regression program to
produce contrast sums of squares. However, unless all possible contrasts for
an experiment are requested, the residual mean square from the regression
analysis will not be appropriate for performing hypothesis tests; therefore we
use that from the analysis of variance. We will use this method to illustrate the
use of contrasts for a factorial experiment.

If the contrasts are orthogonal, the contrast variables are uncorrelated and
the partial sums of squares for the coefficients are the same as if computed
by simple linear regression methods. However, since multiple regression does
not require uncorrelated independent variables, the regression method may be
used with nonorthogonal contrasts, although some caution must be exercised.
We present here only the use of orthogonal contrasts.



9.4 Specific Comparisons 433

EXAMPLE 9.3 REVISITED This example concerns the relationship of motor oil type and
engine size to gas mileage of cars. The analysis of variance indicated that
both main effects and the interaction are statistically significant. Suppose we
had decided to use preplanned orthogonal contrasts to provide more specific
inferences on these effects.

We consider the following contrasts:

Solution

Engine Types There are only two engine types: four and six cylinders. For
two levels of a factor, only one contrast exists, in this case:

μ6 − μ4.

For purposes of performing a regression this contrast is represented by the
variable

L1 = −1 if engine type is four cylinders, and

= +1 if engine type is six cylinders.

Oil Types There are three oil types, which allows for two orthogonal con-
trasts. We choose these as follows:

1. Compare STD with the two presumably more expensive oils, MULTI and
GASMISER. The contrast is

μSTD − 1
2

(μMULTI + μGASMISER).

This contrast is represented by the variable

L2 = +1 if oil type is STANDARD,

= −0.5 if oil type is MULTI, and

= −0.5 if oil type is GASMISER.

2. Compare the two more expensive oils using

(μMULTI − μGASMISER).

This contrast is represented by the variable

L3 = +1 if oil type is MULTI,

= −1 if oil type is GASMISER, and

= 0 if oil type is STANDARD.

It is not difficult to verify that the two contrasts for oil types are orthogonal.
Interaction contrasts measure the inconsistencies of the responses to a

contrast for one main effect across a contrast for the other main effect. One
interaction contrast can be constructed for each degree of freedom for the
interaction. For this example, the two degrees of freedom for the interaction
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between engine and oil types correspond to two contrasts, specifically the in-
teraction between the engine-type contrast (L1) and the two oil-type contrasts
(L2 and L3). The variables used in the regression to represent the interaction
contrasts are the products of the main effect contrast variables:

L1L2 = L1 · L2, and

L1L3 = L1 · L3.

The way these interaction contrasts work can be illustrated by placing the con-
trast coefficients in a two-way table corresponding to the factorial experiment.
The L1L2 contrast coefficients are as follows:

OILS

Cylinders STD MULTI GASMISER

4 −1 0.5 0.5
6 1 −0.5 −0.5

An examination of these coefficients shows that the value of this contrast
is zero only if the difference between STD and the mean of the other two
is the same for both engine sizes. Nonzero values of this contrast that may
lead to rejection are an indication that this difference is inconsistent across
engine types. The L1L3 contrast does the same for the comparison of MULTI
to GASMISER. The resulting set of values of these variables and the response
variable, MPG, are listed in Table 9.7.

Interaction contrasts derived from orthogonal main effect contrasts are
also orthogonal; hence all five resulting contrasts are mutually orthogonal
and provide five 1-df partitions of the between cells (model) sum of squares.
These partitions can be obtained by performing a regression using MPG as the
dependent variable and all five contrast variables, namely L1, L2, L3, L1L2,
and L1L3, as independent variables. The results, obtained with PROC REG of
the SAS System, are given in Table 9.8.

Because we have specified all possible contrasts the partitioning of the
sums of squares due to the model is identical to that for the analysis of vari-
ance (Table 9.6). It can also be verified that the sum of the partial (TYPE II)
sums of squares is equal to the MODEL sum of squares, verifying the orthogo-
nality of the contrasts. Furthermore, the sum of squares for L1 (37.632) is the
same as for engine types (CYL) and the total of the sums of squares for L2 and
L3 (8.363 + 0.200) is the sum of squares for oil types (8.563). Finally, the total
of the two interaction contrast sums of squares for L1L2 and L1L3 (0.726 +
19.602) is the same as the interactions sum of squares (20.382).

Next we examine the t statistics for the individual contrast parameters.
Since the interaction is significant, we focus on the interaction contrasts and
how they modify main effect conclusions. The interpretation of contrast L1L2
is the difference in the mileage between STANDARD and the other two oils
across the two engine types. This contrast is not statistically significant; hence
we may conclude that the difference between STANDARD and the average of
the other two types (contrast L2, which is significant) does not differ between
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Table 9.7

Listing of Contrast
Variables

Obs Cyl Oil MPG L1 L2 L3 L1L2 L1L3

1 4 STANDARD 22.6 −1 1.0 0 −1.0 0
2 4 STANDARD 24.5 −1 1.0 0 −1.0 0
3 4 STANDARD 23.1 −1 1.0 0 −1.0 0
4 4 STANDARD 25.3 −1 1.0 0 −1.0 0
5 4 STANDARD 22.1 −1 1.0 0 −1.0 0
6 4 MULTI 23.7 −1 −0.5 1 0.5 −1
7 4 MULTI 24.6 −1 −0.5 1 0.5 −1
8 4 MULTI 25.0 −1 −0.5 1 0.5 −1
9 4 MULTI 24.0 −1 −0.5 1 0.5 −1

10 4 MULTI 23.1 −1 −0.5 1 0.5 −1
11 4 GASMISER 26.0 −1 −0.5 −1 0.5 1
12 4 GASMISER 25.0 −1 −0.5 −1 0.5 1
13 4 GASMISER 26.9 −1 −0.5 −1 0.5 1
14 4 GASMISER 26.0 −1 −0.5 −1 0.5 1
15 4 GASMISER 25.4 −1 −0.5 −1 0.5 1
16 6 STANDARD 23.6 1 1.0 0 1.0 0
17 6 STANDARD 21.7 1 1.0 0 1.0 0
18 6 STANDARD 20.3 1 1.0 0 1.0 0
19 6 STANDARD 21.0 1 1.0 0 1.0 0
20 6 STANDARD 22.0 1 1.0 0 1.0 0
21 6 MULTI 23.5 1 −0.5 1 −0.5 1
22 6 MULTI 22.8 1 −0.5 1 −0.5 1
23 6 MULTI 24.6 1 −0.5 1 −0.5 1
24 6 MULTI 24.6 1 −0.5 1 −0.5 1
25 6 MULTI 22.5 1 −0.5 1 −0.5 1
26 6 GASMISER 21.4 1 −0.5 −1 −0.5 −1
27 6 GASMISER 20.7 1 −0.5 −1 −0.5 −1
28 6 GASMISER 20.5 1 −0.5 −1 −0.5 −1
29 6 GASMISER 23.2 1 −0.5 −1 −0.5 −1
30 6 GASMISER 21.3 1 −0.5 −1 −0.5 −1

the two engine types. In other words, STANDARD is judged inferior regardless
of engine type.

The contrast L1L3 is the difference in the mileage between MULTI and
GASMISER for the two engine types. This contrast is statistically significant
(p = 0.0003), which means that the difference between GASMISER and MULTI
is not the same for the two engine types.

To summarize, STANDARD is always inferior, but the choice among the
other two depends on the engine to which it is to be applied. These tests
provide a formal test for what we saw in Fig. 9.1. ■

Polynomial Responses

In Chapter 6 we used orthogonal polynomial contrasts to estimate a curve
to represent the response to levels of a quantitative factor. We learned in
Section 8.6 that multiple regression methods can be used to implement polyno-
mial models by defining a set of independent variables, which are powers and
cross products of the numeric values representing the factor levels. In most
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Table 9.8 Contrast Regression for Example 9.3

Model: MODEL1
Dependent Variable:MPG

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob > F

Model 5 66.52267 13.30453 12.270 0.0001
Error 24 26.02400 1.08433
C Total 29 92.54667

Root MSE 1.04131 R-square 0.7188
Dep Mean 23.36667 Adj R-sq 0.6602
C.V. 4.45640

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 23.366667 0.19011692 122.907 0.0001
L1 1 -1.120000 0.19011692 -5.891 0.0001
L2 1 -0.746667 0.26886593 -2.777 0.0105
L3 1 0.100000 0.23284473 429 0.6714
L1L2 1 0.220000 0.26886593 0.818 0.4213
L1L3 1 0.990000 0.23284473 4.252 0.0003

Variable DF Type II SS

INTERCEP 1 16380
L1 1 37.632000
L2 1 8.362667
L3 1 0.200000
L1L2 1 0.726000
L1L3 1 19.602000

computing environments, creating such variables is much easier to implement
than is the construction of the orthogonal contrast variables, as shown in the
previous section. Furthermore, the direct use of polynomials does not require
equal spacing of the numeric factor levels. We will therefore use the straight-
forward application of polynomial regression to illustrate the estimation of
polynomial responses in a factorial experiment.

Note that orthogonal polynomial contrasts do provide for a sequential
fitting of polynomial terms in a manner similar to that shown for a one-variable
polynomial model in Section 8.6. Thus orthogonal polynomials are useful for
hypothesis tests to determine the terms that may be needed to describe the
nature of the response surface (Snedecor and Cochran, 1980, Chapter 16).

EXAMPLE 9.4 This experiment concerns the search for some optimum levels of two fertilizer
ingredients, nitrogen (N) and phosphorus (P). We know that there is likely to
be interaction between these two factors.
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Table 9.9

Data and Means for
Fertilizer Experiment
Response Is Yield

LEVELS OF P

2 4 6 8 Means

N = 2 51.85 64.66 68.33 85.63 67.46
41.30 73.95 75.88 83.32

53.18 68.76 67.15 77.71

Means 48.78 69.12 70.45 82.22

N = 4 60.50 75.07 87.49 82.53 77.75
60.86 75.05 97.21 89.03

56.97 82.14 88.95 77.25

Means 59.44 77.42 91.22 82.94

N = 6 56.81 90.91 83.27 79.12 76.50
52.77 83.44 87.65 77.53
51.22 81.54 89.22 84.57

Means 53.60 85.30 86.71 80.41

Means 53.93 77.28 82.80 81.85 73.97

Table 9.10 Analysis of Variance for Fertilizer Experiment

Dependent Variable: Yield
Source DF Sum of Squares Mean Square F value PR > F

Model 11 6259.35672222 569.03242929 28.14 0.0001
Error 24 485.37760000 20.22406667
Corrected Total 35 6744.73432222

R-Square C.V. Root MSE Yield Mean

0.928036 6.0799 4.49711760 73.96722222

Source DF Anova SS F Value PR > F

N 2 729.22327222 18.03 0.0001
P 3 4969.73027778 81.91 0.0001
N*P 6 560.40317222 4.62 0.0030

Solution This requires a factorial experiment. The experiment for this
study measures crop yield ( YIELD) as related to levels of two fertilizer in-
gredients. The two ingredients are the factors

N, at three levels of 2, 4, and 6 units, and
P, at four levels of 2, 4, 6, and 8 units.

This is a 3 × 4 factorial experiment with 12 cells. There are three indepen-
dent replications for each of the 12 cells; that is, there are 36 observations
in a completely randomized design. The data are given in Table 9.9 and the
computer output for the analysis of variance is given in Table 9.10. The F

ratios signify that both main effects and the interaction are highly significant
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(p < 0.01). Since the factor levels comprise quantitative inputs, it is logical to
estimate trends, that is, to construct curves showing how the yield responds
to increased amounts of either or both fertilizer inputs. We will now build a
polynomial regression model to describe this response.

For three levels of the factor N, it is possible to estimate the polynomial
function

YIELD = β0 + β1N + β2N2,

where N represents the input quantities of ingredient N. For the four levels
of factor P, it is possible to add to the model the terms

· · · + β3P + β4P2.

Note that with four levels of this factor we could add a cubic term but choose
not to do so for this example. The need for this term may be established by a
lack of fit test, as is done in the next subsection.

The above polynomial regression reflects only the variation in yield corre-
sponding to the main effects of N and P. Since the interaction is statistically
significant in the analysis of variance, it is appropriate to add terms reflecting
this interaction. In a polynomial model, these are represented by terms which
are the products of the values of the individual factor levels. Thus we can add
to the above model the term

· · · + β5NP.

The implication of this term is more readily understood by combining it with
the coefficient for P (we omit other terms for simplicity):

· · · + β3P + β5NP · · · = · · · + (β3 + β5N)P · · · .
This expression shows that the coefficient for the linear trend for P, (β3 +
β5N), changes linearly with N and that β5 measures by how much that trend
changes with N. For example, if β5 is negative, the linear response to P may
look like Fig. 9.2, where the labels (2, 4, and 6) for the lines are the levels
for N.

Remember that the definition of interaction is the inconsistency of one
main effect across levels of the other main effect(s). The coefficient β5 repre-
sents a very specific interaction: The coefficient of the linear trend for levels of
one factor changes linearly with levels of the other factor. This interaction is
symmetric in that it also indicates how the linear trend for N changes linearly
across levels of P. In this example both interpretations are equivalent, but this
is not always the case.

Another term we can add to the model uses the product of N and the square
of P,

· · · + β6NP2,

whose effect can be seen by combining terms,

· · · (β4 + β6N)P2,

which shows how the quadratic (curvilinear) response to P changes linearly
with the levels of N. The response to P may look like Fig. 9.3, where the



9.4 Specific Comparisons 439

100

80

60

40

2 4 6 8

P

4

4

4

4

2

2

2

2

6
6

6
6

P
re

di
ct

ed
 V

al
ue

Figure 9.2

Linear by Linear
Interaction

100

80

60

40

2 4

P

6 8

2
2

2

2

6

6

6
6

4

4

4

4

P
re

di
ct

ed
 V

al
ue

Figure 9.3

Linear by Quadratic
Interaction

existence of a negative β6 causes the response curve to change from convex
to concave.

The symmetric definition

· · · (β1 + β6P2)N

is more difficult to interpret in that it indicates that the linear response to N
changes with the square of the level of P.
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Table 9.11 Multiple Regression for Polynomial Response

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob > F

Model 7 6000.47220 857.21031 32.249 0.0001
Error 28 744.26212 26.58079009
C Total 35 6744.73432

Root MSE 5.155656 R-SQUARE 0.8897

Dep Mean 73.96722 ADJ R-SQ 0.8621
C.V. 6.97019

Parameter Estimates
Parameter Standard T For H0:

Variable DF Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 19.10416667 19.53790367 0.978 0.3365
N 1 9.35604167 9.39817804 0.996 0.3280
NSQ 1 −1.88708333 1.11623229 −1.691 0.1020
P 1 3.48475000 6.38124547 0.546 0.5893
PSQ 1 0.32145833 0.56835766 0.566 0.5762
NP 1 3.60243750 2.10807397 1.709 0.0985
NSQP 1 0.09339583 0.20379520 0.458 0.6503
NPSQ 1 −0.45973958 0.13154924 −3.495 0.0016

Variable DF Type II SS

INTERCEP 1 25.41371494
N 1 26.34297650
NSQ 1 75.96978148
P 1 7.92684265
PSQ 1 8.50303214
NP 1 77.62276451
NSQP 1 5.58258028
NPSQ 1 324.64970

In a similar manner we can add a term involving N2P. Higher order terms
can, of course, be used, but are increasingly difficult to interpret and, therefore,
are not frequently used.

We now implement a multiple regression using the variables defined above.
Since most computer programs for multiple regression require a specification
of independent variables, we must create variables that represent the various
squared and product terms. Thus, for this example, we have used mnemonic
descriptors for these variables:NPSQ stands for NP2, and so forth. The results of
the regression (using PROC REG from the SAS System) are shown in Table 9.11.

The test for the model is certainly significant. The residual mean square
of 26.581 is somewhat higher than that from the analysis of variance (20.224),
indicating the possibility that additional polynomial terms may be needed. The
lack of fit test for this possibility is given in the next subsection.
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As noted in Section 8.6, the individual coefficients in a polynomial regres-
sion are not readily interpretable and are used primarily for describing the
response curve or surface. Furthermore, the partial (called Type II in the
output) sums of squares do not sum to the model sums of squares as they did
with the use of orthogonal contrasts.

The statistics for the highest order terms in our model, NP, N2P, and NP2

can, however, be interpreted. In this case the significant NP2 term indicates
that the quadratic response to P changes negatively with N, while the quadratic
response to N is apparently not affected by P.

With a little effort the coefficients can be used to determine some charac-
teristics of the response. Since the term NP2 was statistically significant, we
will examine the nature of the response to P. Using only the terms involving P,
and collecting terms, the response to P is

(3.485 + 3.602N)P + (0.321 − 0.460N)P2.

We can now specify the response curve of P for the values of N = 2, 4, and 6,
which were the levels of that factor in the experiment. These equations are

N = 2: 10.689P − 0.599P2,

N = 4: 17.893P − 1.519P2,

N = 6: 25.092P − 2.439P2.

The increasing positive coefficients for P show an increasingly positive linear
trend. This is partially offset by an increasingly negative (downward curving)
contribution from P2.

The three-dimensional plot of the polynomial response for Example 9.4
is shown in Fig. 9.4. This plot clearly shows how the response to P becomes
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steeper and has more curvature as N increases. On the other hand, the response
to N is quite modest but does increase somewhat with P. Graphic represen-
tations such as this are increasingly available in today’s statistical software
packages but may require some programming effort. ■

Lack of Fit Test

Depending on the number of levels of factors in an experiment, polynomial
terms of higher order than we have illustrated can be used. In Example 9.4,
which is a 3 × 4 factorial experiment, the following terms may be estimated:

1. linear and quadratic in N,
2. linear, quadratic, and cubic in P, and
3. all six possible products of the terms involving the two terms in N and the

three terms in P.

The total number of terms in this polynomial model (11) corresponds exactly to
the degrees of freedom for the cells in the analysis of variance for the factorial
experiment (Table 9.10). Thus the 11-term polynomial model provides exactly
the partitioning for the cell or model sum of squares of the analysis variance.

It is not always desirable to use a model with all possible terms, particularly
since some of these may have little useful interpretation. For example, the
meaning of interaction of the cubic in P with the quadratic in N would be
almost impossible to interpret. If a model with fewer terms has been chosen,
it is appropriate to use a lack of fit test to ascertain whether additional terms
should be included.

As first presented in Section 6.5 this test is based on the difference be-
tween the model sum of squares for the reduced (regression) model and the
model sum of squares from the full (analysis of variance) model. As we have
noted, the basis for this test is that any factor sum of squares with, say, (t − 1)
degrees of freedom, can also be computed as a regression sum of squares for
a regression with (t − 1) independent variables (such as contrasts of polyno-
mials) in which the independent variables identify with the factor levels. The
difference between the factor level sum of squares and the sum of squares for,
say, k < (t − 1) regression coefficients is—by the general principle for hypoth-
esis testing (Section 8.3)—the partial sum of squares for an unspecified set of
(t−k−1) additional contrasts or regression coefficients. The difference in sum
of squares is divided by the corresponding difference in degrees of freedom
to provide mean squares to be used in an F test for ascertaining the possible
existence of the additional coefficients.

In the fertilizer experiment we have the following quantities:

Model sum of squares from ANOVA 6259.8, df = 11
Model sum of squares from regression 6000.5, df = 7
Lack of fit (difference) 258.9, df = 4
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The F ratio for testing the existence of lack of fit uses the error mean square
from the full (ANOVA) model (Table 9.10):

F(4, 24) = (258.9/4)/(22.02)

= 3.20.

This value is somewhat larger than the 0.05 value of the F distribution (2.78)
but smaller than the 0.01 value (4.22); hence there is some evidence that other
terms may be needed.

A logical next step is to examine the residuals. Plots of residuals against
values predicted by the polynomial regression and against the individual factor
levels may be used. In this example, such plots (not reproduced here) show
neither outliers nor evidence of lack of fit. Furthermore, the increase in the
residual standard deviation when using the polynomial is quite modest: from
4.50 for the full model ANOVA to 5.16 for the polynomial. These results, coupled
with the lack of overwhelming significance of the lack of fit test, lead to the
conclusion that the estimated seven-term polynomial model is sufficient.

Multiple Comparisons

When preplanned comparisons are not used, a post hoc comparison procedure,
such as the Duncan, Tukey, or Scheffé procedure, may be appropriate.

The mechanics of applying the post hoc comparisons for factorial exper-
iments are adaptations of the procedures applied to one-way analyses pre-
sented in Chapter 6. Remember that all multiple comparison methods require
the computation of LSD-type statistics, which are of the form

LSD = factor

√
estimated variance

sample size
.

The “factor” depends on the specific method and is obtained from tables, and
the sample size is the number of observations used to compute the means. Any
pair of means differing by more than this statistic is declared to be significantly
different.

The same procedure is used for multiple comparisons among the means
from a factorial experiment. The comparisons are normally made on main
effect means, but may occasionally be performed on the various cell means.
Some adaptations of these procedures must be made as follows:

• The estimated variance is the mean square used in the denominator of the
F ratio for testing the factor representing the means being compared. As
we will see in Chapter 10, this is not always the same for all factors.

• The sample size is the total number of observations for calculating the means
involved in the comparison. These are usually not the same for the different
main effects and interactions. Remember that this number is the product
of the dotted subscript defining the mean, but must be the same for means
being compared since we are dealing only with balanced data.
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As is true for all inferences from factorial experiments, the use of multiple
comparisons in factorial experiments is affected by the possible existence of
interactions. As indicated in the preceding, if interaction can be ignored, mul-
tiple comparisons may be performed on each main effect separately. However,
if an interaction is deemed to exist, multiple comparisons among main effect
means may not be useful. In many applications it is instead recommended that
multiple comparisons be performed for one set of main effect means for each
level of the other factor. For example, we can make separate comparisons for
the mean responses among the levels of factor A for each level of factor C.

This may be done by performing separate one-way analyses for each level
of factor C. However, this procedure will use the separeted error mean squares
for each of the analyses, which have fewer degrees of freedom and may also
differ in value among levels of C. The preferred method is to use the error
mean square from the factorial analysis for all comparisons. Unfortunately,
many computer packages have no provisions for this method, and it must
therefore be implemented manually.

In Example 9.3 we found significant interaction between the number of
cylinders in the car and the type of oil.7 To compare the various types of oil
(a main effect), we perform a separate set of comparisons for each engine
type. For example, to compare STD, MULTI, and GASMISER for four-cylinder
cars, we could use pairwise comparisons. If we want to use the Scheffé test,
it becomes a test for contrasts where ai = 1 and aj = 1 for all pairs of i and j.

The general form of the Scheffé statistic is

S =
√[

(t − 1)Fα

∑
a2

i

](
MSW

n

)
,

where t is the number of factor levels, Fα has the degrees of freedom for
the test for the factor, ai are the contrast coefficients, and n is the number
of observations for the means. For this example, the Scheffé significant diff-
erence is

S =
√

(2)(3.40)(2)
(

1.084
5

)
= 1.717.

The results can be illustrated by the following:

Oil Type STD MULTI GASM

Mean 23.52 24.08 25.86

For four-cylinder cars the GASMISER oil gives significantly higher mileage
than the other two.

7Since the structure of the main effect factor levels in the example suggests the use of orthog-
onal contrasts, the use of multiple comparisons is not an appropriate analysis. The use of mul-
tiple comparisons would be appropriate if, for example, we simply had comparable oils from
three manufacturers. However, we continue with this numeric example to avoid introducing new
computations.
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Table 9.12

Production Rates
(CODES) in Catalyst
Experiment

CATALYST

Reagent X Y Z

A 4 11 5
6 7 9

B 6 13 9
4 15 7

C 13 15 13
15 9 13

D 12 12 7
12 14 9

The same value of S, 1.717, is used for pairwise comparisons of the three
oils for six-cylinder cars. In this case, the results are

Oil Type GASM STD MULTI

Mean 21.42 21.72 23.60

Occasionally the existence of a strong interaction in cases where pre-
planned comparisons are not suitable suggests that it may be more useful
simply to compare all cell means, that is, the means of all factor level combi-
nations, with a multiple comparison test. For example, assume an experiment
that compares the effectiveness of three types of insecticides manufactured
by four manufacturers. A strong interaction suggests that the types of insecti-
cides may not really be the same for each of the manufacturers, and we may
conclude that we simply want to rank the effectiveness of what now appears
to be 12 different products.

Of course, when we simply compare the cell means, we are doing what
we did for the one-way analysis of Chapter 6 and no longer make use of the
factorial structure of the experiment, thereby losing entirely the information
on main effects and interactions. Instead we treat the means as if they came
from a completely randomized design with a · c levels of a single factor having
no particular structure.

EXAMPLE 9.5 A manufacturing plant has had difficulty reproducing good production rates
in a catalyst plant. An experiment to investigate the effect of four reagents
(A, B, C, and D) and three catalysts (X, Y, and Z) on production rates was
initiated.

Because the possibility of interactions exists, a 4 × 3 factorial experiment was
performed. Each of the 12 factor level combinations was run twice in random
order (Smith, 1969). The data are given in Table 9.12.

Solution The analysis of the factorial experiment was performed using
PROC ANOVA from the SAS System, which produces the output seen in
Table 9.13. With these simple numbers the results can be verified manually.
The analysis shows that the reagent effect is quite significant while the catalyst
and interaction effects are marginally significant. Since no specific informa-
tion is available, it is logical to perform a paired comparison procedure for
the reagent. The result of performing Tukey’s test for that factor is given in
Table 9.14.

The Tukey test indicates a clear superiority for reagent C over reagents B
and A, while we may also state that D is better than A. However, since the
interaction was significant with a p value of less than 0.05, a plot of means
may be useful. If both factors are qualitative, an informative way to look at
the means is through a block chart (Section 1.7). Figure 9.5 is a block chart
of the cell means; the height of each block indicates the mean rate, which is
also shown at the base. The chart clearly shows the effect of the significant
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Table 9.13 Analysis of Variance for Catalyst Data

Analysis of Variance Procedure
Dependent Variable: RATE

Sum of Mean
Source DF Squares Square F value Pr > F

Model 11 252.0000000 22.9090909 5.73 0.0027
Error 12 48.0000000 4.0000000
Corrected Total 23 300.0000000

R Square C.V. Root MSE RATE Mean

0.840000 20.00000 2.000000 10.0000000

Source DF Anova SS Mean Square F value Pr > F

REAGENT 3 120.0000000 40.0000000 10.00 0.0014
CATALYST 2 48.0000000 24.0000000 6.00 0.0156
REAGENT*CATALYST 6 84.0000000 14.0000000 3.50 0.0308

Table 9.14

Tukey’s Studentized
Range (HSD) Test for
Variable: Rate

Alpha = 0.05 df = 12 MSE = 4
Critical Value of Studentized Range = 4.199

Minimum Significant Difference = 3.4282
Means with the same letter are not significantly different.
Tukey Grouping Mean N REAGENT

A 13.000 6 C
A

B A 11.000 6 D
B
B C 9.000 6 B

C
C 7.000 6 A

X

Catalyst

BLOCK CHART OF MEANRATE

A B C D
Reagent

Y

Z

5 5 14

149 12 13

887 13

12

Figure 9.5

Interaction Plot
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Table 9.15

Tukey’s Studentized
Range (HSD) Test for All
Combinations

Alpha = 0.05 df = 12 MSE = 4
Critical Value of Studentized Range = 5.615

Minimum Significant Difference = 7.9402
Means with the same letter are not significantly different.

Tukey Grouping Mean N TRT

A 14.000 2 BY
A
A 14.000 2 CX
A
A 13.000 2 CZ
A
A 13.000 2 DY
A

B A 12.000 2 DX
B A
B A 12.000 2 CY
B A
B A 9.000 2 AY
B A
B A 8.000 2 DZ
B A
B A 8.000 2 BZ
B A
B A 7.000 2 AZ
B
B 5.000 2 AX
B
B 5.000 2 BX

interaction. For example, catalyst X has the lowest rates when paired with
reagents A and B while it has one of the highest rates when paired with reagent
C. On the other hand, reagent C consistently produces high rates. Thus, if we
want a reagent that seems to do well in all circumstances, reagent C may be
a good choice. The only other reasonably clear conclusion here is to avoid
catalyst X with reagents A and B.

As we noted, significant interaction in experiments where contrasts are not
indicated may suggest multiple comparison among the cell means, that is, an
analysis that ignores the factorial structure. The results of a Tukey comparison
among the 12 means for Example 9.5 is shown in Table 9.15.8

The 12 factor levels are identified by the two letters representing the
reagent and catalyst. This analysis does not appear to provide any definitive
conclusions, except maybe to say stay away from catalyst X when using
reagents A and B. This example shows how an interaction can seriously affect
the ability of an experiment to provide useful inferences about main effects. ■

8This table was produced by creating a single variable, called TRT, which provides a unique
identification for each cell. This procedure is necessary because computer packages normally do
not allow multiple comparisons for cell means.
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In some applications the factor levels of one factor may suggest useful pre-
planned comparisons while those of the second factor do not. If interaction is
deemed not to be of importance, the appropriate techniques may be used for
the different main effects. If the interaction cannot be ignored, it will probably
be more useful to compute separate preplanned comparisons for one factor
for each level of the second factor.

9.5 No Replications

So far we have assumed that the factorial experiment is conducted as a com-
pletely randomized design providing for an equal number of replicated exper-
imental units of each factor level combination. Since a factorial experiment
may be quite large in terms of the total number of cells, it may not be possi-
ble to provide for replication. Since the variation among observations within
factor level combinations is used as the basis for estimating σ 2, the absence
of such replications leaves us without such an estimate.

The usual procedure for such situations is to assume that the interaction
does not exist, in which case the interaction mean square provides the esti-
mate of σ 2 to use for the denominator of F ratios for tests for the main effects.
Of course, if the interaction does exist, the resulting tests are biased. However,
the bias is on the conservative side since the existence of the interaction inflates
the denominator of the F ratio for testing main effects.

One possible cause for interaction is that the main effects are multiplica-
tive in a manner suggested by the logarithmic model presented in Section 8.6.
The Tukey test for nonadditivity (Kirk, 1995) provides a one degree of freedom
sum of squares for an interaction effect resulting from the existence of a mul-
tiplicative rather than additive model. Subtracting the sum of squares for the
Tukey test from the interaction sum of squares may provide a more acceptable
estimate of σ 2 if a multiplicative model exists.

9.6 Three or More Factors

Obviously factorial experiments can have more than two factors. As we have
noted, fertilizer experiments are concerned with three major fertilizer ingre-
dients, N, P, and K, whose amounts in a fertilizer are usually printed on the
bag. The fundamental principles of the analysis of factorial experiments such
as the model describing the data, the partitioning of sums of squares, and
the interpretation of results are relatively straightforward extensions of the
two-factor case. Since such analyses are invariably performed by computers,
computational details are not presented here.

The model for a multifactor factorial experiment is usually characterized
by a large number of parameters. Of special concern is the larger number and
greater complexity of the interactions. In the three-factor fertilizer experiment,
for example, the model contains parameters describing
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three main effects: N, P, and K,
three two-factor interactions: N × P, N × K, and P × K, and
one three-factor interaction: N × P × K.

The interpretations of main effects and two-factor interactions remain
the same regardless of the number of factors in the experiment. Interactions
among more than two factors, which are called higher order interactions, are
more difficult to interpret. One interpretation of a three-factor interaction,
say, N × P × K, is that it reflects the inconsistency of the N × P interaction
across levels of K. Of course, this is equivalent to the inconsistency of the
P × K interaction across N, etc.

EXAMPLE 9.6 It is of importance to ascertain how the lengths of steel bars produced by
several screw machines are affected by heat treatments and the time of day
the bars are produced. A factorial experiment using four machines and two
heat treatments was conducted at three different times in one day. This is a
three-factor factorial with factors:

Heat treatment, denoted by HEAT, with levels W and L,
Time of experiment, denoted by TIME, with levels 1, 2, and 3 representing

8:00 A.M., 11:00 A.M., and 3:00 P.M., and
Machine, denoted by MACHINE with levels A, B, C, and D.

Each factor level combination was run four times. The response is the (coded)
length of the bars. The data are given in Table 9.16.

Solution The analysis of variance for the factorial experiment is performed
withPROC ANOVA of the SAS System with the results, which are quite straight-
forward, shown in Table 9.17. The HEAT and MACHINE effects are clearly sig-
nificant, with no other factors approaching significance at the 0.05 level. In

Table 9.16

Steel Bar Data for
Three-Factor Factorial

HEAT TREATMENT W HEAT TREATMENT L

MACHINES MACHINES

Time A B C D A B C D

6 7 1 6 4 6 −1 4
9 9 2 6 6 5 0 5

8:00AM 1 5 0 7 0 3 0 5
3 5 4 3 1 4 1 4

6 8 3 7 3 6 2 9
3 7 2 9 1 4 0 4

11:00AM 1 4 1 11 1 1 −1 6
−1 8 0 6 −2 3 1 3

5 10 −1 10 6 8 0 4
4 11 2 5 0 7 −2 3

3:00PM 9 6 6 4 3 10 4 7
6 4 1 8 7 0 −4 0
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Table 9.17 Analysis of Variance for Steel Bar Data

Analysis of Variance Procedure
Dependent Variable: LENGTH

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 23 590.3333333 25.6666667 4.13 0.0001
Error 72 447.5000000 6.2152778
Corrected Total 95 1037.8333333

R Square C.V. Root MSE LENGTH Mean

0.568813 62.98221 2.493046 3.95833333

Source DF Anova SS Mean Square F value Pr > F

TIME 2 12.8958333 6.4479167 1.04 0.3596
HEAT 1 100.0416667 100.0416667 16.10 0.0001
TIME*HEAT 2 1.6458333 0.8229167 0.13 0.8762
MACHINE 3 393.4166667 131.1388889 21.10 0.0001
TIME*MACHINE 6 71.0208333 11.8368056 1.90 0.0917
HEAT*MACHINE 3 1.5416667 0.5138889 0.08 0.9693
TIME*HEAT*MACHINE 6 9.7708333 1.6284722 0.26 0.9527

Table 9.18

Analysis of Variance for
Steel Bar Data, Duncan’s
Multiple Range Test
for Machine

Alpha = 0.05 cdf = 72 cMSE = 6.215278
Number of Means 2 3 4
Critical Range 1.436 1.510 1.558

Means with the same letter are not significantly different.
Duncan Grouping Mean N MACHINE

A 5.875 24 B
A
A 5.667 24 D
B 3.417 24 A
C 0.875 24 C

fact, some of the F values are suspiciously small, which may raise doubts
about the data collection procedures.

No specifics are given on the structure of the factor levels; hence post hoc
paired comparisons are in order. The factor heat has only two levels; hence
the only statement to be made is that the sample means of 2.938 and 4.979 for
L and W indicate that W produces longer bars. Duncan’s multiple range test is
applied to the MACHINE factor with results given in Table 9.18.

Figure 9.6 is a block chart illustrating the heat by machine means. In general,
for any machine, heat W gives a longer bar and the differences among machines
are relatively the same for each heat. This confirms the lack of interaction. ■

Factorial experiments with many factors often produce a large number of
factor level combinations. The resulting requirement for a large number of
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BLOCK CHART OF MEAN

MACHINE

A

B

C

D

L W
2.5 4.333333

4.75 7

0 1.75

4.5 6.833333

HEAT

Figure 9.6

Interaction Plot for
Example 9.6

observations may make it impossible to provide for replicated values in the
cells. Since higher order interactions are difficult to interpret, their mean
squares make good candidates for the estimate of σ 2. Of course, if these inter-
actions do exist, the resulting tests are biased.

Additional Considerations

Special experimental designs are available to overcome partially the often
excessive number of experimental units required for factorial experiments.
For example, the estimation of a polynomial response regression does not
require data from all the factor level combinations provided by the factorial
experiment; hence special response surface designs are available for use in
such situations. Also, since higher order interactions are often of little or no
interest, designs for which a reduction in the number of observations is ac-
complished in such a manner that sacrifices only the ability to estimate higher
order interactions have been developed. For additional information on such
topics, refer to a book on experimental design (for example, Kirk, 1995).

9.7 CHAPTER SUMMARY

Solution to Example 9.1 The experiment is a three-factor factorial
experiment with factors:

STRANDS: number of strands (7 and 9),
GAGE: gage of wire (24,22,20), and
SLACK: slack in assembly (0,3,6,9,12).

The initial analysis of variance with results obtained from PROC ANOVA
from the SAS System is shown in Table 9.19. The obvious conclusion is that
the major effects are due to GAGE and SLACK, although STRANDS and the
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Table 9.19 Analysis of Variance for Wirelife Data

Analysis of Variance Procedure
Dependent Variable: CYCLES

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 29 979.7333333 33.7839080 4.57 0.0001
Error 30 222.0000000 7.4000000

Corrected Total 59 1201.7333333

R-Square C.V. Root MSE CYCLES Mean

0.815267 27.94823 2.720294 9.73333333

Source DF Anova SS Mean Square F Value Pr > F

STRANDS 1 45.0666667 45.0666667 6.09 0.0195
GAGE 2 348.6333333 174.3166667 23.56 0.0001
STRANDS*GAGE 2 52.2333333 26.1166667 3.53 0.0420
SLACK 4 307.5666667 76.8916667 10.39 0.0001
STRANDS*SLACK 4 74.7666667 18.6916667 2.53 0.0614
GAGE*SLACK 8 104.0333333 13.0041667 1.76 0.1257
STRANDS*GAGE*SLACK 8 47.4333333 5.9291667 0.80 0.6063

STRANDS*GAGE interaction may need to be examined further. For the time
being, we will concentrate on the effect of GAGE and SLACK.

Since all factors are numeric, a polynomial response surface analysis is in
order. We will use the response surface model

CYCLES = β0 + β1SLACK + β2SLSQ + β3GAGE + β4GSQ + β5GSL + ε,

where SLSQ and GSQ are the squares of SLACK and GAGE, and GSL is the prod-
uct of GAGE and SLACK. Note that we are including the product term even
though the interaction is not significant. The resulting regression is summa-
rized in Table 9.20, produced by PROC REG of the SAS System.

The regression is certainly significant. The statistical significance of the
two quadratic terms indicates a curvilinear response and the linear by linear
interaction is also significant although apparently not very important.

Since the regression model ignores the STRAND effect as well as other
interactions, it is appropriate to perform a lack of fit test. For this test we have

FULL MODEL (ANOVA) SS = 979.73, df = 29

REDUCED MODEL (regression) SS = 688.25, df = 5

LACK OF FIT (difference) SS = 291.48, df = 24.

The mean square for lack of fit is 291.48/24 = 12.145. This is divided by the error
mean square for the full model (222.00/30 = 7.4, df = 30) to obtain an F ratio
of 1.64, which has (24,30) degrees of freedom. The 0.05 upper tail value for the
F distribution for those degrees of freedom is 1.89, and we may conclude that
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Table 9.20 Response Surface Regression

Model: MODEL1
Dependent Variable:CYCLES

Analysis of Variance

Sum of Mean
Source DF Squares Square F value Prob > F

Model 5 688.25714 137.65143 14.476 0.0001
Error 54 513.47619 9.50882
C Total 59 1201.73333

Root MSE 3.08364 R-Square 0.5727
Dep Mean 9.73333 Adj R-sq 0.5332
C.V. 31.68120

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 -501.140476 102.04729456 -4.911 0.0001
SLACK 1 -3.739683 1.30668919 -2.862 0.0060
SLSQ 1 0.072751 0.02643420 2.752 0.0080
GAGE 1 48.187500 9.29896859 5.182 0.0001
GSQ 1 -1.131250 0.21112221 -5.358 0.0001
GSL 1 0.150000 0.05746019 2.611 0.0117

Predicted Value

16.94

12.46

7.97

3.48
24.00

22.67
21.33

Gage

Slack

20.00
0

4

6

12

Figure 9.7

Response Surface
Plot for Wirelife
Data

the response surface regression model is adequate, although some checking
or residuals may still be worthwhile.

It is now appropriate to produce a response surface plot, which was pro-
duced by PROC G3D of the SAS System and is shown in Fig. 9.7. The minimal
degree of interaction is seen by the relatively small changes in the cross section
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of the response curve for one effect across the other. Since we want maximum
cycles to failure, it is evident that 21- to 22-gage wire should be used, and that
slack has little effect until about 8 units, at which increased slack definitely
helps. In fact, it would appear that increasing slack beyond 12 would be useful,
but this conclusion requires extrapolation and, in addition, does not take into
account other side effects of too much slack.

Introducing a term for STRANDS would simply produce two identically
shaped response curves for the two values ofSTRANDS as seen in Fig. 9.6, each
with slightly different levels of response. However, inclusion of the marginally
significant interaction of STRANDS*GAGE (not illustrated) produces a slightly
different shape for the two levels of STRANDS. ■

This chapter extends the use of the analysis of variance for comparing means
when the populations arise from the use of levels from more than one fac-
tor. An important consideration in such analyses is interaction, which is de-
fined as the inconsistency of the effects of one factor across levels of another
factor. The study of interaction is made possible by the use of factorial ex-
periments in which observations are obtained on all combinations of factor
levels.

In most other respects the analysis of data from a factorial experiment
is a relatively straightforward generalization of the methods presented in
Chapter 6:

• Statistical significance of the factors is determined by the partitioning of
sums of squares and computation of F ratios. The major difference is that
inferences on main effects must take into account any relevant interactions.

• Contrasts for specific comparisons among means for main effects are con-
structed as shown in Chapter 6, and interaction contrast coefficients are
the products of the main effect contrasts.

• If the factor levels are numeric, polynomial curve called response surfaces
can be constructed using regression methods. Lack of fit tests may be used
to determine the adequacy of such models.

• If factor levels do not suggest the use of contrasts, post hoc comparison
methods may be used but their use may be severely restricted by the ex-
istence of interactions. Mixtures of paired comparisons and contrasts or
response curves may be used if appropriate.

9.8 CHAPTER EXERCISES

EXERCISES

The most important aspect of the exercises for this chapter is not simply to
perform the analysis of variance but to select the appropriate follow-up tests
such as contrasts or multiple comparisons and to interpret results. For this
reason most exercises consist of a statement and the data and do not provide
specific instructions for the analysis.
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Exercises 1, 2, and 3 consist of small artificially generated data sets. Most of
the computations for these exercises can be performed with the aid of calcu-
lators if it is desirable for students to have some practice in applying formulas.
Most of the other problems are more efficiently performed with computers.

1. Table 9.21 contains data from a 2 × 4 factorial experiment. The only ad-
ditional structure is that level C of factor T is a control. This exercise is
somewhat unusual in that it will require a contrast to see whether the con-
trol is different from the other treatments and also a paired comparison of
the treatments.

Table 9.21

Data for Exercise 1

FACTOR T

Levels C M N Q

Factor A A 3.6 8.9 8.8 8.7
5.3 8.8 6.8 9.0

B 3.8 2.5 4.1 3.6
4.8 3.9 3.4 3.8

2. Table 9.22 contains data from a 3 × 4 factorial experiment in which there
is no structure to describe the levels of either factor.

Table 9.22

Data for Exercise 2

FACTOR C

Levels 1 2 3 4

Factor A M 5.6 7.5 7.5 6.2
6.2 5.8 6.9 4.7

P 6.4 8.0 11.5 9.2
8.2 8.5 10.0 7.6

R 7.2 9.4 11.8 9.1
6.6 10.1 11.6 7.8

3. Table 9.23 contains data from a 3 × 3 factorial experiment that has equally
spaced levels for both factors.

Table 9.23

Data for Exercise 3

FACTOR C

Levels 1 2 3

Factor A 2 3.6 7.1 8.2
4.5 7.3 6.0
3.9 5.0 9.8

4 7.7 9.8 10.3
7.7 10.0 12.3
7.7 8.6 8.6

6 6.5 8.0 6.0
8.5 6.5 6.9
6.3 9.6 6.1
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Table 9.24

Data for Exercise 4

COND

Oven FRESH FROZEN 12–THAW 24–THAW

NOT PRE 21.15 25.29 22.38 24.01
17.82 28.13 21.09 24.42
23.68 25.87 29.59 23.45
18.13 26.70 21.84 21.18
26.72 26.51 26.28 22.53

PRE 19.59 31.05 26.20 22.43
8.03 19.47 24.21 22.40

17.78 29.97 23.00 21.71
9.54 28.56 19.74 26.16

18.54 24.88 29.10 26.72

4. In an era of increased awareness of the need for energy conservation, it is
of interest to find out, when preparing a roast, what the consequences are
of (1) thawing a frozen roast before cooking and (2) preheating the oven.
The purpose of this 2 × 4 factorial experiment (data in Table 9.24) is to
provide some answers to these questions. The factors and levels are:

Factor 1 (OVEN): level 1, not preheated (NOT PRE)
level 2, preheated (PRE)

Factor 2 (COND): level 1, fresh meat (FRESH)
level 2, frozen meat (FROZEN)
level 3, frozen, thawed for 12 h (12-THAW)
level 4, frozen, thawed for 24 h (24-THAW)

Starting with 40 roasts of the same size and configuration, five were ran-
domly assigned to each of the eight factor level combinations. Each roast
was cooked until the internal temperature reached 160◦F. The response is
total fuel requirement (GAS).

Table 9.25

Data for Exercise 5

FUNGICIDE

Concentration A B C

100 0 0 0
33 0 0

0 20 0
0 0 0
0 0 0

1000 100 20 0
40 20 0
75 0 0

100 0 50
60 40 80

5. The data in Table 9.25 are the results of an experiment for studying the ef-
fectiveness of two concentrations (100 and 1000 ppm) of three fungicides
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for controlling wilt in young watermelon plants. Five pots, having seeds in-
fected with the wilt-causing fungus, were randomly assigned to each of the
six factor level combinations. The response is the percent of germinated
plants surviving to the 48th day. (Hint: Review Section 6.4.)

Table 9.26

Data for Exercise 6

NUTRIENT CONCENTRATION (ppm)

0.0 0.5 1.0 2.5 5.0 10.0 15.0 25.0 50.0

3.00 8.00 4.25 3.63 12.33 10.50 16.00 32.75 39.00
7.50 9.00 6.66 8.33 7.00 17.00 24.75 26.50 27.75
3.50 9.50 11.50 12.50 17.50 11.75 31.50 35.00 41.00

15.67 9.75 21.41 15.00 7.67 29.75 31.25 30.66 38.00

6. The data in Table 9.26 do not arise from a factorial experiment but illustrate
how a multiple regression model and a lack of fit test can be used. Thirty-
six pine seedlings were randomly divided into nine treatment groups. Each
group received a different concentration of a complete nutrient solution (in
ppm) for a period of several weeks. The response is growth in millimeters
during a two-week period. Note that the levels of nutrient are not equally
spaced. A curve showing the response to the nutrient solution may be used
to determine an economic optimum amount to use.

Table 9.27

Data for Exercise 7

TEMPR

Clean 0.20 0.93 1.65 2.38 3.10

0.0 6.50 6.80 2.55 1.89 1.59
7.91 4.74 0.29 5.11 5.88
5.20 7.27 0.39 5.10 1.23

0.5 7.00 8.80 14.60 16.70 10.79
7.70 3.80 10.23 13.87 9.54
6.88 10.76 20.68 14.78 12.67

1.0 4.59 31.60 21.70 39.02 26.71
2.71 28.12 27.00 38.60 34.80
5.25 27.06 28.83 46.50 31.81

1.5 11.47 39.15 75.41 79.95 59.21
5.04 47.75 76.81 81.06 63.61
8.89 41.89 76.15 96.53 60.27

2.0 22.07 77.68 136.79 152.45 93.95
10.20 71.13 134.30 142.86 104.70
21.19 82.81 137.74 151.92 112.47

7. The data in Table 9.27 deal with how the quality of steel, measured by
ELAST, an index of quality, is affected by two aspects of the processing
procedure:

CLEAN: concentration of a cleaning agent, and
TEMPR: an index of temperature and pressure.
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The experiment is a 5 × 5 factorial with three independently drawn ex-
perimental units for each of the 25 factor level combinations. The factor
levels are numeric but equally spaced for only one factor.

Table 9.28

Data for Exercise 8

Nitrogen

Variety 60 90 120 150

Location K

N 4193 4681 4758 4463
L 5641 5544 6318 6297
B 6129 5697 6853 6457

Location E

N 1330 2642 2252 1715
L 4917 5466 4672 5680
B 1561 3088 2869 3957

Location B

N 3146 2806 3739 4681
L 2481 3514 3726 4076
B 3910 4015 3894 4870

Location C

N 3758 4167 4212 4293
L 4804 4480 4619 4048
B 4340 4024 4306 4479

8. The data in Table 9.28 deal with the effect of location, variety, and nitrogen
application on rice yields. There are four locations (K, E, B, and C), three
varieties (N, L, and B), and four levels of nitrogen (60, 90, 120, and 150).
The response is mean yield of several replicated plots for each factor level
combination, so we do not have an estimate of the true error variance.

Table 9.29

Data for Exercise 9

Temp Day Volume

15 1 340 355 370 345 300 310
15 15 318 316 309 324 310 279
25 1 280 255 275 270 250 190
25 15 349 336 342 304 306 379
35 1 335 315 320 315 225 285
35 15 309 309 313 304 292 270

9. After an initial storage of one day at 10◦C a sample of eggs was randomly
divided into three groups to be stored at temperatures of 15, 25, and 35◦C,
respectively. Eggs were randomly taken out at 1 and 15 days of storage,
the egg whites separated, and six angel food cakes prepared using the
pooled egg whites from each storage regime. The volume of each cake
is the response variable. The data are given in Table 9.29. Beware of an
unexpected result.
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Table 9.30

Heat Resistance of
Potatoes

Temp Var Weights

15 BUR 0.19 0.00 0.17 0.10 0.21 0.25
20 BUR 0.46 0.42 0.41 0.33 0.27 0.06
25 BUR 0.00 0.14 0.00 0.00 0.00 0.41
30 BUR 0.00 0.00 0.00 0.12 0.00 0.00

15 KEN 0.35 0.36 0.33 0.55 0.38 0.38
20 KEN 0.27 0.39 0.33 0.40 0.44 0.00
25 KEN 0.54 0.28 0.37 0.43 0.19 0.28
30 KEN 0.20 0.00 0.00 0.00 0.17 0.00

15 NOR 0.27 0.33 0.35 0.27 0.40 0.36
20 NOR 0.36 0.40 0.12 0.36 0.26 0.38
25 NOR 0.53 0.51 0.00 0.57 0.28 0.42
30 NOR 0.12 0.00 0.00 0.00 0.15 0.23

15 RLS 0.08 0.29 0.70 0.25 0.19 0.19
20 RLS 0.54 0.23 0.00 0.57 1.25 0.25
25 RLS 0.41 0.39 0.00 0.14 0.16 0.42
30 RLS 0.23 0.00 0.09 0.00 0.09 0.00

10. In a study of heat resistance of potato varieties, six plantlets of four va-
rieties of potatoes were randomly assigned to each of four temperature
regimes. Weights of tubers were recorded after 45 days. The resulting ex-
periment is a 4 × 4 factorial. The data are shown in Table 9.30. Perform the
analysis to determine the nature of differences in heat resistance among
the varieties. Make recommendations indicated by the results.

11. The nutritive value of a diet for animals is not only a function of the in-
gredients, but also a function of how the ingredients are prepared. In this
experiment three diet ingredients are denoted as factor GRAIN with levels

SORGH: whole sorghum grain,
LYSINE: whole sorghum grain with high lysine content, and
MILLET: whole millet.

Three methods of preparation are denoted as factor PREP with levels

WHOLE: whole grain,
DECORT: decorticated (hull removed), and
BSB: decorticated, boiled, and soaked.

Six rats were randomly assigned to each of 10 diets; the first 9 diets are
the nine combinations of the two sets of three factor levels and diet 10 is
a control diet. The response variable is biological value (BV). The data are
shown in Table 9.31 and are available on the data disk in file FW09P11.
Note that for diet 10, the factor levels are shown as blanks.

Perform the appropriate analysis to determine the effects of grain and
preparation types. Note that this is a factorial experiment plus a control
level. One approach is first to analyze the factorial and then perform a
one-way for the 10 treatments with a contrast for control versus all others.
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Table 9.31

Data for Exercise 9.11

TRT GRAIN PREP Biological Value

1 SORGH WHOLE 40.61 56.78 69.05 39.90 55.06 32.43
2 SORGH DECORT 74.68 56.33 71.02 53.35 41.43 33.00
3 SORGH BSB 71.60 62.64 78.95 69.86 60.26 67.05
4 LYSINE WHOLE 42.46 50.78 48.88 44.12 48.86 43.39
5 LYSINE DECORT 50.11 57.46 55.36 57.28 51.60 53.96
6 LYSINE BSB 60.57 62.62 66.20 54.32 47.11 41.56
7 MILLET WHOLE 45.58 68.51 54.13 45.15 45.03 39.72
8 MILLET DECORT 46.19 45.54 42.57 30.23 38.83 40.28
9 MILLET BSB 64.27 56.48 73.24 67.18 51.11 32.97

10 87.77 91.80 81.13 80.88 66.06 73.36

12. In 1937 Raymond Haugh proposed a measurement based on albumen
height and egg weight for assessing albumen quality. This measure is
known as the Haugh value. In another phase of the experiment described
in Exercise 9, 30 eggs were randomly chosen from storage day (DAY,
levels 1 and 15) and temperature (TREAT, levels 15, 25, and 35◦C) combi-
nation. Each egg was weighed (EGGWT) and opened, the albumen height
measured (ALBHT), and the Haugh value (HAUGH) determined. The data
consisting of 180 observations are on the data disk in file FW09P12.

Perform an analysis to determine how storage time and temperature
affect the Haugh measure of the eggs. Also perform the same analysis on
the albumen height and egg weight, and relate the results of these analyses
to that of the Haugh measure.



Chapter 10

Design of
Experiments

EXAMPLE 10.1 A Factorial Experiment with Different Plot Sizes We are interested in
the yield response of corn to the following factors:

WTR: levels of irrigation with levels 1 and 2,
NRATE: rate of nitrogen fertilization with levels 1, 2, and 3, and
P: planting rates with levels 5, 10, 20, and 40 plants per experimental plot.

The response variable is total dry matter harvested (TDM).1 The experiment is
a 2×3×4 factorial experiment. Because of physical limitations the experiment
was conducted as follows:

• The experiment used four fields with 24 plots to accommodate all factor
level combinations.

• Normally each of the 24 plots would be randomly assigned one factor level
combination. However, because it is physically impossible to assign differ-
ent irrigation levels to the individual plots, each field was divided in half
and each half randomly assigned an irrigation level.

• The 12 factor levels of the other factors (NRATE and P) were randomly
assigned to each half field.

A possible additional complication arises from the fact that the specified
planting rates do not always produce that exact number of plants in each plot.
Therefore the actual plants per plot are also recorded. For the time being,
we will assume that this complication does not affect the analysis of the data.

1Other responses were measured, but are not presented here.
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Table 10.1

Example of an
Experimental Design
Source: Personal

communication from R. M.

Jones and M. A. Sanderson,

Texas Agricultural

Experiment Station,

Stephenville, and J. C. Read,

Texas Agricultural

Experiment Station, Dallas.

P = 5 P = 10 P = 20 P = 40

WTR NRATE NO TDM NO TDM NO TDM NO TDM

REP = 1
1 1 7 3.426 13 2.084 20 2.064 37 2.851
1 2 7 7.070 12 7.323 24 7.321 38 7.865
1 3 6 4.910 10 6.620 22 8.292 43 7.528
2 1 5 2.966 12 3.304 20 4.055 37 2.075
2 2 7 3.484 12 2.894 22 5.662 26 3.485
2 3 5 1.928 10 4.347 20 3.178 33 3.900

REP = 2
1 1 6 3.900 11 3.015 27 3.129 38 3.175
1 2 7 5.581 14 7.908 19 6.419 37 7.685
1 3 5 3.350 13 5.986 20 6.515 32 10.515
2 1 5 2.574 12 4.390 20 2.855 42 3.042
2 2 5 3.952 11 4.744 21 5.472 30 5.125
2 3 6 4.494 11 5.480 20 4.871 36 5.294

REP = 3
1 1 5 3.829 10 3.173 18 2.741 33 2.166
1 2 5 3.800 13 7.568 19 7.797 34 6.474
1 3 8 6.156 15 7.034 23 7.754 40 8.458
2 1 6 2.872 12 5.759 21 4.512 42 4.864
2 2 5 2.826 14 3.840 21 4.494 30 4.804
2 3 5 3.107 10 3.620 20 4.620 32 5.376

REP = 4
1 1 5 3.325 11 4.193 20 3.409 40 4.877
1 2 6 4.984 12 7.627 20 6.562 39 9.093
1 3 6 4.067 12 4.394 20 7.089 28 7.088
2 1 6 2.986 11 5.327 20 5.390 43 5.632
2 2 5 2.417 11 3.592 20 4.311 33 5.975
2 3 9 4.180 12 5.282 19 4.498 35 6.519

We will return to this problem in Chapter 11, Exercise 14 where the effect of the
different number of plants in each plot will be examined. The data are shown
in Table 10.1: The NRATE and WTR combinations are identified as rows, and
the four sets of columns correspond to the four planting rates (P). The two
entries in the table are the actual number of plants per plot (NO) and the total
dry matter (TDM). The solution is presented in Section 10.6. ■

10.1 Introduction

DEFINITION 10.1
The design of an experiment is the process of planning and executing
an experiment. While much of the planning of any experiment is technical
relative to the discipline (choices of methods and materials), the results
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and conclusions depend to a large extent on the manner in which the data
are collected. The statistical aspect of experimental design is defined
as the set of instructions for assigning treatments to experimental or
observational units.

The objective of an experimental design is to provide the maximum amount
of reliable information at the minimum cost. In statistical terms, the reliability
of information is measured by the standard error of estimates. We know that
the standard error of a sample mean is

• directly related to the population variance, and
• inversely related to sample size.

To increase the precision, we want to either reduce the population variance or
increase the sample size. We normally take as big a sample as we can afford
but it would seem that there is nothing we can do to reduce the population
variance. However, it turns out that properly applied experimental designs
may be used to effectively reduce that population variance.

For the completely randomized design described in Chapter 6, the within
treatment mean square (MSW, also denoted by MSE) is used as the variance
for computing standard errors of means. This quantity is the measure of the
variation among units treated alike. In this context, this measure is known
as the experimental error. Experimental designs structure data collection to
reduce the magnitude of the experimental error.

The use of MSW as an estimate of the variance in a CRD assumes a popu-
lation of units that has a variance of σ 2 everywhere. However, in many popu-
lations identifiable subgroups exist that have smaller variances. If we apply all
treatments to each subgroup, the variation among units treated alike within

each subgroup is likely to be smaller, thus reducing the error variance. Such
subgroups are referred to as blocks, and the act of assigning treatments to
blocks is known as blocking. Of course, if there is only one replication in
a block, we cannot measure that variation directly, but we will see that if
we have several blocks, the appropriate error can indeed be estimated. Most
experimental designs are concerned with applications of blocking.

Usually data resulting from the implementation of experimental designs
are described by linear models and analyzed by the analysis of variance. In
fact, the use of blocking results in analyses quite similar to those of the analysis
of factorial experiments.

Notes on Exercises

This chapter covers the analysis of a number of different experimental designs;
after completing the coverage of a specific design, exercises using this design
can be identified and worked. In order to make the exercises more realistic,
they are not categorized as to design, although occasional hints are furnished.
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10.2 The Randomized Block Design

One of the simplest and probably the most popular experimental design is the
randomized block design, usually referred to as the RB design.2 In this design
the sample of experimental units is divided into groups or blocks and then
treatments are randomly assigned to units in each block.

Remember that in the completely randomized design (Chapter 6), the vari-
ation among observed values was partitioned into two portions:

1. the assignable variation due to treatments and
2. the unassignable variation among units within treatments.

The unassignable variation among units is deemed to be due to natural or
chance variation. It is therefore used as the basis for estimating the underlying
population variance and is commonly called the experimental error. This is the
statistic used as the denominator in the F ratios used to test for differences in
population means and for computing standard errors of estimated population
means.

Data resulting from a randomized block design have two sources of
assignable variation:

1. the variation due to the treatments and
2. the variation due to blocks.

The remaining unassignable variation is used for estimating experimental error
and is the variation among units treated alike within a block. If the blocks have
been chosen to contain relative homogeneous units, this variation may be
relatively small compared to that of a completely randomized design. In other
words, in the RB design the assignable variation due to blocks is removed from
the unassignable variation used in the CRD, thereby effectively reducing the
magnitude of the estimated experimental error. This results in

• a decrease in the denominator in the F rations used to test for differences
in means and

• a smaller estimate of the standard error of the means, thereby resulting in
shorter confidence intervals on means.

Note, however, that although randomization of treatments and blocks is
required, the randomization occurs after the units have been assigned to
blocks. The procedure adds a restriction to the randomization process, which
will be accounted for in the analysis and interpretation.

Criteria for the choice of blocks are most frequently different settings or
environments for the conduct of the experiment. Examples of blocks may
include

2Sometimes it is called the randomized complete block (RCB) design, to distinguish it from in-
complete block designs (Section 10.5).
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• subdivisions of a field,
• litters of animals,
• experiments conducted on different days,
• bricks cured in different kilns, or
• students taught by different instructors.

In any case, blocking criteria should be chosen so that the units within blocks
are as homogeneous as possible.

Blocks may also be repetitions or replications of the experiment at another
time or place. In such circumstances replications and blocks are synonymous.
This is not, however, always the case. In some applications, blocks may be
different subpopulations, such as different regions, but in such situations the
blocks may more nearly represent a factor in a factorial experiment.

In many applications, an experiment will be conducted with only one appli-
cation of each treatment per block. In this case, each block acts as one replica-
tion of the entire experiment; there are no units treated alike within blocks, and
we must estimate the experimental error indirectly. However, even if there are
multiple applications of treatments per block, the estimate of variance mea-
suring the variation among units treated alike within blocks is not always the
appropriate estimate of experimental error. Such situations are discussed in
Section 10.3. Additional uses of blocking are presented in subsequent sections.

EXAMPLE 10.2 Table 10.2 shows hypothetical data that represent yields of three varieties of
wheat planted according to a randomized block design with five blocks. The
objective is to compare the yields of the varieties. In a field experiment of
this type, the blocks are subdivisions of a field and the experimental units,
called plots, are indeed small plots of the field in which one variety is planted.
Usually the block is composed of a set of contiguous plots, which tend to be
more alike or homogeneous than are a set of plots randomly selected from an
entire field. The actual field layout would not necessarily look like that implied
in Table 10.2 because

• the blocks need not be aligned in a row and
• the varieties are randomly arranged within blocks.

Note that in this experiment there is only one replication of treatments per
block.

Table 10.2

Data on Wheat Yields for
Randomized Block
Design

BLOCKS

1 2 3 4 5 Means

Variety A 31.0 39.5 30.5 35.5 37.0 34.70
B 28.0 34.0 24.5 31.5 31.5 29.90
C 25.5 31.0 25.0 33.0 29.5 28.80

(grand mean)
Block means 28.17 34.83 26.67 33.33 32.67 31.13
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The mean yields for varieties clearly indicate higher yields for variety A.
However, the lowest two yields for variety A (30.5 in block 3 and 31.0 in block 1)
are met or exceeded by five individual yields of the other varieties. Hence the
apparent superiority of variety A does not appear to be clear-cut. However,
if we examine the yields of the varieties within each individual block, we
see that variety A is a clear winner in every case. Thus the relatively high
overall yields in blocks 2, 4, and 5 may be causing varieties B and C in these
blocks to have higher yields than variety A in blocks 1 and 3.3 If the data from
this experiment were to be analyzed as a completely randomized design, the
variation we see among the blocks would be included in our estimate of the
unassigned variation. The resulting variance would tend to be larger, thereby
reducing the magnitude of the F statistic for testing the equality among mean
yields. However, when we use the randomized blocks analysis, this variation
among blocks is now assignable, thereby reducing the unassignable variation.
The analysis that accomplishes this is shown later in this section. ■

The Linear Model

The data from a randomized block design can be described by a linear model
that suggests the partitioning of the sum of squares and provides a justification
for the test statistics. The linear model for the data from a randomized block
design with each treatment occurring once in each block is

yij = μ + τi + β j + εij ,

where yij = observed response for treatment i in block j; μ = reference
value, usually called the “grand” or overall mean; τi = effect of treatment i,
i = 1, 2, . . . , t; β j = effect of block j, j = 1, 2, . . . , b; and εij = experimental
(random) error.

If the block and treatment effects are fixed (see below) we add the
restriction ∑

τi =
∑

β j = 0,

in which case μ represents the mean of the population of experimental units.
This model certainly looks like that of the factorial experiment with factors

now called treatments and blocks. There is only one replication per cell; hence
the interaction mean square is used as the estimate of error (Section 9.5). This
analogy is not incorrect. The procedures for the partitioning of the sums of
squares and the construction of the analysis of variance table are identical
for both cases and are therefore not reproduced here. However, the parame-
ters, especially those involving the blocks, have different implications for the
randomized block model.

Generally the blocks in an experiment are considered a random sample
from a population of blocks. For that reason, the block parameters β j represent

3We should note at this point that the paired t test (Chapter 5) is actually a randomized block
design for two treatments. The use of the randomized block analysis in this chapter provides the
equivalent inferences.



10.2 The Randomized Block Design 467

Table 10.3

Expected Mean Squares:
Randomized Block

Source df E (MS)

Treatments t − 1 σ 2 + [b/(t − 1)]
∑

τ 2

Blocks b − 1 σ 2 + tσ 2
β

Error (t − 1)(b − 1) σ 2

a random effect4; that is, they are random variables with mean zero and vari-
ance σ 2

β . As noted in Section 6.6, the inferences for a random effect are to
the variation among the units of that population. However, the inference on
the treatment effects, the τi, which are usually fixed, is on the specific set of
treatment parameters present in the particular experiment.

The model for the randomized block design contains both fixed and random
effects and is an example of a mixed model. In some cases, hypothesis tests
and other inferences for a mixed model are different from those of a fixed or
random model even though the analysis of variance partitioning is identical.

The importance of the distinction between random and fixed effects is seen
in the definition of the experimental error εij :

• In the (fixed) model for the factorial experiment, expected mean squares
showed that the interaction mean square is an estimate of the experimental
error plus the interaction effect and is therefore not suitable as an estimate
of the experimental error.

• In the mixed model for the randomized block design, the interaction
between treatments and blocks measures the inconsistency or variation
among treatments effects across the population of blocks.

When blocks are random, this interaction is a random effect and is the measure
of the uncertainty of the inferences about the treatment effects based on the
sample of blocks. This is why it is called the experimental error, and the cor-
responding mean square is used as the estimate of the variance for hypothesis
tests and interval estimates on the treatment effects.

The use of this interaction as the estimate of the error for hypothesis tests
is supported by the expected mean squares for this analysis, which are given
in Table 10.3. The following features are of interest:

• σ 2
β and σ 2 are the variances of the (random) block and experimental error

effects, respectively.
• The test for H0:

∑
τ 2

i = 0 is provided by the test statistic

F = treatment mean square
error mean square

,

which is the same as for the test for a main effect in a factorial experiment
with no replications.

4It is possible for blocks to be fixed. However, in such cases the blocks are more nearly like the
fixed levels of a factor, and the data more appropriately considered as arising from a factorial
experiment and analyzed by the methods described in Chapter 9.
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• We may also test H0: σ 2
β = 0 by the test statistic

F = blocks means square
error mean square

.

This test, however, is not overly useful and is considered by some as not strictly
valid (Lentner et al., 1989). The value of the F statistic is, however, related to
the relative efficiency of the randomized block design discussed below.

We can see that the analysis of the mixed model representing the random-
ized block design is the same as that for the fixed model representing a factorial
experiment. There are some changes in names and a somewhat different inter-
pretation of the inference about the variance of the block effect, but the end
product appears identical. It is important to remember that this similarity is
deceptive and does not apply to all cases of mixed models. We will see later
that it is important to know which effects are random and which are fixed.

Solution Example 10.2 concerns some hypothetical wheat yields for three
varieties in a randomized block design with five blocks. The data are shown in
Table 10.2.

The computations for the sums of squares and the construction of the anal-
ysis of variance table are identical to those of a two-factor factorial experiment
with the t treatments corresponding to factor A and the b blocks corresponding
to factor C.

The partitioning of the sum of squares is

TSS =
∑

ij

(yij − ȳ..)2

= (31.0 − 31.13)2 + (28.0 − 31.13)2 + · · · + (29.5 − 31.13)2

= 261.733

SS(Treatments) = b

[∑
i

(ȳi. − ȳ..)2
]

= 5[(34.70 − 31.13)2 + (29.90 − 31.13)2 + (28.80 − 31.13)2]

= 98.433

SS(Blocks) = t

[∑
j

(ȳ. j − ȳ..)2
]

= 3[(28.17 − 31.13)2 + (34.83 − 31.13)2 + · · ·
+ (32.67 − 31.13)2]

= 148.90

SS(Error) = TSS − SS(Treatments) − SS(Blocks)

= 261.733 − 98.433 − 148.90

= 14.400.
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Table 10.4

Analysis of Variance

Source df SS MS F

Varieties 2 98.433 49.217 27.34
Blocks 4 148.900 37.225 20.68
Error 8 14.400 1.800

Total 14 261.733

The results are summarized in the tabular analysis of variance format, which
is given in Table 10.4. Using the experimental error (1.800) as the denominator,
the F ratios from this table lead to rejection (α < 0.01) of the null hypothesis
of no variety differences as well as the hypothesis of zero block variance.

The lack of treatment structure suggests the use of a post hoc paired com-
parison procedure to obtain more specific information on treatment differ-
ences. The reader may want to verify that the Duncan multiple range test
using s2 = 1.800 with 8 degrees of freedom and α = 0.01 (Section 6.5, see dis-
cussion on post hoc comparisons) requires differences in mean variety yield
of 1.95 and 2.04 to detect differences involving two and three means, respec-
tively. Using the means given in Table 10.2, we see that variety A can be said to
have a significantly higher yield but we cannot distinguish between the yields
of the other two varieties. ■

Relative Efficiency

Having implemented a randomized block design, it is appropriate to ask
whether the use of this design did indeed provide for a more powerful test
than would have been produced by a completely randomized design. After
all, the randomized block design does require somewhat more planning, more
careful execution, and somewhat more computing than does the CRD. Further,
the RB design has one additional disadvantage in that the error mean square
has fewer degrees of freedom; hence a larger p value will result for a given
value of the F ratio for the test of treatment effects. Thus, for a given mag-
nitude of treatment difference, the randomized blocks design must provide a
smaller variance estimate to maintain a given level of significance.

A formal comparison of the magnitudes of the error mean squares is pro-
vided by the relative efficiency of the randomized block design, which is
obtained as follows:

1. Estimate the error variance that would result from using a completely ran-
domized design for the data. Using the results of the RB analysis this is

s2
CR = (b − 1)MSblocks + [b(t − 1)]MSerror

bt − 1
.

2. Compute the relative efficiency

RE = s2
CR

s2
RB

,
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where s2
RB is the error mean square for the randomized block design. The

result indicates how many replications of a CR design are required to obtain
the power of the RB design.

3. As we have noted, the advantage accruing to the randomized block design
may be compromised by a reduction in the degrees of freedom for estimating
the experimental error. Although this reduction causes a loss in efficiency,
the loss is usually so small that it may be ignored. A correction factor to
be used, especially when the degrees of freedom for the RB error are small
(say, <10), is available in Steel and Torrie (1980, Section 9.7).

For our example,

s2
CR = 4(37.225) + 10(1.800)

14
= 11.921.

Then

RE = 11.921
1.800

= 6.62.

Hence over six times as many replications, that is, an experiment using more
than 90 experimental units, would be required using the CRD to obtain the
same results as the RB design, although the loss of error degrees of freedom
from 12 to 8 will minimally decrease the efficiency. It is seen that the use of
blocking was quite effective in this case. However, blocking is not always this
effective.

Random Treatment Effects in the Randomized Block Design

We noted in Section 6.6 that treatments may represent a random sample for a
population of treatments. In such a situation the treatment effects are random,
and if they occur in a randomized block design with random block effects, the
resulting linear model is a random effects model. The model is

yij = μ + τi + β j + εij ,

where μ, β j , and εij are as defined in the previous section, and τi represents a
random variable with mean zero and variance σ 2

τ . The expected mean squares
for the analysis of variance are

E(MStreatment) = σ 2 + bσ 2
τ ,

E(MSblocks) = σ 2 + tσ 2
β ,

E(MSerror) = σ 2.

From these formulas we can see that the analyses for determining the existence
of the random treatment and block effects are exactly the same for the mixed
or fixed effects models. Of course, the results are interpreted differently. Since
the focus is on the variances of the effects the use of multiple comparisons
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is not logical. The variance components can be estimated by equating the
expressions for the expected mean squares to the mean squares obtained by
the analysis in the same way as outlined in Section 6.6.

10.3 Randomized Blocks with Sampling

In some experiments blocks may be of sufficient size to allow several units
to be assigned to each treatment in a block. Such replication of treatments is
referred to as randomized blocks with sampling. Data from such an experiment
provide two sources of variation that may be suitable for an estimate of the
error variance. The linear model for data from such an experiment is

yijk = μ + τi + β j + εij + δijk,

where yijk = observed value of the response variable in the k th replicate
of treatment i in block j; μ = reference value or overall mean; τi = fixed
effect of treatment i, i = 1, 2, . . . , t; β j = effect of block j, j = 1, 2, . . . , b,
a random variable with mean zero and variance σ 2

β ; εij = experimental error
(as defined in Section 10.2), a random variable with mean zero and variance
σ 2; and δijk = sampling error, which is the measure of variation among units
treated alike within a block, a random variable with mean zero and variance
σ 2

δ , k = 1, 2, . . . , n.5

The partitioning of the sums of squares and the construction of the analysis
of variance table is identical to that for the analysis of the two-factor factorial
experiment (Table 9.4), substituting treatments and blocks for factors A and
C. As usual, the justification for the appropriate test statistics for the analy-
sis of data from this design is determined by examining the expected mean
squares for the analysis of variance. Assuming fixed treatment and random
block effects, the analysis of variance and expected mean squares are shown
in Table 10.5.

Table 10.5

Analysis of Variance for
Randomized Block with
Sampling

Source df Mean Square Expected Mean Square

Treatments t − 1 MS (Treatments) σ 2
δ + nσ 2 + nb

t−1

∑
τ 2

Blocks b − 1 MS (Blocks) σ 2
δ + nσ 2 + ntσ 2

β

Exp. error (t − 1)(b − 1) MS (Exp. error) σ 2
δ + nσ 2

Samp. error tb(n − 1) MS (Samp. error) σ 2
δ

Up to this point we have become accustomed to use the “bottom line” in
the analysis of variance table as the denominator for all hypothesis tests. We
will see that this is not correct for this case when we review the basic principle
of hypothesis testing.

In Sections 6.3 and 9.3 we noted that the principles of hypothesis testing
in the analysis of variance require the following:

5As was the case for factorial experiments, here we consider only balanced data.
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• If H0 is true, the numerator and denominator of an F ratio used for a
hypothesis test should both be estimates of the same variance (or func-
tion of variances).

• If H0 is not true, the numerator should include, in addition to the estimate of
the variance, a positive function involving only those parameters specified
in the hypothesis. This function is called the noncentrality parameter of the
test, and should have the property that its magnitude increases with larger
deviations from the null hypothesis.

We can now see that the ratio we would normally use, that is, MS(Treatments)/
MS(Samp. error), provides the test for

H0:
(

nσ 2 + nb

t − 1

∑
τ 2
)

= 0.

This is not a particularly useful hypothesis as it provides for a simultaneous
test for both treatment effects and the experimental error. However, the test
resulting from the ratio MS(Treatments)/MS(Exp. error) provides the test for

H0:
(

nb

t − 1

∑
τ 2
)

= 0,

which is the desired hypothesis for treatment effects. Similarly, the test
MS(Exp. error)/(MS Samp. error) provides the test for H0: σ 2 = 0 and, if
desired, MS(Blocks)/MS(Exp. error) provides the test for block effects.

The distinction between the experimental and sampling errors seen in the
model can also be explained by reviewing the sources of the variation and the
purpose of the inference:

• The experimental error measures the variability among treatment
responses across a random sample of blocks. If this had been a factorial
experiment, this would in fact be the interaction between blocks and treat-
ments. Since the primary purpose of our inference is to estimate the behav-
ior of the responses for the population of blocks, this source of variation is
the correct measure of the uncertainty of this inference.

• The sampling error measures the variability of treatment responses within
blocks. Since we try to choose blocks that will be relatively homoge-
neous, this variation may not represent the variability of treatment effects
in the population, and is therefore not always the proper error to use for
such inferences.

• This is the point at which we make a distinction between experimental

units and sampling units. In Section 1.2 we introduced the concept of
experimental units and heretofore we have called any observational unit
an experimental unit. For this design the two are not the same. Instead, the
experimental units are blocks, and the observational units, called sampling
units, are the individual observations within blocks. The distinction occurs
because inferences are made on the effects of treatments on the population
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of blocks rather than individuals. Sampling units do provide useful infor-
mation, but inferences are normally not made for these units.

• Just because we do not use the sampling error for tests on treatment effects,
it does not mean that having samples is not useful. Note that the magnitude
of the noncentrality parameter in the expected mean square for treatment
effects increases with n; hence, increasing the number of sample units will
tend to magnify the effect of nonzero treatment effects and thereby increase
the power of the test.

• Sometimes both the sampling and experimental errors do measure the
experimental error. Effectively, then, σ 2 = 0, and most likely the hypothesis
H0: σ 2 = 0 will not be rejected. If this has occurred, we may pool the two
mean squares and use the resulting pooled mean square as the denominator
for F ratios, thus providing more degrees of freedom for the denominator
and consequently a more powerful test. However, since failing to reject a
null hypothesis does not necessarily imply accepting that hypothesis, pool-
ing is not a universally accepted practice. Pooling may be made more
acceptable if the significance level for that test is increased to, say, 0.25
or greater (Bancroft, 1968).

• Other distinctions between experimental and observational units may arise
in this type of design (Section 1.2). For example, the replications within
blocks may consist of repeated measurements on the same experimental
units, or measurements on subunits of the original experimental units. This
may occur, for example, in the determination of the radioactivity of a sample
of material, where the replications may consist of repeated readings or de-
terminations of the same unit. Such situations do not necessarily invalidate
the analysis we outline here, but care must be taken to properly interpret
the so-called sampling error.

• If block effects are fixed, the interaction is also fixed and the expected
mean squares are those for the two-factor factorial experiment (Section 9.3),
and F ratios for all tests use the sampling error in the denominator. If
both treatments and blocks are random, the analysis is the same as for the
random model with interpretation as outlined in Section 10.2 where random
treatment effects are discussed.

EXAMPLE 10.3 We are interested in the stretching ability of different rubber materials as
measured by stress at 600% elongation of the materials. Since different testing
laboratories often produce different results, four samples of each of seven
materials were sent to a sample of 13 laboratories (Mandel, 1976). The data
are given in Table 10.6.

Solution In this experiment, the laboratories are the blocks and the mate-
rials are the treatments. Manual computations for a data set this large are not
feasible, and we simply present the analysis of variance produced by the SAS
System as shown in Table 10.7. Note that in this output the sampling error mean
square obtained from the analysis for the Model is used as the denominator
for all F ratios. Virtually all computer programs will do this because, without
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Table 10.6

Data on Rubber Stress

MATERIAL

Lab A B C D E F G

1 72.0 133.0 37.0 63.0 35.0 31.0 43.0
79.0 129.0 36.0 49.0 26.0 32.0 40.0
61.0 123.0 26.0 63.0 24.0 28.0 35.0
71.0 156.0 24.0 43.0 61.0 26.0 38.0

2 61.0 129.0 20.0 51.0 27.0 22.0 32.0
49.0 125.0 14.0 52.0 27.0 20.0 29.0
57.0 136.0 30.0 62.0 26.0 29.0 45.0
61.0 127.0 27.0 52.0 26.0 28.0 40.0

3 70.0 121.0 33.0 58.0 28.0 27.0 44.0
62.0 125.0 33.0 64.0 28.0 30.5 44.0
62.0 109.0 27.0 56.0 27.0 27.0 45.0
76.0 128.0 29.5 55.0 29.0 27.0 49.0

4 36.0 57.0 27.0 38.0 22.0 22.0 31.0
39.0 58.0 24.0 38.0 23.0 23.0 31.0
41.0 59.0 22.0 37.0 20.0 22.0 28.0
45.0 67.0 25.0 38.0 20.0 22.0 30.0

5 58.0 122.0 34.0 53.0 25.0 26.0 43.0
57.0 98.0 27.0 47.0 25.0 25.0 35.0
58.0 107.0 26.0 48.0 21.0 22.0 43.0
53.0 110.0 26.0 47.0 19.0 18.0 36.0

6 52.0 109.0 30.0 50.0 25.0 24.0 38.0
56.0 120.0 31.0 50.0 25.0 26.0 41.0
52.0 112.0 31.0 50.0 26.0 25.0 40.0
50.0 107.0 28.0 51.0 26.0 26.0 43.0

7 40.7 80.0 26.5 38.8 23.0 22.2 29.4
45.9 71.9 27.1 39.4 22.9 23.9 31.6
43.1 75.8 26.6 40.7 22.5 22.6 29.6
37.3 63.7 25.6 38.0 35.7 25.5 29.3

8 68.1 135.0 38.1 64.5 32.1 32.7 50.2
69.8 151.0 37.4 65.7 35.2 32.4 50.4
65.9 143.0 37.9 64.0 33.0 30.3 42.5
62.1 142.0 37.1 62.5 34.9 35.6 45.0

9 46.0 69.0 26.0 40.0 24.0 23.0 32.0
47.0 69.0 26.0 38.0 24.0 24.0 31.0
46.0 73.0 25.0 39.0 24.0 24.0 32.0
45.0 70.0 25.0 39.0 25.0 23.0 30.0

10 77.0 132.0 45.0 71.0 36.0 38.0 56.0
74.0 129.0 41.0 69.0 33.0 36.0 48.0
77.0 141.0 39.0 66.0 35.0 38.0 48.0
72.0 137.0 38.0 68.0 25.0 38.0 50.0

11 76.0 118.0 27.0 52.0 22.0 23.0 32.0
55.0 109.0 32.0 45.0 19.0 23.0 37.0
60.0 115.0 26.0 48.0 18.0 23.0 37.0
58.0 106.0 26.0 54.0 23.0 24.0 39.0

12 72.5 133.0 32.5 63.0 31.2 30.7 45.8
76.0 133.0 32.8 64.5 30.2 30.8 45.2
69.5 128.5 32.9 61.5 29.0 30.0 43.5
70.5 128.5 34.6 62.7 29.7 29.5 46.5

13 51.0 86.0 24.0 45.0 21.8 24.0 33.0
50.0 84.0 24.0 43.0 21.8 24.0 33.0
49.0 96.0 24.0 42.0 24.0 22.0 31.0
49.0 81.0 26.0 45.0 22.0 24.0 31.0
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Table 10.7 Analysis of Variance for Rubber Data

The ANOVA Procedure

Dependent Variable: STRESS
Sum of

Source DF Squares Mean Square F Value Pr > F

Model 90 322913.2482 3587.9250 177.01 <.0001
Error 273 5533.5800 20.2695
Corrected Total 363 328446.8282

R-Square Coeff Var Root MSE STRESS Mean

0.983152 9.253783 4.502169 48.65220

Source DF Anova SS Mean Square F Value Pr > F

LAB 12 30328.0547 2527.3379 124.69 <.0001
MATERIAL 6 268778.0771 44796.3462 2210.03 <.0001
LAB*MATERIAL 72 23807.1165 330.6544 16.31 <.0001

Tests of Hypotheses Using the Anova MS for LAB*MATERIAL as an Error Term

Source DF Anova SS Mean Square F Value Pr > F

MATERIAL 6 268778.0771 44796.3462 135.48 <.0001

special instructions, they do not know whether the data are from a factorial
experiment or a randomized block design. However, special options are nor-
mally available for performing the correct tests. Such an option is implemented
in this case, producing the test at the bottom of the output. As indicated, using
the appropriate error terms, namely the mean square for LAB*MATERIAL, we
can reject the hypothesis of no MATERIAL effect with p < 0.001.

Since there is no additional information on the materials, a post hoc mul-
tiple comparison is indicated. We will use Duncan’s multiple range test here
with results given in Table 10.8. To produce these results, the computer pro-
gram was instructed to use the correct error variance (LAB*MATERIAL mean
square), which is evidenced by the notation MSE = 330.6544. The conclusion
is that material B definitely has the highest mean stress with C, E, and F having
the lowest and no distinction among these three.

The relative efficiency is computed as given in Section 10.2. The reconsti-
tuted error variance for the completely randomized design is

s2
CR = (b − 1)MSblocks + [b(t − 1)]MSerror

bt − 1
.

For this example this quantity is

[12(2527.3) + 78(330.65)]/90 = 623.54.

The relative efficiency, then, becomes

RE = s2
CR

s2
RB

= 623.54
330.7

= 1.89,
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Table 10.8 Duncan’s Multiple Range Test

The ANOVA Procedure

Duncan’s Multiple Range Test for STRESS

NOTE: This test controls the Type I comparisonwise error rate, not the
experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 72
Error Mean Square 330.6544

Number of Means 2 3 4 5 6 7
Critical Range 7.109 7.480 7.725 7.904 8.042 8.153

Means with the same letter are not significantly different.

Duncan Grouping Mean N MATERIAL

A 108.988 52 B

B 58.296 52 A
B
B 51.621 52 D

C 38.692 52 G

D 29.435 52 C
D
D 26.885 52 E
D
D 26.648 52 F

which means that about twice as many observations would be needed for
a completely randomized design to obtain the same degree of precision. In
this case, however, a completely randomized design would actually be more
difficult to implement. ■

10.4 Latin Square Design

Some experimental situations may have more than one factor that may be used
for blocking. Consider an experiment that examines the effect of different
working conditions, such as types of background music, on productivity in a
manufacturing plant. We know that productivity may be affected by time of
day as well as by day of the week. We could define every combination of time
of day and day of the week as a block, but that would make for a very large
experiment, for example, a four-treatment experiment (four types of music),
using four daily time periods and four working days as blocks would require
64 experimental units for a single replication.

The Latin square design is specifically constructed for this type of situation.
It is based on the so-called Latin square matrix. For example, a 4 × 4 Latin
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square is

A B C D

B C D A

C D A B

D A B C

In a Latin square matrix each row and column contains each of the letters A, B,
C, and D once and only once. The Latin square design uses the “columns” as one
blocking factor, “rows” as the other, and “letters” as the treatment designation.
Thus in this design each treatment occurs once and only once in each of the
blocking factor level combinations. Of course, the experiment is restricted to
having an equal number of row, column, and treatment levels.

A Latin square experiment is conducted as follows:

1. Construct the Latin square for the size of the experiment.
2. Randomly permute the order of the rows.
3. Randomly permute the order of columns.
4. Randomly assign treatments to the letters.

For ease of presentation of the data, the rows and columns are usually pre-
sented in the “normal” sequencing, that is, ignoring the randomization. For
example, the production experiment could be conducted as

Day of the Week 8 A.M. 10 A.M. 1 P.M. 2 P.M.

Mon B C A D
Tue A B D C
Wed C D B A
Thur D A C B

where A, B, C, and D are treatments 2, 3, 4, and 1, respectively. Thus treatment
3 will be conducted Monday from 8 to 10 A.M., treatment 4 on Monday from 10
to 12 A.M., and so forth.

The linear model for the Latin square is

yijk = μ + ρi + γ j + τk + εijk,

where yijk = observed response of treatment k in row i and column j; μ =
reference value or overall mean; ρi = effect of row i, i = 1, 2, . . . , t; γ j =
effect of column j, j = 1, 2, . . . , t; τk = effect of treatment k, k = 1, 2, . . . , t;
and εijk = random error.

As before, the blocking effects are usually considered random with means
zero and variance σ 2

ρ and σ 2
γ , respectively, and we add the restriction

∑
τi = 0

for the fixed treatment effects. Blocking effects may be fixed, but the outline
of the analysis is not changed.

There are no interaction terms in the model because interactions between
row, column, and treatment effects constitute a violation of assumptions
underlying the use of this design. Since violations of this assumption are dif-
ficult to detect, care must be taken to use this design only when such an
interaction is not expected to exist.
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The partitioning of sums of squares for the analysis of variance is relatively
straightforward. The row, column, and treatment sums of squares are com-
puted using the respective means and the error sum of squares is obtained
by subtraction. The table of expected mean squares (which is not reproduced
here) shows that the error mean square obtained in this manner is indeed the
proper denominator for F ratios, assuming the assumption of no interaction
effects holds. Most computer programs simply require specifying both block-
ing and experimental factors as sources of variation and the default F statistic
uses the residual mean square, which is the correct error term.

EXAMPLE 10.4 This example of a Latin square design concerns a hypothetical experiment on
the effect of various types of background music on the productivity of workers
in a plant. It is well known that productivity differs among the various days
of the week as well as during different times of day. Hence we design the
experiment as a Latin square with hours of the day as rows and days of the
week as columns. There are five music “treatments”:

A: rock and roll
B: country/western
C: easy listening
D: classical
E: no music

The row blocks are five 1-h periods and the column blocks are the five working
days. Note that these blocking factors are indeed fixed. The response is the
number of parts produced. The data are given in Table 10.9 where the indicator
for treatment is given under each response value. Note that the presentation
of the data does not show the randomization.

Solution The computations for the analysis of variance are performed as
if each factor (rows, columns, and treatments) is a main effect. The error sum

Table 10.9

Data for Latin Square
Design

DAY

Times Mo Tu We Th Fr Means

9–10 6.3 9.8 14.3 12.3 9.1 10.36
(A) (B) (C) (D) (E)

10–11 7.7 13.5 13.4 12.6 9.9 11.42
(B) (C) (D) (E) (A)

11–12 11.7 10.7 13.8 9.0 10.3 11.10
(C) (D) (E) (A) (B)

1–2 9.0 10.5 9.3 9.8 12.0 10.12
(D) (E) (A) (B) (C)

2–3 4.5 5.3 8.4 9.6 11.0 7.76
(E) (A) (B) (C) (D)

(overall)
Means 7.84 9.96 11.84 10.66 10.46 10.15

Treatment A B C D E
Means 7.96 9.20 12.22 11.28 10.10
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of squares is obtained by subtraction of all factor sums of squares from the
total sum of squares. For this example,

TSS = (6.3 − 10.15)2 + (9.8 − 10.15)2 + · · · + (11.0 − 10.15)2

= 154.362

SS(Times) = 5[(10.36 − 10.15)2 + (11.42 − 10.15)2 + · · · + (7.76 − 10.15)2]

= 41.362

SS(Days) = 5[(7.84 − 10.15)2 + (9.96 − 10.15)2 + · · · + (10.46 − 10.15)2]

= 42.922

SS(Music) = 5[(7.96 − 10.15)2 + (9.20 − 10.15)2 + · · · + (10.10 − 10.15)2]

= 56.314.

The error sum of squares is obtained by subtraction:

SSE = TSS − SS(Times) − SS(Days) − SS(Music)

= 13.763.

The degrees of freedom are 4 for each of the factors, and, by subtraction, 12
for error.

The results are summarized in the usual analysis of variance format in
Table 10.10. The F values show that the hypotheses of no treatment, row,
or column effect are all rejected (α < 0.05). When ranked from high to low,
the treatment means are almost equally spaced. In this case post hoc paired
comparisons may be appropriate, unless there is some prior information on
specific music effects. Therefore, we may use the Duncan multiple range test,
with s2 = 1.147, five observations per treatment, and 12 degrees of freedom
for s2. As seen in Table 10.11 no adjacent means may be declared differ-
ent, but all other pairwise comparisons show differences. We conclude that

Table 10.10

Analysis of Variance for
Latin Square

DEPENDENT VARIABLE: PROD

Sum of Mean

Source df Squares Square F Value Pr > F

Model 12 140.5992000 11.7166000 10.22 0.0002
Error 12 13.7632000 1.1469333
Corrected total 24 154.3624000

R-Square C.V. Root MSE PROD Mean

0.910838 10.54915 1.070950 10.1520000

Source df ANOVA SS Mean Square F Value Pr > F

DAY 4 42.92240000 10.73060000 9.36 0.0011
TIME 4 41.36240000 10.34060000 9.02 0.0013
MUSIC 4 56.31440000 14.07860000 12.27 0.0003
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Table 10.11

Duncan’s Multiple Range
Test for Latin Square

Alpha = 0.05 df = 12 MSE = 1.146933

Number of means 2 3 4 5
Critical range 1.473 1.543 1.590 1.614

Means with the same letter are not significantly different.

Duncan Grouping Mean N MUSIC

A 12.220 5 C
A

B A 11.280 5 D
B
B C 10.100 5 E

C
D C 9.200 5 B
D
D 7.960 5 A

treatments C and D (easy listening and classical) produce higher productivity
while treatments A and B (rock and roll and country/western) produce lower
productivity, but we cannot pick within these pairs.

As previously noted, this analysis assumes that there are no interactions
among any of the sources of variation. It could, for example, be argued that
different types of music may have different effects at different times of day,
which constitutes an interaction that would invalidate this analysis.

Unfortunately, there is no test for the hypothesis of no interaction using
these data.

The relative efficiency of the Latin square design may be computed using
the approach outlined for the randomized block design. These efficiencies can
specify the gain in efficiency due to blocking by rows, or columns, or the entire
Latin square. For details, see Kuehl (2000). ■

10.5 Other Designs

The randomized block and Latin square designs use the principle of blocking
for the purpose of increasing the precision of the analysis. Other, more complex
designs, such as the Graeco–Latin square design can be used to eliminate more
than two blocking factors (see, for example, Montgomery, 1984, Chapter 5).

Experimental designs can be used to accommodate more complex exper-
imental situations such as factorial experiments. That is, the treatments in
a randomized block design may consist of all factor level combinations of a
factorial experiment. This application is presented at the beginning of this
section.

Another application of experimental design occurs when experimental
units contain subunits that are then used as observations. This so-called
nested design is outlined later in this section. A factorial experiment requiring
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experimental units or blocks of different sizes for different factors, called a
“split plot” design, is also outlined in this section, along with other considera-
tions of experimental design.

Factorial Experiments in a Randomized Block Design

At this point it may be difficult to differentiate the analysis of a randomized
block design and a factorial experiment because they both result in the same
partitioning of the sum of squares. However there are important differences:

• The randomized blocks design is concerned with assigning treatments to
experimental units in a way that reduces the experimental error. In the
analysis, the block effect is a nuisance source of variation that we want to
eliminate from the estimate of the experimental error, and the interaction
between blocks and treatment is the experimental error.

• The factorial experiment is concerned with a factorial structure of the treat-
ments. In the analysis we are interested in determining the effect of each
individual factor and the interaction between factors.

We can see the difference when we consider a factorial experiment in
a randomized block design. The conduct of the experiment as well as the
analysis of the resulting data is more easily understood if the experiment is
considered in two stages. We consider here an A × C factorial experiment with
a levels of factor A and c levels of factor C in a randomized block design with
b blocks.

Stage One Construct a randomized block design with b blocks and all
a × c factor level combinations as treatments. The analysis of this first stage
provides the following partitioning of sums of squares6:

Source of Variation df

Treatments ac − 1
Blocks b − 1
Experimental error (ac − 1)(b − 1)

Stage Two In the second stage, the treatment sum of squares with (ac − 1)
degrees of freedom is partitioned according to the factorial structure as pre-
sented in Chapter 9, resulting in the following partitioning:

Source of Variation df

Main effect A a − 1
Main effect C c − 1
Interaction: A × C (a − 1)(c − 1)

6It is common practice to give only sources of variation and degrees of freedom when outlining
the appropriate analysis of variance.
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Final Stage Combine the results of the two stages, which results in the
final analysis of variance partitioning:

Source of Variation df

Blocks b − 1
Main effect A a − 1
Main effect C c − 1
Interaction: A × C (a − 1)(c − 1)
Experimental error (ac − 1)(b − 1)

It now becomes clear that the experimental error from the randomized blocks
design is used for the tests of all effects of the factorial experiment. Note that
the (a c − 1) degrees of freedom partition for treatments is not explicitly used
in the final partitioning.

If we do not use this two-stage approach the data may appear to arise from
a three-factor factorial experiment with factors being blocks, A, and C. In fact,
many computer programs will give this as the default analysis. The analysis
according to this interpretation is

Source of Variation df

Blocks b − 1
Main effect A a − 1
Main effect C c − 1
Interaction: blocks *A (b − 1)(a − 1)
Interaction: blocks *C (b − 1)(c − 1)
Interaction: A * C (a − 1)(c − 1)
Interaction: blocks * A * C (b − 1)(a − 1)(c − 1)

In this case the three-factor interaction would be used as the error variance
for testing all hypotheses, a procedure that produces an incorrect test. Com-
paring this analysis with the correct one given above, we see that the correct
experimental error is obtained by pooling all interactions with blocks. Most
computer programs provide options for producing the proper analysis.

EXAMPLE 9.6 REVISITED The three-factor factorial described in Example 9.6 can be con-
sidered a randomized block design if the machines are actually a random
sample of four machines from a large population of machines at a plant and
will be considered blocks. The appropriate analysis can be reconstructed from
the analysis of variance in Table 9.17 by pooling all interactions with MACHINE
to produce the experimental error. The hypothesis tests on the factors (TIME
and HEAT) will use the resulting mean square in the denominator of the F

ratios.

Solution For experiments such as this one, it useful to outline the stages
of the analysis so we can correctly instruct the computer program to produce
the correct analysis.
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Stage One We have a randomized blocks design with sampling and six
treatments corresponding to the 2 × 3 factorial experiment. The partitioning
of sums of squares is

Source of Variation df

Treatments 5
Blocks (MACHINE) 3
Experimental error 15
Sampling error 24

Stage Two In the second stage, the treatment sum of squares with 5 degrees
of freedom is partitioned according to the factorial structure as presented in
Chapter 9, resulting in the following partitioning:

Source of Variation df

TIME 2
HEAT 1
TIME × HEAT 2

Final Stage The results of the two stages are combined, which yields the
final analysis of variance table:

Source of Variation df

Blocks (MACHINE) 3
TIME 2
HEAT 1
TIME × HEAT 2
Experimental error 15
Sampling error 72

The elements in this table will provide the information for a computer
program. However, the instructions will need to specify the experimental er-
ror because computer programs will not automatically know the construct of
that quantity. In this case it is the result of pooling the sums of squares for
MACHINE × TIME, MACHINE × HEAT, and MACHINE × TIME × HEAT.
Different programs may have different ways of specifying this term, and for
some the pooling may need to be done manually. In the SAS System, specifying
that the experimental error is MACHINE × TIME × HEAT without specifying
the imbedded two-factor interactions, MACHINE × TIME and MACHINE ×
HEAT, produces the pooled variance estimate. The resulting analysis is shown
in Table 10.12. The features of the results are as follows:

• The first portion of the output shows the partitioning for all elements of the
experiment.

• The second portion provides the partitioning according to the elements of
the experiment. The MACHINE × TIME × HEAT (note that the computer
program arranges the terms in a different order) is the experimental error.
However, the sampling error is used as the default error for the tests in the
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Table 10.12 Analysis of Steel Bar Data, Machine Is Block

Sum of Mean
Source df Squares Square F Value Pr > F

Model 23 590.3333333 25.6666667 4.13 0.0001
Error 72 447.5000000 6.2152778
Corrected total 95 1037.8333333

R-Square C.V. Root MSE LENGTH Mean

0.568813 62.98221 2.493046 3.95833333

Source df Anova SS Mean Square F Value Pr > F

MACHINE 3 393.4166667 131.1388889 21.10 0.0001
TIME 2 12.8958333 6.4479167 1.04 0.3596
HEAT 1 100.0416667 100.0416667 16.10 0.0001
TIME * HEAT 2 1.6458333 0.8229167 0.13 0.8762
TIME * HEAT * MACHINE 15 82.3333333 5.4888889 0.88 0.5851

Tests of Hypotheses using the Anova MS for TIMES * HEAT * MACHINE as an error term

Source df Anova SS Mean Square F Value Pr > F

HEAT 1 100.0416667 100.0416667 18.23 0.0007
TIME 2 12.8958333 6.4479167 1.17 0.3358
TIME * HEAT 2 1.6458333 0.8229167 0.15 0.8620

table, which is incorrect except for the test that the experimental error is
the same as the sampling error. The test indicates that there is no significant
difference between the two. The last portion provides the tests for the fac-
torial effects using the appropriate error mean square. Only the HEAT effect
is statistically significant. Of course, since we have found that the sampling
and experimental errors may be considered equivalent, a pooled variance
estimate may be used. However, the results would not change.

The results are not very different from those obtained when the experiment
was considered to be a three-factor factorial (Table 9.17) because the sampling
error and experimental error have almost the same value. This does not, how-
ever, make the analysis, assuming the factorial experiment correct if machines
are really blocks.

The conclusion is that only the heat treatment makes any difference since
individual machine differences are of little interest. ■

Nested Designs

In some experimental situations, experimental units may contain sampling
units, which may, in turn, contain sample subunits. Such a situation is referred
to as a hierarchical or nested design, since the design describes subsamples
nested within sample or experimental units.
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For example, in a quality control experiment, treatments may be differ-
ent work environments, which are carried out in different work shifts, the
workers are blocks, and randomly sampled units of the product are the exper-
imental or observational units. However, we do not normally have the same
workers in different shifts. This type of experimental arrangement is an ex-
ample of a hierarchical design. Note that if the same workers for each shift
could be arranged, we would have a randomized block design with workers
as blocks. However, in this case, we have independent samples of workers
within the individual shifts and subsamples of units of the product for each of
the workers.

EXAMPLE 10.5 In a production plant that operates continuously, quality monitoring requires
identification of sources of variation in the production process. For example, it
would be important for the quality engineer to know whether there was signifi-
cant variation between shifts as well as whether there was significant variation
between workers during shifts. These questions can be answered by using a
nested design experiment. This example discusses one such experiment using
a random sample of three shifts taken over a month of production. (Note that
a shift is really a combination of time of day and day of the month.) Then a
random sample of four workers was taken from each of these three shifts.
Five 30-min. production values were randomly selected from the production
of each of these workers during that 8-h shift. The number of defective items
found in the 30-min. interval was used as a measure of quality. The results of the
experiment are shown in Table 10.13. This experiment consists of two factors,
Shifts and Workers, both of which are random effects, and five replications of
each of the levels of the factors.

Solution This is a nested design for which the linear model is

yijk = μ + αi + β j(i) + εk(ij),

where yijk = kth observation for level i of factor A (shift) and level j of factor
B (worker) in shift i; μ = reference value or overall mean; αi = effect of the
ith level of factor A, i = 1, . . . , a; β j(i) = effect of level j of factor B nested
in the ith level of factor A, j = 1, . . . , b; and εk(ij) = variation among sampled
units of the product and is the random error, k = 1, . . . , n.

The subscript j(i) is used to denote that different j subscripts occur within
each value of i; that is, they are “nested” in i. Likewise, the k subscript is

Table 10.13

Data for Nested Design

Shift A B C

Worker 1 2 3 4 5 6 7 8 9 10 11 12

Observed values 3 5 0 10 4 5 0 7 14 5 9 9
5 7 3 7 3 5 1 6 12 2 5 5
3 4 3 5 4 4 2 5 10 6 2 9
6 4 4 4 3 7 1 10 9 6 6 4
4 6 5 7 4 6 1 5 10 3 6 7
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“nested” in groups identified by the combined ij subscript. In the example,
a = 3, b = 4, and n = 5.

Note that there is no interaction in this model. This is because the levels of
B are not the same for each level of A; hence interaction is not definable.

Sums of squares for the analysis of variance are generalizations of the
formulas for the one-way (CRD) sums of squares computations and will only
be outlined here. The sums of squares for factor A are computed as if there
were only the a levels of factor A, that is, disregarding all other factors. The
sums of squares for B in A are computed as if there were simply the a · b

levels of “factor” B, and subtracted from this quantity is the already computed
sum of squares for A. The error sum of squares is obtained by subtraction:
SS(Error) = TSS − SSA − SSB(A), where TSS is computed as in all other
applications.

The proper test statistics depend on which of the factors are fixed or ran-
dom. The most frequent application occurs for all random factors, but other
combinations are certainly possible. The resulting analysis of variance table
and the expected mean squares for the completely random model is as follows:

Source df SS E(MS)

A a − 1 SSA σ 2 + nσ 2
β + bnσ 2

α

B(A) a(b − 1) SSB(A) σ 2 + nσ 2
β

Error ab(n − 1) SSE σ 2

From this table we can see that to test for the A effect we must use the
B(A) mean square as the error variance, while to test for B(A) we use the
“usual” error variance. Estimates of σ 2

α and σ 2
β can be obtained by equating the

actual mean squares with the formulas for expected mean squares and solving
the equations, as was done for the one-way random effects model outlined
in Section 6.6. In many applications these variance components are of con-
siderable importance because they can be used to plan for better designs for
future studies. The results of the analysis on the example are provided by an
abbreviated output from PROC NESTED of the SAS System in Table 10.14.

The first portion of the output gives the coefficients of the mean squares.
For this example,

MSSHIFT = 20σ 2
SHIFT + 5σ 2

WORKER + σ 2
ERROR.

The next portion gives the analysis of variance with the F ratios obtained by
using the denominators indicated in the last column. Here we can see that the
shift effect is not significant, while there appears to be significant variation
among workers.

The last portion gives the estimates of the variance components and finally
the overall mean and standard error of that mean. These statistics are useful
when the primary objective is to estimate that mean, as is often the case. ■

Nested designs may be extended to more than two nests or stages and also
often do not have an equal number of samples for each factor level. In the case
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Table 10.14

Nested Design

Coefficients of Expected Mean Squares
SOURCE SHIFT WORKER ERROR

SHIFT 20 5 1
WORKER 0 5 1
ERROR 0 0 1

Nested Random Effects Analysis of Variance for Variable Y

Degrees
Variance of Sum of
Source Freedom Squares F Value Pr > F Error Term

TOTAL 59 484.183333
SHIFT 2 86.933333 1.57965 0.258228 WORKER
WORKER 9 247.650000 8.82888 0.00000 ERROR
ERROR 48 149.600000

Variance Variance Percent
Source Mean Square Component of Total

TOTAL 8.206497 8.794167 100.0000
SHIFT 43.466667 0.797500 9.0685
WORKER 27.516667 4.880000 55.4913
ERROR 3.116667 3.116667 35.4402

Mean 5.28333333
Standard error of mean 0.85114302

of unequal sample sizes, the expected mean squares retain the format given
above, but the formulas for the coefficients of the individual components are
quite complex and are usually derived by computers. Additional information
on nested designs can be found in most texts on sampling methodology, for
example, Scheaffer et al. (1996).

Many applications of nested designs occur with sample surveys. For ex-
ample, a sample survey for comparing household incomes among several
cities may be conducted by randomly sampling areas in each city, then sam-
pling blocks in the sampled areas, and finally sampling households in the
sampled blocks. The analysis of variance for the resulting data may be out-
lined as follows:

Source

Cities
Areas (Cities)
Blocks (Areas, Cities)
Households (Cities, Areas, Blocks)

Analyses such as these are often primarily concerned with estimation of
means and variance components. They usually involve large data sets and the
use of computers is mandatory. Fortunately, many computer software pack-
ages have programs especially designed for such analyses.
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Split Plot Designs

Split plot designs occur when different factors in an experiment require dif-
ferent sizes of experimental units. For example, irrigation treatments such as
amounts or frequencies of irrigation water require large fields, while different
varieties of crops or different fertilizer applications can be applied in smaller
plots. In an experiment designed to find the optimum operating conditions for
a process, some conditions, such as operating temperature, can only be set
at the beginning time of a day, while others, such as pressure or the amount
of some ingredient, may be changed at shorter intervals. In such a design, the
large units, such as irrigation plots or operating days, are called main plots,
while the smaller units are called subplots. Since there are fewer replications
of the main plot treatments, the mean responses for the factor levels applied
to main plots are estimated with less precision than those for the factor levels
applied to subplots. In the analysis of such data, therefore, different error vari-
ances are necessary for the main plot and subplot effect tests and estimates.

For example, consider an experiment relating growth of plants to differ-
ent temperature regimes and amounts of a plant food. Temperature regimes
are provided by specially constructed environmental chambers, which accom-
modate large numbers of plant beds, while different plant foods can be used
on individual plant beds. In this experiment environmental chambers are the
main plots and plant beds the subplots; hence temperature is the main plot
and plant food the subplot factor.

Assume that p temperature regimes are established in each of p environ-
mental chambers and that each of c plant beds in each chamber is given one
of c plant foods. The entire experiment is replicated r times, which is analyzed
as if there are r blocks. The linear model is

yijk = μ + ρi + α j + (ρα)ij + γk + (αγ ) jk + (ργ )ik + (ραγ )ijk,

where yijk = response for plant food k in temperature j of replication i; μ =
reference value or overall mean; ρi = (usually random) effect of replication i,
i = 1, 2, . . . , r; α j = (fixed) effect of temperature j, j = 1, 2, . . . , p; (ρα)ij =
(random) interaction of replication and temperature; γk = (fixed) effect of
plant food k, k = 1, 2, . . . , c; (αγ ) jk = (fixed) interaction between temperature
and plant food; (ργ )ik, (ραγ )ijk = (random) interactions of replication by plant
food and replication by plant food by temperature.

The partitioning of sums of squares is accomplished by first pretending that
we have a three-factor factorial experiment with factors being replications,
temperatures, and plant foods. The analysis of variance is outlined as follows:

Source of Variation df

Replication r − 1
Temperature p − 1
Rep ∗ Temperature (r − 1)(p − 1)
Food c − 1
Rep ∗ Food (r − 1)(c − 1)
Temperature ∗ Food (p − 1)(c − 1)
Rep ∗ Temp ∗ Food (r − 1)(p − 1)(c − 1)
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Table 10.15

Data for Thread Test

CONE

1 2 3 4 5

NUMBER OF PINS

Manuf 2 3 2 3 2 3 2 3 2 3

A 270 273 350 326 296 289 277 293 260 269
B 405 392 429 410 450 433 421 431 409 388
C 448 475 439 466 398 401 442 420 432 423
D 298 314 358 363 354 367 339 345 334 331
E 394 417 463 490 419 442 442 477 464 480

As in many other applications, it is useful to consider the analysis in two stages:

1. Stage one considers only the main plot temperature experiment. This is
a randomized block design, and replication by temperature is the experi-
mental error used for testing for temperature and replication effects. This
experimental error has the same function in this split plot design, where it
is commonly referred to as error(a).

2. The second stage concerns the subplot plant food treatment and produces
the sum of squares due to plant food and all interactions with plant food. All
interactions with replications except temperature by replication are usually
pooled7 to produce the error variance for inferences on the subplot effect
(plant food) and its interaction with the main plot effect (plant food by
temperature). This error is commonly referred to as error(b).

This analysis may appear complicated but is dictated by the expected mean
squares, which we do not reproduce here. Note that many computer programs
have the ability to perform this correct analysis if proper instructions are
provided by the user. However, the computer has no way of automatically
knowing the difference between a three-factor factorial experiment and a split
plot design!

As before, multiple comparisons or contrasts may be used for more specific
hypothesis tests but these must also use the appropriate variance estimates.

EXAMPLE 10.6 The purpose of this experiment is to test the differences in the strengths of
sewing thread made by five different manufacturers. Five cones of thread
(CONES) were obtained from each of five manufacturers (MANUF). The test
consists of passing a specimen of thread through some guide pins (PINS) and
measuring the energy (ENERGY) required to rupture the specimen. The lower
the required energy, the weaker the thread. In this experiment there are two
guide pin treatments using two and three pins, respectively.

Solution Twenty specimens were obtained from each cone with 10 as-
signed randomly to pass through the two or three guide pins. The data in
Table 10.15 give the means of the 10 readings for each cone and number of
pins. This is a split plot design with manufacturers as main plots and cones

7If the individual mean squares to be pooled are of different magnitudes, pooling may not always
be appropriate (Bancroft, 1968).
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as subplots. However, in this case the main plot portion is a completely ran-
domized design instead of a randomized block design. In this context it is
usually called a nested design, and therefore the main plot analysis is

Source df

Manufacturers 4
Cones (Manufacturers) 20

The Cones (Manufacturers) is used as the error term for testing manufacturers.
The second stage concerns the number of pins and the analysis is

Source df

Pins 1
Pins ∗ Manufacturers 4
Error 20

The Error is actually Pins by Cones(Manufacturers) and is computed by
subtraction. The analysis as provided by PROC ANOVA of the SAS System is
given in Table 10.16.

As was the case for the randomized block with sampling, the correct test
for the null hypothesis of no manufacturer effect must be specifically re-
quested. That is, CONE(MANUF) is error(a) for the F ratio for this test, and the
F ratio given in the partitioning of sums of squares may not be used. The cor-
rect test is provided by the last entry in the table and shows that the strengths
do differ among manufacturers (p < 0.0001), although the somewhat smaller
Manufacturer by Pins interaction (p < 0.0087) may modify this conclusion.

The error listed in the analysis of variance table is error(b) and is cor-
rectly used for testing all sources associated with the subplot treatment (Pins).

Table 10.16 Analysis of Thread Data

Dependent
Variable ENERGY

Source df Sum of Squares Mean Square F Value Pr > F

Model 29 212371.2800 7323.1476 74.73 0.0001
Error 20 1960.0000 98.0000
Corrected Total 49 214331.2800

R-Square C.V. Root MSE C2 Mean

0.990855 2.563839 9.899495 386.120000

Source df Anova SS Mean Square F Value Pr > F

MANUF 4 184819.4800 46204.8700 471.48 0.0001
CONE(MANUF) 20 25448.8000 1272.4400 12.98 0.0001
PINS 1 307.5200 307.5200 3.14 0.0917
MANUF*PINS 4 1795.4800 448.8700 4.58 0.0087

Tests of Hypotheses using the Anova MS for CONE(MANUF) as an error term

Source df Anova SS Mean Square F Value Pr > F

MANUF 4 184819.4800 46204.8700 36.31 0.0001
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Table 10.17

Analysis of Thread Data

Tukey’s Studentized Range (HSD) Test for Variable: C
Alpha = 0.05 df = 20 MSE = 1272.44

Critical Value of Studentized Range = 4.232
Minimum Significant Difference = 47.736

Means with the same letter are not significantly different.

Tukey Grouping Mean N MANUF

A 448.80 10 E
A
A 434.40 10 C
A
A 416.80 10 B

B 340.30 10 D

C 290.30 10 A

436.4336.6431.8422.8290.6

461.2344437410.8290

BLOCK CHART OF ENERGY

PINS

3

2

A B D E

MANUF

C

Figure 10.1

Interaction Chart
for Strength of
Thread

The differences between the number of pins is not statistically significant
(p = 0.0917), and since an experiment with two pins is easier to do, the rec-
ommendation is to use only two pins.

Since the manufacturer differences appear to dominate, we continue with
a paired comparison, this time using the Tukey Studentized range test. The
results are given in Table 10.17.

It appears that manufacturers A and D produce weaker thread, but that
there is no real difference among the others. However, since the MANUF∗PINS
interaction is statistically significant, a block chart is used to examine the effect
of this interaction. A block chart of the means shown in Fig. 10.1 shows the
interaction. For manufacturers C, D and E, three pins require more energy, for
B less energy, and for A there is virtually no difference. However, despite the
interaction, we may conclude that D and A are inferior and the others are not
much different.

If the observed energy values were available for each specimen, the analy-
sis would have an additional source of variation. This would be the variation
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of readings among specimens within a cone and pin setting. An additional test
would determine whether error(b) is significantly larger than the within cones
variance. If not, the two could be pooled, providing an experimental error with
larger degrees of freedom. However, even if error(b) is significantly larger, thus
precluding pooling, the use of individual observations is likely to lead to results
with higher significance because the overall sample size is larger. ■

Additional Topics

As previously noted, the coverage of the field of experimental design in this
chapter is quite limited. The purpose here has been to provide some informa-
tion on the general concepts underlying the construction, use, and analysis of
data resulting from such designs. We strongly urge that anyone planning an
experiment consult a comprehensive reference or preferably an experienced
statistical consultant to assure that the most appropriate design is used for
any given situation.

Other considerations in such planning include the following:

• Experimental conditions may dictate block sizes too small to accommo-
date all treatments. Such situations can be handled by incomplete blocks
designs.

• Inadequate block sizes may also occur for factorial experiments. Special
types of incomplete blocks designs may be used where the less important
effects (such as three-factor interactions) are estimated with less precision.

• Factorial experiments may become so large that it is not even possible to
provide for all factor level combinations in the experiment. It is possible to
construct a fraction of a factorial that still allows estimation of the more
important sources of variation.

• Special designs are available for estimating polynomial response functions.
Many of these require far fewer experimental units than the comparable
factorial experiment. This is one aspect of experimental design that is not
concerned with blocking.

• Split plot designs have many variations. A special application of split plot
designs occurs when the subplots consists of measurements on one indi-
vidual unit taken over a period of time. Data from such an experiment,
called a repeated measures design, may be analyzed as if it were a split plot;
however, problems may arise due to correlations between measurements
made at adjacent time periods. Such correlations violate the assumption of
independent random errors and require specialized methodology.

10.6 CHAPTER SUMMARY

Solution to Example 10.1 We can now see that the experiment is an
example of a split plot design. The four fields are replicates or blocks, the
half fields assigned different irrigation levels are the main plots, and the nitro-
gen rate and planting rate combinations are applied to subplots.
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The first analysis is for the factorial using the model

yijkl = μ + ρi + α j + ραij + νk + να jk + γl + γαl j + γ νlk + γ ναlkj + εijkl ,

where yijkl = response for the plot in the ith block (REP), jth WTR level, kth
NRATE level, and lth P level; and μ = overall mean.

The main plot elements are

ρi = effect of REP i, i = 1, 2, 3, 4,

α j = effect of WTR level j, j = 1, 2, and

ραij = interaction of REP and WTR and is the error for testing WTR.

The subplot elements are

νk = effect of NRATE level, k = 1, 2, 3,

να jk = interaction between WTR and NRATE,

γl = effect of P (planting rate), l = 1, 2, 3, 4,

γαl j = interaction of P and WTR,

γ νlk = interaction of P and NRATE,

γ ναlkj = interaction of P, NRATE, and WTR, and

εijkl = error for testing subplot effects. It is actually the interaction
of REP with all effects except WTR.

The resulting analysis of variance produced by PROC ANOVA of the SAS Sys-
tem, requesting the appropriate test for the WTR effect, is shown in Table 10.18,
where we see that the main effects for NRATE and P are very important. The
main effect for WTR is not overwhelming, but its interaction with NRATE is. The
interactions of P with NRATE and the three-factor interaction are marginally
significant, while the interaction of WTRwith P appears to be of no importance.

At this point it is appropriate to obtain the various means and make some
preliminary plots, which are not reproduced here. An examination of these
plots suggests the following response surface regression to provide more in-
terpretable results:

y = β0 + β1WTR + β2P + β3NRATE + β4(NRATE)2 + β5(NRATE) ∗ (P) + β6P
2

+ β7P
3 + β8(NRATE)2 ∗ (P) + β9(NRATE) ∗ P2 + β10(WTR) ∗ (NRATE)

+ β11(WTR) ∗ (NRATE)2 + ε.

The following observations for this model are of interest:

• The model cannot contain quadratics in WTR since there are only two levels
of this factor.

• There are no terms for the P by WTR interaction since it is not significant.
• The inclusion of the not frequently used cubic term for P is suggested by a

plot of means.
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Table 10.18 Analysis of Variance

Analysis of Variance Procedure
Dependent
Variable: TDM

Sum of Mean
Source df Squares Square F Value Pr > F

Model 29 268.6081192 9.2623439 10.30 0.0001
Error 66 59.3508093 0.8992547
Corrected Total 95 327.9589285

R-Square C.V. Root MSE TDM Mean

0.819030 19.42870 0.948290 4.88087500

Source df Mean Square F Value Pr > F

REP 3 4.59591525 1.53197175 1.70 0.1748
WTR 1 47.90635267 47.90635267 53.27 0.0001
REP*WTR 3 5.34853642 1.78284547 1.98 0.1251
NRATE 2 83.63305575 41.81652788 46.50 0.0001
NRATE*WTR 2 54.96290858 27.48145429 30.56 0.0001
P 3 39.27526683 13.09175561 14.56 0.0001
P*WTR 3 1.35249700 0.45083233 0.50 0.6827
P*NRATE 6 15.08345842 2.51390974 2.80 0.0175
P*NRATE*WTR 6 16.45012825 2.74168804 3.05 0.0108

Test of Hypotheses using the Anova MS for REP*WTR as an error term

Source df Anova SS Mean Squae F Value Pr > F

WTR 1 47.90635267 47.90635267 26.87 0.0139

The results of the regression using PROC REG of the SAS System are shown
in Table 10.19. Since the computer program does not allow symbols and
exponents, in variable names, N2 represents (NRATE)2, NLPL represents
(NRATE) * (P), etc.

We first perform a lack of fit test to see whether any additional terms may
be needed. In this case it is easier to work with the model rather than the
error sums of squares. The full model is the complete factorial portion of the
analysis of variance, which is obtained by subtraction of the sums of squares
and degrees of freedom for all terms involving REP from the MODEL sum of
squares given in the analysis of variance:

SS(Full model) = 258.664, with 23 degrees of freedom.

Note that this is the MODEL sum of squares less the sums of squares for REP
and REP*WTR. The reduced model is the regression; hence,

SS(Reduced model) = 239.913, with 11 degrees of freedom.

The difference is

SS(Lack of fit) = 18.751, with 12 degrees of freedom.
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Table 10.19 Polynominal Response Regression

Model: MODEL1
Dependent Variable: TDM

Analysis of Variance

Sum of Mean
Source df Squares Square F Value Prob > F

Model 11 239.91297 21.81027 20.808 0.0001
Error 84 88.04596 1.04817
C Total 95 327.95893

Root MSE 1.02380 R-square 0.7315
Dep Mean 4.88087 Adj R-sq 0.6964
C.V. 20.97574

Parameter Estimates

Parameter Standard T for H0:
Variable df Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 −13.618687 2.93855382 −4.634 0.0001
WTR 1 8.167250 1.57778158 5.176 0.0001
NRATE 1 17.650473 3.11733375 5.662 0.0001
P 1 0.408540 0.22502853 1.816 0.0730
N2 1 −3.853712 0.76645762 −5.028 0.0001
NLPL 1 0.111415 0.08235249 1.353 0.1797
P2 1 −0.027021 0.01149726 −2.350 0.0211
P3 1 0.000413 0.00017521 2.360 0.0206
N2PL 1 −0.009844 0.01653586 −0.595 0.5532
NLP2 1 −0.000827 0.00103928 −0.796 0.4285
WN 1 −9.470125 1.79164979 −5.286 0.0001
WN2 1 2.005750 0.44331835 4.524 0.0001

The lack of fit mean square is 1.563, and using the error mean square from
the analysis of variance as the denominator provides an F ratio of 1.738 with
(12, 66) degrees of freedom. The closest table entry is 1.92 for α = 0.05 for
(12, 60) degrees of freedom, and we have insufficient evidence to find the
model inadequate.

As previously noted, most of the coefficients in a multiple polynomial re-
gression are not interpretable. It is, however, sometimes useful to ascertain
whether a model with fewer terms may be adequate. This is done by exam-
ining the test statistics for the highest order terms. In this case, the terms
for (NRATE)2P and (NRATE)P2 would appear to be unnecessary. The next
step would be to refit the reduced model and continue to check for unneeded
terms. To save space, we will not do this here, but this is a good exercise for
the reader.

The next step is to produce a response surface plot similar to that provided
in Fig. 9.4 or Fig. 9.6. Again there are three factors; hence, we must make
a response surface plot for two variables for levels of a third factor. Since
there are only two levels of WTR, it is most appropriate to produce a response
surface forNRATE andP for the two levels ofWTR. These are shown in Figs. 10.2
and 10.3. The response surface plots are interpreted as follows:
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Figure 10.2

Response Surface
Plot for WTR = 1
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Figure 10.3

Response Surface
Plot for WTR = 2

• The responses at WTR= 2 are lower than those at WTR= 1. This contradicts
what we would expect.

• The response to nitrogen (NRATE) for WTR= 1 shows the typical pattern of
an increase that gradually diminishes with higher rates ofNRATE. Also there
is virtually no interaction with planting rate (P). The response to NRATE for
WTR = 2 is not typical: there is virtually no response for low planting rates
and an almost constant increased response for higher planting rates. In
other words, nitrogen is only useful for higher planting rates.

• The response to planting rates shows a definite “dip” from about 20 to 30,
especially for the higher irrigation rate. This result is quite unusual, but since
it is due to the statistically significant cubic term, it cannot be ignored.
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Residual Plot

Such unusual responses are often the result of outliers; however, the residual
plot shown in Fig. 10.4 and other plots not shown here provide no support for
such a phenomenon.

The data in Table 10.1 also gave the actual planting rates. It is not difficult to
perform the response surface regression using these rather than the nominal
planting rates. This analysis is not shown here but provides essentially the
same results.

We should add that the data set for this example represents only a portion of
a larger study conducted over several years that also involved other crops and
response variables. Actually one reason why this set was used here was that
the results were somewhat unusual; most of the other experiments provided
more “usual” results. ■
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The statistical aspect of experimental design is largely concerned with as-
signing experimental units to treatments or factor levels. The simplest of all
designs, the completely randomized design in which factor levels are randomly
assigned to experimental units, is presented in Chapter 6. Designs presented
in this chapter include

• the randomized block design, in which the set of experimental units is
divided into blocks and factor levels randomly assigned to each block,

• the Latin square design, in which two blocking factors are applied simulta-
neously,

• the nested design, and
• the split plot design, which accommodates the need for different sizes of

blocks for various factors.

Other designs and design principles are briefly discussed.
Because blocks are similar to factor levels in a factorial experiment, the

mechanics of the analysis of data from block designs are the same as those
from a factorial experiment, resulting in occasional confusion in terminology.
There are, however, differences in interpretation and testing procedures that
must be observed for the analysis to be correct. Of special importance is the
use of the correct “error term” as the denominator in various F ratios.

10.7 CHAPTER EXERCISES

EXERCISES

For all exercises it is important not only to recognize and employ the
correct analysis for the design but also to complete the analysis and inter-
pretation with respect to the factors in the experiment.

1. Many organisms show elevated oxygen consumption after periods of
anoxia (lack of oxygen). This elevated oxygen consumption is usually inter-
preted as the result of paying back an oxygen debt. However, preliminary
work on a bivalve indicated that the increased oxygen consumption was
due to increased ventilatory activity and not a true oxygen debt. The data
presented in Table 10.19 are from an experiment designed to determine
which of the two possibilities may be correct for oysters. Oysters were
exposed to three anoxic regimes:
(1) nitrogen gas (Gas), where oysters can neither receive oxygen nor

ventilate,
(2) deoxygenated seawater (Water), where they can ventilate but do not

receive oxygen, and
(3) normal seawater, which serves as a control.
After 24 hours on treatment, the oysters were returned to well-aerated
seawater and their oxygen consumption measured. Five oysters were ex-
posed to each treatment, and the entire experiment was replicated twice;
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Table 10.20

Oxygen Consumption of
Oysters

Control Treatment Water Gas

Replication 1
1.100 2.403 2.485
0.870 1.649 3.175
1.003 1.678 2.057
1.114 2.546 2.491
1.361 1.180 1.397

Replication 2
1.290 1.369 1.715
2.024 0.565 1.285
1.406 0.711 1.693
1.391 0.903 1.202
0.772 1.281 2.026

Table 10.21

Cowpea Data for
Exercise 2

VARIETY

Rep Solution 7 101 289 389

I 5 41 20 24 10
10 131 69 65 105
15 175 143 142 112

II 5 52 29 24 5
10 128 91 92 44
15 190 178 87 167

III 5 68 27 11 7
10 94 66 62 103
15 150 166 199 101

the replicates are the blocks. Which, if either, of the two possibilities do
the data of Table 10.20 support?

2. The objective of this experiment was to measure the effect of water stress
on nitrogen fixation in four cowpea varieties. Plants were grown in a green-
house and watered with 5, 10, and 15 ml of the appropriate nutrient solu-
tion. Fifty-five days after planting, the nitrogen nodules were removed
from the plants and counted and weighed. The entire experiment was
replicated three times. The response variable to be analyzed is the weight
of the nitrogen nodule. The data are given in Table 10.21. Perform the
appropriate analysis to determine the effect of water stress.

3. This problem concerns another rice yield experiment. The response is yield
per experimental plot. The experiment was conducted as a randomized
block for three years where the blocks are the same for each year. The
factors are:

Var: three varieties, coded A, B, and C, and
Nit: two levels of nitrogen application, coded 80 and 160.

This is a split plot with years as main plots and the factorial in the subplots.
The data are given in Table 10.22.
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Table 10.22

Rice Data for Exercise 3

NIT = 80 NIT = 160

Yr Var Rep Yield Yr Var Rep Yield

3 A 1 9.34 3 A 1 9.60
3 A 2 10.41 3 A 2 9.82
3 A 3 10.28 3 A 3 10.43
3 A 4 9.35 3 A 4 10.08
3 B 1 10.23 3 B 1 10.00
3 B 2 9.82 3 B 2 10.05
3 B 3 9.75 3 B 3 9.66
3 B 4 9.81 3 B 4 8.94
3 C 1 9.22 3 C 1 7.92
3 C 2 9.50 3 C 2 8.21
3 C 3 9.31 3 C 3 8.97
3 C 4 8.77 3 C 4 8.17
4 A 1 9.64 4 A 1 10.11
4 A 2 9.12 4 A 2 11.20
4 A 3 8.02 4 A 3 11.21
4 A 4 8.16 4 A 4 11.15
4 B 1 11.21 4 B 1 12.81
4 B 2 10.26 4 B 2 11.71
4 B 3 12.48 4 B 3 11.82
4 B 4 11.40 4 B 4 12.12
4 C 1 10.28 4 C 1 12.16
4 C 2 10.30 4 C 2 11.98
4 C 3 11.53 4 C 3 12.17
4 C 4 10.57 4 C 4 12.67
5 A 1 9.87 5 A 1 9.57
5 A 2 9.01 5 A 2 8.94
5 A 3 9.08 5 A 3 9.89
5 A 4 9.14 5 A 4 9.87
5 B 1 10.77 5 B 1 5.71
5 B 2 11.29 5 B 2 6.52
5 B 3 10.67 5 B 3 9.22
5 B 4 12.80 5 B 4 6.37
5 C 1 10.07 5 C 1 10.77
5 C 2 10.92 5 C 2 11.57
5 C 3 11.04 5 C 3 11.61
5 C 4 11.02 5 C 4 11.30

(a) Perform the analysis using years as a fixed factor. What conclusions
can you draw from this analysis? How can these conclusions be used
for inferences?

(b) Perform the analysis assuming years as a random factor. [Hint: All
interactions of fixed factors with blocks and years are error(b).] Draw
conclusions. Are they different from those obtained in part (a)? Explain
the reasons for any differences.

4. For this experiment on the growth of cotton, the factors are:

Var: six varieties, coded from 1 to 6, and
Trt: a treatment concerning the density of plants: treatment 1 has 32,000

plants per acre and treatment 2 has 64,000 plants per acre.
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Table 10.23 Cotton Data for Exercise 4

REP = 1 REP = 2 REP = 3 REP = 4

Var Trt BRATE MRATE BRATE MRATE BRATE MRATE BRATE MRATE

1 1 2.98 42 3.11 37 2.25 37 2.22 53
1 2 3.08 42 3.07 42 3.30 37 2.85 37
2 1 2.75 42 3.36 25 2.92 42 2.68 47
2 2 2.75 42 3.56 46 2.90 37 2.92 42
3 1 2.83 42 2.94 58 2.88 42 2.96 32
3 2 3.11 42 2.79 42 3.13 47 2.95 42
4 1 3.11 42 3.76 30 2.70 32 2.87 52
4 2 2.96 42 4.36 30 3.41 42 3.32 47
5 1 3.14 58 3.03 42 3.24 58 3.31 47
5 2 4.12 47 3.49 42 3.86 47 3.94 18
6 1 2.60 37 2.64 42 2.60 32 2.49 37
6 2 2.98 53 2.92 42 2.35 48 2.42 37

There are two responses:

BRATE: the blooming rate, which is an index indicating the rate at which
the plants bloom, and

MRATE: an index indicating the rate at which the plants mature.

The experiment is a split plot design with varieties as main plot and planting
rate as the subplot treatments. The entire experiment was replicated four
times as indicated by the variable REP. The data are given in Table 10.23.
Perform the appropriate analysis to ascertain how each of the responses is
affected by varieties and treatments. If both high blooming and maturing
rates are desired, can you make a recommendation?

5. The purpose of this experiment is to determine the effect of salt in the
soil on the emergence of grass seeds. There are three replications of four
plots, each treated to contain 0, 8, 16, and 24% salt. The percent of seeds
emerging is observed 5, 8, 11, and 14 days after planting. The data are
shown in Table 10.24.

The design is a repeated measures design since the subplot treatments
have a fixed sequence rather than being randomly assigned. However, as
a first approximation, it can be considered a split plot design with salt as
main plots and days as subplots.

Note that days is a continuous variable. Analyze the data to determine
the effect of salt. Also it is said that the Salt ∗ Day interaction is important;
if it is statistically significant, interpret the results.

6. Two each of 40 samples of canned meat were stored at 2, 4.5, 21, and 38◦C
for periods of 1, 2, 4, 8, and 13 months, respectively. The two samples
from each factor combination were randomly given to two taste panels
who rated the samples on a continuous scale from 1 (excellent) to 8 (un-
acceptable). The data are given in Table 10.25; the two numbers in each
combination are the ratings of panels 1 and 2, respectively. Analyze the data
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Table 10.24

Grass Emergence Data
for Exercise 5

REPLICATION

Day Salt 1 2 3

5 0 68 79 74
8 0 75 89 81

11 0 75 89 82
14 0 75 89 82

5 8 70 55 74
8 8 84 73 87

11 8 87 74 88
14 8 87 75 80

5 16 40 43 36
8 16 78 81 70

11 16 82 85 74
14 16 83 87 74

5 24 11 18 12
8 24 62 75 50

11 24 72 82 62
14 24 72 86 66

Table 10.25

Meat Quality Data for
Exercise 6

TEMPERATURE

Time 2 4.5 21 38

1 2.38 2.67 2.93 3.81
2.19 2.39 2.72 3.07

2 2.74 2.81 2.97 4.14
2.50 2.64 2.88 3.14

4 2.75 3.00 3.05 4.78
2.74 2.79 3.21 3.45

8 3.28 3.58 3.68 5.78
2.83 3.23 3.25 5.28

13 3.81 3.67 4.04 6.05
3.05 3.61 4.23 7.14

to ascertain the relationship of the quality of meat to time and temperature.
Note that both factors have numeric levels (Section 9.4).

7. An experiment was conducted to determine the effect of light and leaf age
on the photosynthetic efficiency of a plant. The experiment was conducted
as a split plot design with light intensities of 0, 33, and 90 units. The sub-
plots are the sequence number of the first five leaves counted from the top
of the plant. The leaf number is proxy for the age of the leaf, with the oldest
leaf at the top, etc. There are five replications of the experiment. The data
are given in Table 10.26.
(a) Perform the analysis of variance to test for the existence of the effects

of light and age.
(b) Assuming that the leaf numbers represent equally spaced ages, deter-

mine whether a polynomial response can be used for the effects of light
and age.

(c) Perform a lack of fit test.
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Table 10.26

Leafweight Data for
Exercise 6

LEAF

Rep 1 2 3 4 5

Light = 0
1 1.91 2.21 2.01 1.83 2.05
2 1.88 2.12 2.06 1.93 2.23
3 2.03 2.28 2.08 1.81 1.95
4 2.01 2.16 2.08 2.19 1.97
5 2.37 2.13 2.17 2.08 1.94

Light = 33
1 2.03 2.59 2.22 2.11 2.15
2 2.27 2.64 2.47 2.41 2.03
3 2.12 2.56 2.49 2.23 2.61
4 2.17 3.06 2.86 2.75 2.86
5 2.32 2.56 2.24 2.30 2.24

Light = 90
1 2.40 2.71 2.83 2.80 2.53
2 2.07 2.34 2.10 2.18 1.85
3 2.03 2.37 2.45 2.33 2.19
4 2.27 2.85 2.99 2.55 2.86
5 2.12 2.23 2.23 2.30 2.15

8. This example of a randomized block design with sampling concerns an
experiment for testing the effectiveness of three types of gasoline additives
for boosting gas mileage on a specific type of car. Three randomly selected
cars, which constitute blocks, are purchased for the experiment. Having
purchased the cars and made all arrangements for conducting the test, the
cost to repeat the individual trials is low. Hence, each additive is tested
four (randomly ordered) times on each of the three cars. Thus we have
a randomized block design with three treatments, three random effect
blocks, and four samples in each treatment–block combination. The data,
including cell and marginal totals, are given in Table 10.27. Perform the
appropriate test for determining differences due to additives. Also compute
the gain in efficiency of the randomized block design compared to the
completely randomized design.

9. The productivity of dairy cows is reduced by heat stress. This experiment
concerns the effect on body temperature of several types of cooling treat-
ments. Two white and two black cows, identified by the variable Cowid,
were randomly assigned to two exposures of four treatments: fan, shade,
mist, and sun (control). The experiments were conducted at times for
which environmental conditions were essentially identical. Two responses
were measured: surface and rectal temperature. The data are show in
Table 10.28.

Perform separate analyses for the two response variables for the effect
of cow color and shade treatment. Note that this is a split plot with cow
color as the main plot effect.
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Table 10.27

Data for Randomized
Block Design with
Sampling (Responses in
Miles per Gallon)

CARS

A B D Totals

Additive 1 19.5 21.1 21.1
20.3 21.2 22.8
19.4 20.4 21.7
21.3 20.6 21.6

80.5 83.3 87.2 251.0

Additive 2 18.0 21.8 20.5
17.8 21.2 20.1
17.8 22.7 21.2
15.8 23.1 20.9

69.4 88.8 82.7 240.9

Additive 3 16.8 21.5 18.5
17.0 20.2 19.6
16.8 18.6 20.3
15.5 20.3 18.8

66.1 80.6 77.2 223.9

Totals 216.0 252.7 247.1 715.8

10. One of many activities of birdwatchers is to count the number of birds of
various species along a specified route. Table 10.29 shows the total number
of birds of all species observed by birdwatchers for routes in three different
cities observed at Christmas for each of the 25 years from 1965 through
1989. It is of interest to examine the year-to-year differences and especially
to see whether there has been an upward or downward trend over these
years. This is a randomized block design with routes (cities) as blocks.

Perform the analysis for studying the effect of years. Check assump-
tions and perform an alternative analysis if necessary. Interpret results.

11. In Exercise 12 of Chapter 8, 40 respondents (subjects) were asked to judge
five structures for satisfaction on seven specific characteristics and also to
give an overall satisfaction index. All responses are on a nine-point scale.
The data are shown in Table 8.32.

We will now analyze the data to ascertain the nature of the differences
among the buildings. For this purpose, the data result from a randomized
block design with subjects as blocks and buildings as treatments. Perform
separate analyses for each characteristic and the overall score. Summarize
results.

12. An experimenter is interested in the effects of electric shock and level of
white noise on human galvanic skin response (sweating). Five subjects
were each exposed to all combinations of four levels of shock (0.25, 0.50,
0.75, and 1.00 mA) and two levels of noise (40 and 80 dB). The response
is a coded indicator of sweat. The data are shown in Table 10.30. Perform
the appropriate analysis including means comparison procedures.
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Table 10.28

Shading Dairy Cows

Obs Cowid Trt Color Surface Rectal

1 2056 fan white 36.8 39.8
2 2056 fan white 33.2 39.1
3 2056 mist white 35.8 40.2
4 2056 mist white 34.2 39.6
5 2056 shade white 37.0 39.5
6 2056 shade white 37.4 39.2
7 2056 sun white 40.2 40.3
8 2056 sun white 38.1 39.6
9 4055 fan black 36.7 40.1

10 4055 fan black 36.4 39.4
11 4055 mist black 37.0 40.8
12 4055 mist black 35.3 39.6
13 4055 shade black 36.4 40.2
14 4055 shade black 36.9 39.1
15 4055 sun black 39.6 41.1
16 4055 sun black 37.9 39.8
17 5042 fan black 36.1 39.9
18 5042 fan black 34.7 39.4
19 5042 mist black 35.7 40.3
20 5042 mist black 34.0 39.8
21 5042 shade black 36.7 39.3
22 5042 shade black 36.8 39.4
23 5042 sun black 42.2 40.0
24 5042 sun black 38.4 39.5
25 5055 fan white 36.4 39.4
26 5055 fan white 35.8 39.4
27 5055 mist white 36.3 40.2
28 5055 mist white 35.0 39.5
29 5055 shade white 37.9 40.4
30 5055 shade white 38.7 40.3
31 5055 sun white 39.8 40.3
32 5055 sun white 37.9 39.5

13. An experiment to determine feed efficiency at various feeding levels for
the Walleye (fish) was conducted in a controlled environment. Five levels
(labeled TREAT with values of 0.25, 0.75, 1.00, 2.00, and 3.00 units) of
a major feed component were each randomly assigned to four buckets
containing three fish each. After 10 weeks, the following measurements
were recorded for each fish:

WEIGHT: weight in grams,
LENGTH: length in millimeters, and
RELWT: relative weight, which is the actual weight divided by a

length-specific standard weight.

Perform the appropriate analysis of each response variable indepen-
dently. Using individual fish measurements makes this a nested design.
The data consisting of 60 observations are available on the data disk in
file FW10P13. Note that we now can perform multiple regressions (instead
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Table 10.29

Bird Counts for
Twenty-Five Years

ROUTE

Year A B C

65 138 815 259
66 331 1143 202
67 177 607 102
68 446 571 214
69 279 631 211
70 317 495 330
71 279 1210 516
72 443 987 178
73 1391 956 833
74 567 859 265
75 477 1179 348
76 294 772 236
77 292 1224 570
78 201 1146 674
79 267 661 494
80 357 729 454
81 599 845 270
82 563 1166 238
83 481 1854 98
84 1576 835 268
85 1170 968 449
86 1217 907 562
87 377 604 380
88 431 1304 392
89 459 559 425

Table 10.30

Data for Exercise 12

SUBJECT

Shock Noise 1 2 3 4 5

40 0.25 3 7 9 4 1
40 0.50 5 11 13 8 3
40 0.75 9 12 14 11 5
40 1.00 6 11 12 7 4
80 0.25 5 10 10 6 3
80 0.50 6 12 15 9 5
80 0.75 18 18 15 13 9
80 1.00 7 15 14 9 7

of using orthogonal polynomials as an approximation) for estimating the
response curves. This means that we do not need equally spaced factor
levels.

14. In the experiment described in Exercise 13 the fish were actually mea-
sured every other week, identified by the variable WEEK, having values 0,
2, 4, 6, 8, and 10. For this exercise we will analyze the data from the en-
tire experiment. The data consisting of 360 observations are available on
the data disk in FW10P14. Analyze each response variable independently.
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Table 10.31 LOCATION

Orientation 1 2 3

1 A = 31.0 B = 39.5 C = 30.5
2 B = 34.0 C = 24.5 A = 28.0
3 C = 15.0 A = 25.5 B = 31.0

The complete experiment can be effectively analyzed as a factorial ex-
periment in a split plot design with buckets as main plots and weeks as
subplots. (Because the weeks are sequential rather than random, the ex-
periment would probably be better analyzed using a repeated measures
design, a design we do not cover. See Winer (1971) for a complete discus-
sion of repeated measures. However, the split plot analysis gives a good
approximation.)

15. In Example 10.2 we looked at an analysis of three varieties of wheat in
a randomized block design. Suppose that there were three different ori-
entations of the rows in three different locations. Therefore we actually
have two “blocking variables” instead of one. An experiment to compare
yields of the three varieties would be more appropriately performed using
a Latin square design. The results of such a study are given in Table 10.31.
The presentation of the data does not show the randomization.
(a) Describe an appropriate randomization scheme for this experiment.
(b) Perform the appropriate analysis and explain the results. Do the two

blocking variables appear to be effective in reducing extraneous vari-
ation? Explain your answer.



Chapter 11

Other Linear Models

EXAMPLE 11.1 Survival of Cancer Patients Medical researchers are interested in deter-
mining how the survival time of cancer patients is affected by the grade of
the tumor and age of the patient. The data in Table 11.1 show the result of
a hospital study, showing the survival time of patients along with their ages
and histological grade of their tumor. At first glance a regression of survival
on grade and age would appear to be useful. However, histological grade is
not strictly a numerical measure and is therefore more like a factor as used in
analysis of variance models.

One of the topics of this chapter deals with the analysis of models that include
both measured and categorical independent factors. The analysis is given in
Section 11.8. ■

11.1 Introduction

The linear model was first introduced in Chapter 6 for justifying the use of the
F ratio from the analysis of variance for inferences on a set of means. That
model was written

yij = μ + τ i + εij ,

and relates the observed values of the response variable y to parameters
representing differences among population means, denoted as (μ+ τ i), and a
random error, εij .

The model is primarily used to make inferences about differences among
the τ i, the so-called treatment or factor level effects. The model was gen-
eralized in Chapters 9 and 10 by adding parameters representing different
treatment factors and/or experimental conditions. For all such models, called

508
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Table 11.1

Survival of Cancer
Patients

OBS SURVIVAL AGE GRADE OBS SURVIVAL AGE GRADE

1 69 46 1 41 94 31 3
2 80 68 1 42 92 60 3
3 78 58 1 43 1 80 3
4 85 32 1 44 45 84 3
5 30 59 1 45 13 83 3
6 63 61 1 46 8 65 3
7 73 52 1 47 25 80 3
8 100 57 1 48 13 73 3
9 73 65 1 49 72 63 3

10 96 58 1 50 63 62 4
11 72 60 1 51 31 61 4
12 4 61 2 52 16 63 4
13 83 62 2 53 108 58 4
14 38 75 2 54 20 66 4
15 107 64 2 55 1 73 4
16 72 53 2 56 70 82 4
17 82 66 2 57 6 69 4
18 70 62 2 58 13 60 4
19 105 62 2 59 69 67 4
20 8 86 2 60 53 53 4
21 68 67 2 61 13 61 4
22 8 58 2 62 80 56 4
23 67 91 2 63 103 79 4
24 96 58 2 64 63 67 4
25 91 61 2 65 67 63 4
26 90 66 2 66 67 82 4
27 97 68 2 67 75 70 4
28 89 60 2 68 43 72 4
29 89 77 2 69 78 74 4
30 90 44 2 70 41 68 4
31 66 68 2 71 77 61 4
32 100 68 2 72 1 46 4
33 88 42 2 73 64 69 4
34 64 57 2 74 7 62 4
35 30 66 2 75 31 48 4
36 87 59 2 76 18 78 4
37 28 57 2 77 6 60 4
38 73 67 2 78 2 50 4
39 60 70 3 79 1 80 4
40 67 64 3 80 32 62 4

analysis of variance models, the analysis is based on the partitioning of sums
of squares and on using ratios of the resulting mean squares as test statistics
for making inferences on parameters that represent the various means.

Another linear model, the regression model, was introduced in Chapter 7.
This model relates the response variable y to an independent variable x using
the relationship

y = β0 + β1x + ε,

where the parameters β0 and β1 are the regression coefficients that specify the
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nature of the relationship and ε is the random error. This model was generalized
in Chapter 8 to allow several independent variables. Again the inferences are
based on the partitioning of sums of squares and computing F ratios using the
corresponding mean squares. In the analysis of multiple regression models,
it was also necessary to recognize the proper interpretations and inferences
for partial coefficients, reflecting the effect of the corresponding independent
variable over and above that provided by all the other variables in the model.

Although the analysis of variance and regression models appear to have
different applications and somewhat different analysis procedures, we have
already noted that we may use aspects of both models in some situations. For
example, contrasts and orthogonal polynomials are used in analysis of variance
situations but are in reality regressions using specially coded independent
variables. In other words we can compute factor sums of squares for an analysis
of variance by performing a regression analysis. Furthermore, if, in an analysis
of variance problem for a t level factor, we compute the one degree of freedom
sums of squares for (t − 1) orthogonal contrasts, the total of the individual
contrast sums of squares is equal to the sum of squares for that factor.

The unified treatment of regression and analysis of variance is referred to as
the general linear model. A comprehensive presentation of statistical analy-
ses based on general linear models is beyond the scope of this book. However,
the availability of computer programs for performing complex analyses and
the increasing frequency of the use of this methodology makes it desirable to
present here an introduction to this topic. In this chapter we

• present the use of dummy variables to construct a linear regression model
to represent an analysis of variance model,

• briefly indicate the problem of the singular X′X matrix resulting from the
implementation of the dummy variable model,

• provide a simple example of where this method is needed in place of the
standard analysis of variance methodology presented in previous chapters,

• give an example of a computer output using the dummy variable model, and
• extend the method to models containing both dummy and interval indepen-

dent variables with emphasis on the analysis of covariance.

In addition, this chapter provides an introduction to the methodology for a
regression analysis for a binary (binomial) response variable.

The primary purpose of this chapter is to introduce these methods and
indicate appropriate uses and potential misuses. More comprehensive presen-
tations can be found in Freund and Wilson (1998) and Littell et al. (2002). The
underlying theory is described in Graybill (1976).

11.2 The Dummy Variable Model

We have noted that the validity of a regression requires no assumption on the
nature of the independent variables except that they be measured without
error. For example, we have seen that coefficients of orthogonal contrasts
can be used as independent variables to compute sums of squares for such
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contrasts. In a similar manner, specially constructed variables, called dummy

or indicator variables, can be used to construct a regression model equivalent
to an analysis of variance model.

We begin this presentation by showing how such a dummy variable model
can be used to obtain the analysis of variance results for a one-way classifica-
tion or completely randomized design with t treatments or populations. The
analysis of variance model as presented in Chapter 6 is written

yij = μ + τ i + εij.

The equivalent dummy variable model is

yij = μx0 + τ1x1 + τ2x2 + · · · + τtxt + εij ,

where the xi are so-called dummy or indicator variables, indicating the pre-
sence or absence of certain conditions for observations,

x0 = 1 for all observations;

x1 = 1 for all observations occurring in population 1, and

= 0 otherwise;

x2 = 1 for all observations occurring in population 2, and

= 0 otherwise;

and so forth for all t populations. As before, populations may refer to treat-
ments or factor levels. The definitions of μ, τ i, and εij are as before.

This model certainly has the appearance of a regression model. Admittedly,
the independent variables are not the usual interval variables that we have
become accustomed to using as independent variables, but they do not violate
any assumptions. The X and Y matrices for a set of data described by this
model are

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 1 0 · · · 0
1 0 1 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 0 1 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 0 0 · · · 1
· · · · · · ·
· · · · · · ·
· · · · · · ·
1 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11

·
·
·

y1n1

y21

·
·
·

y2n2

·
·
·

yt1

·
·
·

ytnt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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It is not difficult to compute the X′X and X′Y matrices that specify the set of
normal equations

X′XB = X′Y.

The resulting matrices are

X′X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n n1 n2 · · · nt

n1 n1 0 · · · 0
n2 0 n2 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·

nt 0 0 · · · nt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

μ

τ1

τ2

·
·
·
τt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, X′Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y..

Y1.

Y2.

·
·
·

Yt.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

An inspection of X′X and X′Y shows that the sums of elements of rows 2
through (t +1) are equal to the elements of row 1. In other words, the equation
represented by the first row contributes no information over and above those
provided by the other equations. For this reason, the X′X matrix is singular
(Appendix B); it has no inverse. Hence a unique solution of the set of normal
equations to produce a set of parameter estimates is not possible.

The normal equations corresponding to all rows after the first represent
equations of the form

μ + τ i = ȳi.,

which reveal the obvious: Each treatment mean ȳi. estimates the mean μ plus
the corresponding treatment effect τ i. We can solve each of these equations
for τ i, producing the estimate

τ̂ i = ȳi. − μ̂.

Note, however, that the solution requires a value for μ̂. It would appear rea-
sonable to use the equation corresponding to the first row to estimate μ̂, but
we have already seen that this equation duplicates the rest and is therefore
not usable for this task. This is the effect of the singularity of X′X: There are
really only t equations for solving for the t + 1 parameters of the model.

A number of procedures for obtaining useful estimates from this set of
normal equations are available. One principle consists of applying restrictions
on values of the parameter estimates, a procedure that essentially reduces the
number of parameters to be estimated. One popular restriction, which we have
indeed used in previous chapters (see especially Section 6.3), is∑

τ i = 0,

which can be restated

τt = −τ1 − τ2 − · · · − τt−1.
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This restriction eliminates the need to estimate τt from the normal equations;
hence the rest of the parameters can be uniquely estimated. The resulting
estimates are

μ̂ = (1/t)
∑

ȳi.

τ̂ i = ȳi. − μ̂, i = 1, 2, . . . , (t − 1),

and τ̂t is computed by applying the restriction to the estimates, that is,

τ̂t = −(τ̂1 + τ̂2 + · · · + τ̂t−1).

Note that the estimate of μ is not the weighted mean of treatment means we
would normally use when sample sizes are unequal.

The inability to estimate directly all parameters and the necessity of apply-
ing restrictions are related to the degrees of freedom concept first presented
in the estimation of the variance (Section 1.5). There we argued that, having
already computed ȳ, we have lost one degree of freedom when we use that
statistic to compute the sum of squared deviations for calculating the variance.
The loss of that degree of freedom was supported by noting that

∑
(y− ȳ) = 0.

In the dummy variable model we start with t sample statistics, ȳ1, ȳ2, . . . , ȳt.
Having estimated the overall mean (μ) from these statistics, there are only
(t − 1) degrees of freedom left for computing the estimates of the treatment
effect parameters (the t values of the τ i).

Other sets of restrictions may be used for the solution procedure, which
will result in different numerical values of parameter estimates. For this rea-
son, any set of estimates based on implementing a specific restriction is said
to be biased. However, the existence of this bias is not in itself a serious detri-
ment to the use of this method since these parameters are by themselves not
overly useful. As we have seen, we are usually interested in functions of these
parameters, especially contrasts or treatment means, and numerical values of
estimates of these functions, called estimable functions, are not affected by
the specific restrictions applied.

A simple example illustrates this property. Assume a four-treatment ex-
periment with equal sample sizes for treatments: The means are 4, 6, 7, and
7, respectively. Using the restriction

∑
τ i = 0, that is, the sum of treatment

effects is zero, provides treatment effect estimates τ̂ i = −2, 0, 1, 1, respec-
tively, and μ̂ = 6. Another popular restriction is to make the last treatment
effect zero, that is, τ̂4 = 0. The resulting estimates of treatment effects are
−3, −1, 0, 0, respectively, and μ̂ = 7.

These two sets of estimates are certainly not the same. However, for ex-
ample, the estimate of the mean response for treatment one (μ̂ + τ̂1) = 4, and
likewise the estimate of the contrast (τ̂1 − τ̂2) = −2 for both sets of parameter
estimates.

Another feature of the implementation of the dummy variable model is that
numerical results of the partitioning of sums of squares are not affected by the
particular restriction applied. This means that any hypothesis tests based on F

ratios using the partitioning of sums of squares is a valid test for the associated
hypotheses regardless of the specific restriction applied.
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11.3 Unbalanced Data

The dummy variable method of performing an analysis of variance is certainly
more cumbersome than the standard methods presented in Chapters 6, 9, and
10. Unfortunately, using those methods for unbalanced data, that is, data with
unequal cell frequencies in a factorial or other multiple classification structure,
produces incorrect results. However, use of the dummy variable approach
does provide correct results for such situations and can also be used for the
analysis of covariance (Section 11.5). Therefore, the added complexity re-
quired for this method is indeed worthwhile for these applications.

EXAMPLE 11.2 The incorrectness of results obtained by using the standard formulas for par-
titioning of sums of squares for unbalanced data is illustrated with a small
example. Table 11.2 contains data for a 2 × 2 factorial experiment with un-
equal sample sizes in the cells. The table also gives the marginal means.

For purposes of illustration we want to determine whether there is an effect
due to factor A.

Solution Looking only at the data for level 1 of factor C, the difference
between the two factor A cell means is

ȳ11. − ȳ21. = 1
3

(4 + 5 + 6) − 5 = 0.

For level 2 of factor C, the difference between the two factor A cell means is

ȳ12. − ȳ22. = 8 − 1
2

(7 + 9) = 0.

Thus we may conclude that there is no difference in response due to factor A.
On the other hand, if we examine the difference between the marginal

means for the two levels of factor A,

ȳ1.. − ȳ2.. = 5.75 − 7 = −1.25,

then, based on this result, we may reach the contradictory conclusion that
there is a difference in the mean response due to factor A. Furthermore, since
the standard formulas for sums of squares (Chapter 9) use these marginal

Table 11.2

Example of Unbalanced
Factorial

FACTOR C

Factor A 1 2 Means

1 4
5 8 5.75
6

2 5 7 7.00
9

Means 5.00 8.00 6.285
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means, the sum of squares for factor A computed in this manner will not be
zero, implying that there is a difference due to the levels of factor A.

The reason for this apparent contradiction is found by examining the con-
struct of the marginal means as functions of the model parameters. As pre-
sented at the beginning of Section 9.3, the linear model for the factorial exper-
iment (we omit the interaction for simplicity) is

yijk = μ + αi + γ j + εijk.

Each cell mean is an estimate of

μ + αi + γ j.

The difference between cell means for factor A for level 1 of factor C is

ȳ11. − ȳ21.,

which is an estimate of

(μ + α1 + γ1) − (μ + α2 + γ1) = (α1 − α2),

which is the desired difference. Likewise the difference between the cell means
for factor A for level 2 of factor C is

ȳ12. − ȳ22.,

which is also an estimate of (α1 − α2).
The marginal means are computed from all observations for each level;

hence, they are weighted means of the cell means. In terms of the model
parameters, the difference is

(ȳ1.. − ȳ2..) = 1
4

(3 ȳ11. + ȳ12.) − 1
3

(ȳ21. + 2 ȳ22.),

which is an estimate of

1
4

(3μ + 3α1 + 3γ1 + μ + α1 + γ2) − 1
3

(μ + α2 + γ1 + 2μ + 2α2 + 2γ2)

= (μ + α1 + 0.75γ1 + 0.25γ2) − (μ + α2 + 0.333γ1 + 0.667γ2)

= (α1 − α2) + (0.417γ1 − 0.417γ2).

In other words, the difference between the two marginal factor A means is not
an estimate of only the desired difference due to factor A, (α1 −α2), but it also
contains a function of the difference due to factor C, (0.417γ1 − 0.417γ2). Thus
any parameter estimates and sums of squares for a particular factor computed
from marginal means of unbalanced data will contain contributions from the
parameters of other factors.

In a sense, unbalanced data represent a form of multicollinearity (Sec-
tion 8.7). If the data are balanced, there is no multicollinearity, and we can
estimate the parameters and sums of squares of any factor independent of
those for any other factor, just as in regression we can separately estimate each
individual regression coefficient if the independent variables are uncorrelated.
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We noted in Chapter 8 that for multiple regression we compute partial
regression coefficients, which in a sense adjust for the existence of multi-
collinearity. Therefore, if we use the dummy variable model and implement
multiple regression methods, we estimate partial coefficients. This means that
the resulting A factor effect estimates hold constant the C factor effects and
vice versa.

Extensions of the dummy variable model to more complex models are
conceptually straightforward, although the resulting regression models
often contain many parameters. For example, interaction dummy variables
are created by using all possible pairwise products of the dummy variables
for the corresponding main effects. Nested or hierarchical models may also
be implemented. ■

11.4 Computer Implementation of the Dummy Variable Model

Because dummy variable models contain a large number of parameters, they
are by necessity analyzed by computers using programs specifically designed
for such analyses. These programs automatically generate the dummy vari-
ables, construct appropriate restrictions, or use other methodology for esti-
mating parameters and computing appropriate sums of squares, and provide,
on request, estimates of desired estimable functions. We do not provide here
details on the implementation of such programs, but show the results of the im-
plementation of such a program on the 2 × 2 factorial presented in Table 11.2.
A condensed version of the computer output from PROC GLM of the SAS Sys-
tem is given in Table 11.3. For this implementation we do specify the inclu-
sion of interaction in the model. From Table 11.3, we obtain the following
information:

• The first portion is the partitioning of sums of squares for the whole model.
This is the partitioning we would get by performing the analysis of vari-
ance for four factor levels representing the four cells. Since this is com-
puted as a regression, the output also gives the coefficient of determination
(R-SQUARE). The F value, and its p value (PR > F), is that for testing for the
model, that is, the hypothesis that all four treatment means are equal. The
model is not statistically significant at the 0.05 level, a result to be expected
with such a small sample.

• The second portion provides the partial sums of squares (which are called
TYPE III sums of squares in this program) for the individual factors of
the model. Note that the sum of squares due to factor A is indeed zero! Note
also that the sum of the sums of squares due to the factors does not add to
the model sum of squares as it would for the balanced case.

• The final portion provides the estimated treatment means. These are often
referred to as adjusted or least squares means (LSMEAN in the output).
Note that the least squares means for the two levels of factor A are indeed
equal.
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Table 11.3 Computer Analysis Example of Unbalanced Factorial

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR > F

MODEL 3 15.42857143 5.14285714 3.86 0.1484
ERROR 3 4.00000000 1.33333333
CORRECTED TOTAL 6 19.42857143

R-SQUARE = 0.794

SOURCE DF TYPE III SS F VALUE PR > F

A 1 0.00000000 0.00 1.0000
C 1 12.70588235 9.53 0.0538
A*C 1 0.00000000 0.00 1.0000

LEAST SQUARES MEANS
A LSMEAN STD ERR

1 6.50000000 0.66666667
2 6.50000000 0.70710678

C LSMEAN STD ERR

1 5.00000000 0.66666667
2 8.00000000 0.70710678

However, the standard errors of these means are not equal to
√

s2/n, where
n is the number of observations in the mean.1

11.5 Models with Dummy and Interval Variables

We consider in this section linear models in which some parameters describe
effects due to factor levels and others represent regression relationships. Such
models include dummy variables representing factor levels as well as interval
variables associated with regression analyses. We illustrate with the simplest
of these models, which has parameters representing levels of a single factor
and a regression coefficient for one independent interval variable. The model is

yij = β0 + τ i + β1xij + εij ,

where τ i are the parameters for factor level effects, β0 and β1 are the param-
eters of the regression relationship, and εij is the random error.

If in this model we delete the term β1xij , the model is that for the completely
randomized design (replacing β0 with μ). On the other hand, if we delete the
term τ i, the model is that for a simple linear (one-variable) regression. Thus the

1The reader may note that the least squares means are the unweighted means of the cell means.
This suggests that an appropriate analysis could be obtained by using these means directly. Al-
though sometimes appropriate, this method is not universally applicable and is therefore not often
used.
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Legend:    = Population 1,    = Population 2,   = Population 3.
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Figure 11.1

Data and Estimated
Model for Analysis
of Covariance

entire model describes a set of data consisting of pairs of values of variables x

and y, arranged in a one-way structure or completely randomized design. The
interpretation of the model may be aided by redefining parameters

β0i = β0 + τ i, i = 1, 2, . . . , t,

which produces the model

yij = β0i + β1xij + εij.

This model describes a set of t parallel regression lines, one for each treat-
ment. Each has the same slope (β1), but a different intercept (β0i). A typical
plot of such a data set with three treatments is given in Fig. 11.1, where the
data points are plotted with different symbols for different populations, and
the three lines are the three parallel regression lines.

Analysis of Covariance

The most common application of the model with dummy and interval vari-
ables is the analysis of covariance. The simplest case, which has the model
described above, is for a completely randomized design (or a single classifica-
tion survey study), where the values of the response variable are additionally
affected by an interval variable. This variable, called a covariate, is assumed
not to be affected by the factor levels of the experiment and usually reflects
prior or environmental conditions of the observational units. Typical examples
of covariates include
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• aptitude test scores of students being exposed to different teaching
strategies,

• blood pressures of patients prior to being treated by different drugs,
• temperatures in a laboratory where an experiment is being conducted, or
• weights of animals prior to a feeding rations experiment.

The purpose of the analysis of covariance is to estimate factor effects over
and above the effect of the covariate. In other words, we want to obtain esti-
mates of differences among factor level means that would occur if all obser-
vational units had the same value of the covariate. The resulting means are
called adjusted treatment means (or least squares means) and are calculated
for the mean of the covariate for all observations. Thus in Fig. 11.1, the mean
of x is 4.5; hence the adjusted treatment means would be the value of μ̂y|x for
each line at x = 4.5.

These inferences are meaningless if the covariate is affected by the factor
levels; hence the analysis of covariance requires the assumption that the co-
variate is not affected by the factor levels. The model may still be useful if this
assumption does not hold, but the inferences will be different (Section 11.6).

Another purpose of the analysis of covariance is to reduce the estimated
error variance. In a sense, this is similar to the reduction in variance obtained
by blocking: In both cases additional model parameters are used to account for
known sources of variation that reflect different environments. In the analysis
of covariance, an assumed linear relationship exists between the response and
the environmental factor, while, for example, in the randomized block design
the relationship is reflected by block differences.

EXAMPLE 11.3 We are studying the effect of some knowledge of “computer mathematics”
on students’ ability to learn trigonometry. The experiment is conducted using
students in three classes, which correspond to three treatments (called CLASS)
as follows:

CLASS 1: the control class in which students have had no exposure to
computer mathematics,

CLASS 2: in which the students were exposed to a course in computer
mathematics in the previous semester, and

CLASS 3: in which students have not had a course in computer mathematics,
but the first three weeks of the trigonometry class are devoted to an
introduction to computer mathematics.

The response variable, called POST, is the students’ scores on a standard-
ized test given at the end of the semester.2 Two variables can be used as a

2In this example the experimental unit (Sections 1.2 and 10.3) is a class and the observational
unit is a student. The proper variance for testing hypotheses about the teaching method would
arise from differences among classes treated alike. However, since we do not have replications
of classes for each teaching method, we cannot estimate that variance and must use the variation
among students. Thus, the results we will obtain are based on the assumption that variation
among classes is reflected by the variation among students, an assumption that is likely but not
necessarily valid.
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Table 11.4

Data for the Analysis
of Covariance

CLASS 1 CLASS 2 CLASS 3

PRE POST IQ PRE POST IQ PRE POST IQ

3 10 122 24 34 129 10 21 114
5 10 121 18 27 114 3 18 114
6 14 101 11 20 116 10 20 110

11 29 131 10 13 126 3 9 94
11 17 129 11 19 110 6 13 102
13 21 115 2 28 138 9 24 128

7 5 122 10 13 119 13 19 111
12 17 112 14 21 123 7 25 119
13 17 123 11 14 115 10 24 120

8 22 119 12 17 116 9 21 112
9 22 122 14 16 125 7 21 105

10 18 111 7 10 122 4 17 120
6 11 117 8 18 120 7 24 120

13 20 112 10 13 111 12 25 118
7 8 122 11 17 127 6 23 110

11 20 124 12 13 122 7 22 127
5 15 118 6 13 127
9 25 113 3 13 115
8 25 126 4 13 112
2 14 132

11 17 93

covariate: an aptitude test score (IQ) and a pretest score (PRE) designed to
ascertain knowledge of trigonometry prior to the course. The data are shown
in Table 11.4. We use the variable PRE as the covariate. The variable IQ is used
later in this section.

Solution The analysis of covariance model for these data is

yij = β0 + τ i + β1xij + εij ,

where yij = POST score of the jth student in the ith class; β0 = mean POST
score of all students having a PRE score of zero (an estimate having no practical
interpretation); τ i = effect of a student being in the ith section, i = 1, 2, 3;
β1 = change in score on the POST test associated with a unit change in the
PRE test; xij = PRE score of the jth student in the ith class; and εij = random
error associated with each student.

As noted, this model is most efficiently analyzed through the use of com-
puter program; hence we skip computational details and provide typical com-
puter output. The program is the same one used for the analysis of variance
for unbalanced data, therefore the output is similar to that of Table 11.3. The
results are given in Table 11.5.

The first set of statistics is related to the overall model. The three degrees
of freedom for the model are comprised of the two needed for the three treat-
ments (CLASS) and one for the covariate (PRE). The F ratio has a p value
(PR > F) of less than 0.0001; hence we conclude that the model can be used to
explain variation among the POST scores.
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Table 11.5 Results of the Analysis of Covariance

SOURCE df SUM OF SQUARES MEAN SQUARE F VALUE PR > F

MODEL 3 609.03036550 203.01012183 8.46 0.0001
ERROR 52 1247.09463450 23.98258912
CORRECTED TOTAL 55 1856.12500000

R-SQUARE = 0.328119

SOURCE df TYPE III SS F VALUE PR > F

CLASS 2 228.70912117 4.77 0.0125
PRE 1 493.39220761 20.57 0.0001

T FOR H0: STD ERROR OF
PARAMETER ESTIMATE PARAMETER=0 PR >|T| ESTIMATE

PRE 0.77323836 4.54 0.0001 0.17047680

LEAST SQUARES MEANS
POST STD ERR

CLASS LSMEAN LSMEAN

1 17.2899644 1.0705676
2 16.3334483 1.1512767
3 21.3484519 1.2429693

The second set of statistics relates to the partial contribution of the model
factors: CLASS (teaching methods) and PRE, the covariate. Remember again
that these partial sums of squares do not total to the model sum of squares.

We first test for the covariate, since if it is not significant we may need
only to perform the analysis of variance, whose results are easier to interpret.
The F ratio for H0: β1 = 0 is 20.57 with 1 and 52 degrees of freedom. The
resulting p value is less than 0.0001; hence the covariate needs to remain in the
model, which means that the PRE scores are a factor for estimating the POST
scores.

The sum of squares forCLASS provides for the test of no differences among
classes, holding constant the effect of the PRE scores. The resulting F ratio
of 4.77 with 2 and 52 degrees of freedom results in a p value of 0.0125, and
we may conclude that the inclusion of computer mathematics has had some
effect on mean POST scores, holding constant individual PRE scores.

The actual coefficient estimates include estimates corresponding to the
dummy variables for the CLASS variable and the regression coefficient for
PRE. As noted in Section 11.2, the values of the dummy variate coefficients are
of little interest since they are a function of the specific restriction employed to
obtain a solution; hence they are not reproduced here (although they appear
on the complete computer output). The estimate of the coefficient for the
covariate is not affected by the nature of the restriction and thus is of interest.
For this example the coefficient estimate is 0.773, indicating a 0.773 average
increase in the POST score for each unit increase in the PRE score, holding
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constant the effect of CLASS. The standard error of this estimate (0.170) is
used to test H0: β1 = 0. As in one-variable regression, the result is equivalent
to that obtained by the F ratio in the preceding. The standard error may also
be used for a confidence interval estimate on the regression coefficient.

Finally we have the adjusted treatment means, which are called LSMEAN
(for least squares means) in this computer output. These are the estimated
mean scores for the three classes at the overall mean PRE score: x̄ = 8.95. The
estimated standard errors of these means may be used for confidence intervals.
However, inferences on linear combinations of parameters, such as differences
between means, require the use of methods referenced in Section 8.3 in the
discussion of inferences for coefficients. Most computer programs can per-
form such inferences on request, and we illustrate this type of result by testing
for all pairwise differences in the least squares means. Adapted from the com-
puter output (which contains other information of no use at this point) the
results are

Between Estimated Std.

Classes Difference Error t Pr > |t |

1 and 2 0.957 1.582 0.60 0.5481
1 and 3 −4.058 1.632 −2.49 0.0161
2 and 3 −5.015 1.726 −2.91 0.0054

These results indicate that CLASS 3 (the one in which some computer math-
ematics is included at the beginning) appears to have a significantly higher
mean score. Of course, these are LSD comparisons; hence p values must be
used with caution (Section 6.5). Other multiple comparison techniques, such
as Duncan’s multiple range test, are usually not performed due to the correla-
tions among the estimated least squares means and different standard errors
for the individual comparisons.

The usefulness of the analysis of covariance for this example is seen by
performing a simple analysis of variance for thePOST scores. The mean square
forCLASS is 57.819, and the error mean square is 32.84, which is certainly larger
than the value of 23.98 for the analysis of covariance. The F ratio for testing
the equality of mean scores is 1.76, which provides insufficient evidence of
differences among these means. ■

Multiple Covariates

An obvious generalization of the analysis of covariance model is to have more
than one covariate. Conceptually this is a straightforward extension, keeping
in mind that the regression coefficients will be partial coefficients and the
coefficient estimates may be affected by multicollinearity. Computer imple-
mentation is simple since the programs we have been discussing are already
adaptations of multiple regression programs.
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Table 11.6 Analysis of Covariance; Two Covariates

SOURCE df SUM OF SQUARES MEAN SQUARE F VALUE Pr > F

MODEL 4 784.75195702 196.18798926 9.34 0.0001
ERROR 51 1071.37304298 21.00731457
CORRECTED TOTAL 55 1856.12500000

R-SQUARE=0.422790

SOURCE df TYPE III SS F VALUE Pr > F

CLASS 2 333.63171701 7.94 0.0010
PRE 1 502.18880915 23.91 0.0001
IQ 1 175.72159152 8.36 0.0056

T FOR H0: STD ERROR OF
PARAMETER ESTIMATE PARAMETER=0 Pr >|T| ESTIMATE

PRE 0.78018937 4.89 0.0001 0.15957020
IQ 0.21286146 2.89 0.0056 0.07359863

LEAST SQUARES MEANS
POST STD ERR

CLASS LSMEAN LSMEAN

1 17.1760040 1.0027366
2 15.7734395 1.0947585
3 22.1630353 1.1969252

EXAMPLE 11.3 REVISITED We will use the data on the trigonometry classes, using both
IQ and the pretest score (PRE) as covariates. The results of the analysis, using
the format of Table 11.5, are given in Table 11.6.

Solution The interpretation parallels that of the analysis for the single-
covariate model. The overall model remains statistically significant (F =
9.34, p value < 0.0001). Addition of the second covariate reduces the error
mean square somewhat (from 23.98 to 21.01), indicating that the addition of
IQ may be justified. The partial sums of squares (again labeled Type III)
show that each of the factors (IQ, PRE, and CLASS) is significant for α < 0.01.

The parameter estimates for the covariates have the usual partial regres-
sion interpretations: Increases of 0.780 and 0.213 units in the POST score are
associated with a unit increase in PRE and IQ, respectively, holding other
factors constant. The partial coefficient for PRE has changed little due to the
addition of IQ to the model.

The adjusted treatment means have also changed very little from those
of the single-covariate model. The standard errors are somewhat smaller,
reflecting the decrease in the estimated error variance. The statistics for the
pairwise comparisons follows. The implications of these tests are the same as
with the single-covariate analysis.
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Between Estimated Std.

Classes Difference Error t Pr > |t |

1 and 2 1.402 1.489 0.94 0.3506
1 and 3 −4.987 1.561 −3.20 0.0024
2 and 3 −6.390 1.684 −3.80 0.0004

■

Unequal Slopes

The analysis of covariance model assumes that the slope of the regression
relationship between the covariate and the response is the same for all factor
levels. This homogeneity of slopes among factor levels is necessary to provide
useful inferences on the adjusted means because, when the regression lines
are parallel among groups, differences among means are the same everywhere.
On the other hand, if this condition does not hold, differences in factor level
means vary according to the value of the covariate. This is readily seen in
Fig. 11.2 where, as in Fig. 11.1, the plotting symbols represent observations
from three populations, and the lines are the three separate regression lines.
We see that the differences in the mean response vary, depending on the value
of x. Additional information on this and other problems associated with the
analysis of covariance can be found in Biometrics 38(3), 1982, which is entirely
devoted to the analysis of covariance.

The existence of different slopes for the covariate among factor levels
can be viewed as an interaction between factor levels and the covariate. The
model is similar to that used for polynomial responses in a factorial experiment

Legend:   = Population 1,    = Population 2,   = Population 3.
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(Section 9.4). For example, consider a model for a single-factor experiment
with three levels and a single covariate. The complete dummy variable model
is

yij = μz0 + τ1z1 + τ2z2 + τ3z3 + β1x + β11z1x + β12z2x + β13z3x + ε,

where μ, and τ i, i= 1, 2, 3 are the treatment effects of the factor; zi, i =
0, 1, 2, 3 are the dummy variables as defined in Section 11.2; β1 is the regression
coefficient, which measures the average effect of the covariate; x is the covari-
ate; β1i, i = 1, 2, 3 are regression coefficients corresponding to the interactions
between the factor levels and the covariate; and z1x, z2x, and z3x are the
products of the dummy variables and the covariate and are measures of the
interaction.

The first four terms are those of the analysis of covariance model. The
next three terms are the interactions, which allow for different slopes. The
slope of the covariate for the first factor level is (β1+β11), for the second it is
(β1+β12), and for the third it is (β1+β13). Then the test for the hypothesis of
equal slopes is

H0: β11 = β12 = β13 = 0.

Computer programs for general linear models will normally allow for
interactions between factors and covariates and provide for estimating the
different factor level slopes.

EXAMPLE 11.3 REVISITED We use PROC GLM of the SAS System to implement the model
that includes the interaction terms and allows for the test for different slopes.
For simplicity, we only use the variable PRE, the pretest, as a covariate. The
results are shown in Table 11.7.

The first portion of the output shows that the model now has five degrees
of freedom: two for CLASS, one for PRE, and two for the interaction. The
mean square error (24.62) is actually somewhat larger than that for the
model without the interaction shown in Table 11.5 (23.98), which suggests
that the interaction is not significant. The second portion of the output, which
shows that the p value for the interaction is 0.7235, reinforces this conclu-
sion. Finally the last portion gives the estimates of the slopes for the three
classes; they are actually somewhat different, but the differences are insuffi-
cient to be statistically significant. Recall that the slope of the ith class is really
β1 + β1i.

If a computer program such asPROC GLM is not available, the test for different
slopes can be performed, using the unrestricted–restricted model approach.
The unrestricted model is that for a different regression for each factor level.
The error sum of squares for that model can be obtained by simply running
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Table 11.7 Analysis of Covariance: Test for Equal Slopes

The GLM Procedure
Dependent Variable: POST

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 5 625.070867 125.014173 5.08 0.0008
Error 50 1231.054133 24.621083
Corrected Total 55 1856.125000

R-Square Coeff Var Root MSE POST Mean

0.336761 27.37635 4.961964 18.12500

Source DF Type III SS Mean Square F Value Pr > F

CLASS 2 37.2900877 18.6450439 0.76 0.4742
PRE 1 421.6803338 421.6803338 17.13 0.0001
PRE*CLASS 2 16.0405020 8.0202510 0.33 0.7235

Standard
Parameter Estimate Error t Value Pr >|t|

pre class1 0.99468792 0.33829074 2.94 0.0050
pre class2 0.66692325 0.22680514 2.94 0.0050
pre class3 0.79790775 0.43280665 2.84 0.0712

regressions for each factor level, and manually combining the sums of squares
and degrees of freedom. The restricted model is the analysis of covariance
model. The test for the difference is obtained manually.

11.6 Extensions to Other Models

General linear models using dummy and interval variables can be used for
virtually any type of data. Obvious extensions are those involving more com-
plex treatment structures and/or experimental designs (see, for example,
Littell et al., 2002). Covarience models may be constructed for such situations.
Finally, a model containing covariates and treatment factors need not strictly
conform to the analysis of covariance model. For example, if the covariate is
affected by treatments, the analysis may still be valid except that the interpre-
tations of results will be somewhat more restrictive.

The dummy variable analysis may thus seem to provide a panacea: It
seems that one can dump almost any data into such a model and get results.
However, this approach must be used with extreme caution:

• Models with dummy variables may easily generate regression models with
very many parameters, which may become difficult to implement even on
large computers. This is especially true if interactions are included. There-
fore, careful model specification is a must.
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• Since the dummy variable model also provides correct results for the
analysis of variance with balanced data, it is tempting to use this method
always. However, computer programs for implementing dummy variable
models require considerably greater computer resources than do the con-
ventional analysis of variance programs and also usually produce more
confusing output.

• Although dummy variable models provide correct results for unbalanced
data, balanced data do provide for greater power of hypothesis tests for a
given sample size. Thus proper design to assure balanced data is always a
worthwhile effort.

• The existence of missing cells (cells without observations) in factorial
experiments is a special case of unbalanced data for which even the dummy
variable approach may not yield useful results (Freund, 1980).

11.7 Binary Response Variables

In a variety of applications we may have a response variable that has only
two possible outcomes that can be represented by a dummy variable. Such
a variable is often called a quantal or binary response. It is often useful to
study the behavior of such a variable as related to one or more independent
or factor variables. In other words, we may want to do a regression analysis
where the dependent variable is a dummy variable and the independent vari-
able or variables may be interval variables. For example:

• An economist may want to investigate the incidence of failure of savings
and loan banks as related to the size of their deposits. The dependent vari-
able can be coded as

y = 1 if the bank succeeded for five years,

= 0 if it failed within the five-year period.

The independent variable is the average size of deposits at the end of the
first year of business.

• A biologist investigating the effect of pollution on the survival of a certain
species of organism can use the dependent variable

y = 1 if an individual of the species survived to adulthood,

= 0 if it died prior to adulthood.

The independent variable is the level of pollution as measured in the habitat
of this particular species.

• A study to determine the effect of an insecticide on insects can use a
dependent variable defined as
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y = 1 if an individual insect exposed to the insecticide dies,

= 0 if the individual does not die.

The independent variable is the strength of the insecticide.

In experiments of this type, the independent variable is often called the
“dose” and the dependent variable the “response.” In fact, this approach to
modeling furnishes the foundation for a branch of statistics called bioassay.
We will briefly discuss some methods used in bioassay later in this section.
The reader is referred to Finney (1971) for a complete discussion of this
subject.

A number of special procedures for analyzing models with a dichotomous
dependent variable have been developed. Two such methods, which we will
present in some detail, are as follows:

1. The standard linear model,

y = β0 + β1x + ε.

2. The logistic regression model,

y = exp(β0 + β1x)
1 + exp(β0 + β1x)

+ ε.

The first model is a straight-line fit of the data, while the second model pro-
vides a special curved line. Both have practical applications and have been
found appropriate in a wide variety of situations.

Before discussing the procedures for using sample data to estimate the
regression coefficients for either model, we will examine the effect of using a
dummy response variable.

Linear Model with a Dichotomous Dependent Variable

Dichotomous dependent or response variables occur quite often. For exam-
ple, medical researchers are interested in determining whether the amount
of a certain antibiotic given to mothers after a cesarean delivery affects the
incidence of infection. The appropriate regression model for such a study is

y = β0 + β1x + ε,

where

y = 1 if infection occurs within 2 weeks,
= 0 if not;

x = amount of the antibiotic in ml/hr; and
ε = random error (see Section 7.2), a random variable with mean zero and

variance σ 2.

The researcher is to control x at specified levels for a sample of patients.
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In this model the response variable only has values of 0 or 1, but the
expected response has a readily interpretable meaning. The expected res-
ponse is

μy|x = β0 + β1x ;

hence the response variable can be seen to have the discrete probability
distribution

y p(y)

0 1 − p

1 p

where p is the probability that y takes on the value 1, meaning that the regres-
sion model actually predicts the probability that y = 1, the probability of a
patient suffering a postoperative infection. In other words, the researcher is
modeling the probability of postoperative infection for different strengths of
the antibiotic.

Unfortunately, special problems arise with the regression process when
the response variable is dichotomous. Recall that the error terms in a regres-
sion model should have a normal distribution with a constant variance for all
observations. In the model that uses a dummy variable for a dependent vari-
able, the error terms are neither normal nor do they have a constant variance.

According to the definition of the dependent variable, the error terms will
have the values

ε = 1 − β0 − β1x, when y = 1,

and

ε = −β0 − β1x, when y = 0.

Obviously the assumption of normality does not hold for this model. Addi-
tionally, since y is a binomial variable, the variance of y is

σ 2 = p(1 − p).

However, p = μy|x = β0 + β1x ; hence,

σ 2 = (β0 + β1x)(1 − β0 − β1x).

Clearly the variance depends on x, which is a violation of the equal variance
assumption.

Finally, since μy|x is really a probability, its values are bounded by 0 and 1.
This imposes a constraint on the regression model that limits the estimation
of the regression parameters. In fact, a linear model may predict values for
the dependent variable that are negative or larger than 1 even for values of the
independent variable that are within the range of the sample data.

While these violations of the assumptions cause a certain amount of diffi-
culty, solutions are available.

• The problem of nonnormality is mitigated by recalling that the central
limit theorem indicated that the sampling distribution of the mean will be



530 Chapter 11 Other Linear Models

approximately normal for reasonably large samples. However, even in the
case of a small sample, the estimates of the regression coefficients and
consequently the estimated responses are unbiased point estimates.

• The problem of unequal variances is solved by the use of a procedure known
as weighted least squares (discussed in the following subsection).

• If the linear model predicts values for μy|x that are outside the interval, we
choose a curvilinear model that does not. The logistic regression model is
one such choice.

Weighted Least Squares

We have noted that estimates of regression coefficients are those that result
from the minimization of the residual sum of squares. This procedure treats
each observation alike; that is, each observation is given equal weight in com-
puting the sum of squares. However, when the variances of the observations
are not constant, it is appropriate to weight observations differently. In the
case of nonconstant variances, the appropriate weight to be assigned to the
ith observation is

wi = 1/σ 2
i ,

where σ 2
i the variance of the ith observation. This weights observations with

large variances smaller than those with small variances. In other words, more
“reliable” observations provide more information and vice versa.

Weighted least squares estimation is performed by a relatively simple mod-
ification of ordinary (unweighted) least squares. Determine the appropriate
weights (or obtain reasonable estimates from a sample) and construct the
matrix W,

W =

⎡⎢⎢⎢⎢⎢⎣
w1 0 · · · 0
0 w2 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 · · · wn

⎤⎥⎥⎥⎥⎥⎦,

where wi is the weight assigned to the ith observation. The weighted least
squares estimates of the regression coefficients are then found by

B̂ = (X′WX)−1X′WY.

The estimated variances of these coefficients are the diagonal elements of

s2
B̂

= MSE(X′WX)−1.

All other estimation and inference procedures are performed in the usual
manner, except that the actual values of sums of squares as well as mean
squares reflect the numerical values of the weights; hence they will not have
any real interpretation. All computer programs have provisions for performing
this analysis.
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The problem, of course, is how to find the values of σ 2
i needed to compute

the wi. In the model with a dichotomous response3 variable, σ 2
i is equal to

pi(1 − pi), where pi is the probability that the ith observations is 1. We do not
know this probability, but according to our model

pi = β0 + β1xi.

Therefore, a logical procedure for doing weighted least squares to obtain esti-
mates of the regression coefficients is as follows:

1. Use the desired model and perform an ordinary least squares regression to
compute the predicted value of y for all xi. Call these μ̂i.

2. Estimate the weights by

ŵi = 1
μ̂i(1 − μ̂i)

.

3. Use these weights in a weighted least squares and obtain estimates of the
regression coefficients.

4. This procedure may be iterated until the estimates of the coefficients sta-
bilize. That is, repetition is stopped when estimates change very little from
iteration to iteration.

Usually the estimates obtained in this way will stabilize very quickly, making
step 4 unnecessary. In fact, in many cases, the estimates obtained from the
first weighted least squares will differ very little from those obtained from
the ordinary least squares procedure. Thus, ordinary least squares does give
satisfactory results in many cases.

Although the estimates of coefficients usually change little due to weight-
ing, the confidence and prediction intervals for the response will reflect the
relative degrees of precision based on the appropriate variances. That is,
intervals for observations having small variances will be smaller than those
observations with large variances. However, even here the differences due to
weighting may not be very large.

EXAMPLE 11.4 In a recent study of urban planning in Florida, a survey was taken of 50
cities, 24 of which used tax increment funding (TIF), and 26 did not. One
part of the study was to investigate the relationship between the presence or
absence of TIF and the median family income of the city. The data are given in
Table 11.8.

The linear model chosen to describe these data is

y = β0 + β1x + ε,

3Weighted least squares is also used for other applications where the variance of the random error
is not constant. See, for example, Freund and Wilson (1998, Section 10.3).
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Table 11.8

Data from Urban
Planning Study

y INCOME y INCOME

0 9.2 0 12.9
0 9.2 1 9.6
0 9.3 1 10.1
0 9.4 1 10.3
0 9.5 1 10.9
0 9.5 1 10.9
0 9.5 1 11.1
0 9.6 1 11.1
0 9.7 1 11.1
0 9.7 1 11.5
0 9.8 1 11.8
0 9.8 1 11.9
0 9.9 1 12.1
0 10.5 1 12.2
0 10.5 1 12.5
0 10.9 1 12.6
0 11.0 1 12.6
0 11.2 1 12.6
0 11.2 1 12.9
0 11.5 1 12.9
0 11.7 1 12.9
0 11.8 1 12.9
0 12.1 1 13.1
0 12.3 1 13.2
0 12.5 1 13.5

where

y = 0 if the city did not use TIF,
= 1 if it did;

x = median income of the city; and
ε = the random error.

We thus have a model with a dichotomous response variable.

Solution The first step in obtaining the desired estimates of the regression
coefficients is to perform an ordinary least squares regression. The results
are given in Table 11.9. The values of the estimated coefficients are used to
obtain the estimated values μ̂i for each x, which are then used to calculate
weights for performing weighted least squares. Caution: The linear model can
produce μ̂i values less than 0 or greater than 1. If this occurs, the weights will
be undefined and an alternative model, such as the logistic model (see next
subsection), must be considered. The predicted values and weights are given
in Table 11.10. Note that none of the μ̂i is less than 0 or more than 1.

The computer output of the weighted least squares regression is given
in Table 11.11. Note that these estimates differ very little from the ordinary
least squares estimates in Table 11.9. Rounding the parameter estimates in the
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Table 11.9

Regression of Income
on TIF

Dependent Variable: Y
Analysis of Variance
Sum of Mean

Source df Squares Square F Value Pr > F

Model 1 3.53957 3.53957 19.003 0.0001
Error 48 8.94043 0.18626
C Total 49 12.48000

Parameter Estimates
Parameter Standard T for H0:

Variable df Estimate Error Parameter=0 Pr > |T|

INTERCEP 1 −1.818872 0.53086972 −3.426 0.0013
INCOME 1 0.205073 0.04704277 4.359 0.0001

Table 11.10

Calculated Weights for
Weighted Regression

Y INCOME PRED WEIGHT Y INCOME PRED WEIGHT

0 9.2 0.068 15.821 0 12.9 0.827 6.976
0 9.2 0.068 15.821 1 9.6 0.150 7.850
0 9.3 0.088 12.421 1 10.1 0.252 5.300
0 9.4 0.109 10.312 1 10.3 0.293 4.824
0 9.5 0.129 8.881 1 10.9 0.416 4.115
0 9.5 0.129 8.881 1 10.9 0.416 4.115
0 9.5 0.129 8.881 1 11.1 0.457 4.029
0 9.6 0.150 7.850 1 11.1 0.457 4.029
0 9.7 0.170 7.076 1 11.1 0.457 4.029
0 9.7 0.170 7.076 1 11.5 0.539 4.025
0 9.8 0.191 6.476 1 11.8 0.601 4.170
0 9.8 0.191 6.476 1 11.9 0.622 4.251
0 9.9 0.211 5.999 1 12.1 0.663 4.472
0 10.5 0.334 4.493 1 12.2 0.683 4.619
0 10.5 0.334 4.493 1 12.5 0.745 5.258
0 10.9 0.416 4.115 1 12.6 0.765 5.563
0 11.0 0.437 4.065 1 12.6 0.765 5.563
0 11.2 0.478 4.008 1 12.6 0.765 5.563
0 11.2 0.478 4.008 1 12.9 0.827 6.976
0 11.5 0.539 4.025 1 12.9 0.827 6.976
0 11.7 0.580 4.106 1 12.9 0.827 6.976
0 11.8 0.601 4.170 1 12.9 0.827 6.976
0 12.1 0.663 4.472 1 13.1 0.868 8.705
0 12.3 0.704 4.794 1 13.2 0.888 10.062
0 12.5 0.745 5.258 1 13.5 0.950 20.901

output we get the desired regression equation

μ̂y|x = −1.980 + 0.219(INCOME).

The p value of 0.0001 suggests that median income does have a bearing on the
participation in TIF, but the R-Square value of 0.45 indicates a rather poor fit.
The resulting model can be used, for example, to estimate the probability that
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Table 11.11

Weighted Regression of
Income on TIF

Model: MODEL1
Dependent Variable: Y

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Pr > F

Model 1 36.49604 36.49604 38.651 0.0001
Error 48 45.32389 0.94425
C Total 49 81.81993

Root MSE 0.97172 R-square 0.4461
Dep Mean 0.45216 Adj R-sq 0.4345
C.V. 214.90837

Parameter Estimates
Parameter Standard T for H0:

Variable df Estimate Error Parameter=0 Pr < |T|

INTERCEP 1 −1.979665 0.39479503 −5.014 0.0001
INCOME 1 0.219126 0.03524632 6.217 0.0001

a city with median income of $10,000 uses TIF is −1.980 + 0.219(10) = 0.213.
That is, there is about a 21% chance that a city with median income of $10,000
is participating in TIF.

To illustrate the fact that the weighted least squares estimate stabilizes
quite rapidly, two more iterations were performed. The results are

Iteration 2: μ̂y|x = −1.992 + 0.2200(INCOME)

and

Iteration 3: μ̂y|x = −2.015 + 0.2218(INCOME).

The regression estimates change very little, and virtually no benefit in the
standard error of the estimates is realized by the additional iterations.

The estimates of parameters using weighted least squares often differ very
little from those obtained by ordinary least squares. The major difference in the
results occurs in the standard errors of the estimated mean (or predicted indi-
vidual) values, which are smaller for those observations having larger weights
(and vice versa). In other words, observations with smaller variances will be
predicted with greater precision. Thus for a binomial response variable this
means larger variances for estimates near 0.5 and smaller variances for esti-
mates near 0 or 1.

Figure 11.3 shows the actual, predicted, and 0.95 confidence interval values
for the conditional mean for both the unweighted and weighted estimates.
The predicted values are indeed very similar, but the confidence intervals are
somewhat narrower at the extreme values for the weighted estimates (where
the variances are smaller).
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Plots of Response for
Unweighted and
Weighted Regressions
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Note that neither the weighted nor unweighted regressions estimate values
less than 0 nor greater that 1 in the range of the data (although the confidence
intervals do.) However, for the weighted analysis the intervals are slightly
narrower at the upper and lower ranges of the response but not sufficiently
narrow to avoid including these impossible values.

The fact that the linear model often does not do well when estimating
probabilities near 0 and 1 suggests the use of alternate models such as the
logistic model presented next. However the linear model can be useful as a
first approximation, and is also more easily applied in more complex situations
such as multiple regression or analysis of variance models. ■
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Logistic Regression

If a simple linear regression equation model using weighted least squares
violates the constraints on the model, we may need to use a curvilinear model.
One such model with a wide range of applicability is the logistic regression
model given early in Section 11.7:

μy|x = exp(β0 + β1x)
1 + exp(β0 + β1x)

.

The curve described by the logistic model has the following properties:

• As x becomes large, μ̂y|x approaches 1 if β1 > 0, or approaches 0 if β1 < 0.
• μy|x = 1/2 when x = −(β0/β1).
• μy|x is monotone, that is, the curve either increases (or decreases) every-

where.

A typical logistic regression function is shown in Fig. 11.4. Note that the shape
of the graph is sigmoidal or “S” shaped. This feature makes it more useful when
there are observations for which the response probability is near 0 or 1 since
the curve can never go below 0 or above 1.

While the function itself appears very complex, it is, in fact, relatively
easy to use. The model has two unknown parameters, β0 and β1. It is not
coincidental that these parameters have the same symbols as the simple lin-
ear regression model. Estimating the two parameters from sample data is
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reasonably straightforward. We first make a logit transformation of the form

μp = ln
(

μy|x
1 − μy|x

)
,

where ln is the natural logarithm. Substituting this transformation for μy|x in
the logistic model results in a model of the form

μp = β0 + β1x + ε,

which is a simple linear regression model. Of course, the values of the μp

are usually not known; hence preliminary estimates must be used. If multi-
ple observations exist for each x, preliminary estimates of the μy|x are simply
the sample proportions. If such multiples are not available, estimates from a
preliminary linear model may be used.

The logit transformation linearizes the model, but does not eliminate the
problem of nonconstant variance. Therefore, the regression coefficients in
this simple linear regression model should be estimated using weighted least
squares. We will illustrate the procedure with an example where multiple
observations for each value of x are used as preliminary estimates of μy|x.

EXAMPLE 11.5 A toxicologist is interested in the effect of a toxic substance on tumor in-
cidence in a laboratory animal. A sample of animals is exposed to various
concentrations of the substance, and subsequently examined for the presence
or absence of tumors. The response for an individual animal is then either 1 if
a tumor is present or 0 if not. The independent variable is the concentration
of the toxic substance (CONC). The number of animals at each concentration
(N) and the number having tumors (NUMBER) comprise the results, which
are shown in Table 11.12.

Solution Again we have a model with a dichotomous response variable.
However, in this example we have repeated observations for each value of the
response variable; hence we can directly use the proportion having tumors as
the preliminary estimates of μy|x.

The first step is to use the logit transformation to “linearize” the model. The
second step consists of the use of weighted least squares to obtain estimates
of the unknown parameters. Because the experiment was conducted at only
six distinct values of the independent variable, concentration of the substance,
the task is not difficult.

Table 11.12

Data on Tumors Related
to Toxic Substance

OBS CONC N NUMBER

1 0.0 50 2
2 2.1 54 5
3 5.4 46 5
4 8.0 51 10
5 15.0 50 40
6 19.5 52 42
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Table 11.13

Data for Linear
Regression Estimation

OBS CONC N NUMBER PHAT LOG W

1 0.0 50 2 0.04000 −3.17805 1.92000
2 2.1 54 5 0.09259 −2.28238 4.53704
3 5.4 46 5 0.10870 −2.10413 4.45652
4 8.0 51 10 0.19608 −1.41099 8.03922
5 15.0 50 40 0.80000 1.38629 8.00000
6 19.5 52 42 0.80769 1.43508 8.07692

Table 11.14

Logistic Regression
Estimates

Dependent Variable: LOG

Analysis of Variance
Sum of Mean

Source df Squares Square F Value Pr > F

Model 1 97.79495 97.79495 56.063 0.0017
Error 4 6.97750 1.74437
C Total 5 104.77245

Root MSE 1.32075 R-square 0.9334
Dep Mean −0.41382 Adj R-sq 0.9168
C.V. −319.15882

Parameter Estimates
Parameter Standard T for H0:

Variable df Estimate Error Parameter = 0 Pr > |T|

INTERCEP 1 −3.138831 0.42690670 −7.352 0.0018
CONC 1 0.254274 0.03395972 7.488 0.0017

We calculate p̂, the proportion of ones at each value of CONC. These are
given in Table 11.13 under the column PHAT. We then make the logit transfor-
mation on the resulting proportions:

LOG = ln
[

p̂

1 − p̂

]
= ln

[
PHAT

1 − PHAT

]
.

These are given in Table 11.13 under the column LOG.
Because the variances are still not constant, it is necessary to perform

a weighted least squares regression, using LOG as the dependent variable,
concentration as the independent variable, and weights computed as

ŵi = ni p̂i(1 − p̂i),

where ni = total number of animals at concentration xi, and p̂i = sample
proportion of animals with tumors at concentration xi. These values are listed
in Table 11.13 under the column W.

The results of the weighted least squares estimation are given in Table 11.14.
The model is certainly significant with a p value of 0.0017. The coefficient of
determination appears to be a respectable 0.93, but this is the fit to the means
rather than the original data. The residual variation is somewhat difficult to
interpret since we are using the log scale.
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The coefficients of the estimated simple linear regression model are round-
ed to give

LÔG = −3.14 + 0.25x.

This can be transformed back into the original units using the transformation

ESTPROP =
[

antilog(LÔG)

1 + antilog(LÔG)

]
.

The values of the variable ESTPROP provide data to construct the estimated
logistic response curve. The data points, estimated response curve, and 0.95
confidence intervals are shown in Fig. 11.5. Note that for this model neither
the response curve nor confidence intervals have values less than 0 or greater
than 1. From this plot we can see, for example, that the estimated probability
of a tumor when the concentration is 10 units is approximately 0.35. For a
more precise estimate, we substitute 10 for CONC and obtain

LÔG = −3.139 + 0.2542(10) = −0.597.

This value is then transformed back to the original units by

antilog(−0.596) = 0.551 = μ̂y|x/(1 − μ̂y|x).

Solving for μ̂y|x results in the estimate 0.355. This means that, on the average,
there is an estimated 35.5% chance that exposure to concentrations of 10 units
results in tumors on laboratory animals. ■

Another feature of the logistic regression function is the interpretation of the
coefficient β1. Recall that we defined μp as

μp = ln
(

μy|x
1 − μy|x

)
.

The quantity {μy|x/(1 − μy|x)} is called the odds, that is, the odds in favor of
the event, in this case, having a tumor. Then μp, the log of the odds at x, is
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denoted as ln{odds at x}. Suppose we consider the same value at (x + 1). The
value

μp = ln
(

μy|x+1

1 − μy|x+1

)
would be ln {odds at (x + 1)}. According to the linear model, ln{odds at x} =
β0 + β1x and ln {odds at (x + 1)} = β0 + β1(x + 1). It can be shown that the
difference between the odds at (x + 1) and at x is

ln{odds at (x + 1)} − ln{odds at x} = β1,

which is equivalent to

ln{(odds at x + 1)/(odds at x)} = β1.

Taking antilogs of both sides gives the relationship

odds at (x + 1)
odds at x

= eβ1 .

The estimate of this quantity is known as the odds ratio, and is interpreted as
an increase in the odds for a unit increase in the independent variable. In our
example, β1 = 0.25; hence the odds ratio is e0.25 = 1.28. Therefore, the odds
of getting a tumor are estimated to increase by 28% with a unit increase in
concentration of the toxin.

Other Methods

The procedure presented in this section will not work for data in which one
or more of the distinct x values has a p̂ of 0 or 1, because the logit is undefined
for these values. Modifications in the definition of these extreme values that
remedy this problem can be made. One procedure is to define p̂i to be 1/2ni if
the sample proportion is zero and p̂i to be (1−1/2ni) if the sample proportion
is one, where ni is the number of observations in each factor level.

When we do not have multiple observations at some or all of the x values,
and the initial linear model provides estimates of p outside the range 0 to 1,
an alternative method is used to obtain estimates of the unknown coefficients
in the logistic regression function itself. This method is known as maximum

likelihood. The method of maximum likelihood uses the logistic function and
the distribution of Y to obtain estimates for the coefficients. The procedure is
complex and usually requires numerical method algorithms; hence logistic re-
gression of this type is done on a computer. Most computer packages equipped
to do logistic regression offer this option.

EXAMPLE 11.4 REVISITED The method we used to estimate the logistic regression for
Example 11.5 could not be used for Example 11.4 because we did not have
replicated observations for each value of the independent variable. Instead we
use the maximum likelihood principle, which is implemented here with PROC
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Table 11.15

Maximum Likelihood
Estimates

Analysis of Maximum Likelihood Estimates
Standard

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 −11.3472 3.3511 11.4660 0.0007
INCOME 1 1.0018 0.2954 11.5013 0.0007

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

INCOME 2.723 1.526 4.858
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Figure 11.6

Logistic Response
Curve for Example
11.4

LOGISTIC from the SAS System. Table 11.15 shows the portion of the output
that contains the estimated parameters and hypothesis tests.

The first thing we notice is that the maximum likelihood method does not pro-
duce the usual statistics we associate with a regression analysis. Instead the
statistical significance tests are provided by χ2 statistics, which indicate that
the coefficient for INCOME is statistically significant. The procedure automat-
ically computes the odds ratio, which indicates that the odds of having TIF
funding increases by 272% for each unit ($1000) increase in median income
(or more correctly, between 153% and 486% with 95% confidence).

The plot of the response curve and the 0.95 confidence intervals are shown in
Fig. 11.6. The results appear to be much more reasonable than they were for
the linear regression model.

Another curvilinear model often used with binary responses uses the cumu-
lative normal distribution instead of the logit transformation. This model is
known as the probit model. The reader is referred to Finney (1971) for a
complete discussion of the probit model and its applications. ■
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11.8 CHAPTER SUMMARY

Solution to Example 11.1 We can now see that the analysis of covari-
ance, using AGE as the covariate, is appropriate for determining the effect of
the grade of tumor on survival. However, it is not at all certain that the effect
of age is the same for all tumor grades, so a test for equal slopes is in order.
Table 11.16 shows the analysis provided by PROC GLM of the SAS System in
which the test for equality of slopes is provided by the test for significant
interaction between GRADE and AGE.

We see that the model does not fit particularly well, but this result occurs
frequently with this type of data. The interaction is statistically significant at
α = 0.05; hence we conclude that the slopes are not equal. The estimated
slopes, standard errors, and tests for the hypothesis of zero slope for the
three tumor grades are shown at the bottom of the output in Table 11.16. The
slopes do differ, but only for tumor grade 3 does there appear to be sufficient
evidence of a decrease in survival with age. This is illustrated in Fig. 11.7, which
plots the estimated survival rates for the four grades. Of course, the standard
deviation of the residuals (not shown) is nearly 30, which suggests that there
is considerable variation around these lines.

Because survival times tend to have a skewed distribution, stem and leaf
and box plots of residuals (reproduced from PROC UNIVARIATE of the SAS
System) are shown in Fig. 11.8. These plots do not suggest any major violation
of assumptions. ■

Table 11.16 Analysis of Covariance with Unequal Slopes General Linear Models Procedure

Dependent Variable: SURVIVAL
Sum of Mean

Source df Squares Square F value Pr > F

Model 7 24702.29684 3528.89955 4.07 0.0008
Error 72 62479.65316 867.77296
Corrected Total 79 87181.95000

R-Square C.V. Root MSE SURVIVAL Mean

0.283342 52.16111 29.45799 56.4750000

Source df Type III SS Mean Square F Value Pr > F

AGE 1 1389.557345 1389.557345 1.60 0.2098
GRADE 3 7937.607739 2645.869246 3.05 0.0340
AGE*GRADE 3 7137.205926 2379.068642 2.74 0.0494

T for H0: Std Error of
Parameter Estimate Parameter = 0 Pr > |T| Estimate

AGE, GRADE 1 −0.27049180 −0.29 0.7750 0.94292717
AGE, GRADE 2 −0.61521226 −1.11 0.2705 0.55407143
AGE, GRADE 3 −1.61350036 −2.61 0.0109 0.61710190
AGE, GRADE 4 0.75665954 1.34 0.1848 0.56509924
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Analysis of Residuals

An Example of Extremely Unbalanced Data

EXAMPLE 11.6 Many times an experiment is conducted under conditions in which the phys-
ical constraints on the collection of the data result in severely unbalanced
data. In fact, often these constraints result in data being completely missing
from some combinations of factors. While this problem can be addressed if
recognized in advance by using some form of incomplete design, it often is not
recognized prior to collection of the data. By using the methods developed in
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this and previous chapters, we can still obtain extremely useful results. A good
example of this is in a study of the relation between longevity (or survival) of
patients with a disease and the symptoms presented by the patients. One such
experiment is given by C. J. Maloney in the Disease Severity Quantitation,
Proceedings of the Seventh Conference on the Design of Experiments in Army
Research and Development and Testing (1961). This study presented data on
802 patients who exhibited 71 (out of a possible 128) different combinations
of the presence or absence of seven symptoms. The response variable was the
logarithm of survival time in months.

Solution The data, available on the data disk in file FW11X05, list the pres-
ence (1) or absence (0) of each of the seven symptoms and the mean log
survival of all patients with a particular symptom pattern. Excerpts from this
data set are presented in Table 11.17. The symptoms are labeled x1 to x7. Note
that there were two patients who exhibited symptoms 1, 3, 4, and 5, and these
two patients’ mean log survival time was 1.66.

What we would like to do now is investigate the relationship between
symptoms and survival. We can do this using the general linear model with
appropriately defined variables. The variables we will use in the model are

x1 to x7: indicator variables that indicate presence (1) or absence (0) of each
symptom,

LOGSURV: mean log of survival, and
N: the number of patients with that combination of symptoms.

Although the data on the file FW11X05 only contains the mean survival time
of patients with the same set of symptoms, the original report gave the analysis
of variance results using the individual survival times to test the hypothesis
of no differences among symptom patterns. This analysis is reproduced in
Table 11.18, which clearly indicates that such differences exist.

We proceed to investigate the relationship between the symptoms and sur-
vival. However, what type of analysis would be useful here? The structure of
the data represents a 27 factorial experiment. That is, we have seven factors

Table 11.17

Excerpts of Cancer
Survival Data

Symptom Mean Log Patient
Pattern Survival Count
x 1 to x7

1011100 1.66 2
1111100 1.48 3
0010010 1.45 1
0000000 1.36 10

· · ·
· · ·
· · ·

1100110 0.00 1
1111101 0.00 1
1101110 0.00 1
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Table 11.18

Analysis of Variance of
Survival Times

Source df SS F Pr > F

Between patterns 70 34.06
Within patterns 731 147.61 2.41 0.005

(symptoms) with two levels of each (presence or absence). As noted in the
preceding, there are 128 possible combinations; however, only 71 were ob-
served. Also the number of patients with each of the 71 combinations differs
markedly so the data are unbalanced. Now we can use the general linear model
to adjust for the unbalance, but that analysis does not adjust for missing com-
binations. Missing cells restrict the estimation of interaction effects. That is, to
estimate any two-factor interaction, the two-way table of main effect combina-
tions must have observations in all cells. Fortunately, in this data set, all such
tables are complete; hence, the two factor interactions may be estimated. We
cannot, however, do this for any higher order interactions, but since these are
difficult to interpret, this inability does not pose a serious problem. A lack of fit
test can be used to determine whether the higher order interactions contribute
significantly to the model.

Although we can use a general linear models computer program to per-
form this analysis, it is actually easier to do it by using an ordinary regression
program and the original indicator variables to estimate main effects and the
21 products of these variables to estimate the interactions. Because we do
not have the original 802 observations, we must use weighted regression with
the weights being the number of patients in each of the 71 combinations. The
results are shown in Table 11.19.

The model is obviously statistically significant, although one would hope
to have a larger coefficient of determination. The lack of fit test is shown in
Table 11.20, and the F ratio of 1.005 shows that the model is apparently ade-
quate. In other words, we do not need to look for higher order interactions.

All of the main effect coefficients are significant and, as expected, negative,
indicating reduced survival times if a symptom is present. However, several
of the interactions are significant and positive, appearing to imply that having
some combinations of two symptoms increases survival time. However, we
must remember that interactions can only be interpreted in the presence of
the involved main effects. To understand this principle better, we show in Table
11.21 the estimated mean of survival times (PSURV) and the 95% confidence
intervals of those estimates (LO95 and UP95) for patients having all possible
combinations of symptoms 3 and 4, which have the largest positive interaction.

We can see that estimated survival times are decreased by each symptom,
and the confidence intervals do not include the estimated survival time for no
symptoms. However, patients having both symptoms have estimated survival
time not much different from each singly, and the confidence intervals overlap.
In other words, it matters little whether a patient has symptom 3, symptom 4,
or both.

From here, the modeling effort may be directed toward isolating those
symptoms that contribute the most toward survival. The problem with this
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Table 11.19 Analysis of the Cancer Data

Analysis of Variance
Sum of Mean

Source DF Squares Square F Value Prob > F

Model 28 25.53566 0.91199 4.492 0.0001
Error 42 8.52676 0.20302
C total 70 34.06242

Root MSE 0.45058 R-square 0.7497
Dep Mean 1.03884 Adj R-sq 0.5828
C.V. 43.37290

SURVIVAL TIME OF CANCER PATIENTS
Parameter estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter = 0 Prob > |T|

INTERCEP 1 1.410840 0.06963577 20.260 0.0001
X1 1 −0.190864 0.06963453 −2.741 0.0090
X2 1 −0.167488 0.07074679 −2.367 0.0226
X3 1 −0.196229 0.07808019 −2.513 0.0159
X4 1 −0.262450 0.07411915 −3.541 0.0010
X5 1 −0.313018 0.07884488 −3.970 0.0003
X6 1 −0.582325 0.09642791 −6.039 0.0001
X7 1 −0.561891 0.15368040 −3.656 0.0007
X1X2 1 0.007425 0.07083303 0.105 0.9170
X1X3 1 0.136356 0.07549957 1.806 0.0781
X1X4 1 −0.056217 0.07842495 −0.717 0.4774
X1X5 1 0.182230 0.08439668 2.159 0.0366
X1X6 1 0.128829 0.10643388 1.210 0.2329
X1X7 1 0.301535 0.18643798 1.617 0.1133
X2X3 1 −0.022920 0.07648145 −0.300 0.7659
X2X4 1 0.053007 0.07878437 0.673 0.5048
X2X5 1 −0.035575 0.08511865 −0.418 0.6781
X2X6 1 0.068764 0.10793314 0.637 0.5275
X2X7 1 −0.003502 0.19043172 −0.018 0.9854
X3X4 1 0.247282 0.08525274 2.901 0.0059
X3X5 1 0.076423 0.09231251 0.828 0.4124
X3X6 1 0.242128 0.13206264 1.833 0.0738
X3X7 1 −0.328161 0.28108994 −1.167 0.2496
X4X5 1 0.166316 0.08628999 1.927 0.0607
X4X6 1 0.153523 0.14087613 1.090 0.2820
X4X7 1 0.199206 0.21549228 0.924 0.3605
X5X6 1 −0.065562 0.14843581 −0.442 0.6610
X5X7 1 −0.020747 0.31871820 −0.065 0.9484
X6X7 1 0.678453 0.29574035 2.294 0.0269

Table 11.20

Lack of Fit Test

Source df SS MS F

Full model (ANOVA) 70 34.06
Restricted Model (Regression) 28 25.54
Lack of Fit 42 8.52 0.2029 1.005
Error, Full Model 731 147.61 0.2019
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Table 11.21

Interpreting Interaction:
Survival Time of Cancer
Patients

X3 X4 X3X4 PSURV LO95 UP95

0 0 0 1.41084 1.27031 1.55137
1 0 0 1.21461 1.06471 1.36452
0 1 0 1.14839 1.03115 1.26563
1 1 1 1.19944 1.01397 1.38491

approach is that even with all symptoms in the model, the overall fit to the data
may be somewhat suspect as indicated by the low coefficient of determination.

■

The primary purpose of this chapter is to present the general linear model

as a unifying principle underlying most of the statistical methods presented so
far. Although this very general approach is not needed for all applications, it
is very useful in the following situations:

• By considering the analysis of variance as an application of regression, the
concept of inferences for partial coefficients allows the analysis of unbal-
anced factorial and other multifactor analyses of variance.

• Allowing the use of factor levels and quantitative independent variables in
a model opens up a wide variety of applications, including the analysis of
covariance.

• Also presented in this chapter are some methods used when the depen-
dent variable is dichotomous, including applications of linear and logistic
models.

11.9 CHAPTER EXERCISES

EXERCISES

1. In a study for determining the effect of weaning conditions on the weight of
9-week-old pigs, data on weaning (WWT) and 9-week (FWT) weights were
recorded for pigs from three litters. One of these litters was weaned at
approximately 21 days (EARLY), the second at about 28 days (MEDIUM),
and the third at about 35 days (LATE). The data are given in Table 11.22.
Perform an analysis of covariance using FWT as the response, weaning
time as the factor, and WWT as the covariate. Comment on the results. Is
there a problem with assumptions?

2. In a study of livestock pricing, data were collected on cattle being sold at
two auction markets. The response is PRICE (dollars per hundred pounds),
the factors are the MARKET, the CLASS of livestock (calf or heifer), the
GRADE (good, choice, and prime), and the weight (WGT) of the animal
(100 pounds). These types of data are invariably unbalanced (Table 11.23).
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Table 11.22

Data for Exercise 1

EARLY MEDIUM LATE

WWT FWT WWT FWT WWT FWT

9 37 16 48 18 45
9 28 16 45 17 38

12 40 15 47 16 35
11 45 14 46 15 38
15 44 14 40 14 34
15 50 12 36 14 37
14 45 10 33 13 37

(a) Perform an analysis of variance using MARKET, CLASS, and GRADE
as factors. Depending on the computer program you use, you may not
wish to estimate all interactions.

(b) Add weight as a covariate. Interpret results.
(c) Perform an analysis to determine whether the effect of weight is the

same for both calves and heifers. Why could this be a useful analysis?

3. Perform a logistic regression for the data in Table 11.24 using the regression
method presented in the text. If a computer program for the maximum
likelihood method is available, use it and compare the results.

4. The data in Table 11.25 concern the growth of pines in Colorado. The
variables for a set of randomly sampled trees are:

RINGS: the number of rings, which is the age of the tree,
CIRCUM: the circumference of the tree at four feet, and
SIDE: the side of the mountain on which the tree is found:

NORTH: the north slope,
SOUTH: the south slope.

We want to establish the relationship of tree size to age and determine
how that relationship may be affected by the side on which the tree is
located.
(a) Perform an analysis of covariance for CIRCUM using SIDE as the fac-

tor and RINGS as the covariate. Interpret results as they apply to the
questions asked.

(b) Perform a test to see whether the relationship of RINGS to CIRCUM
is different for the two sides of the mountain. How do these results
change the interpretations in part (a)?

(c) Define GROWTH as the ratio (CIRCUM)/(RINGS). What does this vari-
able mean and how can it be used to answer the questions posed in the
problem statement?

5. It has been proposed that the size of the ventricle, a physiological feature
of the brain as measured by X-rays, may be associated with abnormal EEG
(brain wave) readings. Table 11.26 shows ventricle sizes and results of
EEG readings (coded 0 for normal and 1 for abnormal) for a set of 71
elderly patients.
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Table 11.23

Data for Exercise 2

MARKET 14 MARKET 21

CLASS GRADE PRICE WGT CLASS GRADE PRICE WGT

CALF CHOICE 47.82 1.60 CALF CHOICE 46.65 2.06
CALF CHOICE 51.82 2.20 CALF CHOICE 48.00 2.90
CALF CHOICE 56.43 2.10 CALF CHOICE 46.88 2.26
CALF CHOICE 56.34 2.05 CALF CHOICE 48.75 2.05
CALF CHOICE 57.63 1.90 CALF CHOICE 32.64 1.98
CALF CHOICE 55.00 2.10 CALF CHOICE 45.75 2.12
CALF CHOICE 49.09 2.20 CALF CHOICE 54.00 2.00
CALF GOOD 46.24 2.30 CALF CHOICE 53.25 2.05
CALF GOOD 38.47 2.30 CALF CHOICE 52.50 1.85
CALF GOOD 41.08 2.30 CALF CHOICE 50.25 2.45
CALF GOOD 40.90 1.65 CALF CHOICE 51.00 1.95
CALF GOOD 45.91 2.45 CALF GOOD 18.40 2.45
CALF GOOD 45.00 1.90 CALF GOOD 43.50 2.20
CALF GOOD 42.96 2.20 CALF GOOD 40.88 3.45
CALF PRIME 58.13 2.40 CALF GOOD 29.25 2.00
CALF PRIME 63.75 2.35 CALF GOOD 43.50 2.25
CALF PRIME 60.00 2.20 CALF GOOD 45.75 2.40
HEIFER CHOICE 48.24 2.55 CALF GOOD 36.75 1.65
HEIFER CHOICE 38.35 3.05 CALF GOOD 22.50 1.10
HEIFER GOOD 39.00 2.50 CALF PRIME 62.25 2.35
HEIFER GOOD 44.11 2.55 CALF PRIME 60.00 2.10
HEIFER GOOD 45.00 2.60 CALF PRIME 57.75 1.85
HEIFER GOOD 44.11 2.55 CALF PRIME 60.60 2.10
HEIFER GOOD 41.38 2.90 CALF PRIME 60.75 1.95
HEIFER GOOD 34.41 3.40 CALF PRIME 56.25 2.35
HEIFER PRIME 58.23 2.55 CALF PRIME 63.00 2.00

CALF PRIME 59.63 2.25
CALF PRIME 59.25 2.00
CALF PRIME 56.63 2.35
CALF PRIME 52.88 2.15
CALF PRIME 58.50 2.05
CALF PRIME 55.88 1.80
CALF PRIME 55.88 2.25
CALF PRIME 46.50 2.20
HEIFER CHOICE 40.50 2.60
HEIFER CHOICE 40.88 3.35
HEIFER CHOICE 32.47 4.23
HEIFER CHOICE 37.88 3.10
HEIFER CHOICE 36.75 3.75
HEIFER CHOICE 37.13 3.60
HEIFER CHOICE 44.25 2.70
HEIFER CHOICE 40.50 2.70
HEIFER CHOICE 39.75 3.05
HEIFER CHOICE 34.50 3.65
HEIFER GOOD 33.38 2.02
HEIFER GOOD 33.00 3.95
HEIFER PRIME 57.75 2.55
HEIFER PRIME 42.00 2.70
HEIFER PRIME 42.38 2.90
HEIFER PRIME 60.00 2.65



550 Chapter 11 Other Linear Models

Table 11.24

Data for Exercise 3

Sample

Concentration Size Response

2.6 50 6
3.8 48 16
5.1 46 24
7.7 49 42

10.2 50 44

Table 11.25 Data on Tree Rings and Circumference

SIDE CIRCUM RINGS SIDE CIRCUM RINGS SIDE CIRCUM RINGS

NORTH 93 33 NORTH 70 25 SOUTH 155 62
NORTH 164 52 NORTH 44 8 SOUTH 34 27
NORTH 138 43 NORTH 44 10 SOUTH 58 24
NORTH 125 23 NORTH 63 14 SOUTH 55 13
NORTH 129 25 NORTH 133 32 SOUTH 105 39
NORTH 65 19 NORTH 239 42 SOUTH 66 24
NORTH 193 44 NORTH 133 25 SOUTH 70 29
NORTH 68 12 SOUTH 35 20 SOUTH 56 26
NORTH 139 32 SOUTH 30 25 SOUTH 38 11
NORTH 81 20 SOUTH 42 35 SOUTH 43 23
NORTH 73 16 SOUTH 30 18 SOUTH 47 33
NORTH 130 26 SOUTH 21 18 SOUTH 157 65
NORTH 147 44 SOUTH 79 30 SOUTH 100 52
NORTH 51 9 SOUTH 60 29 SOUTH 22 16
NORTH 56 15 SOUTH 63 20 SOUTH 105 52
NORTH 61 7 SOUTH 53 28
NORTH 115 11 SOUTH 131 52

(a) Perform an unweighted linear regression to predict the probability of
an abnormal EEG. Plot the predicted values.

(b) Because the predicted values from the linear regression are not
bounded by 0 and 1, it is not possible to use the predicted values for
weighted regression or the linearized version of the logistic regres-
sion. An ad hoc procedure is to assign arbitrarily minimum and maxi-
mum predicted values of 0.05 and 0.95, respectively, for this purpose.
Perform both a weighted linear and linearized logistic regression using
this procedure.

(c) If a program is available, perform a logistic regression. Plot residuals
and compare results with those from part (b).

6. We desire to test the effectiveness of a sales promotion on frozen peas.
In two cities (CITY), eight stores (STORE) (numbered 1 to 8 for each
city) were randomly divided into two groups of 4. In one group (stores
labeled 1–4) a 4-week promotion campaign was conducted, while nothing
was done in the other stores. The variable TRT is used to distinguish the
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Table 11.26 Data for Exercise 5

VENT EEG VENT EEG VENT EEG VENT EEG VENT EEG VENT EEG

53 0 37 0 63 0 25 0 60 0 58 0
56 0 59 0 50 0 58 1 70 0 68 1
50 0 59 0 51 0 76 0 74 1 62 1
41 0 65 0 50 0 94 1 73 1 72 0
45 1 56 0 56 0 75 0 76 0 78 1
50 0 68 0 47 0 66 0 42 1 76 1
57 0 65 0 51 0 83 1 51 0 80 1
70 0 68 1 49 0 56 1 58 1 58 1
64 1 60 1 57 0 54 0 58 0 63 1
61 0 70 0 40 0 51 1 58 1 70 1
57 1 84 0 58 0 51 1 57 0 85 1
50 0 48 0 67 1 62 0 65 0

Table 11.27 Sales of Peas

WEEK

CITY STORE TRT SALES CUST SALES CUST SALES CUST SALES CUST

A 1 PROM 463 409 809 557 531 605 563 415
A 2 PROM 958 796 1219 880 890 901 1287 870
A 3 PROM 2051 2067 1947 1502 1863 1984 2597 1770
A 4 PROM 786 601 837 597 733 805 1965 673
A 5 CONT 1000 1305 1295 1597 1193 1201 1145 1059
A 6 CONT 635 775 608 807 858 957 1293 1021
A 7 CONT 112 143 223 257 288 307 152 146
A 8 CONT 826 958 1314 1276 531 757 1400 1159
B 1 PROM 1294 706 1395 897 1014 509 1131 651
B 2 PROM 1570 942 1039 719 1188 567 1506 801
B 3 PROM 3042 1506 2626 1795 2894 1474 2650 1345
B 4 PROM 1738 1005 1223 897 2467 1304 2103 1249
B 5 CONT 1139 480 741 497 1045 658 1028 805
B 6 CONT 1228 887 1588 1047 1237 936 1402 1003
B 7 CONT 2642 1706 2476 1972 2509 1679 2510 2056
B 8 CONT 4319 2807 3654 2476 3743 2911 3139 2517

promotion stores (PROM), while the others are labeled CONT. No price
specials or other marketing efforts were conducted during the time period.
The response variable is the number of 10-oz. packages (equivalent) sold
weekly. Recognizing that sales are affected by store size and general sales
activity, the weekly customer count (CUST) was also recorded. The data
are given in Table 11.27.

There are two aspects to the analysis of this data set:
(1) the design of the experiment and
(2) the use of the customer count variable.
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The design is a split plot, with stores as the main plots and weeks as
subplots.4 Note that there are four independently chosen stores for each
city and sales cell.
(a) Perform an analysis of covariance of sales, using customer count as

the covariate. Are the results useful? (Hint: Compare estimated control
versus promotion sales for a small and large customer count.)

(b) Check for parallel lines for control versus treatment.5 What do these
results imply?

(c) Perform an analysis of variance using sales per customer as the re-
sponse variable. Compare results with those of parts (a) and (b). Which
of these analyses appears to be the most useful?

7. Skidding is a major contributor to highway accidents. The following ex-
periment was conducted to estimate the effect of pavement and tire tread
depth on spinout speed, which is the speed (in mph) at which the rear
wheels lose friction when negotiating a specific curve. There are two as-
phalt (ASPHALT1 and ASPHALT2) pavements and one concrete pavement
and three tire tread depths (1-, 2-, and 6-sixteenths of an inch.). This is a
factorial experiment, but the number of observations per cell is not the
same. The data are given in Table 11.28.
(a) Perform the analysis of variance using both the dummy variable and

“standard” approaches. Note that the results are not the same although
the differences are not very large.

(b) The tread depth is really a measured variable. Perform any additional
or alternative analysis to account for this situation.

(c) It is also known that the pavement types can be characterized by their
coefficient of friction at 40 mph as follows:

ASPHALT1: 0.35,
ASPHALT2: 0.24,
CONCRETE: 0.48.

Again, perform an alternative analysis suggested by this information.
Which of the three analyses is most useful?

8. In Exercise 13 of Chapter 1, a study to examine the difference in half-
life of the aminoglycosides Amikacin (A) and Gentamicin (G) was done.
DO MG KG is the dosage of the drugs. The data are reproduced in
Table 11.29.
(a) Perform an analysis of covariance using DRUG as the treatment and

DO MG KG as covariate with HALF-LIFE as the response variable.
(b) Test for parallel slopes. (See discussion of unequal slopes in Sec-

tion 11.5.)

4Actually this may be considered a repeated measurement design, but the split plot analogy works
well here.
5This may be done by a separate analysis of convariance for each treatment or by a program that
allows the specification of an interaction between customer count and treatment.
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Table 11.28

Spinout Speeds

OBS PAVE TREAD SPEED

1 ASPHALT1 1 36.5
2 ASPHALT1 1 34.9
3 ASPHALT1 2 40.2
4 ASPHALT1 2 38.2
5 ASPHALT1 2 38.2
6 ASPHALT1 6 43.7
7 ASPHALT1 6 43.0
8 CONCRETE 1 40.2
9 CONCRETE 1 41.6

10 CONCRETE 1 42.6
11 CONCRETE 1 41.6
12 CONCRETE 2 40.9
13 CONCRETE 2 42.3
14 CONCRETE 2 45.0
15 CONCRETE 6 47.1
16 CONCRETE 6 48.4
17 CONCRETE 6 51.2
18 ASPHALT2 1 33.4
19 ASPHALT2 1 38.2
20 ASPHALT2 1 34.9
21 ASPHALT2 2 36.8
22 ASPHALT2 2 35.4
23 ASPHALT2 2 35.4
24 ASPHALT2 6 40.2
25 ASPHALT2 6 40.9
26 ASPHALT2 6 43.0

Table 11.29 Half-Life of Aminoglycosides and Dosage by Drug Type

PAT DRUG HALF-LIFE DO MG KG PAT DRUG HALF-LIFE DO MG KG

1 G 1.60 2.10 23 A 1.98 10.00
2 A 2.50 7.90 24 A 1.87 9.87
3 G 1.90 2.00 25 G 2.89 2.96
4 G 2.30 1.60 26 A 2.31 10.00
5 A 2.20 8.00 27 A 1.40 10.00
6 A 1.60 8.30 28 A 2.48 10.50
7 A 1.30 8.10 29 G 1.98 2.86
8 A 1.20 2.60 30 G 1.93 2.86
9 G 1.80 2.00 31 G 1.80 2.86

10 G 2.50 1.90 32 G 1.70 3.00
11 A 1.60 7.60 33 G 1.60 3.00
12 A 2.20 6.50 34 G 2.20 2.86
13 A 2.20 7.60 35 G 2.20 2.86
14 G 1.70 2.86 36 G 2.40 3.00
15 A 2.60 10.00 37 G 1.70 2.86
16 A 1.00 9.88 38 G 2.00 2.86
17 G 2.86 2.89 39 G 1.40 2.82
18 A 1.50 10.00 40 G 1.90 2.93
19 A 3.15 10.29 41 G 2.00 2.95
20 A 1.44 9.76 42 A 2.80 10.00
21 A 1.26 9.69 43 A 0.69 10.00
22 A 1.98 10.00
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Table 11.30

Recognition Value for
Preschool Children

TIME OF EXPOSURE

Medium Used 5 min 10 min 15 min 20 min

TV: 49 50 43 53
39 55 38 48

Audio tape: 55 67 53 85
41 58

Written material: 66 85 69 85

68 92 62

9. In many studies using preschool children as subjects,“missing” data are a
problem. For example, a study that measured the effect of length of expo-
sure to material on learning was hampered by the fact that the small chil-
dren fell asleep during the period of exposure, thereby resulting in unbal-
anced data. The results of one such experiment are shown in Table 11.30.
The measurement was based on a “recognition” value, which consists of
the number of objects that can be associated with words. The factors were
(1) the length of time of exposure and (2) the medium used to educate the
children:
(a) Using the dummy variable model, test for differences in time of expo-

sure, medium used, and interaction. Explain your results.
(b) Do you think that the pattern of missing data is related to the factors?

Explain. How does this effect the analysis?

10. In Exercise 9 of Chapter 8, field measurements on the diameter and height
and laboratory determination of oven dry weight were obtained for a sam-
ple of plants in the warm and cool seasons. The data are given in Table 11.31.

In Chapter 8 the data were used to see how well linear and log–linear
models estimated the weight using the more easily determined field obser-
vations for the two seasons. Using the methods presented in this chapter,
determine for both models whether the equations are different for the two
seasons. Comment on the results.

11. In Exercise 12 of Chapter 8 and Exercise 11 of Chapter 10, 40 respon-
dents (subjects) were asked to judge five structures for satisfaction on
seven specific characteristics and also give an overall satisfaction index.
All responses are on a nine-point scale. The data are shown in Table 8.32.

In Chapter 8 we used regression to determine how well the overall
score is predicted by the various characteristics scores, and in Chapter 10
we analyzed the data to determine the differences in total scores among
buildings and subjects.
(a) Using the general linear model, analyze the total scores using both the

subjects and individual characteristics scores as independent factors.
Compare results with those from the regression in Chapter 8.

(b) Using the general linear model, analyze the total scores using subjects,
buildings, and individual characteristics scores as independent factors.
Compare the results of this analysis, and the analyses in Exercise 12
of Chapter 8, Exercise 11 of Chapter 10, and (a) above, and suggest the
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Table 11.31

Data for Exercise 10

COOL WARM

WIDTH HEIGHT WEIGHT WIDTH HEIGHT WEIGHT

4.9 7.6 0.420 20.5 13.0 6.840
8.6 4.8 0.580 10.0 6.2 0.400
4.5 3.9 0.080 10.1 5.9 0.360

19.6 19.8 8.690 10.5 27.0 1.385
7.7 3.1 0.480 9.2 16.1 1.010
5.3 2.2 0.540 12.1 12.3 1.825
4.5 3.1 0.400 18.6 7.2 6.820
7.1 7.1 0.350 29.5 29.0 9.910
7.5 3.6 0.470 45.0 16.0 4.525

10.2 1.4 0.720 5.0 3.1 0.110
8.6 7.4 2.080 6.0 5.8 0.200

15.2 12.9 5.370 12.4 20.0 1.360
9.2 10.7 4.050 16.4 2.1 1.720
3.8 4.4 0.850 8.1 1.2 1.495

11.4 15.5 2.730 5.0 23.1 1.725
10.6 6.6 1.450 15.6 24.1 1.830

7.6 6.4 0.420 28.2 2.2 4.620
11.2 7.4 7.380 34.6 45.0 15.310

7.4 6.4 0.360 4.2 6.1 0.190
6.3 3.7 0.320 30.0 30.0 7.290

16.4 8.7 5.410 9.0 19.1 0.930
4.1 26.1 1.570 25.4 29.3 8.010
5.4 11.8 1.060 8.1 4.8 0.600
3.8 11.4 0.470 5.4 10.6 0.250
4.6 7.9 0.610 2.0 6.0 0.050

18.2 16.1 5.450
13.5 18.0 0.640
26.6 9.0 2.090

6.0 10.7 0.210
7.6 14.0 0.680

13.1 12.2 1.960
16.5 10.0 1.610
23.1 19.5 2.160

9.0 30.0 0.710

most appropriate one. Are there any surprises? (Hint: The last analysis
combines all the other analyses.)

12. Exercise 12 of Chapter 9 concerned an experiment to determine how stor-
age time and temperature affect the Haugh measure of egg quality. Because
the Haugh measure is based on, but not directly related to, albumen height
and egg weight, it was proposed that all three responses should be ana-
lyzed and the results compared. Another way to assess possible differences
between the Haugh measure and the two individual response variables is
to perform an analysis of covariance, using the Haugh measure as the re-
sponse and egg weight and albumen height as covariates. The data are
available on the data disk in file FW11P12. Perform such an analysis to see
whether the two components provide additional information on the effect
of storage times and temperatures.
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13. It is of importance to the fishing industry to determine the effectiveness
of various types of nets. Effectiveness includes not only quantities of fish
caught, but also the net selectivity for different sizes and species. In this
experiment gill–net characteristics compose a two-factor factorial exper-
iment with factors:

SIZE: two mesh sizes, 1 and 2 in. and
TYPE: material, monofilament or multifilament thread.

Four nets, composed of four panels randomly assigned to a factor level
combination, are placed in four locations in a lake. After a specific time,
the nets were retrieved and fish harvested. Data were recorded for each
fish caught as follows:

Species
bb: black bullhead
bg: bluegill
cc: channel catfish
fwd: freshwater drum
gs: gizzard shad
lmb: largemouth bass

Size
length in millimeters.

The data, comprising measurements of the 261 fish caught, are available on
the data disk in file FW11P13. Of that total, 226 (85.8%) were gizzard shad.
(a) Using data for gizzard shad only, perform the appropriate analysis to

determine the effects of net characteristics and location on the length
of fish caught.

(b) Combine data for all other species and perform the same analysis.

14. In Example 10.1 an experiment was conducted to determine the effect of
irrigation, nitrogen fertilizer, and planting rates on the yield of corn. One
possible complication of the study was the fact that the specified planting
rates did not always produce the exact number of plants in each plot.
Analyze the data using the actual number of plants per plot as a covariate.
Compare your results with those given in Section 10.6.

15. In Chapter 6 the analysis of variance was used to show that home prices
differed among the zip areas, while in Chapter 8 multiple regression was
used to show than home size was the most important factor affecting home
prices.
(a) Using the data in Table 1.2 analyze home prices $200,000 or less with

the general linear model using zip as a categorical variable and size,
bed, and bath as continuous variables. Does this analysis change any
previously stated conclusions?

(b) Using the data in Table 1.2 analyze the data using a model with all
variables in the data set. Write a short report stating all relevant con-
clusions and how the Modes may use the analyses for making decisions
about their impending move and subsequent home buying.
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Categorical Data

EXAMPLE 12.1 Developmental Research A study by Aylward et al. (1984), reported in
Green (1988), examines the relationship between neurological status and ges-
tational age. The researchers were interested in determining whether knowing
an infant’s gestational age can provide additional information regarding the
infant’s neurological status. For this study, 505 newborn infants were cross-
classified on two variables: overall neurological status, as measured by the
Prechtl examination, and gestational age. The data are shown in Table 12.1.

Note that the response variable, Prechtl status, is a categorical variable; hence
a linear model of the type we have been using is not appropriate. Additionally,
in this example, the independent variable, the age of the infant, is recorded by
intervals and can therefore also be considered a categorical variable. We will
return to this example in Section 12.5. ■

12.1 Introduction

Up to this point we have been primarily concerned with analyses in which
the response variable is ratio or interval and usually continuous in nature.
The only exceptions occurred in Sections 4.3 and 5.5, where we presented
methods for inferences on the binomial parameter p, which is based on a
nominal response variable, with only two classes that we arbitrarily called
“success” and “failure,” and in Section 11.7, where we presented the problem
of modeling a binary response using a continuous dependent variable.

Nominal variables are certainly not restricted to having only two catego-
ries: Variables such as flower petal color, geographic region, and plant or animal
species, for example, are described by many categories. When we deal with

557
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Table 12.1

Number of Infants
GESTATIONAL AGE (IN WEEKS)

Prechtl Status 31 or Less 32–33 34–36 37 or More All Infants

Normal 46 111 169 103 409
Dubious 11 15 19 11 56
Abnormal 8 5 4 3 20
All infants 65 131 192 117 505

variables of this nature we are usually interested in the frequencies or counts
of the number of observations occurring in each of the categories; hence, these
types of data are often referred to as categorical data.

This chapter covers the following topics:

• Hypothesis tests for a multinomial population.
• The use of the χ2 distribution as a goodness-of-fit test.
• The analysis of contingency tables.
• An introduction to the loglinear model to analyze categorical data.

12.2 Hypothesis Tests for a Multinomial Population

When the response variable has only two categories, we have used the binomial
distribution to describe the sampling distribution of the number of “successes”
in n trials. If the number of trials is sufficiently large, the normal approximation
to the binomial is used to make inferences about the single parameter p, the
proportion of successes in the population.

When we have more than two categories, the underlying distribution is
called the multinomial distribution. For a multinomial population with k

categories, the distribution has k parameters, pi, which are the probabilities of
an observation occurring in category i. Since an observation must fall in one
category,

∑
pi = 1. The actual function that describes the multinomial distri-

bution is of little practical use for making inferences. Instead we will use large
sample approximations, which use the χ2 distribution presented in Section 2.6.

When making inferences about a multinomial population, we are usually
interested in determining whether the probabilities pi have some prespeci-
fied values or behave according to some specified pattern. The hypotheses of
interest are

H0: pi = pi0, i = 1, 2, . . . , k,

H1: pi 
= pi0, for at least two i,

where pi0 are the specified values for the parameters.
The values of the pi0 may arise either from experience or from theoretical

considerations. For example, a teacher may suspect that the performance of
a particular class is below normal. Past experience suggests that the percent-
ages of letter grades A, B, C, D, and F are 10, 20, 40, 20, and 10%, respectively.
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The hypothesis test is used to determine whether the grade distribution for
the class in question comes from a population with that set of proportions.
In genetics, the “classic phenotypic ratio” states that inherited characteristics,
say, A, B, C, or D, should occur with a 9:3:3:1 ratio if there are no crossovers.
In other words, on the average, 9/16 of the offspring should have characteris-
tic A, 3/16 should have B, 3/16 should have C, and 1/16 should have D. Based
on sample data on actual frequencies, we use this hypothesis test to determine
whether crossovers have occurred.

The test statistic used to test whether the parameters of a multinomial
distribution match a set of specified probabilities is based on a comparison
between the actually observed frequencies and those that would be expected
if the null hypothesis were true. Assume we have n observations classified
according to k categories with observed frequencies n1, n2, . . . , nk. The null
hypothesis is

H0: pi = pi0, i = 1, 2, . . . , k.

The alternate hypothesis is that at least two of the probabilities are different.
The expected frequencies, denoted by Ei, are computed by

Ei = n pi0, i = 1, 2, . . . k.

Then the quantities (ni − Ei) represent the magnitudes of the differences
and are indicators of the disagreement between the observed values and the
expected values if the null hypothesis were true. The formula for the test
statistic is

X 2 =
∑ (ni − Ei)2

Ei

,

where the summation is over all k categories. We see that the squares of these
differences are used to eliminate the sign of the differences, and the squares
are “standardized” by dividing by the Ei. The resulting quantities are then
summed over all the categories.

If the null hypothesis is true, then this statistic is approximately distributed
as χ2 with (k − 1) degrees of freedom, with the approximation being suffici-
ently close if sample sizes are sufficiently large. This condition is generally
satisfied if the smallest expected frequency is five or larger. The rationale for
having (k − 1) degrees of freedom is that if we know the sample size and any
(k − 1) frequencies, the other frequency is uniquely determined. As you can
see, the argument is similar to that underlying the degrees of freedom for an
estimated variance.

If the null hypothesis is not true, the differences between the observed and
expected frequencies would tend to be larger and the χ2 statistic will tend to
become larger in magnitude. Hence the test has a one-tailed rejection region,
even though the alternative hypothesis is one of “not equal.” In other words, p

values are found from the upper tail of the χ2 distribution. This test is known
as the χ2 test.
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EXAMPLE 12.2 Suppose we had a genetic experiment where we hypothesize the 9:3:3:1 ratio
of characteristics A, B, C, D. The hypotheses to be tested are

H0: p1 = 9/16, p2 = 3/16, p3 = 3/16, p4 = 1/16,

H1: at least two proportions differ from those specified.

A sample of 160 offspring are observed and the actual frequencies are 82, 35,
29, and 14, respectively.

Solution Using the formula Ei = npi0, the expected values are 90, 30, 30,
and 10, respectively. The calculated test statistic is

X 2 = (82 − 90)2

90
+ (35 − 30)2

30
+ (29 − 30)2

30
+ (14 − 10)2

10
= 0.711 + 0.833 + 0.0033 + 1.600

= 3.177.

Since there are four categories, the test statistic has 3 degrees of freedom. At a
level of significance of 0.05, Appendix Table A.3 shows that we will reject the
null hypothesis if the calculated value exceeds 7.81. Hence, we cannot reject
the hypothesis of the 9:3:3:1 ratio at the 0.05 significance level. In other words,
there is insufficient evidence that crossover has occurred. ■

EXAMPLE 12.3 Recall that in Example 4.4 we tested the hypothesis that 60% of doctors pre-
ferred a particular brand of painkiller. The response was whether a doctor
preferred a particular brand of painkiller. The null hypothesis was that p, the
proportion of doctors preferring the brand, was 0.6. The hypotheses can be
written as

H0: p1 = 0.6 ( hence p2 = 0.4),

H1: p1 
= 0.6 ( hence p2 
= 0.4),

where p1 is the probability that a particular doctor will express preference
for this particular brand and p2 is the probability that the doctor will not.
A random sample of 120 doctors indicated that 82 preferred this particular
brand of painkiller, which means that 38 did not. Thus n1 = 82 and n2 = 38.

Solution We can test this hypothesis by using the χ2 test. The expected
frequencies are 120(0.6) = 72 and 120(0.4) = 48. The test statistic is

X 2 = (82 − 72)2

72
+ (38 − 48)2

48
= 3.47.

The test statistic for this example is χ2 with one degree of freedom. Using
Appendix Table A.3, we find that the null hypothesis would be rejected if the
test statistic is greater than 3.841. Since the test statistic does not fall in the
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rejection region, we fail to reject the null hypothesis and conclude that we
have insufficient evidence to back the claimed preference for the painkiller.

Note that this is automatically a two-tailed test since deviations in any
direction will tend to make the test statistic fall in the rejection region. The test
presented in Example 4.4 was specified as a one-tailed alternative hypothesis,
but if we had used a two-tailed test, these two tests would have given identical
results. This is due to the fact (Section 2.6) that the distribution of z2 is χ2 with
one degree of freedom. We can see this by noting that the two-tailed rejection
region based on the normal distribution (Appendix Table A.1) is z > 1.96 or
z < −1.96 while the rejection region above was χ2 > 3.84. Since (1.96)2 = 3.84,
the two regions are really the same.1 ■

12.3 Goodness of Fit Using the χ2 Test

Suppose we have a sample of observations from an unknown probability dis-
tribution. We can construct a frequency distribution of the observed variable
and perform a χ2 test to determine whether the data “fit” a similar frequency
distribution from a specified probability distribution.

This approach is especially useful for assessing the distribution of a dis-
crete variable where the categories are the individual values of the variable,
such as we did for the multinomial distribution. Occasionally some categories
may need to be combined to obtain minimum cell frequencies required by the
test. The χ2 test is not quite as useful for continuous distributions since infor-
mation is lost by having to construct class intervals to construct a frequency
distribution. As the discussion in Section 4.5 and at the end of Example 12.5
indicates, an alternative test for continuous distributions usually offers better
choices (see Daniel, 1990).

Test for a Discrete Distribution

EXAMPLE 12.4 In Section 2.3 we introduced the Poisson distribution to describe data that
are “counts,” that is, it describes the probability of observing frequencies of
occurrences of some event. The Poisson distribution is often derived as the
limit of the binomial distribution as the number of trials (n) approaches infin-
ity and the probability of an event (p) goes to 0. For this reason, and because
Poisson probabilities are easier to calculate, the Poisson distribution is often
used to approximate binomial probabilities for large n and small p. We will
illustrate this approach by generating 200 observations from a binomial distri-
bution with p = 0.05 and n = 200. The observations theoretically will range
from 0 to 200 with the expected number of successes equal to 5. We will use
the goodness-of-fit test to see how well this distribution is approximated by
the Poisson distribution with μ = 5.

1The χ2 test can be used for a one-tailed alternative by comparing the statistic with a 2α value from
the table and rejecting only if the deviation from the null hypothesis is in the correct direction.
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Table 12.2

Using the Poisson to
Approximate the
Binomial

y COUNT FREQ

0 1 1.35
1 5 6.74
2 18 16.84
3 32 28.07
4 36 35.09
5 28 35.09
6 32 29.24
7 23 20.89
8 15 13.06
9 5 7.25
10 4 3.63
11 1 1.65
12 . 0.69
13 . 0.26
14 . 0.09
15 . 0.03

The first column of Table 12.2 gives the values of y, the number of successes,
and the second column the distribution of successes (COUNT) for the 200
samples. Note that since p is quite small, the number of successes actually
only ranges from 0 to 11 in the sample. The second column gives the expected
values (FREQ), which are obtained by multiplying the Poisson probabilities
by 200. Since there is a measurable probability that y takes on the values
12 through 15, these values are included. The agreement between the two
appears reasonable. We will use the χ2 test for a multinomial population to
test the hypotheses:

H0: The observed distribution is Poisson with μ = 5, versus

H1: The observed distribution is not Poisson with μ = 5.

We can immediately see that the minimum expected cell frequency of 5 is not
met for a number of cells. We therefore combine the first two rows, giving 6
observed and 8.09 expected frequencies of 0 and 1 successes, and combine
the last five rows, giving 1 observed and 2.72 expected values for 11 or more
successes. We can now compute the test statistic:

X 2 = (6 − 8.09)2

8.09
+ (18 − 16.84)2

16.84
+ · · · + (1 − 2.72)2

2.72
= 5.21.

The statistic has 10 degrees of freedom and obviously does not lead to rejec-
tion of the hypothesis that the Poisson approximation fits. ■

Test for a Continuous Distribution

If the observed values from a continuous distribution are available in the form
of a frequency distribution, the χ2 goodness-of-fit test can be used to determine
whether the data come from some specified theoretical distribution (such as
the normal distribution).

EXAMPLE 12.5 A certain population is believed to exhibit a normal distribution with μ =
100 and σ = 10. A sample of 100 from this population yielded the frequency
distribution shown in Table 12.3. The hypotheses of interest are then

H0 = the distribution is normal with μ = 100, σ = 10, and

H1 = the distribution is different.

Solution The first step is to obtain the expected frequencies, which are
those that would be expected with a normal distribution. These are obtained
as follows:

1. Standardize the class limits. For example, the value of y = 130 becomes
z = (130 − 100)/10 = 3.

2. Appendix Table A.1, the table of the normal distribution, is then used to find
probabilities of a normally distributed population falling within the limits.
For example, the probability of Z > 3 is 0.0013, which is the probability
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Table 12.3

Observed Distribution
Class Intervala Frequency

Less than 70 1
70–79 4
80–89 15
90–99 32

100–109 33
110–119 12
120–129 3
Greater than 130 0

aAssuming integer values of the observations.

Table 12.4

Expected Probabilities
and Frequencies

Expected Actual

Y Z Probability Frequency Frequency

<70 <−3 0.0013 0.1 1
70–79 −2 to −3 0.0215 2.2 4
80–89 −1 to −2 0.1359 13.6 15
90–99 −1 to 0 0.3413 34.1 32

100–109 0 to 1 0.3413 34.1 33
110–119 1 to 2 0.1359 13.6 12
120–129 2 to 3 0.0215 2.2 3
>130 >3 0.0013 0.1 0

that an observation exceeds 130. Similarly, the probability of an observation
between 120 and 130 is the probability of Z being between 2 and 3, which
is 0.0215 and so on.

3. The expected frequencies are the probabilities multiplied by 100.

Results of the above procedure are listed in Table 12.4.
We have noted that the use of the χ2 distribution requires that cell

frequencies generally exceed five, and we can see that this requirement is not
met for two cells and only marginally met for two others. We must therefore
combine cells, which we do here by redefining the first class to have an interval
of less than or equal to 79, with the last being greater than or equal to 120. The
resulting distribution still has two cells with expected values of 2.3, which are
less than the suggested minimum of 5. These cells are in the “tail” of the normal
distribution. That is, they represent the two ends of the data values. Recalling
the shape of the normal distribution, we would expect these to have a smaller
number of observations. Therefore, we will use the distribution as is. Using
the data from Table 12.4, we obtain a value of X 2 = 3.88. These class intervals
provide for six groups; hence, we will compare the test statistic with the χ2

with five degrees of freedom. At a 0.05 level of significance, we will reject the
null hypothesis if the value of χ2 exceeds 11.07. Therefore, there is insufficient
reason to believe that the data do not come from a normal population with
mean 100 and standard deviation 10.
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This goodness of fit test is very easy to perform and can be used to test for
just about any distribution. However, it does have limitations. For example, the
number and values of the classes used are subjective choices. By decreasing
the number, we lose degrees of freedom, but by increasing the number we
may end up with classes that have too small expected frequencies for the χ2

approximation to be valid. For example, if we had not combined classes, the
test statistic would have a value of 10.46, which, although not significant at the
0.05 level, is certainly larger.

Further, if we want to test for a “generic” distribution, such as the nor-
mal distribution with unspecified mean and standard deviation, we must first
estimate these parameters from the data. In doing so, we lose an additional
two degrees of freedom as a penalty for having to estimate the two unknown
parameters. Because of this, it is probably better to use an alternative method
when testing for a distribution with unspecified parameters. One such alterna-
tive is the Kolmogorov–Smirnov test discussed in Section 4.5. ■

12.4 Contingency Tables

Suppose that a set of observations is classified according to two categorical
variables and the resulting data are represented by a two-way frequency table
as illustrated in Section 1.7 (Table 1.13). For such a data set we may not be
as interested in the marginal frequencies of the two individual variables as we
are in the combinations of responses for the two categories. Such a table is
referred to as a contingency table. In general, if one variable has r categories
and the other c categories, then the table of frequencies can be formed to have
r rows and c columns and is called an r × c contingency table. The general
form of a contingency table is given in Table 12.5. In the body of the table, the
nij represent the number of observations having the characteristics described
by the ith category of the row variable and the jth category of the column
variable. This frequency is referred to as the ijth “cell” frequency. The Ri

and C j are the total or marginal frequencies of occurrences of the row and
column categories, respectively. The total number of observations n is the last
entry.

Table 12.5

Representation
of a Contingency Table

COLUMNS

Rows 1 2 3 · · · c Totals

1 n11 n12 n13 · · · n1c R1

2 n21 n22 n23 · · · n2c R2

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
r nr1 nr2 nr3 · · · nrc Rr

Totals C1 C2 C3 · · · Cc n
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In this section we examine two types of hypotheses concerning the con-
tingency table:

1. the test for homogeneity and
2. the test for independence.

The test for homogeneity is a generalization of the procedure for compar-
ing two binomial populations discussed in Section 5.5. Specifically, this test
assumes independent samples from r multinomial populations with c classes.
The null hypothesis is that all rows come from the same multinomial popu-
lation (identified by the r rows) or, equivalently, that all come from the same
distribution. In terms of the contingency table, the hypothesis is that the pro-
portions in each row are equal. Note that the data represent samples from r

potentially different populations.
The test for independence determines whether the frequencies in the

column variable in a contingency table are independent of the row variable
in which they occur or vice versa. This procedure assumes that one sample
is taken from a population, and that all the elements of the sample are then
put into exactly one level of the row category and the column category. The
null hypothesis is that the two variables are independent, and the alternative
hypothesis is that they are dependent.

The difference between these two tests may appear a bit fuzzy and there
are situations where it may not be obvious which hypothesis is appropriate.
Fortunately both hypotheses tests are performed in exactly the same way, but
it is important that the conclusions be appropriately stated. As in the test for
a specified multinomial distribution, the test statistic is based on differences
between observed and expected frequencies.

Computing the Test Statistic

If the null hypothesis of homogeneity is true, then the relative frequencies in
any row, that is, the Eij/Ri, should be the same for each row. In this case, they
would be equal to the marginal column frequencies, that is,

Eij/Ri = C j/n, hence

Eij = RiC j/n.

If the null hypothesis of independence is true, then each cell probability is a
product (Section 2.2) of its marginal probabilities. That is,

Eij/n = (Ri/n)(C j/n), hence

Eij = RiC j/n.

Thus the expected frequencies for both the homogeneity and independence
tests are computed by

Eij = RiC j/n.

That is, the expected frequency for the ijth cell is a product of its row total
and its column total divided by the sample size.
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To test either of these hypotheses we use the test statistic

X 2 =
∑

ij

(nij − Eij)2

Eij

,

where i = 1, . . . , r, j = 1, . . . , c; nij = observed frequency for cell ij; and
Eij = expected frequency for cell ij. If either null hypothesis of (homogeneity
or independence) is true, this statistic X 2 has the χ2 distribution with (r − 1)
(c − 1) degrees of freedom. For example, a 4 × 5 contingency table results in
a χ2 distribution with (4 − 1)(5 − 1) = 12 degrees of freedom.

As in the test for multinomial proportions, the distribution of the test
statistic is only approximately χ2, but the approximation is adequate for suffi-
ciently large sample sizes. Minimum expected cell frequencies exceeding five
are considered adequate but it has been shown that up to 20% of the expected
frequencies can be smaller than 5 and cause little difficulty in cases where
there are a large number of cells. As in the case of testing for a multinomial
population, the rejection region is in the upper tail of the distribution.

Test for Homogeneity

As noted, for this test we assume a sample from each of several multino-
mial populations having the same classification categories and perform the
test to ascertain whether the multinomial probabilities are the same for all
populations.

EXAMPLE 12.6 A study was performed to determine whether the type of cancer differed
between blue collar, white collar, and unemployed workers. A sample of 100
of each type of worker diagnosed as having cancer was categorized into one
of three types of cancer. The results are shown in Table 12.6. The hypothesis
to be tested is that the proportions of the three cancer types are the same for
all three occupation groups. That is,

H0: p1 j = p2 j = p3 j for all j (types of cancer)

H1: pij 
= pkj for some j and some pair i and k,

where pij = the probability of occupation i having cancer type j.

Solution The expected frequencies are obtained as described above, that is,

Eij = RiC j/n.

Table 12.6

Cancer Occurrence for
Different Populations

TYPE OF CANCER

Occupation Lung Stomach Other Total

Blue collar 53 17 30 100
White collar 10 67 23 100
Unemployed 30 30 40 100

Total 93 114 93 300
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Table 12.7

Expected Frequencies
TYPE OF CANCER

Occupation Lung Stomach Other

Blue collar 31 38 31
White collar 31 38 31
Unemployed 31 38 31

Table 12.7 gives the expected frequencies. The test statistic is

X 2 = (53 − 31)2/31 + (17 − 38)2/38 + · · · + (40 − 31)2/31 = 70.0.

The rejection region for this test is X 2 > 9.488 for α = 0.05 (χ2 with degrees
of freedom (3 − 1)(3 − 1) = 4). We reject the null hypothesis and conclude
that the distribution of cancer is not homogeneous among types of workers. In
fact, the data indicate that more blue collar workers have lung cancer, while
more white collar workers have stomach cancer. ■

Table 12.8

Example 5.7 as a
Contingency Table

Sex Favor Do Not Favor Total

Men 105 145 250
Women 128 122 250

Total 233 267 500

EXAMPLE 12.7 To illustrate that the test for homogeneity is an extension of the two-sample
test for proportions of Section 5.5, we reanalyze Example 5.6 using the χ2

test of homogeneity. Table 12.8 gives the data from Example 5.6 written as a
contingency table. The hypotheses statements are the same as in Chapter 5;
that is, the null hypothesis is that the proportion of men favoring the candidate
is the same as the proportion of women.

Solution The test statistic is

X 2 = (105 − 116.5)2/116.5 + (128 − 116.5)2/116.5 + (145 − 133.5)2/133.5

+ (122 − 133.5)2/133.5 = 4.252.

The rejection region for α = 0.05 for χ2 for one degree of freedom is 3.84, and
as in Example 5.6 we reject the null hypothesis and assume that the propor-
tion of men favoring the candidate differs from that of women. Note that,
except for round-off differences, the test statistic X 2 is the square of the test
statistic from Example 5.6. That is, z = −2.02 from Example 5.6 squared is
almost equal to X 2 = 4.2. Recall from Section 2.6 that the χ2 with one degree
of freedom is the same as the distribution of z2. ■
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Test for Independence

As noted, the test for independence can be used to determine whether two
categorical variables are related. For example, we may want to know whether
the sex of a person is related to opinion about abortion or whether the perfor-
mance of a company is related to its organizational structure. In Chapter 7 we
discussed the correlation coefficient, which measured the strength of associa-
tion between two variables measured in the interval or ratio scale. The as-
sociation or relationship between two categorical variables is not as easy
to quantify. That is, we must be careful when we talk about the strength of
association between two variables that are only qualitative in nature. To say
that one increases as the other increases (or decreases) may not mean any-
thing if one variable is hair color and the other is eye color! We can, however,
determine whether the two are related by using the test for independence.

The test for independence is conducted by taking a sample of size n and
assigning each individual to one and only one level of each of two categorical
variables. The hypotheses to be tested are

H0: the two variables are independent, and

H1: the two variables are related.

EXAMPLE 12.8 Opinion polls often provide information on how different groups’ opinions
vary on controversial issues. A random sample of 102 registered voters was
taken from the Supervisor of Election’s roll. Each of the registered voters was
asked the following two questions:

1. What is your political party affiliation?
2. Are you in favor of increased arms spending?

The results are given in Table 12.9.

The null hypothesis we want to test is that the opinions of individuals con-
cerning increased military spending are independent of party affiliation. That
is, the null hypothesis states that the opinions of people concerning increased
military spending do not depend on their party affiliation. The alternative hy-
pothesis is that opinion and party affiliation are dependent.

Solution The expected frequencies are obtained as before, that is, by mul-
tiplying row total by column total and then dividing by n. The results are given

Table 12.9

Table of Opinion by Party

PARTY
OPINION DEM REP NONE TOTAL

FAVOR 16 21 11 48
NOFAVOR 24 17 13 54

TOTAL 40 38 24 102
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Table 12.10

Results of χ2 Test
TABLE OF OPINION BY PARTY

OPINION
Frequency
Expected PARTY
Cell Chi-Square DEM REP NONE Total

FAVOR 16 21 11 48
18.824 17.882 11.294
0.4235 0.5435 0.0077

NOFAVOR 24 17 13 54
21.176 20.118 12.706
0.3765 0.4831 0.0068

Total 40 38 24 102

STATISTICS FOR TABLE OF OPINION BY PARTY
Statistic df Value Prob

Chi-Square 2 1.841 0.398
Likelihood Ratio Chi-Square 2 1.846 0.397
Mantel-Haenszel Chi-Square 1 0.414 0.520
Phi Coefficient 0.134
Contingency Coefficient 0.133
Cramer’s V 0.134

Sample Size = 102

as the second entry in each cell of Table 12.10, which is obtained from PROC
FREQ of the SAS System.

The third entry in each cell is its contribution to the test statistic, that is,

(nij − Eij)2

Eij

,

(rounded to four decimal places). The test statistic (computed from the non-
rounded values) has the value 1.841, which is shown as the first entry at the
bottom of the computer output.2 This value is compared with the χ2 statistic
with two degrees of freedom. We will reject the null hypothesis if the value of
our test statistic is larger than 5.99 for a level of significance of 0.05. We fail to
reject the null hypothesis, which is confirmed in the computer output with a
p value of 0.398. There is insufficient evidence to suggest that party affiliation
affects opinions on this issue. ■

The major difference between the test for homogeneity and the test for inde-
pendence is the method of sampling. In the test for homogeneity, the number
of observations from each sample is “fixed” and each observation is assigned
to the appropriate level of the other variable. Thus, we say that the row totals
(or column totals) are fixed. This is not the case in the test for independence
where only the total sample size, n, is fixed and observations are classified in
two “directions,” one corresponding to rows, the other to columns of the table.
Therefore, only the total sample size is fixed prior to the experiment.

2Some of the other test statistics shown in the output are discussed later.
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Measures of Dependence

In many cases, we are interested in finding a measure of the degree of
dependence between two categorical variables. As noted, the precise meaning
of dependence may be hard to interpret; however, a number of statistics can
be used to quantify the degree of dependence between two categorical vari-
ables. For example, in Example 12.8, we may be interested in the degree of
association or dependence between the political affiliation and feelings about
increased military spending. A large degree of dependence may indicate a
potential “split” along party lines.

Several statistics are used to quantify this dependence between two cate-
gorical variables. One such statistic is called Pearson’s contingency coeffi-

cient, or simply the contingency coefficient. This coefficient is calculated as

t =
√

X 2

n + X 2
,

where X 2 is the value of the computed χ2 statistic and n is the total sample size.
The coefficient is similar to the coefficient of determination where the value 0
implies independence and 1 means complete dependence. For Example 12.8
the contingency coefficient, given as the third entry at the bottom of Table 12.9,
has a value of 0.133. Since we failed to reject the hypothesis of independence,
we expected the value of the coefficient to be quite low and indeed it is.

Because a number of different interpretations are available for defining the
association between two categorical variables, other measures of that degree
of dependence exist. Some of these are

1. Cramer’s contingency coefficient (Cramer’s V in Table 12.10),
2. the mean square contingency coefficient (given in Table 12.10),
3. Tschuprow’s coefficient (not given), and
4. the phi coefficient (given in Table 12.10).

Note that for this example they are all almost exactly the same, but this is
not always the case. A complete discussion of these coefficients is given in
Conover (1999).

Other Methods

As was previously noted, the χ2 statistic is a large sample approximation to
the true distribution of X 2. The obvious question to be considered is “What
happens if the sample is small?” In most cases, the problem cannot be readily
addressed. One suggestion, which we have already used, is to collapse rows
or columns, thus getting larger cell frequencies. There is, however, a special
method for calculating the test statistic for a 2 × 2 contingency table with
small samples. This method, called the “Fisher exact test” (Kendall and Stuart,
1979), computes the exact probability of obtaining any particular table, and
computes a p value by enumerating all tables more contradictory to H0 than
the observed table. Since occasions for the use of this test do not arise with
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great frequency, we do not provide details for its use. Fisher’s exact test is an
option available in many computer programs.

Another test statistic that can be used to test for homogeneity or inde-
pendence is called the likelihood ratio test statistic. This test statistic has the
form

X 2
2 = 2

∑
ij

nij ln
(

nij

Eij

)
.

The likelihood ratio test statistic is also compared to the χ2 distribution with
(r − 1)(c − 1) degrees of freedom. This statistic is also given at the bottom of
Table 12.9, and is seen to be almost exactly equal to the “usual” χ2 statistic. This
is the case, unless there are one or more very small expected frequencies in
the table. Investigations of both test statistics in tables with small sample sizes
by Feinberg (1980), Koehler and Larntz (1980), and Larntz (1978) indicate that
the X 2 statistic is usually more appropriate for tables with very small expected
frequencies.

The likelihood ratio statistic does, however, have a particular additive
property that makes it more desirable for performing the analyses presented
in the next section.

Most computer programs used to analyze contingency tables automatically
compute a wide variety of different test statistics. Sometimes the array of
available options can be overwhelming; therefore it is important to use only
those that best suit the problem at hand.

12.5 Loglinear Model

The majority of the statistical analysis discussed up to this chapter involved
the use of models, and most inferences were made on the parameters of these
models. The analysis of data from a contingency table presented in this chapter
thus far did not involve specifying a model nor any parameters, and therefore
was concerned with less specific hypotheses. Further, we have been concerned
with contingency tables for only two variables. A more general strategy for the
analysis of any size contingency table involves specifying a series of models,
and testing these models to determine which one is most appropriate. This
series includes not only the model of independence but also models that rep-
resent various associations or interactions among the variables. Each model
generates expected cell frequencies that are compared with the observed fre-
quencies. The model that best fits the observed data is chosen. This allows for
the analysis of problems with more than two variables and the identification
of simple and complex associations among these variables.

One such way of analyzing contingency tables is known as loglinear

modeling. The difference in this approach and that discussed in Section 12.4 is
in the manner in which the expected frequencies are obtained. In the loglinear
modeling approach, the expected frequencies are computed under the assump-
tion that a certain specified model is appropriate for explaining the relationship
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among variables. The complexity of this model usually results in computa-
tional problems in obtaining the expected frequencies that can be resolved
only through the use of iterative methods. As a consequence of this, most
analyses are done with computers.

As an example of a loglinear model, consider the problem in Example 12.8.
The variables are “party affiliation” and “opinion.” We will designate the proba-
bility of an individual belonging to the ijth cell as pij , the marginal probability
of belonging to the ith row (opinion) as pi, and the marginal probability of
belonging to the jth column ( party) as pj . From Chapter 2 the condition of
independence allows us to write

pij = pi pj.

Under this condition the expected frequencies are

Eij = npij = npi pj.

Taking natural logs of both sides results in the relationship

ln(Eij) = ln(n) + ln(pi) + ln(pj).

Therefore, if the two variables are independent, the log of the expected fre-
quencies is a linear function of the marginal probabilities. We turn this around
and see that the test for independence is really a test to see whether the log
of the expected frequencies is a linear function of the logs of the marginal
probabilities. Define

μij = ln(Eij), ln(n) = μ, ln(pi) = λA
i , and ln(pj) = λB

j .

Then the model can be written as

μij = μ + λA
i + λB

j .

Note that A and B are superscripts, not exponents.
This model closely resembles the ANOVA model of Chapter 9, and in fact

the analysis very closely resembles that of a two-way ANOVA model. The
terms λA

i represent the effects of the variable designated as “rows” (opin-
ion), and the terms λB

j represent the effects of the variable “columns” ( party
affiliation).

Notice that the model is constructed under the assumption that rows and
columns of the contingency table are independent. If they are not independent,
this model requires an additional term, which can be called an “association”
factor. Using consistent notation, this term may be designated λAB

ij . This term
is analogous to the interaction term in the ANOVA model and has a similar
interpretation. The test for independence then becomes one of determining
whether the association factor should be in the model. This is done by what is
called a “lack of fit” test, usually using the likelihood ratio statistic.

This test follows the same pattern as the test for interaction in the factorial
ANOVA model, and the results are usually displayed in a table very similar
to the ANOVA table. Instead of using sums of squares and the F distribution
to test hypotheses about the parameters in the model, we use the likelihood
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ratio statistic and the χ2 distribution. The likelihood ratio test statistic is used
because it can be subdivided, corresponding to the various terms in the model,
whereas the χ2 statistic, X 2, cannot.

EXAMPLE 12.9 In Example 12.8 we examined the relationship between party affiliation and
opinion. To determine whether the two were independent, we did the “usual”
χ2 test and failed to reject the hypothesis of independence. We can do the
same test using a loglinear model. If we specify the model as outlined, the
hypothesis of independence becomes

H0: λAB
ij = 0, for all i and j, and

H1: λAB
ij 
= 0, for some i and j.

Table 12.11

Loglinear Model Analysis
for Example 12.9

Source df χ2 Prob

Party 2 4.74 0.1117
Opinion 1 0.35 0.5527
Likelihood ratio 2 1.85 0.3972

Solution The analysis is performed by PROC CATMOD from the SAS System
with results shown in Table 12.11. The last item is the likelihood ratio test for
goodness of fit, which has a value of 1.85 and a p value of 0.3972. Thus, we
cannot reject H0, and we conclude the independence model fits. Note that this
is the same value as the likelihood ratio statistic for the test of independence
given in Table 12.9 (as it should be).

The other items in the table are the tests on the “main effects,” which
are a feature of the use of this type of analysis. It is interesting to note that
both the opinion and the party likelihood ratio statistics are not significant.
While the exact hypotheses tested by these statistics are expressed in terms
of means of logarithms of expected frequencies, the general interpretation is
that there is no difference in the marginal values for opinion nor for party.
The interpretation here is that the 54 to 48 majority for NOFAVOR (Table 12.10)
is insufficient evidence for declaring a majority on that side of the issue and,
likewise, the party affiliation proportions are insufficient evidence of one party
having a plurality. In conclusion, there is nothing about this table that differs
significantly!3 ■

Solution to Example 12.1 The example presented at the beginning of this
chapter is now analyzed using the loglinear modeling approach. That is, we
develop a set of hierarchial models, starting with the simplest, which may
be of little interest, and going to the most complex, testing each model for
goodness of fit. The model that best fits the data will be adopted. Some of the

3In some applications, these main effects may not be of interest.
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Table 12.12

Expected Frequencies
Prechtl AGE GROUP

Status 1 2 3 4 Total

Normal 42 42 42 42 168
Dubious 42 42 42 42 168
Abnormal 42 42 42 42 168

Table 12.13

Expected Frequencies
Prechtl AGE GROUP

Status 1 2 3 4 Total

Normal 107 107 107 107 429
Dubious 14 14 14 14 56
Abnormal 5 5 5 5 20

computations will be done by hand for illustration purposes only. All loglinear
modeling is normally done with a computer.

We start with the simplest model, one that contains only the overall mean.
This model has the form

ln(Eij) = μij = μ.

The expected frequencies under this model are given in Table 12.12. Note
that all the expected frequencies are the same, 42. This is because the model
assumes all the cells have the same value, μ. The expected frequencies are
then the total divided by the number of cells, or 505/12 = 42 (rounded to
integers). The likelihood ratio statistic for testing the lack of fit of this model,
obtained by PROC CATMOD from the SAS System, has a huge value of 252.7.
This value obviously exceeds the 0.05 table value of 12.59 for the χ2 distribu-
tion with 6 degrees of freedom; hence we readily reject the model and go to
the next model.

The next model has only one term in addition to the mean. That is, we
could choose a model that had only the grand mean and a row effect, or we
could choose a model with only the grand mean and a column effect. For the
purposes of this example, we choose the model with a grand mean and a row
effect. This model is

ln(Eij) = μij = μ + λA
i .

The term λA
i represents the effect due to Prechtl scores. Note that there is no

effect due to age groups in the model.
The expected frequencies are listed in Table 12.13. They are obtained by

dividing each row total by 4, the number of columns. For example, the first
row is obtained by dividing 429 by 4 (rounded to integers). The likelihood ratio
test has a value of 80.85. Again, the model obviously does not fit, so we must
go to the next model. The next model has both age and Prechtl as factors. That
is, the model is

ln(Eij) = μij = μ + λP
i + λA

j .
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Table 12.14

Expected Frequencies
Prechtl AGE GROUP

Status 1 2 3 4 Total

Normal 55 111 163 99 429
Dubious 7 15 21 13 56
Abnormal 3 5 8 5 20

Note that this is the same model we used to test for independence in Exam-
ple 12.9. Therefore, we will be testing the goodness of fit of the model, but really
we will be testing for independence. This is because this is the lack of fit test for
the model that contains all possible terms except the “interaction” term, λAB

ij .
The expected frequencies are given in Table 12.14. The values are calculated

by multiplying row totals by column totals and dividing by the total in exactly
the same way they were calculated for the χ2 tests. The likelihood ratio test
statistic for testing the goodness of fit of this model has a value of 14.30. This
exceeds the critical value of 12.59 that we obtain from the χ2 table, so this
model does not fit either. That is, there is a significant relationship between the
gestational age of newborn infants and their neurological status. Examination
of Table 12.1 indicates that 40% of abnormal infants were less than 31 weeks
of age, and that the percentage of abnormal infants decreases across age. ■

The extension of the loglinear model to more than two categorical variables
is relatively straightforward, and most computer packages offer this option.
There are also many variations of the modeling approach to the analysis of
categorical data. These topics are discussed in various texts including Bishop
et al. (1975) and Upton (1978). A discussion of categorical data with ordered
categories is given in Agresti (1984).

A methodology that clearly distinguishes between independent and depen-
dent variables is given in Grizzle et al. (1969). This methodology is often called
the “linear model” approach and emphasizes estimation and hypothesis test-
ing of the model parameters. Therefore, it is easily used to test for differences
among probabilities, but is awkward to use for tests of independence. Con-
versely, the loglinear model is relatively easy to use to test independence but
not so easy to test for differences among probabilities. Most computer pack-
ages offer the user a choice of approaches. As in all methodology that relies
heavily on computer calculations, the user should be sure that the analysis is
really what is expected by carefully reading documentation on the particular
program used.

12.6 CHAPTER SUMMARY

This chapter deals with problems concerned with categorical or count data.
That is, the variables of interest are usually nominal in scale, and the mea-
surement of interest is the frequency of occurrence. For a single category,
we saw that questions of goodness of fit could be answered by use of the χ2
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distribution. This test is also used to determine whether sample frequencies
associated with categories of the variable agree with what could be expected
according to the null hypothesis. We also saw that this test could be used to
determine whether the sample values fit a prescribed probability distribution,
such as the normal distribution.

When observations are made on two variables, we were concerned with
frequencies associated with the cells of the contingency table formed by cross-
tabulating observations. Again we used a χ2 test that measured the deviation
from what was expected under the null hypothesis by the observed samples.
If the data represented independent samples from more than one popula-
tion, the test was a test of homogeneity. If the data represented one sample
cross-classified into two categories, the test was a test of independence. Both
these tests were conducted in an identical manner, with only the interpretation
differing.

The loglinear modeling approach to contingency table analysis was briefly
discussed. This procedure allows for more flexibility in the analysis, and allows
for analyses with more than two categorical variables.

12.7 CHAPTER EXERCISES

EXERCISES

1. To reduce the use of drugs and other harmful substances, some public
schools have started to use dogs to locate undesirable substances. Many
arguments have been directed against this practice, including the allega-
tions that (1) the dogs too often point at suspects (or their lockers or cars)
where there are no contraband substances and (2) that there is too much
difference in the abilities of different dogs.

In this experiment, four different dogs were randomly assigned to dif-
ferent schools such that each dog visited each school the same number
of times. The dogs pointed to cars in which they smelled a contraband
substance. Permission was then obtained from the owners of these cars,
and they were then searched. A “success” was deemed to consist of a car
that contained, or was admitted by the owner to have recently contained,
a contraband substance.

Cars that for some reason could not be searched have been deleted
from the study. The resulting data are given in Table 12.15.

Table 12.15

Data for Exercise 1
Dog RESULT

Frequency Fail Success Total

A 51 103 154
G 43 103 146
K 79 192 271
M 40 126 166

Total 213 524 737
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(a) Give a 0.99 confidence interval for the proportion of success for the
set of dogs (see Chapter 4).

(b) Test the hypothesis that the dogs all have the same proportion of
success.

2. A newspaper story gave the frequencies of armed robbery and auto theft
for two neighboring communities. Do the data of Table 12.16 suggest
different crime patterns of the communities?

Table 12.16

Data for Exercise 2
(Table of City by Type)

City TYPE

Frequency Auto Robbery Total

B 175 54 229
C 97 11 108

Total 272 65 337

3. An apartment owner believes that more of her poolside apartments are
leased by single occupants than by those who share an apartment. The
data in Table 12.17 were collected from current occupants. Do the data
support her hypothesis?

Table 12.17

Data for Exercise 3
Pool TYPE

Frequency Single Multiple Total

YES 22 23 45
NO 24 31 55

Total 46 54 100

4. A serious problem that occurs when conducting a sample survey by mail
is that of delayed or no response. Late respondents delay the processing
of data, while nonrespondents may bias results, unless a costly personal
follow-up is conducted.

A firm that specializes in mail surveys usually experiences the follow-
ing schedule of replies:

25% return in week 1,
20% return in week 2,
10% return in week 3,

and the remainder fail to return (or return too late). The firm tries to
improve this return schedule by placing a dollar bill and a message of
thanks in each questionnaire. In a sample of 500 questionnaires, there were

156 returns in week 1,
149 in week 2,
100 in week 3,

and the remainder were not returned or arrived too late to be processed.



578 Chapter 12 Categorical Data

Test the hypotheses that (1) the overall return schedule has been
improved and (2) the rate of nonrespondents has been decreased. (Note:

These are not independent hypotheses.)

5. Use the data on tree diameters given in Table 1.7 to test whether the
underlying distribution is normal. Estimate the mean and variance from
the data. Combine intervals to avoid small cell frequencies if necessary.

6. Out of a class of 40 students, 32 passed the course. Of those that passed,
24 had taken the prerequisite course, while of those that failed, only 1
had taken the prerequisite. Test the hypothesis that taking the prerequisite
course did not help to pass the course.

7. A machine has a record of producing 80% excellent, 18% good, and 2%
unacceptable parts. After extensive repairs, a sample of 200 produced 157
excellent, 42 good, and 1 unacceptable part. Have the repairs changed the
nature of the output of the machine?

8. To determine the gender balance of various job positions the personnel
department of a large firm took a sample of employees from three job po-
sitions. The three job positions and the gender of employees from the sam-
ple are shown in Table 12.18. Use the hierarchical approach to log-linear
modeling to determine which model best fits the data. Explain the results.

Table 12.18

Gender and Job
Positions

Job Position Males Females

Accountant 60 20
Secretarial 10 90
Executive 20 20

9. The market research department for a large department store conducted
a survey of credit card customers to determine whether they thought that
buying with a credit card was quicker than paying cash. The customers
were from three different metropolitan areas. The results are given in
Table 12.19. Test the hypothesis that there is no difference in proportions
of ratings among the three cities.

Table 12.19

Survey Results
Rating City 1 City 2 City 3

Easier 62 51 45
Same 28 30 35
Harder 10 19 20

10. In Exercise 12 of Chapter 1, the traits of salespersons considered most
important by sales managers were listed in Table 1.23. These data are con-
densed in Table 12.20. Test the hypothesis that there is no difference in
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Table 12.20

Traits of Salespersons
Trait Number of Responses

Reliability 44
Enthusiasm 30
Other 46

the proportions of sales managers that rated the three categories as most
important.

11. A sample of 100 public school tenth graders, 80 private school tenth
graders, and 50 technical school tenth graders was taken. Each student
was asked to identify the category of person that most affected their life.
The results are listed in Table 12.21.

Table 12.21

Sample of Tenth Graders
Person Public School Private School Tech School

Clergy 50 44 10
Parent 30 25 33
Politician 19 10 5
Other 1 1 2

(a) Do the data indicate that there is a difference in the way the students
answered the question? (Use α = 0.05.)

(b) Does there seem to be a problem with using the χ2 test to answer part
(a)? What is the problem and how would you solve it? Reanalyze the
data after applying your solution. Do the results change?

12. In the study discussed in Exercise 10, the sales managers were also asked
what traits they considered most important in a sales manager. The results
are given in Table 12.22.

Table 12.22

Traits of Salespersons
SALESPERSON

Sales Manager Reliability Enthusiasm Other

Reliability 12 18 20
Enthusiasm 23 7 11
Other 9 5 15

(a) Are the two independent? Explain.
(b) Calculate Pearson’s contingency coefficient. Is there a strong relation-

ship between the traits the sales managers think are important for
salespersons and those for sales managers?

13. Exercise 13 in Chapter 11 looked at a gill–net experiment designed to de-
termine the effect of net characteristics on the size of fish caught. The
data are on the data disk in FW11P13. Using the methods of this chapter,
we can see how the relative frequencies of species caught are related to
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net characteristics. The data showed that out of a total of 261 fish caught,
224 were gizzard shad. To satisfy the minimum cell size requirements nec-
essary to use the χ2 statistic, we will have to combine species. Use two
species categories, Shad and Other, to do the following analyses:
(a) Perform separate χ2 tests for independence to relate species to mesh

size and net type.
(b) If an appropriate computer package is available, construct the log-

linear model of Section 12.5 using both mesh size and net type.
Interpret the results.



Chapter 13

Nonparametric
Methods

EXAMPLE 13.1 Quality Control A large company manufacturing rubber windshield wipers
for use on automobiles was involved in a research project for improving the
quality of their standard wiper. An engineer developed four types of chemical
treatments that were thought to increase the lifetime of the wiper. An exper-
iment was performed in which samples of 15 blades were treated with each
of these chemical treatments and measured for the amount of wear (in mm)
over a period of 2 h on a test machine. The results are shown in Table 13.1.

An analysis of variance was performed (see Chapter 6) to test for difference
in average wear over the four treatments. The results are shown at the bottom
of Table 13.1. The engineer, however, did not believe that the assumption of
normality was valid (see Section 6.4). That is, she suspected that the error
terms were probably distributed more like a uniform distribution. The his-
togram of the residuals given in Fig. 13.1 appears to justify the concern of the
engineer. To further check the assumption of normality, she performed a good-
ness of fit test and rejected the null hypothesis of normality (see Section 12.2).
An approach for solving this problem is presented in the material covered in
this chapter, and we will return to this example in Section 13.7. ■

13.1 Introduction

As Chapter 11 demonstrated, most of the statistical analysis procedures pre-
sented in Chapters 4 through 11 are based on the assumption that some form
of linear model describes the behavior of a ratio or interval response variable.
That is, the behavior of the response variable is approximated by a linear model
and inferences are made on the parameters of that model. Because the primary
focus is on the parameters, including those describing the distribution of the

581
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Table 13.1

Wear Data for Window
Wipers for Four
Teatments (in mm)

TREAT = 1 TREAT = 2 TREAT = 3 TREAT = 4

11.5 14.3 13.7 17.0
11.5 12.7 14.8 14.7
10.1 14.3 13.5 16.5
11.6 13.1 14.2 15.5
11.2 14.3 14.7 14.2
10.6 14.7 14.4 16.6
11.2 12.5 14.2 14.5
11.5 14.0 14.8 16.6
10.3 15.0 14.0 14.9
11.8 13.2 14.8 16.5
11.3 13.9 15.0 16.5
10.1 14.9 13.2 14.2
10.9 12.6 14.2 16.4
11.2 14.2 13.3 14.6
10.4 12.8 13.5 15.3

ANOVA for Wear Data

Source df SS F Pr > F

Treat 3 165.3 88.65 0.0001
Error 56 34.8
Total 59 200.11
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Histogram of Residuals

random error, statistical methods based on linear models are often referred to
as “parametric” methods.

We have repeatedly noted that the correctness of an analysis depends to
some degree on certain assumptions about the model. One major assumption
is that the errors have a nearly normal distribution with a common variance,
so that the normal, t, χ2, and F distributions properly describe the distribution
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of the test statistics. This assures that the probabilities associated with the
inferences are as stated by significance levels or p values. Fortunately, these
methods are reasonably “robust” so that most estimates and test statistics give
sufficiently valid results even if the assumptions on the model are not exactly
satisfied (as they rarely are).

Obviously, there are situations in which the assumptions underlying an
analysis are not satisfied and remedial methods such as transformations do
not work, in which case there may be doubt as to whether the significance
levels or confidence coefficients are really correct. Therefore, an alterna-
tive approach for which the correctness of the stated significance levels and
confidence coefficients is not heavily dependent on rigorous distributional
assumptions is needed. Such methods should not depend on the distribu-
tion of the random error nor necessarily make inferences on any particular
parameter. Such procedures are indeed available and are generally called
“nonparametric” or “distribution-free” methods. These procedures generally
use simple, tractable techniques for obtaining exact error probabilities while
not assuming any particular form of the model.

Many of the tests discussed in Chapter 12 may be considered nonpara-
metric methods. For example, the contingency table analysis makes no as-
sumptions about the underlying probability distribution. The p values for this
test statistic were obtained by using a large sample χ2 approximation. Obvi-
ously this type of methodology does not fit the “normal” theory of parametric
statistics because the scale of measure used was at best nominal (categorical).
As a matter of fact, one of the desirable characteristics of most nonparametric
methods is that they do not require response variables to have an interval or
ratio scale of measurement.

A brief introduction to the concept of nonparametric statistics was pre-
sented in Section 3.5 where we noted that a wide spectrum of methods is
available when the assumptions on the model are not fulfilled. Examples of
nonparametric tests were presented in Sections 4.5 and 5.6 where the tests
were done on medians. In both of these examples, we noted that the distri-
butions of the observations were skewed, therefore making the “parametric”
t tests suspect. In this chapter, we present some additional examples of non-
parametric methods.

The methods presented in Chapter 12 were used to analyze response vari-
ables that are categorical in nature; that is, they are measured in a nominal
scale. Of course, data of the higher order scales can be artificially converted to
nominal scale, simply by grouping observations. That is, ordinal data and in-
terval or ratio scale measurements can be “categorized” into nominal-looking
data. Interval or ratio measurements can also be changed into ordinal scale
measurements by simply ranking the observations.1 A number of nonparamet-
ric statistical methods are, in fact, based on ranks. The methods presented
in this chapter are mostly of this type. These methods work equally well on

1This was illustrated in Chapter 1.
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variables originally measured in the ordinal scale as well as on variables mea-
sured on ratio or interval scales and subsequently converted to ranks.

Ranks may actually be preferable to the actual data in many cases. For
example, if numerical measurements assigned to the observations have no
meaning by themselves, but only have meaning in a comparison with other
observations, then the ranks convey all the available information. An example
of this type of variable is the “scores” given to individual performers in ath-
letic events such as gymnastics or diving. In such situations the measurements
are essentially ordinal in scale from the beginning. Even when measurements
are actually in the interval scale, the underlying probability distribution may
be intractable. That is, we are not able to use the additional information in a
statistical inference because we cannot evaluate the resulting sampling distri-
bution. In this case, switching to ranks allows us to use the relatively simple
distributions associated with ranks.

To convert interval or ratio data into ranks, we must have a consistent
procedure for ordering data. This ordering is called ranking and the ranking
procedure normally used in statistics orders data from “smallest” to “largest”
with a “1” being the smallest and an “n” being the largest (where n is the size of
the data set being ranked). This ranking does not necessarily imply a numerical
relationship, but may represent another ordinality such as “good,” “better,” and
“best,” or “sweet” to “sour,” “preferred” to “disliked,” or some other relative
ranking. In other words, any ratio, interval, or ordinal variable can usually be
converted to ranks.

As indicated in Section 1.3, a special problem in ranking occurs when there
are “ties,” that is, when a variable contains several identically recorded val-
ues. As a practical solution, ties are handled by assigning mean ranks to tied
values. While the methodology of rank-based nonparametric statistics usually
assumes no ties, a reasonably small number of ties have minimal effect on the
usefulness of the resulting statistics.

As we will see, most tables used in nonparametric statistics are for use
with small samples and are exact only when there are no ties in the data.
Approximate distributions used for larger samples also assume no ties. When
the number of ties is excessive, adjustments must be made either in the tables
or in the test statistic. These adjustments are usually based on large sample
approximations. Such adjustments are provided in this chapter for some of
the procedures; others are available in most texts on nonparametric statistics
(Conover, 1999).

Before presenting specific rank-based nonparametric test procedures, we
must understand how parametric and nonparametric tests compare.

• Power: Conversion of a set of interval or ratio values to ranks involves a
loss of information. This loss of information usually results in a loss of
power in a hypothesis test. As a result, most rank-based nonparametric
tests will be less powerful when used on interval or ratio data, especially if
the distributional assumptions of parametric tests are not severely violated.
Of course, we cannot compare parametric and nonparametric tests if the
observed variables are already nominal or ordinal in scale.
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• Interpretation: By definition, nonparametric tests do not state hypotheses
in terms of parameters; hence inferences for such tests must be stated
in other terms. For some of these tests the inference is on the median,
but for others the tests may specify location or difference in distribution.
Fortunately, this is not usually a problem, because the research hypothesis
can be adjusted if a nonparametric test is to be used.

• Application: As will be seen, comprehensive rank-based methodology
analogous to that for the linear model is not available.2 Instead nonparamet-
ric tests are usually designed for a specific experimental situation. In fact,
nonparametric methods are most frequently applied to small samples and
simple experimental situations, where violations of assumptions are likely
to have more serious consequences.

• Computing: While many nonparametric test statistics are simple in nature,
those based on ranks require that interval or ratio scale variables be ranked.
This can be time consuming if done by hand for large data sets. Fortunately
many statistical computer programs include rank-based and other nonpara-
metric options.

• Robustness: While few assumptions are made for nonparametric methods,
these methods are not uniformly insensitive to all types of violations of
assumptions nor are they uniformly powerful against all alternative
hypotheses.

• Experimental design: The use of nonparametric methods does not elimi-
nate the need for careful planning and execution of the experiment or other
data accumulation. Good design principles are important regardless of the
method of analysis.

The various restrictions and disadvantages of nonparametric methods would
appear to severely limit their usefulness. This is not the case, however, and
they should be used (and usually are) when the nature of the population so war-
rants. Additionally, many of the nonparametric methods are extremely easy to
perform, especially on small data sets. They are therefore an attractive alter-
native for “on the spot” analyses. In fact, one of the earlier books on nonpara-
metric methods is called Some Rapid Approximate Statistical Procedures

(Wilcoxon and Wilcox, 1964).
The following sections discuss some of the more widely used rank-based

nonparametric hypothesis testing procedures. In the illustration of these pro-
cedures, we use some examples previously analyzed with parametric tech-
niques. The purpose of this is to compare the two procedures. Of course, in
actual practice, only one method should be applied to any one set of data.
Because it is so important to use only one procedure for analyzing a set of
data, it is imperative to know the requisites of each procedure as well as the
limitations. That way, we can correctly perform either a parametric or a non-
parametric test. That is, it must be done right the first time!

2It has been suggested that converting the response variable to ranks and then performing standard
linear model analyses will produce acceptable results. Of course, such analyses do not produce
the usual estimates of means and other parameters. This is briefly discussed in Section 13.7; a
more comprehensive discussion is found in Conover and Iman (1981).
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We emphasize that the methods presented in this chapter represent only a
few of the available nonparametric techniques. If none of these are suitable,
additional nonparametric or other robust methods may be found in the litera-
ture, such as in Huber (1981), or in texts on the subject, such as Conover (1999).

13.2 One Sample

In Section 4.5 we considered an alternative approach to analyzing some
income data that had a single extreme observation. This approach was based
on the fact that the median is not affected by extreme observations. Recall
that in this example we converted the income values into either a “success” (if
above the specified median) or a “failure” (if below), and the so-called sign test
was based on the proportion of successes. In other words, the test was per-
formed on a set of data that were converted from the ratio to the nominal scale.

Of course the conversion of the variable from a ratio to a nominal scale
with only two values implies a loss of information; hence, the resulting test
is likely to have less power. However, converting a nominal variable to ranks
preserves more of the information and thus a test based on ranks should
provide more power. One such test is known as the Wilcoxon signed rank test.

The Wilcoxon signed rank test is used to test that a distribution is symme-
tric about some hypothesized value, which is equivalent to the test for location.
We illustrate with a test of a hypothesized median, which is performed as
follows:

1. Rank the magnitudes (absolute values) of the deviations of the observed
values from the hypothesized median, adjusting for ties if they exist.

2. Assign to each rank the sign (+ or −) of the deviation (thus, the name
“signed rank”).

3. Compute the sum of positive ranks, T(+), or negative ranks, T(−), the
choice depending on which is easier to calculate. The sum of T(+) and
T(−) is n(n + 1)/2, so either can be calculated from the other.

4. Choose the smaller of T(+) and T(−), and call this T .
5. For small samples (n ≤ 50), critical values are found in Appendix Table A.9.

If n is large, the sampling distribution of T is approximately normal with

μ = n (n + 1)/4, and

σ 2 = n (n + 1)(2n + 1)/24,

which can be used to compute a z statistic for the hypothesis test.

EXAMPLE 13.2 Example 4.7, particularly the data in Table 4.5, concerned a test for the mean
family income of a neighborhood whose results were unduly influenced by an
extreme outlier. A test for the median was used to overcome the influence of
that observation. We now use that example to illustrate the Wilcoxon signed
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Table 13.2

Deviations from the
Median and Signed
Ranks

Signed Signed

Obs Diff Rank Obs Diff Rank

1 4.1 18 11 2.7 14
2 −0.3 −4.5 12 80.4 20
3 3.5 16 13 1.9 13
4 1.0 11 14 0.0 1
5 1.2 12 15 0.8 10
6 −0.7 −9 16 3.2 15
7 0.2 2.5 17 0.6 8
8 0.3 4.5 18 −0.2 −2.5
9 4.9 19 19 0.4 6

10 −0.5 −7 20 3.6 17

rank test. The hypothesis of interest is

H0: the distribution on incomes is symmetric about 13.0,

with a two-tailed alternative,

H1: the distribution is symmetric about some other value.

Solution The deviations of the observed values from 13.0 (the specified
H0 value) are given in Table 13.2 in the column labeled “Diff,” followed by the
signed ranks corresponding to the differences. Note that several ties are given
average ranks, and that zero is arbitrarily given a positive sign. A quick inspec-
tion shows that there are fewer negative signed ranks so we first compute T(−):

T(−) = 4.5 + 9 + 7 + 2.5 = 23.

The total sum of n ranks is (n)(n+ 1)/2; hence, it follows that T(+) + T(−) =
(20)(21)/2 = 210. Thus T(+) = 210−23 = 187. The test statistic is the smaller,
T = T(−) = 23. From Appendix Table A.9, using n = 20 and α = 0.01, we
see that the critical value is 37. We reject H0 if the calculated value is less than
37; hence, we reject the hypothesis and conclude that the population is not
symmetric about 13.0.

Alternately, we can use the large sample normal approximation. Under the
null hypothesis, T is approximately normally distributed with

μ = (20)(21)/4 = 105, and

σ 2 = (20)(21)(41)/24 = 717.5;

hence σ = 26.79. These values are used to compute the test statistic

z = 23 − 105
26.79

= −3.06.

Using Appendix Table A.1, we find a (two-tailed) p value of approximately
0.002; hence, the null hypothesis is readily rejected. However, the sample is
rather small; hence, the p value calculated from the large sample approxima-
tion should not be taken too literally.
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Table 13.3

Effect of Diet on Activity

Before After

Child Rating Rating |Difference| Signed Rank

1 19 11 8 −10
2 14 15 1 +1
3 20 17 3 −3.5
4 6 12 6 +8
5 12 8 4 −5
6 4 9 5 +6.5
7 10 7 3 −3.5
8 13 6 7 −9
9 15 10 5 −6.5

10 9 11 2 +2

The p value obtained for the sign test in Section 4.5 was 0.012. Thus, for
α = 0.01 the Wilcoxon signed rank test rejected the null hypothesis while the
sign test did not.3 ■

A popular application of the signed rank test is for comparing means from
paired samples. In this application the differences between the pairs are com-
puted as is done for the paired t test (Section 5.4). The hypothesis to be tested
is that the distribution of differences is symmetric about 0.

EXAMPLE 13.3 To determine the effect of a special diet on activity in small children, 10 children
were rated on a scale of 1 to 20 for degree of activity during lunch hour by
a school psychologist. After 6 weeks on the special diet, the children were
rated again. The results are give in Table 13.3. We test the hypothesis that the
distribution of differences is symmetric about 0 against the alternative that it
is not.

Solution The sum of the positive ranks is T(+) = 17.5; hence T(−) =
55 − 17.5 = 37.5. Using α = 0.05, the rejection region is for the smaller of
T(+) and T(−) to be less than 8 (from Appendix Table A.9). Using T(+)
as our test statistic, we cannot reject the null hypothesis, so we conclude
that there is insufficient evidence to conclude that the diet affected the level
of activity. ■

13.3 Two Independent Samples

The Mann–Whitney test (also called the Wilcoxon two-sample test) is a
rank-based nonparametric test for comparing the location of two populations
using independent samples. Note that this test does not specify an inference
to any particular parameter of location. Using independent samples of n1

3The problem as stated in Example 4.7 had a one-sided alternative while the procedure for the
two-sided alternative is presented here since it is more general.
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and n2, respectively, the test is conducted as follows:

1. Rank all (n1 + n2) observations as if they came from one sample, adjusting
for ties.

2. Compute T , the sum of ranks for the smaller sample.
3. Compute T ′ = n1(n1 + n2 + 1) − T , the sum of ranks for the larger sample.

This is necessary to assure a two-tailed test.
4. For small samples (n1 + n2 ≤ 30), compare the smaller of T and T ′ with the

rejection region consisting of values less than the critical values given in
Appendix Table A.10. If either T or T ′ falls in the rejection region, we reject
the null hypothesis. Note that even though this is a two-tailed test, we only
use the lower quantiles of the tabled distribution.

5. For large samples, the statistic T or T ′ (whichever is smaller) has an ap-
proximately normal distribution with

μ = n1(n1 + n2 + 1)/2 and

σ 2 = n1n2(n1 + n2 + 1)/12.

These parameter values are used to compute a test statistic having a stan-
dard normal distribution. We then reject the null hypothesis if the value
of the test statistic is smaller than −zα/2. Modifications are available when
there are a large number of ties (for example, Conover, 1999).

The procedure for a one-sided alternative hypothesis depends on the
direction of the hypothesis. For example, if the alternative hypothesis is that
the location of population 1 has a smaller value than that of population 2 (a
one-sided hypothesis), then we would sum the ranks from sample 1 and use
that sum as the test statistic. We would reject the null hypothesis of equal dis-
tributions if this sum is less than the α/2 quantile of the table. If the one-sided
alternative hypothesis is the other direction, we would use the sum of ranks
from sample 2 with the same rejection criteria.

EXAMPLE 13.4 Because the taste of food is impossible to quantify, results of tasting experi-
ments are often given in ordinal form, usually expressed as ranks or scores.
In this experiment two types of hamburger substitutes were tested for quality
of taste. Five sample hamburgers of type A and five of type B were scored
from best (1) to worst (10). Although these responses may appear to be ratio
variables (and are often analyzed using this definition), they are more appro-
priately classified as being in the ordinal scale. The results of the taste test are
given in Table 13.4. The hypotheses of interest are

H0: the types of hamburgers have the same quality of taste, and

H1: they have different quality of taste.

Solution Because the responses are ordinal, we use the Mann–Whitney
test. Using these data we compute

T = 1 + 2 + 3 + 5 + 6 = 17 and

T ′ = 5(11) − 17 = 38.

Table 13.4

Hamburger Taste Test

Type of

Burger Score

A 1
A 2
A 3
B 4
A 5
A 6
B 7
B 8
B 9
B 10
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Choosing α = 0.05 and using Appendix Table A.10, we reject H0 if the smaller
of T or T ′ is less than or equal to 17. The computed value of the test statistic is
17; hence we reject the null hypothesis at α = 0.05, and conclude that the two
types differ in quality of taste. If we had to choose one or the other, we would
choose burger type A based on the fact that it has the smaller rank sum. ■

13.4 More Than Two Samples

The extension to more than two independent samples provides a nonpara-
metric analog for the one-way analysis of variance, which can be used with a
completely randomized design experiment or a t sample observational study.
That is, we test the null hypothesis that t independent samples come from t

populations with identical distributions against the alternative that they do
not, with the primary differences being in location. A test for this hypothesis is
provided by a rank-based nonparametric test called the Kruskal–Wallis t sam-
ple test. The procedure for this test follows the same general pattern as that for
two samples. The Kruskal–Wallis test is conducted in the following manner:

1. Rank all observations. Denote the ijth rank by Ri j .
2. Sum the ranks for each sample (treatment), denote these totals by Ti.
3. The test statistic is

H = 1
S 2

[∑ T2
i

ni

− n(n + 1)2

4

]
,

where

S2 = 1
n − 1

[∑
R2

ij − n(n + 1)2

4

]
,

and where the Rij are the actual ranks,4 and ni are the sizes of the ith
sample, and n = ∑

ni. If no ties are present in the ranks, then the test
statistic takes on the simpler form

H = 12
n(n + 1)

∑ T2
i

ni

− 3(n + 1).

For a select group of small sample sizes, there exist specialized tables
of rejection regions for H. For example, some exact tables are given in
Iman et al. (1975). Usually, however, approximate values based on the χ2

distribution with (t − 1) degrees of freedom are used. This test is similar to
the Wilcoxon in that it uses only the upper tail of the distribution of the test
statistic. Therefore, we would reject H0 if the value of H exceeded the α

level of the χ2 distribution with (t − 1) degrees of freedom. If this hypoth-
esis is rejected, we would naturally like to be able to determine where the

4If there are no ties,
∑

R2
ij is more easily computed by [n(n + 1)(2n + 1)]/6. This is also a rather

good approximation if there are few ties.
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differences are. Since no parameters such as means are estimated in this pro-
cedure, we cannot construct contrasts or use differences in means to isolate
those populations that differ. Therefore, we will use a pairwise comparison
method based on the average ranks. This is done in the following manner.

We infer at the α level of significance that the locations of the response
variable for factor levels i and j differ if∣∣∣∣ Ti

ni

− Tj

nj

∣∣∣∣ > tα/2

√
S 2

(
n − 1 − H

n − t

)(
1
ni

+ 1
nj

)
,

where tα/2 is the α/2 critical value from the t distribution with (n−t) degrees
of freedom.

EXAMPLE 13.5 A psychologist is trying to determine whether there is a difference in three
methods of training six-year-old children to learn a foreign language. A random
selection of 10 six-year-old children with similar backgrounds is assigned to
each of three different methods. Method 1 uses the traditional teaching format.
Method 2 uses repeated listening to tapes of the language along with classroom
instruction. Method 3 uses videotapes exclusively. At the end of a 6-week pe-
riod, the children were given identical, standardized exams. The exams were
scored, with high scores indicating a better grasp of the language. Because of
attrition, method 1 had 7 students finishing, method 2 had 8, and method 3 only
6. It is, however, important to note that we must assume that attrition was un-
related to performance. The data and associated ranks are given in Table 13.5.

Solution Although the test scores may be considered ratio variables, con-
cerns about the form of the distribution suggest the use of the Kruskal–Wallis
nonparametric method. Since there are few ties, we will use the simpler form
of the test statistic, resulting in

H =
[

12
(21)(22)

](
116.52

7
+ 82.02

8
+ 32.52

6

)
− 3(22)

= 10.76.

Table 13.5

Data and Ranks for
Example 13.5

TEACHING METHOD

1 2 3

y Rank y Rank y Rank

78 12.5 70 2.5 60 1
80 14 72 5.5 70 2.5
83 16 73 7 71 4
86 17 74 8.5 72 5.5
87 18 75 10 74 8.5
88 19 78 12.5 76 11
90 20 82 15

95 21

n1 = 7 n2 = 8 n3 = 6
T1 = 116.5 T2 = 82.0 T3 = 32.5
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From Appendix Table A.3, we see thatχ2(2) forα = 0.05 is 5.99; hence we reject
the null hypothesis of equal location and conclude that there is a difference in
the distributions of test scores for the different teaching methods.

To determine where the differences lie, we perform the multiple compar-
ison procedure based on the average ranks discussed in the preceding. Using
the ranks in Table 13.5 we obtain

∑
R2

ij = 3309, so5 that

S2 = (1/20)[3309 − 21(22)2/4] = 38.4.

The mean ranks are

Method 1: 116.5/7 = 16.64,
Method 2: 82.0/8 = 10.25, and
Method 3: 32.5/6 = 5.42.

From Appendix Table A.2, the appropriate t value for a 5% significance level
is 2.101. We will compare the difference between method 1 and method 2 with

(2.101)

√
38.4

(
20 − 10.76

18

)(
1
8

+ 1
7

)
= 4.83.

The mean rank difference between methods 1 and 2 has a value of 6.39, which
exceeds this quantity; hence we conclude the distributions of test scores for
methods 1 and 2 may be declared different. Similarly, for comparing methods
1 and 3 the mean difference of 11.22 exceeds the required value of 5.18; hence
we conclude that the distributions of scores differ. Finally, the mean difference
between methods 2 and 3 is 4.83, which is less than the required difference
of 5.03; hence there is insufficient evidence to declare different distributions
between methods 2 and 3. The psychologist can conclude that the results of
using method 1 differ from those of both the other methods, but that the effect
of the other two may not. ■

We have noted that the Kruskal–Wallis test is primarily designed to detect
differences in “location” among the populations. In fact, theoretically, the
Kruskal–Wallis test requires that the underlying distribution of each of the
populations be identical in shape, differing only by their location. Fortunately,
the test is rather insensitive to moderate differences in the shape of the un-
derlying distributions, and this assumption can be relaxed in all but the most
extreme applications. However, it is not useful for detecting differences in
variability among populations having similar locations.

There are many nonparametric tests available for the analysis of t

independent samples designed for a wide variety of alternative hypotheses.
For example, there are tests to detect differences in scale (or shape) of the
distributions, tests to detect differences in the skewness (symmetry) of the dis-
tributions, and tests to detect differences in the kurtosis (convexity) of the dis-
tributions. There are also so-called omnibus tests that detect any differences

5Using the shortcut formula for
∑

R2
i j gives 3311.
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in the distributions, no matter what that difference may be. A good discussion
of many of these tests can be found in Boos (1986).

13.5 Randomized Block Design

Data from a randomized block design may be analyzed by a nonparametric
rank-based method known as the Friedman test. The Friedman test for the
equality of treatment locations in a randomized block design is implemented
as follows:

1. Rank treatment responses within each block, adjusting in the usual manner
for ties. These ranks will go from 1 to t, the number of treatments, in each
block. These are denoted Ri j .

2. Obtain the sum of ranks for each treatment. This means that we add one
rank value from each block, for a total of b (the number of blocks) ranks.
Call this sum Ri for the ith treatment.

3. The test statistic is

T∗ = (b − 1)

[
B − bt(t+1)2

4

]
A − B

,

where A = ∑∑
R2

ij , which, if there are no ties, simplifies to

A = bt(t + 1)(2t + 1)/6

and B = 1
b

∑
R2

i .

The test statistic, T∗, is compared to the F distribution with [t − 1,
(b − 1) (t − 1)] degrees of freedom.

Some references give the Friedman test statistic as

T1 = 12
bt(t + 1)

∑
R2

i − 3b(t + 1),

where t and b represent the number of treatments and blocks, respectively.
This test statistic is compared with the χ2 distribution with (t − 1) degrees
of freedom. However, the T∗ test statistic using the F distribution has been
shown to be superior to the χ2 approximation (Iman and Davenport 1980),
and we therefore recommend the use of that statistic.

Pairwise comparisons can be performed using the Ri in the following man-
ner. For a significance level of α, we can declare that the distributions of
treatments i and j differ in location if

|Ri − Rj| > tα/2

√
2b(A − B)

(b − 1)(t − 1)
,

where tα/2 has (b − 1)(t − 1) degrees of freedom.
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Table 13.6

Percent Weeds Killed
Note: Ranks are in

parentheses.

BLOCKS

Treatment 1 2 3 Ri

1 16 (4.5) 51 (5) 11 (4.5) 14.0
2 1 (1) 29 (4) 2 (2) 7.0
3 16 (4.5) 24 (3) 11 (4.5) 12.0
4 4 (2.5) 11 (2) 5 (3) 7.5
5 4 (2.5) 1 (1) 1 (1) 4.5

EXAMPLE 13.6 Responses given in terms of proportions will follow the binomial distribu-
tion, which can be quite nonnormal and also exhibit heterogeneous variances.
This experiment is concerned with the effectiveness of five weed killers. The
experiment was conducted in a randomized block design with five treatments
and three blocks, which corresponded to plots in the test area. The response
is the percentage of weeds killed. The hypothesis that the killers (treatments)
have equal effects on weeds is tested against an alternative that there are
some differences. The data are given in Table 13.6, along with the ranks in
parentheses.

Solution The Friedman test is appropriate for this example. Using the
ranks from Table 13.6 we obtain the values

A = 163.5 and B = 155.17.

The test statistic is

T∗ = 2

[
155.17 − (3)(5)(6)2

4

163.5 − 155.17

]
= 4.84.

The null hypothesis is rejected if the test statistic is in the rejection region
of the F distribution with 4 and 8 degrees of freedom. Using the 0.05 level of
significance in Appendix Table A.4 we find the critical value of 3.84. Therefore,
we reject the null hypothesis and conclude there is a difference among the
killers tested.

To identify the nature of the differences we perform a multiple comparison
test. We compare the pairwise differences among the Ri with

(2.306)

√
(2)(3)(8.33)

(2)(4)
= 5.76.

The differences and conclusions of the multiple comparisons among the Ri

are given in Table 13.7, where it is seen that treatment 1 differs from treatments
2, 4, and 5, and that treatment 3 differs from treatment 5. No other differences
are significant. Using the traditional schematic (see discussion of post hoc
comparisons in Section 6.5), the results can be presented as

Treatments 1 3 4 2 5

■
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Table 13.7

Differences among
Treatments

Treatments Differences Significant or Not

1 vs 5 14 − 4.5 = 9.5 yes
3 vs 5 12 − 4.5 = 7.5 yes
4 vs 5 7.5 − 4.5 = 3 no
2 vs 5 7 − 4.5 = 2.5 no
1 vs 2 14 − 7 = 7 yes
3 vs 2 12 − 7 = 5 no
4 vs 2 7.5 − 7 = 0.5 no
1 vs 4 14 − 7.5 = 6.5 yes
3 vs 4 12 − 7.5 = 4.5 no
1 vs 3 14 − 12 = 2 no

13.6 Rank Correlation

The concept of correlation as a measure of association between two variables
was presented in Section 7.6 where correlation was estimated by the Pearson
product moment correlation coefficient. The value of this statistic is greatly
influenced by extreme observations, and the test for significance is sensitive
to deviations from normality. A correlation coefficient based on the ranked,
rather than the originally observed, values would not be as severely affected
by extreme or influential observations. One such rank-based correlation co-
efficient is obtained by simply using the formula given for the correlation
coefficient in Section 7.6 on the ranks rather than the individual values of the
observations. This rank-based correlation coefficient is known as Spearman’s
coefficient of rank correlation, which can, of course, also be used with ordinal
variables. For reasonably large samples, the test statistic for determining the
existence of significant correlation is the same as that for linear correlation
given in Chapter 7,

F = (n − 2)r2/(1 − r2),

where r2 is the square of the rank-based correlation coefficient.
Because the data consist of ranks, a shortcut formula exists for computing

the Spearman rank correlation. This shortcut is useful for small data sets that
have few ties. First, separately rank the observations in each variable (from
1 to n). Then for each observation compute the difference between the ranks
of the two variables, ignoring the sign. Denote these differences as di. The
correlation coefficient is then computed:

r = 1 − 6
∑

d2
i

n(n2 − 1)
.

EXAMPLE 13.7 The data from Exercise 2 of Chapter 1 described the abundance of water-
fowl at different lakes. It was noted that the distributions of both waterfowl
abundance and lake size were dominated by one very large lake. We want to
determine the correlation between the water area (WATER) and the number
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Table 13.8

Waterfowl Data for
Spearman Rank
Correlation

OBS RWATER RFOWL DIFF OBS RWATER RFOWL DIFF

1 20.5 8.5 12.0 27 6.5 8.5 2.0
2 6.5 24.0 17.5 28 28.0 50.0 22.0
3 20.5 42.5 22.0 29 33.0 19.0 14.0
4 46.0 36.0 10.0 30 50.0 8.5 41.5
5 20.5 8.5 12.0 31 52.0 52.0 0.0
6 51.0 37.0 14.0 32 20.5 8.5 12.0
7 15.5 31.0 15.5 33 12.0 29.0 17.0
8 15.5 8.5 7.0 34 28.0 31.0 3.0
9 33.0 28.0 5.0 35 6.5 8.5 2.0

10 28.0 33.0 5.0 36 6.5 8.5 2.0
11 20.5 8.5 12.0 37 15.5 42.5 27.0
12 47.5 48.0 0.5 38 6.5 19.0 12.5
13 6.5 25.5 19.0 39 24.5 8.5 16.0
14 39.0 49.0 10.0 40 41.0 46.0 5.0
15 45.0 22.0 23.0 41 33.0 41.0 8.0
16 24.5 35.0 10.5 42 39.0 44.0 5.0
17 12.0 21.0 9.0 43 33.0 8.5 24.5
18 47.5 40.0 7.5 44 6.5 25.5 19.0
19 33.0 8.5 24.5 45 39.0 51.0 12.0
20 28.0 38.0 10.0 46 42.5 39.0 3.5
21 12.0 27.0 15.0 47 44.0 47.0 3.0
22 15.5 34.0 18.5 48 1.5 8.5 7.0
23 6.5 17.0 10.5 49 1.5 8.5 7.0
24 49.0 19.0 30.0 50 42.5 45.0 2.5
25 36.0 31.0 5.0 51 37.0 8.5 28.5
26 28.0 23.0 5.0 52 20.5 8.5 12.0

of waterfowl (FOWL). The magnitude of the Pearson correlation is easily seen
to be dominated by the values of the variables for the one large pond (obser-
vation 31) and may therefore not reflect the true magnitude of the relationship
between these two variables.

Solution The Spearman correlation may be a better measure of associa-
tion for these variables. Table 13.8 gives the ranks of the two variables, labeled
RWATER and RFOWL, and the absolute values of differences in the ranks,
DIFF.

The correlation coefficient computed directly from the ranks is 0.490. Us-
ing the F statistic, we are able to test this correlation for significance. The p

value for this test is 0.006, so we conclude that the correlation is in fact signifi-
cant. The shortcut formula using the differences among ranks results in a cor-
relation coefficient of 0.4996. The difference is due to a small number of ties
in the data. Of course, for this large data set the special formula represents no
savings in computational effort.

The Pearson correlation coefficient computed from the observed values
results in a value of 0.885. The fact that this value is much larger than the
Spearman correlation is the result of the highly skewed nature of the distribu-
tions of the variables in this data set. ■
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Solution to Example 13.1 The distribution of the residuals from the
ANOVA model for Example 13.1 did not have the assumed normal probability
distribution. This leads us to suspect the results of the F test, particularly the
p value. This problem, however, does fit the criteria for the use of a Kruskal–
Wallis test. The data, the ranks and the result of using PROC NONPAR1WAY in
SAS are given in Table 13.9. Note that the printout gives the Kruskal–Wallis test
statistic along with the p value calculated from the χ2 approximation. In this
example, the p value is quite small so we reject the null hypothesis of equal
treatment distributions.

Note that the output also gives the sums and means of the ranks (called
scores). The sums are the

∑
Ri in the formula for the test statistic. Also pro-

vided are the expected sum and the standard deviations if the null hypothesis
is true. These are identical because the sample sizes are equal (each is 15),
and the null hypothesis is that of equality. That is, we expect all four of the
treatments to have equal sums of ranks if the populations are identical.

The mean scores given in Table 13.9 can be used to make pairwise compar-
isons (Section 13.4). The least significant difference between average ranks for
α = 0.05 is 6.69. From Table 13.9 we can see that treatment 1 is significantly
smaller than the other three, and that treatment 4 is significantly larger than
the other three. Treatments 2 and 3 are not significantly different. Since we
wanted to minimize the amount of wear, chemical treatment number 1 seems
to be the best.

It is interesting to note that these results are quite similar to those obtained
by the analysis of variance. This is because, unlike highly skewed or fat-tailed
distributions, the uniform distribution of the random error does not pose a
very serious violation of asumptions. ■

Table 13.9

Windshield Wipers

N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable WEAR

Classified by Variable TRT

Sum of Expected Std Dev Mean
TRT N Scores Under H0 Under H0 Score

1 15 120.000000 457.500000 58.5231375 8.0000000
2 15 452.500000 457.500000 58.5231375 30.1666667
3 15 516.000000 457.500000 58.5231375 34.4000000
4 15 741.500000 457.500000 58.5231375 49.4333333

Average Scores were used for Ties

Kruskal-Wallis Test (Chi - Square Approximation)
CHISQ = 43.360 DF = 3 Pr > CHISQ = 0.0001
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Nonparametric methods provide alternative statistical methodology when
assumptions necessary for the use of linear model-based methods fail as well
as provide procedures for making inferences when the scale of mesurement is
ordinal or nominal. Generally, nonparametric methods use functions of obser-
vations, such as ranks, and therefore make no assumptions about underlying
probability distributions. Previous chapters have presented various nonpara-
metric procedures (for example, Chapter 12) usually used for handling nominal
scale data. This chapter discusses rank-based nonparametric methods for one,
two, and more than two independent samples, paired samples, randomized
block designs, and correlation.

While it may not be apparent from the form of most of the statistics pre-
sented in this chapter, most rank-based nonparametric statistics use formulas
identical to the parametric statistics with ranks substituted for the original
data. For example, a one-way analysis of the variance applied to ranks is equiv-
alent to the Kruskal–Wallis test. The difference in the two procedures is the
probability distribution of the test statistic. Nonparametric statistics usually
require a separate table of critical values or use a large sample approximation
involving the χ2 or F distribution.

To illustrate this, we will work Example 13.6 using SAS by first ranking
the observations within blocks usingPROC RANK, and then analyzing the ranks
using PROC ANOVA with the randomized block design model. The results are
given in Table 13.10. Note from Table 13.10 that the test statistic for testing
TREAT is 4.84, exactly the value obtained in Example 13.6. Further, since we
used the F approximation with 4 and 8 degrees of freedom, the p value given
on the printout is the appropriate one for the test statistic. Note, also, that
the sums of squares for BLOCK is exactly 0. This is because the Friedman
test requires that we rank within each block. Therefore, each block will have
exactly the same values (in differing order); therefore the sums of squares will
always be zero.

This procedure will work on the Kruskal–Wallis test, the Spearman corre-
lation, and even the Wilcoxon test. For this reason, some computer packages
provide a procedure for ranking data for use in such analyses rather than
providing separate procedures for nonparametric methods.

Table 13.10

Example 13.6

ANALYSIS OF VARIANCE PROCEDURE
DEPENDENT VARIABLE: RANKPCT

SOURCE DF SUM OF SQUARES MEAN SQUARE

MODEL 6 20.16666667 3.36111111
ERROR 8 8.33333333 1.04166667
CORRECTED TOTAL 14 28.50000000

SOURCE DF ANOVA SS F VALUE PR > F

TREAT 4 20.16666667 4.84 0.0280
BLOCK 2 0.00000000 0.00 1.0000
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EXERCISES

1. In 11 test runs a brand of harvesting machine operated for 10.1, 12.2, 12.4,
12.4, 9.4, 11.2, 14.8, 12.6, 10.1, 9.2, and 11.0 h on a tank of gasoline.
(a) Use the Wilcoxon signed rank test to determine whether the machine

lives up to the manufacturer’s claim of an average of 12.5 h on a tank
of gasoline. (Use α = 0.05.)

(b) For the sake of comparison, use the one-sample t test and compare
results. Comment on which method is more appropriate.

2. Twelve adult males were put on a liquid diet in a weight-reducing plan.
Weights were recorded before and after the diet. The data are shown in
Table 13.11. Use the Wilcoxon signed rank test to ascertain whether the
plan was successful. Do you think the use of this test is appropriate for
this set of data? Comment.

Table 13.11 Data for Exercise 2

SUBJECT

1 2 3 4 5 6 7 8 9 10 11 12

Before 186 171 177 168 191 172 177 191 170 171 188 187
After 188 177 176 169 196 172 165 190 165 180 181 172

3. The test scores shown in Table 13.12 were recorded by two different pro-
fessors for two sections of the same course. Using the Mann–Whitney test
and α = 0.05, determine whether the locations of the two distributions are
equal. Why might the median be a better measure of location than the mean
for these data?

Table 13.12

Data for Exercise 3

PROFESSOR

A B

74 75
78 80
68 87
72 81
76 72
69 73
71 80
74 76
77 68
71 78

4. Inspection of the data for Exercise 11 in Chapter 5 suggests that the
data may not be normally distributed. Redo the problem using the Mann–
Whitney test. Compare the results with those obtained by the pooled t

test.

5. Eight human molar teeth were sliced in half. For each tooth, one randomly
chosen half was treated with a compound designed to slow loss of miner-
als; the other half served as a control. All tooth halves were then exposed
to a demineralizing solution. The response is percent of mineral content
remaining in the tooth enamel. The data are given in Table 13.13.
(a) Perform the Wilcoxon signed rank test to determine whether the treat-

ment maintained a higher mineral content in the enamel.
(b) Compute the paired t statistic and compare the results. Comment on

the differences in the results.
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Table 13.13

Data for Exercise 5

Mineral Content

Control 66.1 79.3 55.3 68.8 57.8 71.8 81.3 54.0
Treated 59.1 58.9 55.0 65.9 54.1 69.0 60.2 55.5

Table 13.14

Data for Exercise 6

METHOD

1 2 3

94 82 89
87 85 68
90 79 72
74 84 76
86 61 69
97 72

80

Table 13.15

Data for Exercise 7

YEAR

County 1 2 3

P 49 141 82
B 13 64 8
C 175 30 7
R 179 9 7

Table 13.16

Ranking of Pies by
Judges

Judge Judge

Pie A B

1 4 5
2 7 6
3 5 4
4 8 9
5 10 8
6 1 1
7 2 3
8 9 10
9 3 2

10 6 7

6. Three teaching methods were tested on a group of 18 students with
homogeneous backgrounds in statistics and comparable aptitudes. Each
student was randomly assigned to a method and at the end of a 6-week
program was given a standardized exam. Because of classroom space, the
students were not equally allocated to each method. The results are shown
in Table 13.14.
(a) Test for a difference in distributions of test scores for the different

teaching methods using the Kruskal–Wallis test.
(b) If there are differences, explain the differences using a multiple

comparison test.

7. Hail damage to cotton, in pounds per planted acre, was recorded for four
counties for three years. The data are shown in Table 13.15. Using years as
blocks use the Friedman test to determine whether there was a difference
in hail damage among the four counties. If a difference exists, determine
the nature of this difference with a multiple comparison test. Also discuss
why this test was recommended.

8. To be as fair as possible, most county fairs employ more than one judge
for each type of event. For example, a pie-tasting competition may have
two judges testing each entered pie and ranking it according to preference.
The Spearman rank correlation coefficient may be used to determine the
consistency between the judges (the interjudge reliability). In one such
competition there were 10 pies to be judged. The results are given in
Table 13.16.
(a) Calculate the Spearman correlation coefficient between the two

judges’ rankings.
(b) Test the correlation for significance at the 0.05 level.

9. An agriculture experiment was conducted to compare four varieties of
sweet potatoes. The experiment was conducted in a completely random-
ized design with varieties as the treatment. The response variable was yield
in tons per acre. The data are given in Table 13.17. Test for a difference in
distributions of yields using the Kruskal–Wallis test. (Use α = 0.01.)

10. In a study of student behavior, a school psychologist randomly sampled
four students from each of five classes. He then gave each student one of
four different tasks to perform and recorded the time, in seconds, neces-
sary to complete the assigned task. The data from the study are listed in
Table 13.18. Using classes as blocks use the Friedman test to determine
whether there is a difference in tasks. Use a level of significance of 0.10.
Explain your results.
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Table 13.17

Yield of Sweet Potatoes

Variety A Variety B Variety C Variety D

8.3 9.1 10.1 7.8
9.4 9.0 10.0 8.2
9.1 8.1 9.6 8.1
9.1 8.2 9.3 7.9
9.0 8.8 9.8 7.7
8.9 8.4 9.5 8.0
8.9 8.3 9.4 8.1

Table 13.18

Time of Perform
Assigned Task

TASK

Class 1 2 3 4

1 43.2 45.8 45.4 44.7
2 48.3 48.7 46.9 48.8
3 56.6 56.1 55.3 54.6
4 72.0 74.1 89.5 82.7
5 88.0 88.6 91.5 88.2

Table 13.19

Bird Counts for
Twenty-Five Years

ROUTE

Year A B C

65 138 815 259
66 331 1143 202
67 177 607 102
68 446 571 214
69 279 631 211
70 317 495 330
71 279 1210 516
72 443 987 178
73 1391 956 833
74 567 859 265
75 477 1179 348
76 294 772 236
77 292 1224 570
78 201 1146 674
79 267 661 494
80 357 729 454
81 599 845 270
82 563 1166 238
83 481 1854 98
84 1576 835 268
85 1170 968 449
86 1217 907 562
87 377 604 380
88 431 1304 392
89 459 559 425

11. Table 13.19 shows the total number of birds of all species observed by
birdwatchers for routes in three different cities observed at Christmas for
each of the 25 years from 1965 through 1989.

An inspection of the data indicates that the counts are not normally
distributed. Since the responses are frequencies, a possible alternative is
to use the square root transformation, but another alternative is to use
a nonparametric method. Perform the analysis using the Friedman test.
Compare results with those obtained in Exercise 10, Chapter 10. Which
method appears to provide the most useful results?



Chapter 14

Sampling and Sample
Surveys

14.1 Introduction

An almost daily occurrence in our news media is a report of some opinion poll
giving percentages of individuals favoring some issue or political candidate.
Usually these reports are given with a great deal of authority and may even be
accompanied by a rather small “margin of error.” Rarely will the report contain
any explanation as to the method of selection of the sample used in this poll
or just exactly what the margin of error really means.

Actually, the statistics quoted in reports such as these are based on some
type of sample from a target population (registered voters, for example) and
are nothing more than point estimates of parameters. The percentage of in-
dividuals favoring some issue is nothing more than a point estimate of the
proportion of individuals in the population favoring this issue. The margin of
error is usually based on a 0.95 confidence interval on this proportion and is
simply one-half the width of this interval. Therefore, if a report shows 45% of
the people polled favored an issue with a margin of error of 2%, then we know
that the true proportion of people in the population favoring this issue will
be somewhere between 0.43 and 0.47 with 0.95 confidence. In other words,
opinion polls are essentially exercises in statistical methodology based on the
principles we have been using throughout this book. The major difference is
that the sample is likely not taken in a completely random manner. Recall
that we have made the assumption that our samples were what we called
completely random samples (except when the sample came from a designed
experiment). This chapter gives a brief introduction to some of the possible
sampling schemes used in such polls.

Opinion polls are an application of a subfield of the discipline of statistics
usually called sampling or sample survey methodology. In many ways this

602



14.1 Introduction 603

sampling methodology is similar to methods we have presented in previous
chapters. There are, however, sufficient differences and special considera-
tions such that the theory and methods of sampling justify a wide variety of
books, journal articles, and formal courses. A classic reference work in this
area is Sampling Techniques by Cochran (1977).

We present in this chapter a very brief overview of the methodology of
this subfield. The presentation in this chapter is intended only to acquaint
the reader with this subject area and is not expected to provide sufficient
information to carry out and analyze a sample survey.1

Sampling methodology is not confined to opinion polls. Other applications
of sampling are numerous and include

• samples of trees from a forest to estimate timber yield of the entire forest,
• sample surveys of individuals and/or families to assess social and economic

characteristics such as unemployment, income, purchasing habits, etc.,
• sample surveys of farms and businesses to assess economic conditions such

as production, costs, profits, etc., and
• inspection of samples of output from a manufacturing process to determine

the quality of products produced.

Applications of the second and third types listed are employed by govern-
ment agencies to produce many of the series of indexes of economic activity.
Many important applications of sampling methodology involve samples of per-
sons from whom information is solicited; hence the material in this chapter is
geared to that type of application. Most of the basic principles do, however,
apply to all types of sampling.

The methodology of sampling might, at first, appear to be similar to that of
experimental design. There is a difference, however, both in the objectives of
and in the procedure used to obtain the sample.

Some of the principal features that distinguish sampling methodology from
experimental design methodology follow:

• Normally the population is finite, such as, for example, the population of
voters in a state. This is in contrast to most of what we have been doing
where the population is conceptually infinite, such as, for example, all pos-
sible repetitions of a particular experiment.

• The units of the population cannot be manipulated or controlled as is done
in experimental design. Rather, the sample is selected from a defined, exist-
ing population. The difference between sampling and experimental design
can be restated as the following:

Sample: examination of what is present in the population.
Experiments: examination of what may happen in the population if

conditions change.

1Therefore no exercises are given at the end of this chapter.
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• Often some known information exists about the population. For example,
a city can be divided into sections representing households of different
income classes, or states can be divided into regions representing different
types of agricultural practices.

• The primary purpose of sample surveys is to estimate population parame-
ters, usually the means or totals of several variables. Hypothesis testing or
comparative studies are relatively rare applications of sampling.

In summary, then, sampling methodology is distinguished by

• the existence of a defined finite population,
• an inability to manipulate or change the population, and
• primarily being interested in describing the population in terms of estimates

of some of its parameters.

On the other hand, most of the basic principles of statistical inference do apply
to sampling, including

• the importance of randomness in the selection of units,
• the use of the central limit theorem, and, in general,
• close scrutiny of data collection procedures and the nature of the data.

We begin the chapter with a discussion of some practical considerations in
planning and executing a sample survey. This is followed by a brief introduc-
tion to the use of two of the more popular sampling designs: simple random
sampling and stratified random sampling. A final section mentions some addi-
tional topics related to sample survey design.

14.2 Some Practical Considerations

We have already noted that the population for a sample survey cannot be
controlled or manipulated. Also, sample surveys often involve large sample
sizes: Samples in excess of 1000 observations are quite frequent. For these
reasons the data collection phase of a sample survey is more complicated
than it is for most experiments and must therefore be more carefully planned
and executed. Many aspects of this phase are not strictly “statistical” in that
they do not involve principles of statistical inference. Rather they consist of
principles and methodology that assure that the sample provides useful and
reliable data, which are compatible with the purposes of the data collection
and can be analyzed by the appropriate statistical methodology. Many books
and articles have been written on this subject (for example, Sudman, 1976).
We present in this section highlights of the fundamental aspects of this phase
of sampling.

• Definition of the population: In previously discussed applications of sta-
tistical methods, the definition of the population of units and the values of
the variables describing these units have not caused much difficulty: yields
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of plots of rice, test scores of students, weights of peanuts in jars, etc. The
focus of sample surveys is often on populations and variables that are more
difficult to define. For example, what is a family? Is a group of students in a
sorority a family? Does the income of a family include earnings of a student
away at college who works part time? How do you record the production
of a farm whose owner cultivates some crops on nonowned land on a share
basis? Is a five-acre vegetable garden a farm?

• The frame: The existence of a defined population would seem to imply a
list of population units from which the sample can be drawn. Unfortunately,
this is not always the case. For example, there is usually no complete list of
individuals or households in a city. Instead a frame is defined as an available
list (or equivalent) used as the vehicle to provide the basis for a sample that
will represent the desired population. For example, a “list” of city blocks
can be obtained from an aerial photograph, and sampling families from a
random sample of blocks may provide an acceptable sample of families.
The definition of a useful frame is not always straightforward. For example,
a list of farm addresses is not necessarily a good frame for a sample of
farmers.

• Method of data collection: Data from experiments are usually obtained by
measurement or counting, while data from sample surveys are often ob-
tained as answers to questions posed to sampled individuals. One method
of collecting such data is for an interviewer to contact the sample of in-
dividuals and record answers to questions listed in a questionnaire. This
method is quite expensive, largely due to the time and effort required to
locate and contact the individuals selected for the sample. Using the mails
or telephone incurs lower costs; however, these data collection methods
have serious drawbacks because lists of mailing addresses or telephone
numbers often comprise an incomplete frame. Furthermore, mail samples,
and to a lesser degree telephone samples, suffer from nonresponse, the
failure of all contacted individuals to provide answers. Since the failure to
respond is not a random act, a sample that consists only of volunteer re-
sponders is not a random sample from the entire population and should not
be used to make inferences to the population.

• Questionnaire construction: The instrument used to obtain information
about respondents in a sample survey is the questionnaire. A poorly con-
ceived or executed questionnaire can ruin an otherwise well-planned and
executed sample survey. Principles for good questionnaire construction
involve the use of clearly worded unambiguous questions that elicit the de-
sired information, avoidance of “loaded” questions that suggest a “correct”
answer, construction of questions whose answers can be translated into
variables suitable for statistical analysis, and finally assurance that the ques-
tionnaire obtains all the needed information without being unduly long. An
important vehicle in questionnaire construction is a pretest where a ques-
tionnaire is used on some individuals who are typical (but not a part) of the
sample respondents. Also important is careful selection and training of the
interviewers who will administer the questionnaire.
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• Data analysis:Because sample surveys usually involve rather large amounts
of data, careful planning of the analysis phase is very important. Aspects
that require special care include coding of answers to questions to allow
statistical analyses and careful data editing to assure high data quality.

We cannot emphasize too strongly that these nonstatistical aspects of
planning and executing a sample survey are not trivial and must be carefully
considered and implemented. For the remainder of this chapter we assume
that these aspects have been addressed, and concentrate on the sample sur-

vey design, which specifies the procedures for selecting the sample units
from the population and the subsequent calculation of statistics and making
the desired inferences.

14.3 Simple Random Sampling

The simplest and most obvious sampling design is called simple random sam-
pling, which consists of randomly sampling units from the population at large.

Notation

Consider a population of N units. One or more variables are associated with
each unit. For simplicity we focus on the variable we denote by y. The N values
of y,

yi, i = 1, . . . , N,

constitute the values of the variable for the population. The distribution of the
variable in the population is characterized by the usual parameters,2 the mean
μ and the variance σ 2.

DEFINITION 14.1
A simple random sample of n units is defined such that each possible
sample of size n is equally likely to be drawn. This sampling principle
assures that each unit in the population has probability (n/N ) of being
selected for the sample.

DEFINITION 14.2
The quantity (n/N ) is referred to as the sampling fraction. The recip-
rocal (N/n) is known as the expansion factor.

2Many references (for example, Cochran, 1977) define the population variance
∑

(yi − μ)2/

(N − 1). This formulation of the population variance is used as the basis for the other formulas
presented in this chapter. Some of these references will, in fact, use ȳ (or Ȳ ) and S 2 to denote the
population mean and variance, Since the population size (N) is usually quite large, the use of (N)
rather than (N − 1) will make no significant difference.
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Sampling Procedure

The idealized procedure for selecting a simple random sample of n units is to
sequentially identify the population units with integers from 1 to N, and select
units corresponding to n random integers, chosen without duplication from
either a table of random numbers or generated by a computer.

As we noted earlier, the idealized procedure may need to be adapted ac-
cording to the manner in which individual population units can be identified.

Estimation

The point estimates for the population parameters μ and σ 2 are the corre-
sponding sample statistics ȳ and s2, computed in the usual manner. In some
applications, for example in estimating crop yields, we may want to estimate
the population total, Nμ, for which the estimate is Nȳ.

The sampling distribution of the mean tends to be, as before, normal, with

mean (ȳ) = μ and

var(ȳ) =
(

N − n

N

)(
σ 2

n

)
.

The factor (N − n)/N, which can also be written (1 − n/N ), reduces the
magnitude of the variance of the mean by the sampling fraction from what it
would be if the population were infinite. This reduction factor is called the
finite population correction factor (fpc). The fpc reflects the additional
information we obtain by sampling a portion of a finite population. The larger
n is relative to N, the more information we have about the whole population.
In fact, if we were to sample the entire population, the fpc would be zero,
because then we would know exactly the population mean and the variance
of that “estimate” is zero. The fpc has minimal effect and is usually ignored if
n/N < 0.05.

The estimated population total is Nȳ. Since N is a known constant, the
variance of the estimated total is N 2 times the variance of the mean:

var(Nȳ) = N(N − n)
σ 2

n
.

Of course, the population variance is usually not known and the estimated
variance s2 is substituted to obtain the estimated variance of the mean. The use
of the estimated variance requires the use of the t distribution for confidence
interval estimates of the mean:

ȳ ± tα/2

√(
N − n

N

)(
s2

n

)
.

Usually sample sizes are sufficiently large to allow use of the appropriate
percentage points of the normal (rather than the t) distribution. In fact, it is
customary to use the factor 2 as a close approximation to zα/2 for the 0.95
confidence interval.
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In some applications, such as opinion polls, the response variable is bi-
nomial. The normal approximation to the binomial is used as outlined in
Section 4.3 with the addition of the fpc. Thus, for example, the (1 − α) confi-
dence interval for the proportion of successes is

p̂ ± zα/2

√(
N − n

N

)[
p̂(1 − p̂)

n

]
,

where p̂ is the sample proportion of successes.

Systematic Sampling

The actual process of drawing a random sample as described in the previous
section can be quite tedious, especially for large populations and large sam-
ples. An alternative procedure, which is often easier to implement and works
quite well in most cases, is systematic sampling. The systematic sampling
procedure is implemented as follows:

1. Identify all units of the population: i = 1, 2, . . . , N.
2. Calculate the expansion factor (N/n) and round to the nearest integer. Call

this r.
3. Choose a random integer, r0, 1 ≤ r0 ≤ (r − 1).
4. Identify units to be included in the sample by i = r0, r0 + r, r0 + 2r, . . . .

The sampling method will result in a sample of n units (±1 due to rounding of
r), and each unit of the population has an equal chance of being selected. A
major reason for the popularity of systematic sampling is not having to select
n different random numbers. It is also often more convenient to locate every
rth unit rather than to select units randomly spaced.

The systematic sampling procedure can, however, produce a biased sam-
ple if the list of population units contains cycles or trends. For example, if
r = 16, and we are sampling a set of 16-unit apartment buildings, all sam-
pled units will be in the same location in each apartment building. Thus, if
r0 = 1, then all sampled units would be the first apartment unit in each build-
ing, which will most likely be on the first floor and may, for example, contain
a larger proportion of aged and handicapped persons. Such extreme biases
rarely occur but less obvious cycles may occur when least expected; hence
caution is advised.

If the population is indeed in random order, sample estimates and variances
are computed as if simple random sampling has been used.

Sample Size

In simple random sampling, calculation of the sample sizes required for spec-
ified precision uses the same principles presented in Sections 3.4 and 4.3.
However, because of the fpc, the formula for sample size determination is
somewhat more complicated. Since the fpc is needed only if n/N > 0.05, it is
customary to first calculate sample size ignoring the fpc; then if it appears that
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n/N may exceed 0.05 an adjustment is made for this factor. The initial sample
size estimate, n0, ignoring fpc, is the one presented in Section 3.4,

n0 = z2
α/2σ

2

E2
,

where E is the maximum error of estimate (half the width of the (1 − α)
confidence interval). If n0/N > 0.05, the final sample size estimate, n, is

n = n0

1 + n0/N
.

Sample surveys are often used to estimate parameters from distributions of
several variables. Calculation of minimum required sample sizes for each of the
variables is likely to produce different sample size requirements. The safest rec-
ommendation is, of course, to take the largest of these required sizes; however,
this may not be feasible. Compromises on the ultimate sample size must reflect
the relative importance of the required precision for the different variables.

All of these formulas involve the population variance σ 2, which is normally
not known. In practice, an estimate of the variance, usually based on prior
samples of similar populations, is used.

14.4 Stratified Sampling

In experimental design (Chapter 10) we use the principle of blocking to reduce
the error variance, thereby increasing the precision of estimates and/or power
of hypothesis tests.

DEFINITION 14.3
Stratified sampling is a sampling method in which the population is
divided into portions, called strata, which are expected to contain rel-
atively homogeneous units, and samples (either random or systematic)
are taken independently in each stratum.

The use of stratified sampling is based on the premise that in many popula-
tions definable portions that consist of relatively homogeneous units exist. For
example, crop yields in a specific area of a state will be relatively more uniform
than those of the entire state, or voters in a specific precinct will tend to have
a more consistent voting pattern than do the voters of an entire city. As is the
case for blocking designs, the variances of estimates are based on variances
within strata, and are therefore likely to be smaller than those resulting from
a random sample of the entire population.

Estimation

Consider a population with s strata. There are Ni, i = 1, 2, . . . , s units in stra-
tum i, and

∑
Ni, = N is the total population size. The stratum means and
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variances of the response variable are μi and σ 2
i , respectively. The overall mean

can be computed as the weighted mean of stratum means: μ = ∑
Niμi/N.

A sample of ni units is drawn from each stratum; hence
∑

ni = n is the total
sample size. For each stratum we compute the sample mean ȳi and variance
s2
i . The estimate of the overall population mean μ is

ȳstrat = 1
N

∑
Niȳi,

which is an unbiased estimate of the population mean. The variance of the
sampling distribution of this estimate3 is

var(ȳstrat) = 1
N 2

∑
Ni(Ni − ni)

(
σ 2

i

ni

)
.

In contrast to analysis of variance methods, stratum variances are not required
to be equal. Hence there is no pooled variance estimate, and the t distribution
cannot be used to compute confidence intervals. However, sample sizes are
almost always sufficiently large so that the normal distribution may be safely
used for the construction of confidence intervals. As in simple random sam-
pling, the factor 2 is usually used in place of the z value for constructing a 0.95
confidence interval.

Sample Sizes

The formula for the variance of the estimated mean from a stratified sample
involves not only the overall sample size but also the individual strata sample
sizes. Therefore the determination of sample size needed for a given precision
must be done in two stages:

1. determining the size of the entire sample n and
2. the allocation of the sample to the different strata, that is, determining

ni/n.

Since the variance of the estimate of the overall mean is influenced by the
nature of the allocation, it is necessary to first consider the allocation problem.

A very logical allocation principle is that of proportional allocation, for
which the sampling fraction is the same for all strata, that is,

ni

Ni

= n

N
, i = 1, 2, . . . , s.

Proportional allocation is easy to implement since the selection procedure
follows the same rules for each stratum. Furthermore, estimation is simplified
because the sample is self-weighting; that is, the estimate of the population
mean is the simple (unweighted) mean of all observed values,

ȳ = 1
n

∑
y,

3It is customary to present the formulas for variance of estimates in terms of the population
variances. Sample estimates are substituted for actual calculations.
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where the summation is over all sample values. The formula for the variance
of the estimated mean is also simplified:

var(ȳprop) = N − n

N

1
n

∑ Ni

N
σ 2

i .

Another allocation principle is based on the idea that more precise esti-
mates can be obtained if relatively larger samples are taken from strata having
large within-stratum variances. The fact that this principle does indeed provide
smaller variance estimates is demonstrated with the aid of calculus, where it
can be shown that the smallest possible variance of the mean is obtained if the
sampling fractions of the strata are specified according to

ni

n
= Niσi∑

Niσi

.

This so-called optimum allocation is seen to cause sample sizes larger than
those of proportional allocation for strata exhibiting larger within-stratum
standard deviations. Optimum allocation does not, however, provide a self-
weighting sample; hence the estimated mean and variance are obtained by the
general formula given earlier in this section. If within-stratum variances are
equal, the optimum allocation is equivalent to proportional allocation.

Here again, the individual stratum variances are normally not known and
estimates based on previous studies are used in practice. Note that poor esti-
mates of these variances may undo the increased precision implied for opti-
mum allocation.

Substituting the optimum allocation fractions into the formula for the vari-
ance of the estimated mean, we obtain

var(ȳopt) = 1
n

[
1

N 2

(∑
Niσi

)2
]

− 1
N 2

∑
Niσ

2
i ,

where the second portion is the finite population correction factor.
Note that once the allocations are determined, the variance of the esti-

mated mean is a function of the overall sample size. Also the contribution of
the fpc is a separate part of the function. This means that the overall sample
size for a given degree of precision can be obtained in two stages as was done
for the simple random sampling procedure (see the following example).

Refinements exist for modifying the allocations to reflect differential costs
for collecting data among strata (Cochran, 1977, Section 5.5). Occasionally
optimum allocation may specify ni/Ni ≥ 1 for some strata, in which case
those strata are sampled at 100% and the remainder of the sample is allocated
to the other strata as indicated above. In this case, the strata sampled at a 100%
rate contribute nothing to the variance of the estimated mean.

For a binomial response variable, the values pi(1 − pi), where pi are the
stratum population proportions, are substituted for the σ 2

i in the above formu-
las. For this case it is readily seen that strata with pi near 0 or unity will have
low allocations relative to strata with pi near 0.5. Here again, values of the pi

based on previous studies will need to be used.



612 Chapter 14 Sampling and Sample Surveys

Efficiency

It can be shown that for a given total sample size n,

var(ȳSRS) ≥ var(ȳprop) ≥ var(ȳopt),

where ȳSRS represents simple random sampling, that is, a sampling procedure
that ignores the existence of the strata. The advantages that accrue to stratified
sampling are similar to those for blocking: They are due to relatively large vari-
ation among strata; that is, a large value for

∑
(μi −μ)2. Additional advantages

accrue to optimum allocation due to large differences in variances within the
different strata.

Of course, these advantages are functions of the population variances,
which are unknown. Educated guesses using information from previous stud-
ies are normally used to determine the stratum parameters and the relative
allocations. Often these work quite well, but bad guesses can nullify the ex-
pected advantages.

An Example

Most sample surveys are too large to be used as textbook examples. We there-
fore illustrate the principles of stratified sampling with a small artificial popu-
lation of 110 units with three strata. The data and population parameters are
presented in Table 14.1. In this example, we know the population variances;
hence, we can show the relative efficiencies of the different sampling designs.

We first compare the variance of the estimated mean using simple random
and proportional and optimum allocated stratified samples with a total sample
size of 30. For simple random sampling, the variance is

var(ȳSRS) =
(

110 − 30
110

)(
23283.6

30

)
= 564.45.

For the proportionally allocated stratified sample, the sampling ratio of n/N =
30/110 = 0.273 is applied to each of the strata:

n1 = 5.46 ∼ 6,

n2 = 8.19 ∼ 8,

n3 = 16.38 ∼ 16.

The variance of the estimated mean is

var(ȳprop) =
(

110 − 30
110

)(
1

30

)[
20

110
(8721.2) + 30

110
(2536.0) + 60

110
(303.5)

]
= 59.22.

The variance of the estimated mean is seen to be reduced considerably by
using stratification. Examination of the data clearly shows the reason: There
are large differences among the μi.
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Table 14.1

Population Data for
Stratified Sample

STRATUM

1 2 3

385 241 73 69
473 204 109 121
371 190 92 85
321 303 108 95
413 312 83 130
495 320 102 124
701 368 79 84
474 257 119 102
494 352 85 117
501 299 100 119
618 237 117 76
480 310 98 136
457 280 85 56
379 287 120 126
461 267 92 109
328 307 83 94
540 216 92 96
519 279 120 120
469 277 113 132
607 243 92 115

379 114 104
319 77 102
286 88 91
311 123 116
340 98 87
401 111 107
265 104 116
306 93 116
317 93 95
371 97 135

STRATUM

Parameters 1 2 3 All

Ni 20 30 60 110
μ 474.3 294.8 102.2 222.41
σ 2 8721.2 2536.0 303.5 23283.6

Ni/N 0.182 0.273 0.545

The computations for optimum allocation are summarized as follows:

Stratum Niσi (Niσi)/
∑

Niσi ni

1 1867.7 0.422 12.66 ∼ 13
2 1510.8 0.342 10.26 ∼ 10
3 1045.3 0.236 7.08 ∼ 7

Total 4423.8 1.000 30

We can see that although stratum 1 is the smallest, it gets the largest sample
size due to the large within-stratum variance. The variance of the estimated
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mean is

var(ȳopt) =
(

1
30

)[
1

1102
(4423.8)2

]
−
(

1
1102

)
[20(8721.2) + 30(2536.0) + 60(303.5)] = 31.70.

We can see that there is an additional reduction in the variance due to optimum
allocation, although the decrease is not as dramatic as that accomplished by
stratification.

Another way to see the advantage of stratification is to compare required
sample sizes for a desired precision of the estimated mean. As we have noted,
sample size requirements are determined by adapting the principles presented
in Section 3.4.

We continue the example by determining the required sample size for a max-
imum error of estimate of 20, which is equivalent to a maximum width of 40 for
a 0.95 confidence interval (Section 3.3). Remember that a maximum error of
estimate of E implies a standard error of the estimated mean of E/2 (using the
value 2 as an approximation for the 0.025 value of the normal distribution),
which implies that the variance of the mean is E2/4. For our required E of 20,
the variance of the estimated mean must be less than or equal to 202/4 = 100.
We will obtain the required sample size by equating the expression for the
variance of the mean to 100 and solving the resulting equation for n .

All quantities for these computations are available in Table 14.1. For the
simple random sample,

var(ȳSRS) = σ 2/n.

Substituting the value of 100 for the variance, we have

100 = 23283.6/n0; hence

n0 = 233.

This is certainly more than 5% of the population; hence

n = n0

1 + n0/N
= 233

1 + 233/110
= 75.

For stratified sampling with proportional allocation,

var(ȳprop) = 1
n0

∑(
Ni

N

)
σ 2

i ;

hence

100 = 2442.8
n0

n0 = 25.

Again n0/N > 0.05; hence

n = 25
1 − (25/110)

= 21.
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Finally, for stratified sampling with optimum allocation,

var(ȳopt) =
(

1
n0

)(
1

N 2

)(∑
Niσi

)2
;

hence

100 = 1617.4
n0

n0 = 17.

As before, n0/N > 0.05; hence

n = 17
1 + (17/110)

= 15.

These results confirm the fact that stratified sampling and optimum allocation
are effective for sampling from this population.

Again, keep in mind that values of unknown population parameters were
used to obtain the optimum allocation. If the informed guesses on these val-
ues used for allocation are not close to the population values, the optimum
allocation may not be helpful.

Additional Topics in Stratified Sampling

An apparent necessity for stratified sampling is to have readily identifiable
strata such as political or geographic regions or subdivisions. For some situa-
tions, strata are not easily identified: Income or occupational groups are recog-
nized as good criteria for stratification, but there are no universally accepted
definitions of the exact delineation of such strata. Some general methods are
available (for example, Cochran, 1977, Section 5A.8), but they are not always
practically useful.

Another difficulty with stratified sampling occurs when the stratum identi-
fication of a unit cannot be determined prior to taking the sample. For example,
political party identification of an individual cannot be determined until after

the individual has been interviewed. The most popular solution for this situ-
ation is called post stratification, and consists of taking a simple random
sample, stratifying the sample after it has been taken, and using the formulas
for stratified sampling to obtain estimates of the mean and variance. For ex-
ample, we could stratify an individual by his or her political party affiliation
after interviewing the individual. Of course, stratum sample sizes cannot be
determined in advance and are, in fact, themselves random variables, which
complicates estimation procedures.

An alternative to post stratification is quota sampling, which requires a
quota of units to be sampled for each stratum. A simple random sample is
taken, and sampling continues until the quota has been met for all strata. This
method may become expensive, since a number of excess units (from whom
information is not used) may need to be interviewed before all quotas are met.
Many public opinion polls use adaptations of quota sampling.
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14.5 Other Topics

A large variety of additional sampling methodologies is available for obtain-
ing greater precision or to cope with special situations. We briefly mention
a few of these here, emphasizing that the coverage is entirely too brief and
incomplete to guide actual implementation of these methods.

Multistage sampling is used when units can be divided into subunits. An
example of this occurs where city blocks are units, families are subunits, and
individuals in families are sub-subunits. The first stage of the sample selects a
sample of city blocks, in the second stage a sample of families is selected in
the sampled blocks, and in a third stage samples of individuals are selected
in the sampled families. In a sense, stratified sampling can be considered a
special case of two-stage sampling where units (strata) are sampled at a 100%
rate. Multistage sampling can be quite efficient since it allows great flexibility
in allocating samples among units as well as subunits, etc. It can, however,
also become quite complicated, especially if units vary greatly in size.

Prior information can often be used to increase efficiency of estimates.
For example, in preelection polls the actual ( population) vote in the previous
election is known, and the sample for the current election is used to estimate
the change in voting behavior. Such an estimate of change usually has much
smaller variance than an estimate of voting behavior itself. Such estimates are
called ratio or regression estimates.

Multiple frame sampling may be used when an easily identified frame
provides a sample for a large but incomplete portion of the population, while
the frame that covers the entire population is more difficult to define and/or
sample. For example, a list of farmers receiving price support payments pro-
vides an up-to-date list of a major fraction of all farmers. A list of all farmers
is, however, not as easily obtained and may need to be drawn by physically lo-
cating farmers in sampled areas. In a multiple frame survey, the major portion
of the sample is drawn from the easily identified frame while a small sample is
drawn from the other. Special instruments must be used to identify the overlap
of the two frames.

Special populations often require specialized techniques. For example,
in sampling wildlife populations, a technique called line transect sampling con-
sists of having an observer walk a predetermined (sample) path and record the
number of animals sighted. This method is greatly affected by the visibility of
animals and density of competing structures (plants); hence estimation can
become quite complicated. In capture–recapture sampling, an initial sample
of animals is tagged, and in a second sample the proportion of tagged animals
found is used to obtain an estimate of total population size.

Cluster sampling, a variation of stratified sampling, can be used when the
cost of sampling is greatly reduced if a whole stratum can be sampled. In this
scheme, the population is first divided into strata. A random selection of strata
is then obtained and completely sampled. For example, in a study to determine
substandard housing stock in a city, the city might be stratified into blocks.
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A random selection of blocks is taken, and each block totally sampled. This
greatly reduces the time and cost of sampling.

14.6 CHAPTER SUMMARY

We again emphasize that the purpose of this chapter is to acquaint the reader
with the field of sampling and sample surveys. There is obviously insufficient
information here to provide anyone with the knowledge needed to plan and
implement even a small sample survey. Instead the information in this chapter
should be used to aid in the initial decisions of whether a sample survey is
appropriate for a specific study, and also to aid in understanding the recom-
mendations of a qualified sample survey statistician.
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Table A.1

The Normal
Distribution----
Probabilities
Exceeding Z

Z Prob > Z Z Prob > Z Z Prob > Z Z Prob > Z

−3.99 1.0000 −3.49 0.9998 −2.99 0.9986 −2.49 0.9936
−3.98 1.0000 −3.48 0.9997 −2.98 0.9986 −2.48 0.9934
−3.97 1.0000 −3.47 0.9997 −2.97 0.9985 −2.47 0.9932
−3.96 1.0000 −3.46 0.9997 −2.96 0.9985 −2.46 0.9931
−3.95 1.0000 −3.45 0.9997 −2.95 0.9984 −2.45 0.9929
−3.94 1.0000 −3.44 0.9997 −2.94 0.9984 −2.44 0.9927
−3.93 1.0000 −3.43 0.9997 −2.93 0.9983 −2.43 0.9925
−3.92 1.0000 −3.42 0.9997 −2.92 0.9982 −2.42 0.9922
−3.91 1.0000 −3.41 0.9997 −2.91 0.9982 −2.41 0.9920
−3.90 1.0000 −3.40 0.9997 −2.90 0.9981 −2.40 0.9918
−3.89 0.9999 −3.39 0.9997 −2.89 0.9981 −2.39 0.9916
−3.88 0.9999 −3.38 0.9996 −2.88 0.9980 −2.38 0.9913
−3.87 0.9999 −3.37 0.9996 −2.87 0.9979 −2.37 0.9911
−3.86 0.9999 −3.36 0.9996 −2.86 0.9979 −2.36 0.9909
−3.85 0.9999 −3.35 0.9996 −2.85 0.9978 −2.35 0.9906
−3.84 0.9999 −3.34 0.9996 −2.84 0.9977 −2.34 0.9904
−3.83 0.9999 −3.33 0.9996 −2.83 0.9977 −2.33 0.9901
−3.82 0.9999 −3.32 0.9995 −2.82 0.9976 −2.32 0.9898
−3.81 0.9999 −3.31 0.9995 −2.81 0.9975 −2.31 0.9896
−3.80 0.9999 −3.30 0.9995 −2.80 0.9974 −2.30 0.9893
−3.79 0.9999 −3.29 0.9995 −2.79 0.9974 −2.29 0.9890
−3.78 0.9999 −3.28 0.9995 −2.78 0.9973 −2.28 0.9887
−3.77 0.9999 −3.27 0.9995 −2.77 0.9972 −2.27 0.9884
−3.76 0.9999 −3.26 0.9994 −2.76 0.9971 −2.26 0.9881
−3.75 0.9999 −3.25 0.9994 −2.75 0.9970 −2.25 0.9878
−3.74 0.9999 −3.24 0.9994 −2.74 0.9969 −2.24 0.9875
−3.73 0.9999 −3.23 0.9994 −2.73 0.9968 −2.23 0.9871
−3.72 0.9999 −3.22 0.9994 −2.72 0.9967 −2.22 0.9868
−3.71 0.9999 −3.21 0.9993 −2.71 0.9966 −2.21 0.9864
−3.70 0.9999 −3.20 0.9993 −2.70 0.9965 −2.20 0.9861
−3.69 0.9999 −3.19 0.9993 −2.69 0.9964 −2.19 0.9857
−3.68 0.9999 −3.18 0.9993 −2.68 0.9963 −2.18 0.9854
−3.67 0.9999 −3.17 0.9992 −2.67 0.9962 −2.17 0.9850
−3.66 0.9999 −3.16 0.9992 −2.66 0.9961 −2.16 0.9846
−3.65 0.9999 −3.15 0.9992 −2.65 0.9960 −2.15 0.9842
−3.64 0.9999 −3.14 0.9992 −2.64 0.9959 −2.14 0.9838
−3.63 0.9999 −3.13 0.9991 −2.63 0.9957 −2.13 0.9834
−3.62 0.9999 −3.12 0.9991 −2.62 0.9956 −2.12 0.9830
−3.61 0.9998 −3.11 0.9991 −2.61 0.9955 −2.11 0.9826
−3.60 0.9998 −3.10 0.9990 −2.60 0.9953 −2.10 0.9821
−3.59 0.9998 −3.09 0.9990 −2.59 0.9952 −2.09 0.9817
−3.58 0.9998 −3.08 0.9990 −2.58 0.9951 −2.08 0.9812
−3.57 0.9998 −3.07 0.9989 −2.57 0.9949 −2.07 0.9808
−3.56 0.9998 −3.06 0.9989 −2.56 0.9948 −2.06 0.9803
−3.55 0.9998 −3.05 0.9989 −2.55 0.9946 −2.05 0.9798
−3.54 0.9998 −3.04 0.9988 −2.54 0.9945 −2.04 0.9793
−3.53 0.9998 −3.03 0.9988 −2.53 0.9943 −2.03 0.9788
−3.52 0.9998 −3.02 0.9987 −2.52 0.9941 −2.02 0.9783
−3.51 0.9998 −3.01 0.9987 −2.51 0.9940 −2.01 0.9778
−3.50 0.9998 −3.00 0.9987 −2.50 0.9938 −2.00 0.9772

618
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Table A.1 (continued) Z Prob > Z Z Prob > Z Z Prob > Z Z Prob > Z

−1.99 0.9767 −1.49 0.9319 −0.99 0.8389 −0.49 0.6879
−1.98 0.9761 −1.48 0.9306 −0.98 0.8365 −0.48 0.6844
−1.97 0.9756 −1.47 0.9292 −0.97 0.8340 −0.47 0.6808
−1.96 0.9750 −1.46 0.9279 −0.96 0.8315 −0.46 0.6772
−1.95 0.9744 −1.45 0.9265 −0.95 0.8289 −0.45 0.6736
−1.94 0.9738 −1.44 0.9251 −0.94 0.8264 −0.44 0.6700
−1.93 0.9732 −1.43 0.9236 −0.93 0.8238 −0.43 0.6664
−1.92 0.9726 −1.42 0.9222 −0.92 0.8212 −0.42 0.6628
−1.91 0.9719 −1.41 0.9207 −0.91 0.8186 −0.41 0.6591
−1.90 0.9713 −1.40 0.9192 −0.90 0.8159 −0.40 0.6554
−1.89 0.9706 −1.39 0.9177 −0.89 0.8133 −0.39 0.6517
−1.88 0.9699 −1.38 0.9162 −0.88 0.8106 −0.38 0.6480
−1.87 0.9693 −1.37 0.9147 −0.87 0.8078 −0.37 0.6443
−1.86 0.9686 −1.36 0.9131 −0.86 0.8051 −0.36 0.6406
−1.85 0.9678 −1.35 0.9115 −0.85 0.8023 −0.35 0.6368
−1.84 0.9671 −1.34 0.9099 −0.84 0.7995 −0.34 0.6331
−1.83 0.9664 −1.33 0.9082 −0.83 0.7967 −0.33 0.6293
−1.82 0.9656 −1.32 0.9066 −0.82 0.7939 −0.32 0.6255
−1.81 0.9649 −1.31 0.9049 −0.81 0.7910 −0.31 0.6217
−1.80 0.9641 −1.30 0.9032 −0.80 0.7881 −0.30 0.6179
−1.79 0.9633 −1.29 0.9015 −0.79 0.7852 −0.29 0.6141
−1.78 0.9625 −1.28 0.8997 −0.78 0.7823 −0.28 0.6103
−1.77 0.9616 −1.27 0.8980 −0.77 0.7794 −0.27 0.6064
−1.76 0.9608 −1.26 0.8962 −0.76 0.7764 −0.26 0.6026
−1.75 0.9599 −1.25 0.8944 −0.75 0.7734 −0.25 0.5987
−1.74 0.9591 −1.24 0.8925 −0.74 0.7704 −0.24 0.5948
−1.73 0.9582 −1.23 0.8907 −0.73 0.7673 −0.23 0.5910
−1.72 0.9573 −1.22 0.8888 −0.72 0.7642 −0.22 0.5871
−1.71 0.9564 −1.21 0.8869 −0.71 0.7611 −0.21 0.5832
−1.70 0.9554 −1.20 0.8849 −0.70 0.7580 −0.20 0.5793
−1.69 0.9545 −1.19 0.8830 −0.69 0.7549 −0.19 0.5753
−1.68 0.9535 −1.18 0.8810 −0.68 0.7517 −0.18 0.5714
−1.67 0.9525 −1.17 0.8790 −0.67 0.7486 −0.17 0.5675
−1.66 0.9515 −1.16 0.8770 −0.66 0.7454 −0.16 0.5636
−1.65 0.9505 −1.15 0.8749 −0.65 0.7422 −0.15 0.5596
−1.64 0.9495 −1.14 0.8729 −0.64 0.7389 −0.14 0.5557
−1.63 0.9484 −1.13 0.8708 −0.63 0.7357 −0.13 0.5517
−1.62 0.9474 −1.12 0.8686 −0.62 0.7324 −0.12 0.5478
−1.61 0.9463 −1.11 0.8665 −0.61 0.7291 −0.11 0.5438
−1.60 0.9452 −1.10 0.8643 −0.60 0.7257 −0.10 0.5398
−1.59 0.9441 −1.09 0.8621 −0.59 0.7224 −0.09 0.5359
−1.58 0.9429 −1.08 0.8599 −0.58 0.7190 −0.08 0.5319
−1.57 0.9418 −1.07 0.8577 −0.57 0.7157 −0.07 0.5279
−1.56 0.9406 −1.06 0.8554 −0.56 0.7123 −0.06 0.5239
−1.55 0.9394 −1.05 0.8531 −0.55 0.7088 −0.05 0.5199
−1.54 0.9382 −1.04 0.8508 −0.54 0.7054 −0.04 0.5160
−1.53 0.9370 −1.03 0.8485 −0.53 0.7019 −0.03 0.5120
−1.52 0.9357 −1.02 0.8461 −0.52 0.6985 −0.02 0.5080
−1.51 0.9345 −1.01 0.8438 −0.51 0.6950 −0.01 0.5040
−1.50 0.9332 −1.00 0.8413 −0.50 0.6915 0.00 0.5000

(Continued)
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Table A.1 (continued) Z Prob > Z Z Prob > Z Z Prob > Z Z Prob > Z

0.01 0.4960 0.51 0.3050 1.01 0.1562 1.51 0.0655
0.02 0.4920 0.52 0.3015 1.02 0.1539 1.52 0.0643
0.03 0.4880 0.53 0.2981 1.03 0.1515 1.53 0.0630
0.04 0.4840 0.54 0.2946 1.04 0.1492 1.54 0.0618
0.05 0.4801 0.55 0.2912 1.05 0.1469 1.55 0.0606
0.06 0.4761 0.56 0.2877 1.06 0.1446 1.56 0.0594
0.07 0.4721 0.57 0.2843 1.07 0.1423 1.57 0.0582
0.08 0.4681 0.58 0.2810 1.08 0.1401 1.58 0.057
0.09 0.4641 0.59 0.2776 1.09 0.1379 1.59 0.0559
0.10 0.4602 0.60 0.2743 1.10 0.1357 1.60 0.0548
0.11 0.4562 0.61 0.2709 1.11 0.1335 1.61 0.0537
0.12 0.4522 0.62 0.2676 1.12 0.1314 1.62 0.0526
0.13 0.4483 0.63 0.2643 1.13 0.1292 1.63 0.0516
0.14 0.4443 0.64 0.2611 1.14 0.1271 1.64 0.0505
0.15 0.4404 0.65 0.2578 1.15 0.1251 1.65 0.0495
0.16 0.4364 0.66 0.2546 1.16 0.1230 1.66 0.0485
0.17 0.4325 0.67 0.2514 1.17 0.1210 1.67 0.0475
0.18 0.4286 0.68 0.2483 1.18 0.1190 1.68 0.0465
0.19 0.4247 0.69 0.2451 1.19 0.1170 1.69 0.0455
0.20 0.4207 0.70 0.2420 1.20 0.1151 1.70 0.0446
0.21 0.4168 0.71 0.2389 1.21 0.1131 1.71 0.0436
0.22 0.4129 0.72 0.2358 1.22 0.1112 1.72 0.0427
0.23 0.4090 0.73 0.2327 1.23 0.1093 1.73 0.0418
0.24 0.4052 0.74 0.2296 1.24 0.1075 1.74 0.0409
0.25 0.4013 0.75 0.2266 1.25 0.1056 1.75 0.0401
0.26 0.3974 0.76 0.2236 1.26 0.1038 1.76 0.0392
0.27 0.3936 0.77 0.2206 1.27 0.1020 1.77 0.0384
0.28 0.3897 0.78 0.2177 1.28 0.1003 1.78 0.0375
0.29 0.3859 0.79 0.2148 1.29 0.0985 1.79 0.0367
0.30 0.3821 0.80 0.2119 1.30 0.0968 1.80 0.0359
0.31 0.3783 0.81 0.2090 1.31 0.0951 1.81 0.0351
0.32 0.3745 0.82 0.2061 1.32 0.0934 1.82 0.0344
0.33 0.3707 0.83 0.2033 1.33 0.0918 1.83 0.0336
0.34 0.3669 0.84 0.2005 1.34 0.0901 1.84 0.0329
0.35 0.3632 0.85 0.1977 1.35 0.0885 1.85 0.0322
0.36 0.3594 0.86 0.1949 1.36 0.0869 1.86 0.0314
0.37 0.3557 0.87 0.1922 1.37 0.0853 1.87 0.0307
0.38 0.3520 0.88 0.1894 1.38 0.0838 1.88 0.0301
0.39 0.3483 0.89 0.1867 1.39 0.0823 1.89 0.0294
0.40 0.3446 0.90 0.1841 1.40 0.0808 1.90 0.0287
0.41 0.3409 0.91 0.1814 1.41 0.0793 1.91 0.0281
0.42 0.3372 0.92 0.1788 1.42 0.0778 1.92 0.0274
0.43 0.3336 0.93 0.1762 1.43 0.0764 1.93 0.0268
0.44 0.3300 0.94 0.1736 1.44 0.0749 1.94 0.0262
0.45 0.3264 0.95 0.1711 1.45 0.0735 1.95 0.0256
0.46 0.3228 0.96 0.1685 1.46 0.0721 1.96 0.0250
0.47 0.3192 0.97 0.1660 1.47 0.0708 1.97 0.0244
0.48 0.3156 0.98 0.1635 1.48 0.0694 1.98 0.0239
0.49 0.3121 0.99 0.1611 1.49 0.0681 1.99 0.0233
0.50 0.3085 1.00 0.1587 1.50 0.0668 2.00 0.0228
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Table A.1 (continued) Z Prob > Z Z Prob > Z Z Prob > Z Z Prob > Z

2.01 0.0222 2.51 0.0060 3.01 0.0013 3.51 0.0002
2.02 0.0217 2.52 0.0059 3.02 0.0013 3.52 0.0002
2.03 0.0212 2.53 0.0057 3.03 0.0012 3.53 0.0002
2.04 0.0207 2.54 0.0055 3.04 0.0012 3.54 0.0002
2.05 0.0202 2.55 0.0054 3.05 0.0011 3.55 0.0002
2.06 0.0197 2.56 0.0052 3.06 0.0011 3.56 0.0002
2.07 0.0192 2.57 0.0051 3.07 0.0011 3.57 0.0002
2.08 0.0188 2.58 0.0049 3.08 0.0010 3.58 0.0002
2.09 0.0183 2.59 0.0048 3.09 0.0010 3.59 0.0002
2.10 0.0179 2.60 0.0047 3.10 0.0010 3.60 0.0002
2.11 0.0174 2.61 0.0045 3.11 0.0009 3.61 0.0002
2.12 0.0170 2.62 0.0044 3.12 0.0009 3.62 0.0001
2.13 0.0166 2.63 0.0043 3.13 0.0009 3.63 0.0001
2.14 0.0162 2.64 0.0041 3.14 0.0008 3.64 0.0001
2.15 0.0158 2.65 0.0040 3.15 0.0008 3.65 0.0001
2.16 0.0154 2.66 0.0039 3.16 0.0008 3.66 0.0001
2.17 0.0150 2.67 0.0038 3.17 0.0008 3.67 0.0001
2.18 0.0146 2.68 0.0037 3.18 0.0007 3.68 0.0001
2.19 0.0143 2.69 0.0036 3.19 0.0007 3.69 0.0001
2.20 0.0139 2.70 0.0035 3.20 0.0007 3.70 0.0001
2.21 0.0136 2.71 0.0034 3.21 0.0007 3.71 0.0001
2.22 0.0132 2.72 0.0033 3.22 0.0006 3.72 0.0001
2.23 0.0129 2.73 0.0032 3.23 0.0006 3.73 0.0001
2.24 0.0125 2.74 0.0031 3.24 0.0006 3.74 0.0001
2.25 0.0122 2.75 0.0030 3.25 0.0006 3.75 0.0001
2.26 0.0119 2.76 0.0029 3.26 0.0006 3.76 0.0001
2.27 0.0116 2.77 0.0028 3.27 0.0005 3.77 0.0001
2.28 0.0113 2.78 0.0027 3.28 0.0005 3.78 0.0001
2.29 0.0110 2.79 0.0026 3.29 0.0005 3.79 0.0001
2.30 0.0107 2.80 0.0026 3.30 0.0005 3.80 0.0001
2.31 0.0104 2.81 0.0025 3.31 0.0005 3.81 0.0001
2.32 0.0102 2.82 0.0024 3.32 0.0005 3.82 0.0001
2.33 0.0099 2.83 0.0023 3.33 0.0004 3.83 0.0001
2.34 0.0096 2.84 0.0023 3.34 0.0004 3.84 0.0001
2.35 0.0094 2.85 0.0022 3.35 0.0004 3.85 0.0001
2.36 0.0091 2.86 0.0021 3.36 0.0004 3.86 0.0001
2.37 0.0089 2.87 0.0021 3.37 0.0004 3.87 0.0001
2.38 0.0087 2.88 0.0020 3.38 0.0004 3.88 0.0001
2.39 0.0084 2.89 0.0019 3.39 0.0003 3.89 0.0001
2.40 0.0082 2.90 0.0019 3.40 0.0003 3.90 0.0000
2.41 0.0080 2.91 0.0018 3.41 0.0003 3.91 0.0000
2.42 0.0078 2.92 0.0018 3.42 0.0003 3.92 0.0000
2.43 0.0075 2.93 0.0017 3.43 0.0003 3.93 0.0000
2.44 0.0073 2.94 0.0016 3.44 0.0003 3.94 0.0000
2.45 0.0071 2.95 0.0016 3.45 0.0003 3.95 0.0000
2.46 0.0069 2.96 0.0015 3.46 0.0003 3.96 0.0000
2.47 0.0068 2.97 0.0015 3.47 0.0003 3.97 0.0000
2.48 0.0066 2.98 0.0014 3.48 0.0003 3.98 0.0000
2.49 0.0064 2.99 0.0014 3.49 0.0002 3.99 0.0000
2.50 0.0062 3.00 0.0013 3.50 0.0002 4.00 0.0000
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Table A.1A

Selected Probability
Values for the Normal
Distribution---Values
of Z Exceeded with
Given Probability

Prob Z

0.5000 0.00000
0.4000 0.25335
0.3000 0.52440
0.2000 0.84162
0.1000 1.28155
0.0500 1.64485
0.0250 1.95996
0.0100 2.32635
0.0050 2.57583
0.0020 2.87816
0.0010 3.09023
0.0005 3.29053
0.0001 3.71902



Appendix A 623

Table A.2 The t Distribution---Values of t Exceeded with Given Probability

df P = 0.25 P = 0.10 P = 0.05 P = 0.025 P = 0.01 P = 0.005 P = 0.001 P = 0.0005 df

1 1.0000 3.0777 6.3138 12.706 31.821 63.657 318.31 636.62 1
2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 22.327 31.599 2
3 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409 10.215 12.924 3
4 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041 7.1732 8.6103 4
5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0321 5.8934 6.8688 5
6 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074 5.2076 5.9588 6
7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 4.7853 5.4079 7
8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008 5.0413 8
9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 4.2968 4.7809 9

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437 4.5869 10
11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 4.0247 4.4370 11
12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296 4.3178 12
13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520 4.2208 13
14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874 4.1405 14
15 0.6912 1.3406 1.7531 2.1314 2.6025 2.9467 3.7329 4.0728 15
16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 3.6862 4.0150 16
17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458 3.9652 17
18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105 3.9217 18
19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 3.5794 3.8834 19
20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518 3.8495 20
21 0.6864 1.3232 1.7207 2.0796 2.5176 2.8314 3.5272 3.8193 21
22 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188 3.5050 3.7922 22
23 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073 3.4850 3.7677 23
24 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969 3.4668 3.7454 24
25 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874 3.4502 3.7252 25
26 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350 3.7066 26
27 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707 3.4210 3.6896 27
28 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633 3.4082 3.6739 28
29 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564 3.3963 3.6594 29
30 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852 3.6460 30
35 0.6816 1.3062 1.6896 2.0301 2.4377 2.7238 3.3401 3.5912 35
40 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069 3.5510 40
45 0.6800 1.3006 1.6794 2.0141 2.4121 2.6896 3.2815 3.5203 45
50 0.6794 1.2987 1.6759 2.0086 2.4033 2.6778 3.2614 3.4960 50
55 0.6790 1.2971 1.6730 2.0040 2.3961 2.6682 3.2452 3.4764 55
60 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603 3.2317 3.4602 60
65 0.6783 1.2947 1.6686 1.9971 2.3851 2.6536 3.2204 3.4466 65
70 0.6780 1.2938 1.6669 1.9944 2.3808 2.6479 3.2108 3.4350 70
75 0.6778 1.2929 1.6654 1.9921 2.3771 2.6430 3.2025 3.4250 75
90 0.6772 1.2910 1.6620 1.9867 2.3685 2.6316 3.1833 3.4019 90

105 0.6768 1.2897 1.6595 1.9828 2.3624 2.6235 3.1697 3.3856 105
120 0.6765 1.2886 1.6577 1.9799 2.3578 2.6174 3.1595 3.3735 120
∞ 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 3.0902 3.2905 ∞



624 Appendix A

Table A.3 χ2 Distribution---χ2 Values Exceeded with Given Probability

df 0.995 0.99 0.975 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005

1 0.000 0.000 0.001 0.004 0.016 0.102 0.455 1.323 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 0.575 1.386 2.773 4.605 5.991 7.378 9.210 10.579
3 0.072 0.115 0.216 0.352 0.584 1.213 2.366 4.108 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 1.923 3.357 5.385 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 2.675 4.351 6.626 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 3.455 5.348 7.841 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 4.255 6.346 9.037 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 5.071 7.344 10.219 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 5.899 8.343 11.389 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 6.737 9.342 12.549 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 7.584 10.341 13.701 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 8.438 11.340 14.845 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 9.299 12.340 15.984 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 10.165 13.339 17.117 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 11.037 14.339 18.245 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 11.912 15.338 19.369 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 12.792 16.338 20.489 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 13.675 17.338 21.605 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 14.562 18.338 22.718 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 15.452 19.337 23.828 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 16.344 20.337 24.935 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 17.240 21.337 26.039 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 18.137 22.337 27.141 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 19.037 23.337 28.241 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 19.939 24.337 29.339 34.382 37.652 40.646 44.314 46.928
26 11.160 12.198 13.844 15.379 17.292 20.843 25.336 30.435 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 21.749 26.336 31.528 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 22.657 27.336 32.620 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 23.567 28.336 33.711 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 24.478 29.336 34.800 40.256 43.773 46.979 50.892 53.672
35 17.192 18.509 20.569 22.465 24.797 29.054 34.336 40.223 46.059 49.802 53.203 57.342 60.275
40 20.707 22.164 24.433 26.509 29.051 33.660 39.335 45.616 51.805 55.758 59.342 63.691 66.766
45 24.311 25.901 28.366 30.612 33.350 38.291 44.335 50.985 57.505 61.656 65.410 69.957 73.166
50 27.991 29.707 32.357 34.764 37.689 42.942 49.335 56.334 63.167 67.505 71.420 76.154 79.490
55 31.735 33.570 36.398 38.958 42.060 47.610 54.335 61.665 68.796 73.311 77.380 82.292 85.749
60 35.534 37.485 40.482 43.188 46.459 52.294 59.335 66.981 74.397 79.082 83.298 88.379 91.952
65 39.383 41.444 44.603 47.450 50.883 56.990 64.335 72.285 79.973 84.821 89.177 94.422 98.105
70 43.275 45.442 48.758 51.739 55.329 61.698 69.334 77.577 85.527 90.531 95.023 100.425 104.215
75 47.206 49.475 52.942 56.054 59.795 66.417 74.334 82.858 91.061 96.217 100.839 106.393 110.286
80 51.172 53.540 57.153 60.391 64.278 71.145 79.334 88.130 96.578 101.879 106.629 112.329 116.321
85 55.170 57.634 61.389 64.749 68.777 75.881 84.334 93.394 102.079 107.522 112.393 118.236 122.325
90 59.196 61.754 65.647 69.126 73.291 80.625 89.334 98.650 107.565 113.145 118.136 124.116 128.299
95 63.250 65.898 69.925 73.520 77.818 85.376 94.334 103.899 113.038 118.752 123.858 129.973 134.247

100 67.328 70.065 74.222 77.929 82.358 90.133 99.334 109.141 118.498 124.342 129.561 135.807 140.169
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Table A.4 The F Distribution, p = 0.1

Denominator NUMERATOR df

df 1 2 3 4 5 6 7 8 9 10 11

1 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.5
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.91
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.92
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.68
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.52
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.40

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.30
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.07
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.95
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.93
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.91
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.90
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.88
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.87
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.85
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.84
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79
35 2.85 2.46 2.25 2.11 2.02 1.95 1.90 1.85 1.82 1.79 1.76
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.74
45 2.82 2.42 2.21 2.07 1.98 1.91 1.85 1.81 1.77 1.74 1.72
50 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76 1.73 1.70
55 2.80 2.40 2.19 2.05 1.95 1.88 1.83 1.78 1.75 1.72 1.69
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68
75 2.77 2.37 2.16 2.02 1.93 1.85 1.80 1.75 1.72 1.69 1.66

100 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 1.66 1.64
∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.57

(Continued )
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Table A.4 (continued)

Denominator NUMERATOR df

df 12 13 14 15 16 20 24 30 45 60 120

1 60.7 60.9 61.1 61.2 61.3 61.7 62 62.3 62.6 62.8 63.1
2 9.41 9.41 9.42 9.42 9.43 9.44 9.45 9.46 9.47 9.47 9.48
3 5.22 5.21 5.20 5.20 5.20 5.18 5.18 5.17 5.16 5.15 5.14
4 3.90 3.89 3.88 3.87 3.86 3.84 3.83 3.82 3.80 3.79 3.78
5 3.27 3.26 3.25 3.24 3.23 3.21 3.19 3.17 3.15 3.14 3.12
6 2.90 2.89 2.88 2.87 2.86 2.84 2.82 2.80 2.77 2.76 2.74
7 2.67 2.65 2.64 2.63 2.62 2.59 2.58 2.56 2.53 2.51 2.49
8 2.50 2.49 2.48 2.46 2.45 2.42 2.40 2.38 2.35 2.34 2.32
9 2.38 2.36 2.35 2.34 2.33 2.30 2.28 2.25 2.22 2.21 2.18

10 2.28 2.27 2.26 2.24 2.23 2.20 2.18 2.16 2.12 2.11 2.08
11 2.21 2.19 2.18 2.17 2.16 2.12 2.10 2.08 2.04 2.03 2.00
12 2.15 2.13 2.12 2.10 2.09 2.06 2.04 2.01 1.98 1.96 1.93
13 2.10 2.08 2.07 2.05 2.04 2.01 1.98 1.96 1.92 1.90 1.88
14 2.05 2.04 2.02 2.01 2.00 1.96 1.94 1.91 1.88 1.86 1.83
15 2.02 2.00 1.99 1.97 1.96 1.92 1.90 1.87 1.84 1.82 1.79
16 1.99 1.97 1.95 1.94 1.93 1.89 1.87 1.84 1.80 1.78 1.75
17 1.96 1.94 1.93 1.91 1.90 1.86 1.84 1.81 1.77 1.75 1.72
18 1.93 1.92 1.90 1.89 1.87 1.84 1.81 1.78 1.74 1.72 1.69
19 1.91 1.89 1.88 1.86 1.85 1.81 1.79 1.76 1.72 1.70 1.67
20 1.89 1.87 1.86 1.84 1.83 1.79 1.77 1.74 1.70 1.68 1.64
21 1.87 1.86 1.84 1.83 1.81 1.78 1.75 1.72 1.68 1.66 1.62
22 1.86 1.84 1.83 1.81 1.80 1.76 1.73 1.70 1.66 1.64 1.60
23 1.84 1.83 1.81 1.80 1.78 1.74 1.72 1.69 1.64 1.62 1.59
24 1.83 1.81 1.80 1.78 1.77 1.73 1.70 1.67 1.63 1.61 1.57
25 1.82 1.80 1.79 1.77 1.76 1.72 1.69 1.66 1.62 1.59 1.56
30 1.77 1.75 1.74 1.72 1.71 1.67 1.64 1.61 1.56 1.54 1.50
35 1.74 1.72 1.70 1.69 1.67 1.63 1.60 1.57 1.52 1.50 1.46
40 1.71 1.70 1.68 1.66 1.65 1.61 1.57 1.54 1.49 1.47 1.42
45 1.70 1.68 1.66 1.64 1.63 1.58 1.55 1.52 1.47 1.44 1.40
50 1.68 1.66 1.64 1.63 1.61 1.57 1.54 1.50 1.45 1.42 1.38
55 1.67 1.65 1.63 1.61 1.60 1.55 1.52 1.49 1.44 1.41 1.36
60 1.66 1.64 1.62 1.60 1.59 1.54 1.51 1.48 1.42 1.40 1.35
75 1.63 1.61 1.60 1.58 1.57 1.52 1.49 1.45 1.40 1.37 1.32

100 1.61 1.59 1.57 1.56 1.54 1.49 1.46 1.42 1.37 1.34 1.28
∞ 1.55 1.52 1.50 1.49 1.47 1.42 1.38 1.34 1.28 1.24 1.17
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Table A.4A The F Distribution, p = 0.05

Denominator NUMERATOR df

df 1 2 3 4 5 6 7 8 9 10 11

1 161 199 216 225 230 234 237 239 241 242 243
2 18.5 19 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.24
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.20
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13
35 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16 2.11 2.07
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04
45 4.06 3.20 2.81 2.58 2.42 2.31 2.22 2.15 2.10 2.05 2.01
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.99
55 4.02 3.16 2.77 2.54 2.38 2.27 2.18 2.11 2.06 2.01 1.97
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95
75 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96 1.92

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.89
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79

(Continued )
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Table A.4A (continued)

Denominator NUMERATOR df

df 12 13 14 15 16 20 24 30 45 60 120

1 244 245 245 246 246 248 249 250 251 252 253
2 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5 19.5 19.5
3 8.74 8.73 8.71 8.70 8.69 8.66 8.64 8.62 8.59 8.57 8.55
4 5.91 5.89 5.87 5.86 5.84 5.80 5.77 5.75 5.71 5.69 5.66
5 4.68 4.66 4.64 4.62 4.60 4.56 4.53 4.50 4.45 4.43 4.40
6 4.00 3.98 3.96 3.94 3.92 3.87 3.84 3.81 3.76 3.74 3.70
7 3.57 3.55 3.53 3.51 3.49 3.44 3.41 3.38 3.33 3.30 3.27
8 3.28 3.26 3.24 3.22 3.20 3.15 3.12 3.08 3.03 3.01 2.97
9 3.07 3.05 3.03 3.01 2.99 2.94 2.90 2.86 2.81 2.79 2.75

10 2.91 2.89 2.86 2.85 2.83 2.77 2.74 2.70 2.65 2.62 2.58
11 2.79 2.76 2.74 2.72 2.70 2.65 2.61 2.57 2.52 2.49 2.45
12 2.69 2.66 2.64 2.62 2.60 2.54 2.51 2.47 2.41 2.38 2.34
13 2.60 2.58 2.55 2.53 2.51 2.46 2.42 2.38 2.33 2.30 2.25
14 2.53 2.51 2.48 2.46 2.44 2.39 2.35 2.31 2.25 2.22 2.18
15 2.48 2.45 2.42 2.40 2.38 2.33 2.29 2.25 2.19 2.16 2.11
16 2.42 2.40 2.37 2.35 2.33 2.28 2.24 2.19 2.14 2.11 2.06
17 2.38 2.35 2.33 2.31 2.29 2.23 2.19 2.15 2.09 2.06 2.01
18 2.34 2.31 2.29 2.27 2.25 2.19 2.15 2.11 2.05 2.02 1.97
19 2.31 2.28 2.26 2.23 2.21 2.16 2.11 2.07 2.01 1.98 1.93
20 2.28 2.25 2.22 2.20 2.18 2.12 2.08 2.04 1.98 1.95 1.90
21 2.25 2.22 2.20 2.18 2.16 2.10 2.05 2.01 1.95 1.92 1.87
22 2.23 2.20 2.17 2.15 2.13 2.07 2.03 1.98 1.92 1.89 1.84
23 2.20 2.18 2.15 2.13 2.11 2.05 2.01 1.96 1.90 1.86 1.81
24 2.18 2.15 2.13 2.11 2.09 2.03 1.98 1.94 1.88 1.84 1.79
25 2.16 2.14 2.11 2.09 2.07 2.01 1.96 1.92 1.86 1.82 1.77
30 2.09 2.06 2.04 2.01 1.99 1.93 1.89 1.84 1.77 1.74 1.68
35 2.04 2.01 1.99 1.96 1.94 1.88 1.83 1.79 1.72 1.68 1.62
40 2.00 1.97 1.95 1.92 1.90 1.84 1.79 1.74 1.67 1.64 1.58
45 1.97 1.94 1.92 1.89 1.87 1.81 1.76 1.71 1.64 1.60 1.54
50 1.95 1.92 1.89 1.87 1.85 1.78 1.74 1.69 1.61 1.58 1.51
55 1.93 1.90 1.88 1.85 1.83 1.76 1.72 1.67 1.59 1.55 1.49
60 1.92 1.89 1.86 1.84 1.82 1.75 1.70 1.65 1.57 1.53 1.47
75 1.88 1.85 1.83 1.80 1.78 1.71 1.66 1.61 1.53 1.49 1.42

100 1.85 1.82 1.79 1.77 1.75 1.68 1.63 1.57 1.49 1.45 1.38
∞ 1.75 1.72 1.69 1.67 1.64 1.57 1.52 1.46 1.37 1.32 1.22
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Table A.4B The F Distribution, p = 0.025

Denominator NUMERATOR df

df 1 2 3 4 5 6 7 8 9 10 11

1 648 800 864 900 922 937 948 957 963 969 973
2 38.5 39 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4
3 17.4 16 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.4
4 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.79
5 10 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.57
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.41
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.71
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.24
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.91

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.66
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.47
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.32
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.20
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.09
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 3.01
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.93
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.87
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.81
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.76
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.72
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.68
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.65
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.62
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.59
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.56
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.46
35 5.48 4.11 3.52 3.18 2.96 2.80 2.68 2.58 2.50 2.44 2.39
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.33
45 5.38 4.01 3.42 3.09 2.86 2.70 2.58 2.49 2.41 2.35 2.29
50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.26
55 5.31 3.95 3.36 3.03 2.81 2.65 2.53 2.43 2.36 2.29 2.24
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.22
75 5.23 3.88 3.30 2.96 2.74 2.58 2.46 2.37 2.29 2.22 2.17

100 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 2.12
∞ 5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.99

(Continued )
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Table A.4B (continued)

Denominator NUMERATOR df

df 12 13 14 15 16 20 24 30 45 60 120

1 977 980 983 985 987 993 997 1001 1007 1010 1014
2 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 39.5 39.5 39.5
3 14.3 14.3 14.3 14.3 14.2 14.2 14.1 14.1 14 14 13.9
4 8.75 8.71 8.68 8.66 8.63 8.56 8.51 8.46 8.39 8.36 8.31
5 6.52 6.49 6.46 6.43 6.40 6.33 6.28 6.23 6.16 6.12 6.07
6 5.37 5.33 5.30 5.27 5.24 5.17 5.12 5.07 4.99 4.96 4.90
7 4.67 4.63 4.60 4.57 4.54 4.47 4.41 4.36 4.29 4.25 4.20
8 4.20 4.16 4.13 4.10 4.08 4.00 3.95 3.89 3.82 3.78 3.73
9 3.87 3.83 3.80 3.77 3.74 3.67 3.61 3.56 3.49 3.45 3.39

10 3.62 3.58 3.55 3.52 3.50 3.42 3.37 3.31 3.24 3.20 3.14
11 3.43 3.39 3.36 3.33 3.30 3.23 3.17 3.12 3.04 3.00 2.94
12 3.28 3.24 3.21 3.18 3.15 3.07 3.02 2.96 2.89 2.85 2.79
13 3.15 3.12 3.08 3.05 3.03 2.95 2.89 2.84 2.76 2.72 2.66
14 3.05 3.01 2.98 2.95 2.92 2.84 2.79 2.73 2.65 2.61 2.55
15 2.96 2.92 2.89 2.86 2.84 2.76 2.70 2.64 2.56 2.52 2.46
16 2.89 2.85 2.82 2.79 2.76 2.68 2.63 2.57 2.49 2.45 2.38
17 2.82 2.79 2.75 2.72 2.70 2.62 2.56 2.50 2.42 2.38 2.32
18 2.77 2.73 2.70 2.67 2.64 2.56 2.50 2.44 2.36 2.32 2.26
19 2.72 2.68 2.65 2.62 2.59 2.51 2.45 2.39 2.31 2.27 2.20
20 2.68 2.64 2.60 2.57 2.55 2.46 2.41 2.35 2.27 2.22 2.16
21 2.64 2.60 2.56 2.53 2.51 2.42 2.37 2.31 2.23 2.18 2.11
22 2.60 2.56 2.53 2.50 2.47 2.39 2.33 2.27 2.19 2.14 2.08
23 2.57 2.53 2.50 2.47 2.44 2.36 2.30 2.24 2.15 2.11 2.04
24 2.54 2.50 2.47 2.44 2.41 2.33 2.27 2.21 2.12 2.08 2.01
25 2.51 2.48 2.44 2.41 2.38 2.30 2.24 2.18 2.10 2.05 1.98
30 2.41 2.37 2.34 2.31 2.28 2.20 2.14 2.07 1.99 1.94 1.87
35 2.34 2.30 2.27 2.23 2.21 2.12 2.06 2.00 1.91 1.86 1.79
40 2.29 2.25 2.21 2.18 2.15 2.07 2.01 1.94 1.85 1.80 1.72
45 2.25 2.21 2.17 2.14 2.11 2.03 1.96 1.90 1.81 1.76 1.68
50 2.22 2.18 2.14 2.11 2.08 1.99 1.93 1.87 1.77 1.72 1.64
55 2.19 2.15 2.11 2.08 2.05 1.97 1.90 1.84 1.74 1.69 1.61
60 2.17 2.13 2.09 2.06 2.03 1.94 1.88 1.82 1.72 1.67 1.58
75 2.12 2.08 2.05 2.01 1.99 1.90 1.83 1.76 1.67 1.61 1.52

100 2.08 2.04 2.00 1.97 1.94 1.85 1.78 1.71 1.61 1.56 1.46
∞ 1.94 1.90 1.87 1.83 1.80 1.71 1.64 1.57 1.45 1.39 1.27
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Table A.4C The F Distribution, p = 0.01

Denominator NUMERATOR df

df 1 2 3 4 5 6 7 8 9 10 11

1 4052 5000 5403 5625 5764 5859 5928 5981 6022 6056 6083
2 98.5 99 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4
3 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1
4 21.2 18 16.7 16 15.5 15.2 15 14.8 14.7 14.5 14.5
5 16.3 13.3 12.1 11.4 11 10.7 10.5 10.3 10.2 10.1 9.96
6 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79
7 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54
8 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73
9 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18

10 10 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.86
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.24
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 3.06
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91
35 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96 2.88 2.80
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73
45 7.23 5.11 4.25 3.77 3.45 3.23 3.07 2.94 2.83 2.74 2.67
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.63
55 7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56
75 6.99 4.90 4.05 3.58 3.27 3.05 2.89 2.76 2.65 2.57 2.49

100 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.43
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25

(Continued )
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Table A.4C (continued)

Denominator NUMERATOR df

df 12 13 14 15 16 20 24 30 45 60 120

1 6106 6126 6143 6157 6170 6209 6235 6261 6296 6313 6339
2 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5
3 27.1 27 26.9 26.9 26.8 26.7 26.6 26.5 26.4 26.3 26.2
4 14.4 14.3 14.2 14.2 14.2 14 13.9 13.8 13.7 13.7 13.6
5 9.89 9.82 9.77 9.72 9.68 9.55 9.47 9.38 9.26 9.20 9.11
6 7.72 7.66 7.60 7.56 7.52 7.40 7.31 7.23 7.11 7.06 6.97
7 6.47 6.41 6.36 6.31 6.28 6.16 6.07 5.99 5.88 5.82 5.74
8 5.67 5.61 5.56 5.52 5.48 5.36 5.28 5.20 5.09 5.03 4.95
9 5.11 5.05 5.01 4.96 4.92 4.81 4.73 4.65 4.54 4.48 4.40

10 4.71 4.65 4.60 4.56 4.52 4.41 4.33 4.25 4.14 4.08 4.00
11 4.40 4.34 4.29 4.25 4.21 4.10 4.02 3.94 3.83 3.78 3.69
12 4.16 4.10 4.05 4.01 3.97 3.86 3.78 3.70 3.59 3.54 3.45
13 3.96 3.91 3.86 3.82 3.78 3.66 3.59 3.51 3.40 3.34 3.25
14 3.80 3.75 3.70 3.66 3.62 3.51 3.43 3.35 3.24 3.18 3.09
15 3.67 3.61 3.56 3.52 3.49 3.37 3.29 3.21 3.10 3.05 3.96
16 3.55 3.50 3.45 3.41 3.37 3.26 3.18 3.10 2.99 2.93 2.84
17 3.46 3.40 3.35 3.31 3.27 3.16 3.08 3.00 2.89 2.83 2.75
18 3.37 3.32 3.27 3.23 3.19 3.08 3.00 2.92 2.81 2.75 2.66
19 3.30 3.24 3.19 3.15 3.12 3.00 2.92 2.84 2.73 2.67 2.58
20 3.23 3.18 3.13 3.09 3.05 2.94 2.86 2.78 2.67 2.61 2.52
21 3.17 3.12 3.07 3.03 2.99 2.88 2.80 2.72 2.61 2.55 2.46
22 3.12 3.07 3.02 2.98 2.94 2.83 2.75 2.67 2.55 2.50 2.40
23 3.07 3.02 2.97 2.93 2.89 2.78 2.70 2.62 2.51 2.45 2.35
24 3.03 2.98 2.93 2.89 2.85 2.74 2.66 2.58 2.46 2.40 2.31
25 2.99 2.94 2.89 2.85 2.81 2.70 2.62 2.54 2.42 2.36 2.27
30 2.84 2.79 2.74 2.70 2.66 2.55 2.47 2.39 2.27 2.21 2.11
35 2.74 2.69 2.64 2.60 2.56 2.44 2.36 2.28 2.16 2.10 2.00
40 2.66 2.61 2.56 2.52 2.48 2.37 2.29 2.20 2.08 2.02 1.92
45 2.61 2.55 2.51 2.46 2.43 2.31 2.23 2.14 2.02 1.96 1.85
50 2.56 2.51 2.46 2.42 2.38 2.27 2.18 2.10 1.97 1.91 1.80
55 2.53 2.47 2.42 2.38 2.34 2.23 2.15 2.06 1.94 1.87 1.76
60 2.50 2.44 2.39 2.35 2.31 2.20 2.12 2.03 1.90 1.84 1.73
75 2.43 2.38 2.33 2.29 2.25 2.13 2.05 1.96 1.83 1.76 1.65

100 2.37 2.31 2.27 2.22 2.19 2.07 1.98 1.89 1.76 1.69 1.57
∞ 2.18 2.13 2.08 2.04 2.00 1.88 1.79 1.70 1.55 1.47 1.32



Appendix A 633

Table A.4D The F Distribution, p = 0.005

Denominator NUMERATOR df

df 1 2 3 4 5 6 7 8 9 10 11

1 6,000 20,000 22,000 22,000 23,000 23,000 24,000 24,000 24,000 24,000 24,000
2 199 199 199 199 199 199 199 199 199 199 199
3 55.6 49.8 47.5 46.2 45.4 44.8 44.4 44.1 43.9 43.7 43.5
4 31.3 26.3 24.3 23.2 22.5 22 21.6 21.4 21.1 21 20.8
5 22.8 18.3 16.5 15.6 14.9 14.5 14.2 14 13.8 13.6 13.5
6 18.6 14.5 12.9 12 11.5 11.1 10.8 10.6 10.4 10.3 10.1
7 16.2 12.4 10.9 10.1 9.52 9.16 8.89 8.68 8.51 8.38 8.27
8 14.7 11 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.10
9 13.6 10.1 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.31

10 12.8 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.75
11 12.2 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 5.32
12 11.8 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.99
13 11.4 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82 4.72
14 11.1 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60 4.51
15 10.8 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 4.33
16 10.6 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.18
17 10.4 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 4.05
18 10.2 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 3.94
19 10.1 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 3.84
20 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.76
21 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77 3.68
22 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 3.61
23 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75 3.64 3.55
24 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59 3.50
25 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.64 3.54 3.45
30 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.25
35 8.98 6.19 5.09 4.48 4.09 3.81 3.61 3.45 3.32 3.21 3.12
40 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.22 3.12 3.03
45 8.71 5.97 4.89 4.29 3.91 3.64 3.43 3.28 3.15 3.04 2.96
50 8.63 5.90 4.83 4.23 3.85 3.58 3.38 3.22 3.09 2.99 2.90
55 8.55 5.84 4.77 4.18 3.80 3.53 3.33 3.17 3.05 2.94 2.85
60 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.82
75 8.37 5.69 4.63 4.05 3.67 3.41 3.21 3.05 2.93 2.82 2.74

100 8.24 5.59 4.54 3.96 3.59 3.33 3.13 2.97 2.85 2.74 2.66
∞ 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 2.43

(Continued )
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Table A.4D (continued)

Denominator NUMERATOR df

df 12 13 14 15 16 20 24 30 45 60 120

1 24,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000 25,000
2 199 199 199 199 199 199 199 199 199 199 199
3 43.4 43.3 43.2 43.1 43 42.8 42.6 42.5 42.3 42.1 42
4 20.7 20.6 20.5 20.4 20.4 20.2 20 19.9 19.7 19.6 19.5
5 13.4 13.3 13.2 13.1 13.1 12.9 12.8 12.7 12.5 12.4 12.3
6 10 9.95 9.88 9.81 9.76 9.59 9.47 9.36 9.20 9.12 9.00
7 8.18 8.10 8.03 7.97 7.91 7.75 7.64 7.53 7.38 7.31 7.19
8 7.01 6.94 6.87 6.81 6.76 6.61 6.50 6.40 6.25 6.18 6.06
9 6.23 6.15 6.09 6.03 5.98 5.83 5.73 5.62 5.48 5.41 5.30

10 5.66 5.59 5.53 5.47 5.42 5.27 5.17 5.07 4.93 4.86 4.75
11 5.24 5.16 5.10 5.05 5.00 4.86 4.76 4.65 4.52 4.45 4.34
12 4.91 4.84 4.77 4.72 4.67 4.53 4.43 4.33 4.19 4.12 4.01
13 4.64 4.57 4.51 4.46 4.41 4.27 4.17 4.07 3.94 3.87 3.76
14 4.43 4.36 4.30 4.25 4.20 4.06 3.96 3.86 3.73 3.66 3.55
15 4.25 4.18 4.12 4.07 4.02 3.88 3.79 3.69 3.55 3.48 3.37
16 4.10 4.03 3.97 3.92 3.87 3.73 3.64 3.54 3.40 3.33 3.22
17 3.97 3.90 3.84 3.79 3.75 3.61 3.51 3.41 3.28 3.21 3.10
18 3.86 3.79 3.73 3.68 3.64 3.50 3.40 3.30 3.17 3.10 2.99
19 3.76 3.70 3.64 3.59 3.54 3.40 3.31 3.21 3.07 3.00 2.89
20 3.68 3.61 3.55 3.50 3.46 3.32 3.22 3.12 2.99 2.92 2.81
21 3.60 3.54 3.48 3.43 3.38 3.24 3.15 3.05 2.91 2.84 2.73
22 3.54 3.47 3.41 3.36 3.31 3.18 3.08 2.98 2.84 2.77 2.66
23 3.47 3.41 3.35 3.30 3.25 3.12 3.02 2.92 2.78 2.71 2.60
24 3.42 3.35 3.30 3.25 3.20 3.06 2.97 2.87 2.73 2.66 2.55
25 3.37 3.30 3.25 3.20 3.15 3.01 2.92 2.82 2.68 2.61 2.50
30 3.18 3.11 3.06 3.01 2.96 2.82 2.73 2.63 2.49 2.42 2.30
35 3.05 2.98 2.93 2.88 2.83 2.69 2.60 2.50 2.36 2.28 2.16
40 2.95 2.89 2.83 2.78 2.74 2.60 2.50 2.40 2.26 2.18 2.06
45 2.88 2.82 2.76 2.71 2.66 2.53 2.43 2.33 2.19 2.11 1.99
50 2.82 2.76 2.70 2.65 2.61 2.47 2.37 2.27 2.13 2.05 1.93
55 2.78 2.71 2.66 2.61 2.56 2.42 2.33 2.23 2.08 2.00 1.88
60 2.74 2.68 2.62 2.57 2.53 2.39 2.29 2.19 2.04 1.96 1.83
75 2.66 2.60 2.54 2.49 2.45 2.31 2.21 2.10 1.96 1.88 1.74

100 2.58 2.52 2.46 2.41 2.37 2.23 2.13 2.02 1.87 1.79 1.65
∞ 2.36 2.29 2.24 2.19 2.14 2.00 1.90 1.79 1.63 1.53 1.36
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Table A.5 The Fmax Distribution---Percentage Points of Fmax = s 2
max /s 2

max

t

df2 2 3 4 5 6 7 8 9 10 11 12

Upper 5% points

2 39.0 87.5 142 202 266 333 403 475 550 626 704
3 15.4 27.8 39.2 60.7 62.0 72.9 83.5 93.9 104 114 124
4 9.60 15.5 20.6 26.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.3 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Upper 1% points

2 199 448 729 1036 1362 1705 2063 2432 2813 3204 3605
3 47.5 85 120 151 184 21(6) 24(9) 28(1) 31(0) 33(7) 36(1)
4 23.2 37 49 59 69 79 89 97 106 113 120
5 14.9 22 28 33 38 42 46 50 54 57 60
6 11.1 15.5 19.1 22 25 27 30 32 34 36 37
7 8.89 12.1 14.5 16.5 18.4 20 22 23 24 26 27
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21
9 6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

10 5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9
12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.1 4.2
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7
∞ 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Note: s2
max is the largest and s2

min the smallest in a set of t independent mean squares, each based on df2 = n−1 degrees of freedom.
Values in the column t = 2 and in the rows df2 = 2 and ∞ are exact. Elsewhere the third digit may be in error by a few units for
the 5% points and several units for the 1% points. The third digit figures in brackets for df2 = 3 are the most uncertain.
Source: From Pearson and Hartley (1966). Reproduced by permission of the Biometrika Trustees.
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Table A.6 Orthogonal Polynomials (Tables of Coefficients for Polynomial Trends)

t = 3 t = 4 t = 5 t = 6 t = 7

x1 x2 x1 x2 x3 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

−1 1 −3 1 −1 −2 2 −1 1 −5 5 −5 1 −3 5 −1 3
0 −2 −1 −1 3 −1 −1 2 −4 −3 −1 7 −3 −2 0 1 −7
1 1 1 −1 −3 0 −2 0 6 −1 −4 4 2 −1 −3 1 1

3 1 1 1 −1 −2 −4 1 −4 −4 2 0 −4 0 6
2 2 1 1 3 −1 −7 −3 1 −3 −1 1

m5 5 5 1 2 0 −1 −7
3 5 1 3∑

x2
i 2 6 20 4 20 10 14 10 70 70 84 180 28 28 84 6 154

t = 8 t = 9 t = 10

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

−7 7 −7 7 −4 28 −14 14 −9 6 −42 18
−5 1 5 −13 −3 7 7 −21 −7 2 −14 −22
−3 −3 7 −3 −2 −8 13 −11 −5 −1 35 −17
−1 −5 3 9 −1 −17 9 9 −3 −3 31 3

1 −5 −3 9 0 −20 0 18 −1 −4 12 18
3 −3 −7 −3 1 −4 −12 18
5 1 −5 −13 −1 −17 −9 9 3 −3 −31 3
7 7 7 7 2 −8 −13 −11 5 −1 −35 −17

3 7 −7 −21 7 2 −14 −22
4 28 14 14 9 6 42 18∑

x2
i 168 168 264 616 60 2,772 990 2,002 330 132 8,580 2,860

Source: Abridged from Pearson and Hartley (1966), Table 47, p. 236. Reproduced by permission of the Biometrika Trustees.
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Table A.7 Percentage Points of the Studentized Range

t = NUMBER OF TREATMENT MEANS

Error df α 2 3 4 5 6 7 8 9 10 11

5 0.05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17
0.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48

6 0.05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65
0.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30

7 0.05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30
0.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55

8 0.05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05
0.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03

9 0.05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87
0.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65

10 0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72
0.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36

11 0.05 3.11 3.82 4.26 4.57 4.82 5.03 5.30 5.35 5.49 5.61
0.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13

12 0.05 3.08 3.77 4.20 4.52 4.75 4.95 5.12 5.27 5.39 5.51
0.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94

13 0.05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43
0.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79

14 0.05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36
0.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66

15 0.05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31
0.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55

16 0.05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26
0.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46

17 0.05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21
0.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38

18 0.05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17
0.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31

19 0.05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14
0.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25

20 0.05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11
0.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19

24 0.05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 3.92 5.01
0.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02

30 0.05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92
0.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85

40 0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82
0.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69

60 0.05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73
0 .01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53

120 0.05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64
0.10 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37

∞ 0.05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55
0.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23

(Continued )
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Table A.7 (continued)

t = NUMBER OF TREATMENT MEANS

12 13 14 15 16 17 18 19 20 α Error df

7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21 0.05 5
10.70 10.89 11.08 11.24 11.40 11.55 11.68 11.81 11.93 0.01

6.79 6.92 7.03 7.14 7.24 7.34 7.43 7.51 7.59 0.05 6
9.48 9.65 9.81 9.95 10.08 10.21 10.32 10.43 10.54 0.01
6.43 6.55 6.66 6.76 6.85 6.94 7.02 7.10 7.17 0.05 7
8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65 0.01
6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87 0.05 8
8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03 0.01
5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64 0.05 9
7.78 7.91 8.03 8.13 8.23 8.33 8.41 8.49 8.57 0.01
5.83 5.93 6.03 6.11 6.19 6.27 6.34 6.40 6.47 0.05 10
7.49 7.60 7.71 7.81 7.91 7.99 8.08 8.15 8.23 0.01
5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33 0.05 11
7.25 7.36 7.46 7.56 7.65 7.73 7.81 7.88 7.95 0.01
5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21 0.05 12
7.06 7.17 7.26 7.36 7.44 7.52 7.59 7.66 7.73 0.01
5.53 5.63 5.71 5.79 5.86 5.93 5.99 6.05 6.11 0.05 13
6.90 7.01 7.10 7.19 7.27 7.35 7.42 7.48 7.55 0.01
5.46 5.55 5.64 5.71 5.79 5.85 5.91 5.97 6.03 0.05 14
6.77 6.87 6.96 7.05 7.13 7.20 7.27 7.33 7.39 0.01
5.40 5.49 5.57 5.65 5.72 5.78 5.85 5.90 5.96 0.05 15
6.66 6.76 6.84 6.93 7.00 7.07 7.14 7.20 7.26 0.01
5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90 0.05 16
6.56 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15 0.01
5.31 5.39 5.47 5.54 5.61 5.67 5.73 5.79 5.84 0.05 17
6.48 6.57 6.66 6.73 6.81 6.87 6.94 7.00 7.05 0.01
5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79 0.05 18
6.41 6.50 6.58 6.65 6.73 6.79 6.85 6.91 6.97 0.01
5.23 5.31 5.39 5.46 5.53 5.59 5.65 5.70 5.75 0.05 19
6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6.89 0.01
5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71 0.05 20
6.28 6.37 6.45 6.52 6.59 6.65 6.71 6.77 6.82 0.01
5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59 0.05 24
6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61 0.01
5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.47 0.05 30
5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41 0.01
4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.31 5.36 0.05 40
5.76 5.83 5.90 5.96 6.02 6.07 6.12 6.16 6.21 0.01
4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24 0.05 60
5.60 5.67 5.73 5.78 5.84 5.89 5.93 5.97 6.01 0.01
4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13 0.05 120
5.44 5.50 5.56 5.61 5.66 5.71 5.75 5.79 5.83 0.01
4.62 4.68 4.74 4.80 4.85 4.89 4.93 4.97 5.01 0.05 ∞
5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65 0.01

Source: Abridged from Pearson and Hartley (1958), Table 29. Reproduced with the permission of the editors and the trustees of
Biometrika.
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Table A.8 Percentage Points of the Duncan Multiple Range Test

r = NUMBER OF ORDERED STEPS BETWEEN MEANS

Error df α 2 3 4 5 6 7 8 9 10 12 14 16 18 20

1 0.05 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0
0.01 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0

2 0.05 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09
0.01 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0

3 0.05 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50
0.01 8.26 8.5 8.6 8.7 8.8 8.9 8.9 9.0 9.0 9.0 9.1 9.2 9.3 9.3

4 0.05 3.93 4.01 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02
0.01 6.51 6.8 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.5

5 0.05 3.64 3.74 3.79 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83 3.83
0.01 5.70 5.96 6.11 6.18 6.26 6.33 6.40 6.44 6.5 6.6 6.6 6.7 6.7 6.8

6 0.05 3.46 3.58 3.64 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68
0.01 5.24 5.51 5.65 5.73 5.81 5.88 5.95 6.00 6.0 6.1 6.2 6.2 6.3 6.3

7 0.05 3.35 3.47 3.54 3.58 3.60 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61
0.01 4.95 5.22 5.37 5.45 5.53 5.61 5.69 5.73 5.8 5.8 5.9 5.9 6.0 6.0

8 0.05 3.26 3.39 3.47 3.52 3.55 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56
0.01 4.74 5.00 5.14 5.23 5.32 5.40 5.47 5.51 5.5 5.6 5.7 5.7 5.8 5.8

9 0.05 3.20 3.34 3.41 3.47 3.50 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52
0.01 4.60 4.86 4.99 5.08 5.17 5.25 5.32 5.36 5.4 5.5 5.5 5.6 5.7 5.7

10 0.05 3.15 3.30 3.37 3.43 3.46 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.48
0.01 4.48 4.73 4.88 4.96 5.06 5.13 5.20 5.24 5.28 5.36 5.42 5.48 5.54 5.55

11 0.05 3.11 3.27 3.35 3.39 3.43 3.44 3.45 3.46 3.46 3.46 3.46 3.46 3.47 3.48
0.01 4.39 4.63 4.77 4.86 4.94 5.01 5.06 5.12 5.15 5.24 5.28 5.34 5.38 5.39

12 0.05 3.08 3.23 3.33 3.36 3.40 3.42 3.44 3.44 3.46 3.46 3.46 3.46 3.47 3.48
0.01 4.32 4.55 4.68 4.76 4.84 4.92 4.96 5.02 5.07 5.13 5.17 5.22 5.23 5.26

13 0.05 3.06 3.21 3.30 3.35 3.38 3.41 3.42 3.44 3.45 3.45 3.46 3.46 3.47 3.47
0.01 4.26 4.48 4.62 4.69 4.74 4.84 4.88 4.94 4.98 5.04 5.08 5.13 5.14 5.15

14 0.05 3.03 3.18 3.27 3.33 3.37 3.39 3.41 3.42 3.44 3.45 3.46 3.46 3.47 3.47
0.01 4.21 4.42 4.55 4.63 4.70 4.78 4.83 4.87 4.91 4.96 5.00 5.04 5.06 5.07

15 0.05 3.01 3.16 3.25 3.31 3.36 3.38 3.40 3.42 3.43 3.44 3.45 3.46 3.47 3.47
0.01 4.17 4.37 4.50 4.58 4.64 4.72 4.77 4.81 4.84 4.90 4.94 4.97 4.99 5.00

16 0.05 3.00 3.15 3.23 3.30 3.34 3.37 3.39 3.41 3.43 3.44 3.45 3.46 3.47 3.47
0.01 4.13 4.34 4.45 4.54 4.60 4.67 4.72 4.76 4.79 4.84 4.88 4.91 4.93 4.94

17 0.05 2.98 3.13 3.22 3.28 3.33 3.36 3.38 3.40 3.42 3.44 3.45 3.46 3.47 3.47
0.01 4.10 4.30 4.41 4.50 4.56 4.63 4.68 4.72 4.75 4.80 4.83 4.86 4.88 4.89

18 0.05 2.97 3.12 3.21 3.27 3.32 3.35 3.37 3.39 3.41 3.43 3.45 3.46 3.47 3.47
0.01 4.07 4.27 4.38 4.46 4.53 4.59 4.64 4.68 4.71 4.76 4.79 4.82 4.84 4.85

19 0.05 2.96 3.11 3.19 3.26 3.31 3.35 3.37 3.39 3.41 3.43 3.44 3.46 3.47 3.47
0.01 4.05 4.24 4.35 4.43 4.50 4.56 4.61 4.64 4.67 4.72 4.76 4.79 4.81 4.82

20 0.05 2.95 3.10 3.18 3.25 3.30 3.34 3.36 3.38 3.40 3.43 3.44 3.46 3.46 3.47
0.01 4.02 4.22 4.33 4.40 4.47 4.53 4.58 4.61 4.65 4.69 4.73 4.76 4.78 4.79

22 0.05 2.93 3.08 3.17 3.24 3.29 3.32 3.35 3.37 3.39 3.42 3.44 3.45 3.46 3.47
0.01 3.99 4.17 4.28 4.36 4.42 4.48 4.53 4.57 4.60 4.65 4.68 4.71 4.74 4.75

24 0.05 2.92 3.07 3.15 3.22 3.28 3.31 3.34 3.37 3.38 3.41 3.44 3.45 3.46 3.47
0.01 3.96 4.14 4.24 4.33 4.39 4.44 4.49 4.53 4.57 4.62 4.64 4.67 4.70 4.72

26 0.05 2.91 3.06 3.14 3.21 3.27 3.30 3.34 3.36 3.38 3.41 3.43 3.45 3.46 3.47
0.01 3.93 4.11 4.21 4.30 4.36 4.41 4.46 4.50 4.53 4.58 4.62 4.65 4.67 4.69

28 0.05 2.90 3.04 3.13 3.20 3.26 3.30 3.33 3.35 3.37 3.40 3.43 3.45 3.46 3.47
0.01 3.91 3.08 4.18 4.28 4.34 4.39 4.43 4.47 4.51 4.56 4.60 4.62 4.65 4.67
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Table A.8 (continued)

r = NUMBER OF ORDERED STEPS BETWEEN MEANS

Error df α 2 3 4 5 6 7 8 9 10 12 14 16 18 20

30 0.05 2.89 3.04 3.12 3.20 3.25 3.29 3.32 3.35 3.37 3.40 3.43 3.44 3.46 3.47
0.01 3.89 4.06 4.16 4.22 4.32 4.36 4.41 4.45 4.48 4.54 4.58 4.61 4.63 4.65

40 0.05 2.86 3.01 3.10 3.17 3.22 3.27 3.30 3.33 3.35 3.39 3.42 3.44 3.46 3.47
0.01 3.82 3.99 4.10 4.17 4.24 4.30 4.34 4.37 4.41 4.46 4.51 4.54 4.57 4.59

60 0.05 2.83 2.98 3.08 3.14 3.20 3.24 3.28 3.31 3.33 3.37 3.40 3.43 3.45 3.47
0.01 3.76 3.92 4.03 4.12 4.17 4.23 4.27 4.31 4.34 4.39 4.44 4.47 4.50 4.53

100 0.05 2.80 2.95 3.05 3.12 3.18 3.22 3.26 3.29 3.32 3.36 3.40 3.42 3.45 3.47
0.01 3.71 3.86 3.93 4.06 4.11 4.17 4.21 4.25 4.29 4.35 4.38 4.42 4.45 4.48

∞ 0.05 2.77 2.92 3.02 3.09 3.15 3.19 3.23 3.26 3.29 3.34 3.38 3.41 3.44 3.47
0.01 3.64 3.80 3.90 3.98 4.04 4.09 4.14 4.17 4.20 4.26 4.31 4.34 4.38 4.41

Source: Reproduced from Duncan (1955) with permission from the Biometric Society and the author.
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Table A.9 Critical Values for the Wilcoxon Signed Rank Test N = 5(1)50

One-sided Two-sided N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12

P = 0.05 P = 0.10 1 2 4 6 8 11 14 17
P = 0.025 P = 0.05 1 2 4 6 8 11 14
P = 0.01 P = 0.02 0 2 3 5 7 10
P = 0.005 P = 0.01 0 2 3 5 7

One-sided Two-sided N = 13 N = 14 N = 15 N = 16 N = 17 N = 18 N = 19 N = 20

P = 0.05 P = 0.10 21 26 30 36 41 47 54 60
P = 0.025 P = 0.05 17 21 25 30 35 40 46 52
P = 0.01 P = 0.02 13 16 20 24 28 33 38 43
P = 0.005 P = 0.01 10 13 16 19 23 28 32 37

One-sided Two-sided N = 21 N = 22 N = 23 N = 24 N = 25 N = 26 N = 27 N = 28

P = 0.05 P = 0.10 68 75 83 92 101 110 120 130
P = 0.025 P = 0.05 59 66 73 81 90 98 107 117
P = 0.01 P = 0.02 49 56 62 69 77 85 93 102
P = 0.005 P = 0.01 43 49 55 61 68 76 84 92

One-sided Two-sided N = 29 N = 30 N = 31 N = 32 N = 33 N = 34 N = 35 N = 36

P = 0.05 P = 0.10 141 152 163 175 188 201 214 228
P = 0.025 P = 0.05 127 137 148 159 171 183 195 208
P = 0.01 P = 0.02 111 120 130 141 151 162 174 186
P = 0.005 P = 0.01 100 109 118 128 138 149 160 171

One-sided Two-sided N = 37 N = 38 N = 39 N = 40 N = 41 N = 42 N = 43 N = 44

P = 0.05 P = 0.10 242 256 271 287 303 319 336 353
P = 0.025 P = 0.05 222 235 250 264 279 295 311 327
P = 0.01 P = 0.02 198 211 224 238 252 267 281 297
P = 0.005 P = 0.01 183 195 208 221 234 248 262 277

One-sided Two-sided N = 45 N = 46 N = 47 N = 48 N = 49 N = 50

P = 0.05 P = 0.10 371 389 408 427 446 466
P = 0.025 P = 0.05 344 361 379 397 415 434
P = 0.01 P = 0.02 313 329 345 362 380 398
P = 0.005 P = 0.01 292 307 323 339 356 373

Source: Reproduced from Wilcoxon and Wilcox (1964), with permission of the American Cyanamid Company.
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Table A.10 The Mann--Whitney Two-Sample Test

n1

n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5% Critical points of rank sums
4 10
5 6 11 17
6 7 12 18 26
7 7 13 20 27 36
8 3 8 14 21 29 38 49
9 3 8 15 22 31 40 51 63

10 3 9 15 23 32 42 53 65 78
11 4 9 16 24 34 44 55 68 81 96
12 4 10 17 26 35 46 58 71 85 99 115
13 4 10 18 27 37 48 60 73 88 103 119 137
14 4 11 19 28 38 60 63 76 91 106 123 141 160
15 4 11 20 29 40 52 65 79 94 110 127 145 164 185
16 4 12 21 31 42 54 67 82 97 114 131 150 169
17 5 12 21 32 43 56 70 84 100 117 135 154
18 5 13 22 33 45 58 72 87 103 121 139
19 5 13 23 34 46 60 74 90 107 124
20 5 14 24 35 48 62 77 93 110
21 6 14 25 37 50 64 79 95
22 6 15 26 38 51 66 82
23 6 15 27 39 53 68
24 6 16 28 40 55
25 6 16 28 42
26 7 17 29
27 7 17
28 7

1% Critical points of rank sums
5 15
6 10 16 23
7 10 17 24 32
8 11 17 25 34 43
9 6 11 18 26 35 45 56

10 6 12 19 27 37 47 58 71
11 6 12 20 28 38 49 61 74 87
12 7 13 21 30 40 51 63 76 90 106
13 7 14 22 31 41 53 65 79 93 109 125
14 7 14 22 32 43 54 67 81 96 112 129 147
15 8 15 23 33 44 56 70 84 99 115 133 151 171
16 8 15 24 34 46 58 72 86 102 119 137 155
17 8 16 25 36 47 60 74 89 105 122 140
18 8 16 26 37 49 62 76 92 108 125
19 3 9 17 27 38 50 64 78 94 111
20 3 9 18 28 39 52 66 81 97
21 3 9 18 29 40 53 68 83
22 3 10 19 29 42 55 70
23 3 10 19 30 43 57
24 3 10 20 31 44
25 3 11 20 32
26 3 11 21

4 11
4

Note: n1 and n2 are the numbers of cases in the two groups. If the groups are unequal in size, n1 refers to the smaller.
Source: Reproduced from White, C. (1956). The use of ranks in a test of significance for comparing two treatments. Biometrics 8,
33–41, with permission of the Biometrics Society.
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Table A.11 Exact Critical Values for Use with the Analysis of Means

NUMBER OF MEANS, t

df 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 df

A. h0.10, Significance level = 0.10
3 3.16 3
4 2.81 3.10 4
5 2.63 2.88 3.05 5

6 2.52 2.74 2.91 3.03 6
7 2.44 2.65 2.81 2.92 3.02 7
8 2.39 2.59 2.73 2.85 2.94 3.02 8
9 2.34 2.54 2.68 2.79 2.88 2.95 3.01 9

10 2.31 2.50 2.64 2.74 2.83 2.90 2.96 3.02 10

11 2.29 2.47 2.60 2.70 2.79 2.86 2.92 2.97 3.02 11
12 2.27 2.45 2.57 2.67 2.75 2.82 2.88 2.93 2.98 3.02 12
13 2.25 2.43 2.55 2.65 2.73 2.79 2.85 2.90 2.95 2.99 3.03 13
14 2.23 2.41 2.53 2.63 2.70 2.77 2.83 2.88 2.92 2.96 3.00 3.03 14
15 2.22 2.39 2.51 2.61 2.68 2.75 2.80 2.85 2.90 2.94 2.97 3.01 3.04 15

16 2.21 2.38 2.50 2.59 2.67 2.73 2.79 2.83 2.88 2.92 2.95 2.99 3.02 3.05 16
17 2.20 2.37 2.49 2.58 2.65 2.72 2.77 2.82 2.86 2.90 2.93 2.97 3.00 3.03 3.05 17
18 2.19 2.36 2.47 2.56 2.64 2.70 2.75 2.80 2.84 2.88 2.92 2.95 2.98 3.01 3.03 3.06 18
19 2.18 2.35 2.46 2.55 2.63 2.69 2.74 2.79 2.83 2.87 2.90 2.94 2.96 2.99 3.02 3.04 3.06 19
20 2.18 2.34 2.45 2.54 2.62 2.68 2.73 2.78 2.82 2.86 2.89 2.92 2.95 2.98 3.00 3.03 3.05 3.07 20

24 2.15 2.32 2.43 2.51 2.58 2.64 2.69 2.74 2.78 2.82 2.85 2.88 2.91 2.93 2.96 2.98 3.00 3.02 24
30 2.13 2.29 2.40 2.48 2.55 2.61 2.66 2.70 2.74 2.77 2.81 2.84 2.86 2.89 2.91 2.93 2.96 2.98 30
40 2.11 2.27 2.37 2.45 2.52 2.57 2.62 2.66 2.70 2.73 2.77 2.79 2.82 2.85 2.87 2.89 2.91 2.93 40
60 2.09 2.24 2.34 2.42 2.49 2.54 2.59 2.63 2.66 2.70 2.73 2.75 2.78 2.80 2.82 2.84 2.86 2.88 60

120 2.07 2.22 2.32 2.39 2.45 2.51 2.55 2.59 2.62 2.66 2.69 2.71 2.74 2.76 2.78 2.80 2.82 2.84 120

∞ 2.05 2.19 2.29 2.36 2.42 2.47 2.52 2.55 2.59 2.62 2.65 2.67 2.69 2.72 2.74 2.76 2.77 2.79 ∞

B. h0.05, Significance level = 0.05

3 4.18 3
4 3.56 3.89 4
5 3.25 3.53 3.72 5

6 3.07 3.31 3.49 3.62 6
7 2.94 3.17 3.33 3.45 3.56 7
8 2.86 3.07 3.21 3.33 3.43 3.51 8
9 2.79 2.99 3.13 3.24 3.33 3.41 3.48 9

10 2.74 2.93 3.07 3.17 3.26 3.33 3.40 3.45 10

11 2.70 2.88 3.01 3.12 3.20 3.27 3.33 3.39 3.44 11
12 2.67 2.85 2.97 3.07 3.15 3.22 3.28 3.33 3.38 3.42 12
13 2.64 2.81 2.94 3.03 3.11 3.18 3.24 3.29 3.34 3.38 3.42 13
14 2.62 2.79 2.91 3.00 3.08 3.14 3.20 3.25 3.30 3.34 3.37 3.41 14
15 2.60 2.76 2.88 2.97 3.05 3.11 3.17 3.22 3.26 3.30 3.34 3.37 3.40 15

16 2.58 2.74 2.86 2.95 3.02 3.09 3.14 3.19 3.23 3.27 3.31 3.34 3.37 3.40 16
17 2.57 2.73 2.84 2.93 3.00 3.06 3.12 3.16 3.21 3.25 3.28 3.31 3.34 3.37 3.40 17
18 2.55 2.71 2.82 2.91 2.98 3.04 3.10 3.14 3.18 3.22 3.26 3.29 3.32 2.35 3.37 3.40 18
19 2.45 2.70 2.81 2.89 2.96 3.02 3.08 3.12 3.16 3.20 3.24 3.27 3.30 3.32 3.35 3.37 3.40 19
20 2.53 2.68 2.79 2.88 2.95 3.01 3.06 3.11 3.15 3.18 3.22 3.25 3.28 3.30 3.33 3.35 3.37 3.40 20

24 2.50 2.65 2.75 2.83 2.90 2.96 3.01 3.05 3.09 3.13 3.16 3.19 3.22 3.24 3.27 3.29 3.31 3.33 24
30 2.47 2.61 2.71 2.79 2.85 2.91 2.96 3.00 3.04 3.07 3.10 3.13 3.16 3.18 3.20 3.22 3.25 3.27 30
40 2.43 2.57 2.67 2.75 2.81 2.86 2.91 2.95 2.98 3.01 3.04 3.07 3.10 3.12 3.14 3.16 3.18 3.20 40
60 2.40 2.54 2.63 2.70 2.76 2.81 2.86 2.90 2.93 2.96 2.99 3.02 3.04 3.06 3.08 3.10 3.12 3.14 60

120 2.37 2.50 2.59 2.66 2.72 2.77 2.81 2.84 2.88 2.91 2.93 2.96 2.98 3.00 3.02 3.04 3.06 3.08 120

∞ 2.34 2.47 2.56 2.62 2.68 2.72 2.76 2.80 2.83 2.86 2.88 2.90 2.93 2.95 2.97 2.98 3.00 3.02 ∞

(Continued)
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Table A.11 (continued)

NUMBER OF MEANS, t

df 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 df

C. h0.01, Significance level = 0.05
3 7.51 3
4 5.74 6.21 4
5 4.93 5.29 5.55 5

6 4.48 4.77 4.98 5.16 6
7 4.18 4.44 4.63 4.78 4.90 7
8 3.98 4.21 4.38 4.52 4.63 4.72 8
9 3.84 4.05 4.20 4.33 4.43 4.51 4.59 9

10 3.73 3.92 4.07 4.18 4.28 4.36 4.43 4.49 10

11 3.64 3.82 3.96 4.07 4.16 4.23 4.30 4.36 4.41 11
12 3.57 3.74 3.87 3.98 4.06 4.13 4.20 4.25 4.31 4.35 12
13 3.51 3.68 3.80 3.90 3.98 4.05 4.11 4.17 4.22 4.26 4.30 13
14 3.46 3.63 3.74 3.84 3.92 3.98 4.04 4.09 4.14 4.18 4.22 4.26 14
15 3.42 3.58 3.69 3.79 3.86 3.92 3.98 4.03 4.08 4.12 4.16 4.19 4.22 15

16 3.38 3.54 3.65 3.74 3.81 3.87 3.93 3.98 4.02 4.06 4.10 4.14 4.17 4.20 16
17 3.35 3.50 3.61 3.70 3.77 3.83 3.89 3.93 3.98 4.02 4.05 4.09 4.12 4.14 4.17 17
18 3.33 3.47 3.58 3.66 3.73 3.79 3.85 3.89 3.94 3.97 4.01 4.04 4.07 4.10 4.12 4.15 18
19 3.30 3.45 3.55 3.63 3.70 3.76 3.81 3.86 3.90 3.94 3.97 4.00 4.03 4.06 4.08 4.11 4.13 19
20 3.28 3.42 3.51 3.61 3.67 3.73 3.78 3.83 3.87 3.90 3.94 3.97 4.00 4.02 4.05 4.07 4.09 4.12 20

24 3.21 3.35 3.45 3.52 3.58 3.64 3.69 3.73 3.77 3.80 3.83 3.86 3.89 3.91 3.94 3.96 3.98 4.00 24
30 3.15 3.28 3.37 3.44 3.50 3.55 3.59 3.63 3.67 3.70 3.73 3.76 3.78 3.81 3.83 3.85 3.87 3.89 30
40 3.09 3.21 3.29 3.36 3.42 3.46 3.50 3.54 3.58 3.60 3.63 3.66 3.68 3.70 3.72 3.74 3.76 3.78 40
60 3.03 3.14 3.22 3.29 3.34 3.38 3.42 3.46 3.49 3.51 3.54 3.56 3.59 3.61 3.63 3.64 3.66 3.68 60

120 2.97 3.07 3.15 3.21 3.26 3.30 3.34 3.37 3.40 3.42 3.45 3.47 3.49 3.51 3.53 3.55 3.56 3.58 120

∞ 2.91 3.01 3.08 3.14 3.18 3.22 3.26 3.29 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.45 3.47 3.48 ∞

D. h0.001, Significance level = 0.001

3 16.4 3
4 10.6 11.4 4
5 8.25 8.79 9.19 5

6 7.04 7.45 7.76 8.00 6
7 6.31 6.65 6.89 7.09 7.25 7
8 5.83 6.12 6.32 6.49 6.63 6.75 8
9 5.49 5.74 5.92 6.07 6.20 6.30 6.40 9

10 5.24 5.46 5.63 5.76 5.87 5.97 6.05 6.13 10

11 5.05 5.25 5.40 5.52 5.63 5.71 5.79 5.86 5.92 11
12 4.89 5.08 5.22 5.33 5.43 5.51 5.58 5.65 5.71 5.76 12
13 4.77 4.95 5.08 5.18 5.27 5.35 5.42 5.48 5.53 5.58 5.63 13
14 4.66 4.83 4.96 5.06 5.14 5.21 5.28 5.33 5.38 5.43 5.48 5.51 14
15 4.57 4.74 4.86 4.95 5.03 5.10 5.16 5.21 5.26 5.31 5.35 5.39 5.42 15

16 4.50 4.66 4.77 4.86 4.94 5.00 5.06 5.11 5.16 5.20 5.24 5.28 5.31 5.34 16
17 4.44 4.59 4.70 4.78 4.86 4.92 4.98 5.03 5.07 5.11 5.15 5.18 5.22 5.25 5.28 17
18 4.38 4.53 4.63 4.72 4.79 4.85 4.90 4.95 4.99 5.03 5.07 5.10 5.14 5.16 5.19 5.22 18
19 4.33 4.47 4.58 4.66 4.73 4.79 4.84 4.88 4.93 4.96 5.00 5.03 5.06 5.09 5.12 5.14 5.17 19
20 4.29 4.42 4.53 4.61 4.67 4.73 4.78 4.83 4.87 4.90 4.94 4.97 5.00 5.03 5.05 5.08 5.10 5.12 20

24 4.16 4.28 4.37 4.45 4.51 4.56 4.61 4.65 4.69 4.72 4.75 4.78 4.81 4.83 4.86 4.88 4.90 4.92 24
30 4.03 4.14 4.23 4.30 4.35 4.40 4.44 4.48 4.51 4.54 4.57 4.60 4.62 4.64 4.67 4.69 4.71 4.72 30
40 3.91 4.01 4.09 4.15 4.20 4.25 4.29 4.32 4.35 4.38 4.40 4.43 4.45 4.47 4.49 4.50 4.52 4.54 40
60 3.80 3.89 3.96 4.02 4.06 4.10 4.14 4.17 4.19 4.22 4.24 4.27 4.29 4.30 4.32 4.33 4.35 4.37 60

120 3.69 3.77 3.84 3.89 3.93 3.96 4.00 4.03 4.05 4.07 4.09 4.11 4.13 4.15 4.16 4.17 4.19 4.21 120

∞ 3.58 3.66 3.72 3.76 3.80 3.84 3.87 3.89 3.91 3.93 3.95 3.97 3.99 4.00 4.02 4.03 4.04 4.06 ∞

Source: Reproduced from Nelson (1983), with permission from the American Society for Quality Control.



Appendix B

A Brief Introduction
to Matrices

This section provides a brief introduction to matrix notation and the use of
matrices for representing operations involving systems of linear equations.
The purpose here is not to provide a manual for performing matrix calculations
but rather to provide for an understanding and appreciation of the various
matrix operations as they apply to regression analysis.

DEFINITION
A matrix is a rectangular array of elements arranged in rows and columns.

A matrix is much like a table and can be thought of as a many-dimensional
number. Matrix algebra consists of a set of operations or algebraic rules that
allow the manipulation of matrices. In this section we present those operations
that will enable the reader to understand the fundamental building blocks of a
multiple regression analysis. Additional information is available in a number
of texts (such as Graybill, 1983).

The elements of a matrix usually consist of numbers or symbols represent-
ing numbers. Each element is indexed by its location within the matrix, which
is identified by its row and column (in that order). For example, matrix A has
3 rows and 4 columns:

A =
⎡⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤⎦.

The element aij identifies the element in the ith row and jth column. Thus
the element a21 identifies the element in the second row and first column. The
notation for this matrix follows the usual convention of denoting a matrix by a
boldface capital letter and its elements by the same lowercase letter with the
appropriate row and column subscripts.

An example of a matrix with three rows and columns is

B =
⎡⎣3 7 9

1 4 −2
9 15 3

⎤⎦.

In this matrix, b22 = 4 and b23 = −2.

645
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A matrix is characterized by its order, which is the number of rows and
columns it contains. The matrix B (in the preceding) is a 3 × 3 matrix since
it contains three rows and three columns. A matrix with equal numbers of
rows and columns, such as B, is called a square matrix. A 1×1 matrix is
known as a scalar. A scalar is, in fact, an ordinary number, and a matrix
operation performed on a scalar is the same arithmetic operation done on
ordinary numbers.

In a matrix, the elements whose row and column indicators are equal, say,
aii, are known as diagonal elements and lie on the main diagonal of the
matrix. For example, in matrix B, the main diagonal consists of the elements
b11 = 3, b22 = 4, and b33 = 3.

A square matrix that contains nonzero elements only on the main diagonal
is a diagonal matrix. A diagonal matrix whose nonzero elements are all unity
is an identity matrix. It has the same function as the scalar “one” in that if a
matrix is multiplied by an identity matrix it is unchanged.

Matrix Algebra

Two matrices A and B are equal only if all corresponding elements of A are
the same as those of B. Thus A = B implies aij = bij for i and j. It follows that
two equal matrices must be of the same order.

The transpose of a matrix A of order (r × c) is defined as a matrix A′ of
order (c × r) such that

a′
ij = aji.

For example, if

A =
⎡⎣1 −5

2 2
4 1

⎤⎦ , then A′ =
[

1 2 4
−5 2 1

]
.

In other words, the rows of A are the columns of A′ and vice versa. This is one
matrix operation that is not relevant to scalars.

A matrix A for which A = A′ is said to be symmetric. A symmetric ma-
trix must obviously be square, and each row has the same elements as the
corresponding column. For example, the following matrix is symmetric:

C =
⎡⎣5 4 2

4 6 1
2 1 8

⎤⎦.

The operation of matrix addition is defined as

A + B = C

if aij + bij = cij , for all i and j. Thus, the addition of matrices is accomplished
by the addition of corresponding elements. For example, let

A =
⎡⎣ 1 2

4 9
−5 4

⎤⎦ and B =
⎡⎣4 −2

1 2
5 −6

⎤⎦ ,
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then

C = A + B =
⎡⎣5 0

5 11
0 −2

⎤⎦.

If two matrices are to be added, they must, be conformable for addition, that
is, they must have the same order. Subtraction of matrices follows the same
rules.

The process of matrix multiplication is more complicated. The definition
of matrix multiplication is

C = A · B

if

cij =
∑

k

aikbkj.

The operation may be better understood when expressed in words: The ele-
ment of the ith row and jth column of the product matrix C, cij , is the pairwise
sum of products of the corresponding elements of the ith row of A and the jth
column of B.

For A and B to be conformable for multiplication, then the number of
columns of A must be equal to the number of rows of B. The order of the
product matrix C will be equal to the number of rows of A by the number of
columns of B.

As an example, let

A =
[

2 1 6
4 2 1

]
and B =

⎡⎣4 1 −2
1 5 4
1 2 6

⎤⎦.

Note that matrix A has three columns and that B has three rows; hence these
matrices are conformable for multiplication. Also since A has two rows and B

has three columns, the product matrix C will have two rows and three columns.
The elements of C = AB are obtained as follows:

c11 = a11b11 + a12b21 + a13b31

= (2)(4) + (1)(1) + (6)(1) = 15,

c12 = a11b12 + a12b22 + a13b32

= (2)(1) + (1)(5) + (6)(2) = 19,

.. .. .. .. ..

c23 = a21b13 + a22b23 + a23b33

= (4)(−2) + (2)(4) + (1)(6) = 6.

The entire matrix C is

C =
[

15 19 36
19 16 6

]
.
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Note that even if A and B are conformable for the multiplication AB, it may
not be possible to perform the operation BA. However, even if the matrices
are conformable for both operations, usually

AB 
= BA,

although exceptions occur for special cases.
An interesting corollary of the rules for matrix multiplication is that

(AB)′ = B′A′;

that is, the transpose of a product is the product of the individual transposed
matrices in reverse order.

There is no matrix division as such. If we require matrix A to be divided by
matrix B, we first obtain the inverse of B. Denoting that matrix by C, we then
multiply A by C to obtain the desired result.

The inverse of a matrix A, denoted A−1, is defined by the property:

AA−1 = I,

where I is the identity matrix which, as defined above, has the role of the
number 1. Inverses are defined only for square matrices. However, not all
square matrices are invertible, as discussed later.

Unfortunately, the definition of the inverse of a matrix does not suggest a
procedure for computing it. In fact, the computations required to obtain the
inverse of a matrix are quite tedious. Procedures for inverting matrices using
hand or desk calculators are available but are not presented here. Instead we
always present inverses that have been obtained by a computer.

The following serves as an illustration of the inverse of a matrix. Consider
two matrices A and B, where A−1 = B:

A =
⎡⎣ 9 27 45

27 93 143
45 143 245

⎤⎦ , B =
⎡⎣ 1.47475 −0.113636 −0.204545

−0.113636 0.113636 −0.045455
−0.204545 −0.0454545 0.068182

⎤⎦.

The fact that B is the inverse of A is verified by multiplying the two matrices.
The first element of the product AB is the sum of products of the elements of
the first row of A with the elements of the first column of B:

(9)(1.47475) + (27)(−0.113636) + (45)(−0.2054545) = 1.000053.

This element should be unity; the difference is due to round-off error, which
is a persistent feature of matrix calculations. Most modern computers carry
sufficient precision to make round-off error insignificant, but this is not always
guaranteed (see Section 8.7). The reader is encouraged to verify the correct-
ness of the above inverse for at least a few other elements.

Other properties of matrix inverses are as follows:

1. AA−1 = A−1A.
2. If C = AB (all square), then C−1 = B−1A−1. Note the reversal of the ordering,

just as for transposes.
3. If B = A−1, then B′ = (A′)−1.
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4. If A is symmetric, then A−1 is also symmetric.
5. If an inverse exists, it is unique.

Certain matrices do not have inverses; such matrices are called singular. For
example, the matrix

A =
[

2 1
4 2

]
cannot be inverted, because the elements in row two are simply twice the
elements in row one. We can better see why a matrix such as this cannot be
inverted in the context of linear equations presented in the next section.

Solving Linear Equations

Matrix algebra is of interest in performing regression analyses because it
provides a shorthand description for the solution to a set of linear equations.
For example, assume we want to solve the set of equations

5x1 + 10x2 + 20x3 = 40,

14x1 + 24x2 + 2x3 = 12,

5x1 − 10x2 = 4.

This set of equations can be represented by the matrix equation

A · X = B,

where

A =
⎡⎣ 5 10 20

14 24 2
5 −10 0

⎤⎦, X =
⎡⎣x1

x2

x3

⎤⎦, and B =
⎡⎣40

12
4

⎤⎦.

The solution to this set of equations can now be represented by some matrix
operations. Premultiply both sides of the matrix equation by A−1 as follows:

A−1 · A · X = A−1 · B.

Now A−1·A = I, the identity matrix; hence, the equation can be written

X = A−1 · B,

which is a matrix equation representing the solution.
We can now see the implications of the singular matrix shown above. Using

that matrix for the coefficients and adding a right-hand side produces the
equations

2x1 + x2 = 3,

4x1 + 2x2 = 6.

Note that these two equations are really equivalent; therefore, any of an infinite
number of combinations of x1 and x2 that satisfy the first equation are also a
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solution to the second equation. On the other hand, changing the right-hand
side produces the equations:

2x1 + x2 = 3,

4x1 + 2x2 = 10,

which are inconsistent and have no solution. In regression applications it is
not possible to have inconsistent sets of equations.
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Solutions to Selected
Exercises

Chapter 1

PRACTICE

EXERCISES

1.

S.Sc.
0

500

1000
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2000
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3500

4000

St
ud

en
ts

Enrollment by College

ScL.A.E.S.BusAg

2. Mean = 10.9, median = 12.5, std dev = 5.3427, variance = 28.54444.

3. Mean = 2, std dev = 2.94.
656
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4. (a)

30

25

20

15

10

5

0

Ages of Students

Age
St

ud
en

ts
20–24 25–29 30–34 35–39 40–44 45–49 50–54

(b) Mean = 32.65, std dev = 6.91.

5. (a)

Closing Price
100

80

60

40

20

0

D
ol

la
rs

151413121110987654321
Week

(b) Stem and leaf

9 5
9 430
8 97755
8 4420
7 88

(c) Mean = 86.06667, median = 85.
(d) Std dev = 5.417784, variance = 29.35238.



658 Solutions to Selected Exercises

EXERCISES

1. (a) Mean = 17, median = 17, variance = 30.57, range = 22,
interquartile range = 7.

(c) The stem and leaf reveals a heavier concentration of data in the range
10−19, piling up around the mean and median, indicative of a symmet-
rical distribution.

3. (a) FUTURE: Mean = −0.20848, median = −0.3, variance = 0.601018.
INDEX: Mean = −0.14935, median = −0.155, variance = 1.770753.

(b) Yes. The scatterplot shows that, in general, as the NYSE Composite
Index increases so does the price movements of the general stock
market.

5. (a) DAYS: Mean = 15.85366, median = 17, variance = 24.324.
TEMP: Mean = 39.34756, median = 40, variance = 11.15191.

(b) From the scatterplot, there appears to be no definitive relationship
between the average temperature and the number of rainy January
days.

7. The strongest relationship exists between DFOOT, the diameter of the
tree at one foot above ground level and HT, the total height of the tree.
One would expect that as the base of a tree increases in diameter the tree
would increase in height as well.

9. (a) The mean is larger than (to the right of) the median, indicating a dis-
tribution skewed to the right. Yes, both the stem and leaf plot and the
box plot reveal the skewness of the distribution.

(b) The outliers 955 and 1160 may have resulted from younger patients.
(c) Approximately 75% or 38 of the 51 patients were in remission for less

than one year.

11. (a) Mean = 7.2695, std dev = 1.633599.
(b) Median = 7.1 occurred near the end of 1977 or the beginning of 1978.

13.(b) Initial doses for drug G are lower than drug A, which also tends to have
a shorter half-life.

(c) Drug A: Mean = 1.88, std dev = 0.63.
Drug B: Mean = 2.02, std dev = 0.40.
This supports the conclusion in part (b).

Chapter 2

PRACTICE

EXERCISES

1. (a) P(Both) = (0.4)(0.3) = 0.12
(b) P(Neither) = (0.6)(0.7) = 0.42
(c) P(At Least One) = (0.4) + (0.3) − (0.12) = 0.58
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2. (a) P(A) = 0.2
P(B) = 0.3

(b) P(A and B) = 0
(c) P(A or B) = (0.2) + (0.3) = 0.50

3. (a) μ = 1.0
σ 2 = 1.5

(b) 0.03125

4. $1,450

5. (a) (0.1587)(0.5793) = 0.0919
(b) 0.6461
(c) (0.5)(0.5) = 0.25

EXERCISES

1. (a)
Y | $0 $10 $1,000 $10,000 $50,000

p(Y ) | 148,969
150,000

1000
150,000

25
150,000

5
150,000

1
150,000

(b) μ = $0.90
(c) Expected net winnings are −$0.10; therefore a purchase is not worth-

while from a strictly monetary point of view.
(d) σ 2 = $142.00

3. (a) μ = 1
σ 2 = 0.8

(b) Yes

5. Arrangement I: P(system fail) = 0.0001999
Arrangement II: P(system fail) = 0.0394

7. (a) 0.1586
(b) 0.3108
(c) 16.4

9. 0.0571

11. 39

13. 0.5762

15. μ = 75
σ 2 = (11.72)2 = 137.36

17. (a) 7.15 × 10−8

(c) 0.0186
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Chapter 3

PRACTICE

EXERCISES

1. (158.4, 175.6)

2. Z = −0.91

3. n ≈ 62, n ≈ 246

4. z = 3.40

EXERCISES

3. (a) β = 0.8300
(b) β = 0.9428
(c) β = 0.3372
(d) β = 0.0877

5. (a) z= −4.38
(b) p value � 0

7. (a) α = 0.0256
(b) β = 0.8704

9. (a) E = 1.31
(b) (78.3, 80.9)
(c) n= 246

11. z = −22
p value � 0

13. z = −4.0

15. n = 9604

Chapter 4

PRACTICE

EXERCISES

1.(a) 1.7709
(b) 2.4786
(c) 1.3968
(d) 37.566
(e) 13.362
(f) 24.433
(g) 2.088

2. (a) (7.2, 10.8)
(b) (3.0, 5.3)
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3. (a) t = −4.59
(b) X 2 = 26

4. z = 0.0

5. n = 9220

EXERCISES

1. t = 3.99

3. χ2 = 92.17

5. (a) z = −0.67

7. z = 0.65

9. t = −1.08

11. χ2 = 23.96

15. Normality assumption violated

17. (1.596, 2.155)

19. z = 2.67

21. Type 1: χ2 = 50.32, Type 2: χ2 = 102.13
Type 3: χ2 = 58.88, Type 4: χ2 = 24.84

Chapter 5

PRACTICE

EXERCISES

1. z = 1.24

2. t = −2.44

3. (−9.92, −1.68)

4. t = 1.94

5. z = 1.84

EXERCISES

1. t = 1.223

3. t = 1.479

5. t = 3.136

7. z = 0

9. F = 1.513
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11. t = −1.1798

13. t = −0.8862

15. (a) z = −0.56

Chapter 6

EXERCISES

1. (a) F = 15.32

3. (a) F = 19.04
(b) Est(σ 2

s ) = 629.94
Est(σ 2) = 139.65

5. (a) F = 53.55
(b) Control: F = 12.8

MFG: F = 36.09
ADD: F = 137.5

(c) LIN: F = 195.61
QUAD: F = 13.60
LOF: F = 2.489

7. F = 15.04

9. F = 17.99

11. CD: F = 58.0
PB: F = 13.82

13. F = 30.40

15. F = 6.21

Chapter 7

EXERCISES

1. (a) μ̂y|x = 2.8 − 0.5X

(b) 3.8, 3.3, 2.8, 2.3, 1.8
(c) 0.2, −0.3, 0.2, −0.3, 0.2
(d) t = −5.0

3. (a) μ̂y|x = 14.396 + 0.765X

(d) 77.1328

5. (a) μ̂y|x = −71.451 + 1.209X

(b) 1.17



Chapter 9 663

7.(b) μ̂y|x = −97.924 + 2.001X

9. (a) μ̂y|x = 7.526 + 0.225X

11. Relationship is not linear.

Chapter 8

EXERCISES

3. μ̂y1|x = 700.62 − 1.526X1 + 175.984X2 − 6.697X3.
μ̂y2|x = −5.611 + 0.668X1 − 1.235X2 + 0.073X3.

5. (a) μ̂y|x = −379.248 + 170.220DBH + 1.900HEIGHT + 8.146AGE
−1192.868GRAV.

7. (a) μ̂y|x = 219.275 + 77.725X.

(b) μ̂y|x = 178.078 + 93.106X − 0.729X 2.

9. (a) COOL: μ̂y|x = −2.638 + 0.439WIDTH + 0.110HEIGHT.
WARM: μ̂y|x − 2.117 + 0.207WIDTH + 0.118HEIGHT.

(b) COOL: μ̂y|x = −4.597 + 1.571LWIDTH + 0.747LHEIGHT.
WARM: μ̂y|x = −4.421 + 1.669LWIDTH + 0.209LHEIGHT.

11. μ̂y|x = −10.305 + 0.378AGE + 2.294SEX + 0.179COLLEGE
+ 0.293INCOME.

13. μ̂y|x = 104.906 − 6.682AGE + 0.636SQFT − 0.403SD
+ 0.098UNTS + 65.000GAR + 33.051CP
− 9.977SS + 14.327FIT.

Chapter 9

EXERCISES

1. Source df F Value

A 1 85.88
T 3 4.41

A∗T 3 9.48

3. Source df F Value

A 2 13.93
C 2 6.75

A∗C 4 3.12

μ̂y|x = −11.107 + 6.486A − 0.631A2 + 6.322C − 0.739C2 − 0.596AC.
F for LOF = 0.458.
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5. Source df F Value

FUNGICID 2 6.57
CONCENTR 1 21.50
FUNGICID∗CONCENTR 2 4.91

7. Source df F Value

TEMPR 4 323.05
CLEAN 4 1233.17
TEMPR∗CLEAN 16 86.09

μ̂y|x = −8.035 + 36.275T − 12.460T2−30.952C + 23.787C2 + 17.654TC.

9. Source df F Value

TEMPL 1 4.28
TEMPSQ 1 2.78
DAY 1 3.95
TEMPL∗DAY 1 1.46
TEMPSQ∗DAY 1 23.58

11. Source df F Value

GRAIN 2 2.93
PREP 2 7.33
GRAIN∗PREP 4 1.85

Chapter 10

EXERCISES

1. Source df SS F Value

TRT 2 2.766 1.30
EXP 1 1.580
TRT∗EXP 2 2.130
TOTAL 29

3. (a) Source df SS F Value

REP 3 1.981 1.62
YEAR 2 29.835 36.70
VAR 2 6.231 7.66
NIT 1 0.0003 0.00
YEAR∗VAR 4 33.531 20.62
VAR∗NIT 2 15.667 19.2
YEAR∗NIT 2 22.926 28.20
YEAR∗VAR∗NIT 4 18.796 11.56
ERROR 51 20.72
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(b) Source df SS F Value

YEAR 2 29.835 44.07
REP 3 1.981
YEAR∗REP (A) 6 2.031
VAR 2 6.231 1.82
NIT 1 0.0003 0.00
VAR∗NIT 2 15.667 4.59
ERROR (B) 55 93.951

5. Source df SS F Value

REP 2 246.542
SALT 3 4340.917 6.16
REP∗SALT (A) 6 1408.458
DAY 3 8147.417 352.32
DAY∗SALT 9 3457.583 49.84
ERROR (B) 24 185.000

7. (a) Source df SS F Value

REP 4 1.033
LIGHT 2 1.947 6.16
REP∗LIGHT (A) 8 1.264
LEAF 4 0.885 9.90
LIGHT∗LEAF 8 0.302 1.69
ERROR (B) 48 1.073

(b) μ̂y|x = 1.781 + 0.013LIGHT − 0.0001LIGHT2 + 0.267LEAF
− 0.047LEAF2 + 0.0005LIGHT∗LEAF.

(c) F = 3.33.

9. SURFACE: Source df SS F Value

TRT(Shade) 3 73.541 16.61
COLOR 1 0.003 0.00
TRT∗COLOR 3 3.176 0.72

RECTAL: Source df SS F Value

TRT(Shade) 3 1.253 1.79
COLOR 1 0.062 0.26
TRT∗COLOR 3 0.521 0.75

11. SAT: F = 2.03
BTY: F = 2.74
FNC: F = 6.77
INT: F = 1.01
DIG: F = 8.81
CST: F = 12.54
FSH: F = 4.96

13. WEIGHT: F = 16.54
LENGTH: F = 8.31
RELWT: F = 27.91
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Chapter 11

EXERCISES

1. Source df SS F Value

STAGE 2 289.82 12.59
WWT 1 394.08 34.24

3. μ̂y|x = −2.75 + 0.52CONC.

5. Unweighted: μ̂y|x = −0.360 + 0.012VENT.
Weighted: μ̂y|x = −0.322 + 0.0115VENT.
LOG: μ̂y|x = −4.048 + 0.057VENT.

7. (a) ANOVA:

Source df SS F Value

PAVE 2 216.774 43.67
TREAD 2 203.676 41.03
PAVE∗TREAD 4 22.154 2.23

DUMMY VARIABLE:

Source df SS F Value

PAVE 2 233.584 47.06
TREAD 2 212.463 42.80
PAVE∗TREAD 4 6.699 0.67

(b) Source df SS F Value

PAVE 2 232.818 52.31
TREAD 1 219.062 98.44

(c) μ̂y|x = 26.194 + 28.660FRICT + 1.374TREAD.

9. (a) Source df SS F Value

MEDIUM 2 3137.392 50.97
TIME 3 1514.468 16.40
MEDIUM∗TIME 6 514.574 2.79

11. (a) Source df SS F Value

SUBJ 39 59.664 1.22
BTY 1 38.738 31.01
FNC 1 3.951 3.16
INT 1 83.250 66.64
DIG 1 0.333 0.27
CST 1 9.682 7.75
FSH 1 30.543 24.45
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13. Source df SS F Value

SIZE 1 913381.32 3881.24
TYPE 1 85.55 0.36
SIZE∗TYPE 1 461.12 1.96

Chapter 12

EXERCISES

1. (1) (0.67, 0.75)
(2) X 2 = 3.23

3. X 2 = 0.275

5. X 2 = 4.21

7. X 2 = 3.306

9. X 2
2 = 7.66

11. (a) X 2 = 26.25

13. X 2 = 11.217, X2 = 0.731

Chapter 13

EXERCISES

1. T(+) = 9

3. T = 81

5. (a) T(+) = 2.0

7. T∗ = 0.486

9. H = 22.68

11. T∗ = 1.448



INDEX

A
Alpha, α, 123, 127
Alternative hypothesis, 120
Among means variation, 228
Analysis of covariance, 518
Analysis of means, 270–277

count data, 275
proportions, 273

Analysis of variance, 220
heuristic justification, 225
model, 233
notation, 222

ANOM, 270–277
count data, 275
proportions, 273

ANOVA, 220
multiple factors, 417
one-way, 220

ANOVA table,
Completely randomized design, 230
factorial, 427
Latin squares, 479
nested, 486
one-way, 230
randomized block, 467
regression, 302
split plot, 482

Association in frequency table, 564
Assumptions, 147

analysis of variance, 236
binomial, 99
detecting violations of, 237, 320
general discussion, 147
inferences on a mean, 172
linear regression, 319
Multiple regression, 388
two sample analyses, 208

B
Backward elimination in regression, 387
Balanced data, 223

Bar chart, 15
Beta, β, 123, 127
Between cells analysis, 424
Binary response variable, 527
Binomial distribution, 77–80

normal approximation, 99
Bivariate data description, 38
Block chart, 40
Blocking criteria, 464
Box plot, 35, 36

C
Categorical data, 557
Categorical variable, 7, 557
Cause and effect in regression, 292
Central limit theorem, 94
Central tendency of a distribution, 20
Change of scale, 30
Chi-square (χ2) distribution, 102
Chi-square (χ2) test, 559
Class intervals for a distribution, 14
Cluster sampling, 616
Coefficient of determination, 317, 363
Coefficient of variation, 28, 352
Comparison-wise error rate, 253
Comparisons among specified means, 242
Complement of an event, 67
Completely randomized design, 220
Computing considerations

ANOVA, 220
dummy variable model, 516
multiple regression, 366
simple linear regression, 312

Conditional mean,
multiple regression, 337
simple regression, 291

Confidence interval, 140
βi in regression, 303, 358
correlation, 318
difference between means, 192
difference between proportions, 206

668
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mean, 140, 164
means in ANOVA, 263
proportion, 168
standard deviation, 172
variance, 172

Confidence limits, 141
Confidence related to significance, 143
Confirmatory versus exploratory

analysis, 151
Contingency table, 564

exact test, 670
Continuous random variable, 73
Continuous variable, 7
Contrasts, 243

in factorial experiment, 432
Control chart, 97, 100
Correcting for the mean in multiple

regression, 344
Correction factor, 25
Correlation, 316

multiple, 363
partial, 364
using ranks, 595

Covariate, 518
Cramer’s contingency

coefficient, 570
Critical region, 121
Critical values, 129
Cumulative frequency distribution, 14
Cumulative relative frequency

distribution, 14

D
Data, 1
Data reduction, 19
Degrees of freedom, 24, 102, 104, 166
Dependence, measures of, 570
Dependent samples, 187, 200
Dependent variable, 232, 289
Design of experiments, 462
Deviations from the mean, 24
DFFITS statistic, 392
Diagnostics,

Multiple regression, 390
simple linear regression, 319

Dichotomous response variable, 527
Discrete random variable, 72
Discrete variable, 7
Dispersion of a distribution, 23
Distributions, 12

continuous variable, 13
discrete variable, 13
relationships among, 108

Dummy variable model, 510
Duncan’s multiple range test, 257

E
Empirical probability distribution, 14
Empirical rule, 26
Errors in hypothesis testing, 122
Estimate,

point, 140
interval, 140

Estimates of parameters, 43
Estimation, 139

βi, 295, 343
difference in means, 192
mean, 164
proportion, 168
variance, 169

Event, 67
Expansion factor in sampling, 606
Expected frequencies, 559
Expected,

mean squares, 235
factorial analysis, 426

Expected value, 75
Experiment, 66
Experiment-wise error rate LSD procedure,

253
Experimental design, 418, 462, 492
Experimental error, 472
Experimental unit, 472
Exploratory data analysis, 32
Extrapolation in regression, 292

F
F distribution, 106
F test, 226

one-way ANOVA, 226
regression, 301, 354
variances, 198

Factor, 223
Factor levels, 223, 419
Factorial analysis, 425
Factorial experiment, 418

computations, 424
linear model, 422
in randomized blocks, 481
three or more factors, 448
two factors, 422

Finite population correction factor, 607
Finite populations, sampling from, 603
Fisher’s exact test for contingency table, 570
Fixed effects model, 234
Forward selection in regression, 387
Frame for sampling, 605
Frequency distribution, 13
Frequency table, two way, 39
Friedman test, 593
Full model, 353
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G
General linear hypothesis, 353
General linear model, 510
Goodness of fit test, 561

H
Hartley F-Max test, 238
Hierarchial design, 448
Histogram, 14
Homogeneity in a contingency table, 565
Homogeneity, test for, 565
Homoscedasticity, 225
Hookes’s law illustrating least squares, 390
Hypothesis test, 118

βi in simple linear regression, 301
βi in multiple regression, 358
correlation, 317
general principle, 353
mean, 118–139
means in ANOVA, 223–233
proportion, 166
standard deviation, 170
two means, 190–192
two proportions, 205
two variances, 198
variance, 170

I
Independence in a contingency table, 565
Independence, test for, 565
Independent events, 68
Independent samples, 187

inferences on means, 188–197
inferences on variances, 197–200
rank test, 588

Independent variable, 289
Inference, 42
Influence statistics in regression, 391
Interaction plots, 430, 446
Interactions, 420
Intercept, linear regression, 290, 336
Interquartile range, 29
Interval estimation (see confidence intervals)
Interval scale, 11
Interval variables, 11

K
Kruskal-Wallis test, 590

L
Lack of fit test, 252

factorial experiment, 442
Latin square design, 476
Least squares, 295
Level of confidence, 141

Leverage, 391
Levene test, 239
Linear function of random variables, 188, 213
Linear model, 232

analysis of covariance, 520
factorial experiment, 422
Latin square design, 477
nested design, 485
one-way analysis of variance, 233
randomized block design, 466
randomized block design with sampling, 471
split plot, 488
with binary response variable, 528

Linear regression, 288
estimation of parameters, 294, 338
multiple, 333
simple, 289
using matrices, 339

Location of a distribution, 20
Logistic regression, 536

maximum likelihood estimation, 540
Loglinear model, 571

M
Main effects, 420
Mann Whitney test, 588
Matrices, 339–344, 645–650
Maximum error of estimation, 141
Maximum likehood, 540
Mean, 20

computed from distribution, 30
geometric, 23
of a probability distribution, 75

Mean square, 24
in ANOVA, 229
in regression, 298

Mean response, inference on, 304, 359
Measurement scales for variables, 11
Median, 20

inference for, 178
test for two samples, 210

Midrange, 23
Mode, 22
Model, 232

analysis of covariance, 520
analysis of variance, 233
ANOVA, fixed, 234
ANOVA, random, 267
categorical, 571
dichotomous dependent variable, 528
dummy and interval variable, 517
dummy variable, 510
factorial, 425
general linear, 510
Latin square, 477
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logistic regression, 528
loglinear, 571
multiple regression, 336
nested, 485
one-way, 233
polynomial regression
probit, 541
randomized blocks
regression, 291
simple regression, 291
split plot, 488
statistical, 232

Model selection in regression,
384–388

Model, test for in regression, 355
Monte Carlo method, 76
Multicollinearity, 379

use of transforms, 382
Multinomial population, 558
Multiple-correlation coefficient, 363
Multiple factors in ANOVA, 417
Multiple regression, 335

estimating parameters, 343
model, 336

Multiplicative regression model, 373
Multistage sampling, 616
Mutually exclusive events, 67

N
Nested design, 484
Nominal scale, 12
Non-centrality parameter, 235
Non-linear regression model, 378
Nonparametric methods, 581
Normal distribution, 83

computing probabilities, 86
table, Appendix A.

Normal equations, 295
multiple regression, 339
simple linear regression, 295

Normality, test for, 175
Notation, 8

ANOVA, 222
contingency tables, 564
factorial experiments, 423

Null hypothesis, 120
Numerical descriptive statistics, 19

O
Observation, 6
Odds ratio, 540
One tailed hypothesis test, 138
Operating Characteristic (OC) curve, 134
Optimum allocation, 611
Ordinal scale, 11

Orthogonal contrasts, 246
Outcome, 66
Outlier detection in regression, 388

P
p values, 132
Paired samples, 187, 201

nonparametric test, 587
Parameter, 43, 63
Partial regression coefficients, 337

standard errors of, 358
Partial correlation, 364
Partial sums of squares, 354
Partitioning sums of squares, 351

ANOVA, 228
regression, 297, 351

Payoff function, 151
Pearson’s contingency coefficient, 670
Penalty function, 151
Percentiles, 28
Phi coefficient, 570
Pie chart, 15
Point estimate, 140
Poisson distribution, 79
Polynomial regression model, 370
Polynomial response in factorial experiment,

435
Pooled t statistic, 192
Pooled variance, 191

several samples, 224
two samples, 191

Population, 2
defining for sampling, 604
target, 43

Post hoc comparisons, 242–252
Post stratification, 615
Power curve, 137
Power of a test, 136
Practical significance, 148
Prediction, inference on, 304
Preplanned comparisons, 242
Probabilities of types I and II errors, 123
Probability, 66

density, 81
distribution, 72
distribution for a continuous variable, 81
distribution for a discrete variable, 73
of an event, 67

Proportion, inferences for, 166
Proportional allocation, 610
Protection level, 253

Q
Quantal response, 527
Quartiles, 29
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Questionnaires for sample surveys, 605
Quota sampling, 615

R
Random effects, 234

one-way ANOVA, 234
randomized block design, 470

Random error,
ANOVA, 232
regression, 291, 336

Random sample, 43
Random variable, 72
Randomization, 44
Randomized block design, 464

efficiency, 469
linear model for, 466
rank test, 593
with sampling, 471

Range, 23
Rank correlation, 595
Ranking, for nonparametric methods, 583
Ranks, 11
Ratio scale, 11
Redefining variables to combat

multicollinearity, 382
Reduced model, 353
Regression analysis, 288
Regression

coefficient, interval estimate, 303, 358
coefficient, partial, 337
coefficient, test for by ANOVA, 301
coefficient, test for by t test, 302, 358
coefficients, 290
coefficients, estimation, 336
coefficients, inferences, 353
model, 290

Rejection region, 121
Relative efficiency, 469

randomized block design, 469
stratified sampling, 612

Relative frequency distribution, 13
Replications, not available in factorial, 448
Research hypothesis, 120
Residuals, 237

plot, ANOVA, 238
plot, regression, 320
regression, 295

Response variable, 232
binary, 527
inferences on, simple regression, 304
inferences on, multiple regression, 359

Restricted model, 353
Robustness, 148

nonparametric, 585
Row diagnostics, 388

S
Sample, 4
Sample allocation, stratified sampling, 610
Sample size, 144

for estimating a mean, 144
for estimating a proportion, 169
in simple random sampling, 608
in stratified sampling, 610

Sample surveys, 602
Sampling, 602
Sampling distribution, 91

of a mean, 92
of a proportion, 99
of a variance, 103

Sampling error, 43
Sampling error in randomized blocks, 472
Sampling fraction, 606
Sampling unit, 472
Scatterplot, 41
Scheffe’ procedure, 259
Sensitivity, 69
Sequential sampling, 151
Sequential partitioning of sums of squares,

300
Sequential sums of squares, 372
Shape of a distribution, 17
Signed rank test (Wilcoxon), 585
Significance level, 126
Significance related to confidence, 143
Significance test, 126
Simple linear regression model, 289
Simple random sampling, 606
Simulating a distribution, 76
Singular matrix in linear models, 512, 649
Skewed distribution, 17
Slope of regression line, 290
Spearman rank correlation, 595
Specific comparisons, 242

in a factorial experiment, 431
Specificity, 69
Split plot design, 488
Standard deviation, 26
Standard error of the mean, 96
Standard normal distribution, 86
Standardized regression coefficients, 350
Statistic, 63
Statistical Inference, 6, 42, 63
Statistical relationship, 289
Statistically significant, 130
Stem and leaf plot, 32
Stepwise regression, 387
Stratified sampling, 609
Student’s t distribution, 104

used for inference, 162
Studentized range, 256
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Sum of squares, 25
between in ANOVA, 229
blocks in randomized block design, 468
contrasts, 246
error in factorial experiment, 426
error in multiple regression, 351
error in randomized block, 468
error in simple regression, 300
interaction in factorial experiment, 426
main effects in factorial experiment, 426
regression in multiple regression, 351
regression in simple linear regression, 300
total for ANOVA, 229
total for simple regression, 300
treatment in randomized block, 468
within in ANOVA, 229

Symmetric distribution, 17
System reliability, 70
Systematic sampling, 608

T
t distribution, 104
Tchebysheff’s theorem, 28
Test statistic, 128
Ties in ranks, 584
Total regression coefficient, 337
Transformation, 30

linear, 30
to combat multicollinearity, 382
to reduce roundoff error, 31
to stabilize variance, 239

Treatment effect, 233
Treatments, 223
Trend fitting by contrasts, 249
Tschuprow’s coefficient, 570
Tukey’s test, 256
Two means, comparison, 187

independent samples, variance unknown
and not equal, 194

independent samples, variances known, 189
independent samples, variances unknown

and assumed equal, 191
independent samples, nonparametric, 590
paired samples, 201

Two proportions, comparison, 205
independent samples, 205
paired samples, 207

Two samples, rank sum test, 588
Two variances, 197
Type I error, 122, 126
Type II error, 122, 134

U
Unbalanced data in factorial experiment, 514
Unbiased estimate, 96
Unequal sample sizes in ANOVA, 270
Unequal slopes in analysis of covariance, 525
Uniform distribution, 76, 82

continuous, 82
discrete, 76
mean of continuous, 83
mean of discrete, 76
variance of continuous, 83
variance of discrete, 76

Uniformly most powerful test, 137
Unrestricted model, 353

V
Variability of a distribution, 23
Variable selection in regression, 384
Variables, 6
Variance, 24

computed from a frequency distribution, 30
estimating in multiple regression, 351
estimating in simple regression, 298
inferences for, 169
sampling distribution, 103
of a probability distribution, 75
stabilizing transformations, 239

Variances, test for equality, 238
Variance inflation factors, 380

W
Weighted least squares, 530
Weighted regression for binary response, 530
Weighted sums, 30
Wilcoxon signed rank test, 585

Y
y intercept, 290
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