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PREFACE

Excerpts from the Preface to the First Edition
“l understand mathematics but | just can’t do proofs.”

Our experience has led us to believe that the remark above, though contradictory,
expresses the frustration many students feel as they pass from beginning calculus
to a more rigorous level of mathematics. This book developed from a series of
lecture notes for a course at Central Michigan University that was designed to
address this lament. The text is intended to bridge the gap between calculus and
advanced courses in at least three ways. First, it provides a firm foundation in the
major ideas needed for continued work. Second, it guides students to think and to
express themselves mathematically—to analyze a situation, extract pertinent
facts, and draw appropriate conclusions. Finally, we present introductions to
modern algebra and analysis in sufficient depth to capture some of their spirit and
characteristics.

Exercises marked with a solid star (*) have complete answers at the back of the
text. Open stars () indicate that a hint or a partial answer is provided. “Proofs to
Grade” are a special feature of most of the exercise sets. We present a list of claims
with alleged proofs, and the student is asked to assign a letter grade to each “proof”
and to justify the grade assigned. Spurious proofs are usually built around a single
type of error, which may involve a mistake in logic, a common misunderstanding
of the concepts being studied, or an incorrect symbolic argument. Correct proofs
may be straightforward, or they may present novel or alternate approaches. We
have found these exercises valuable because they reemphasize the theorems and
counterexamples in the text and also provide the student with an experience similar
to grading papers. Thus the student becomes aware of the variety of possible errors
and develops the ability to read proofs critically.

In summary, our main goals in this text are to improve the student’s ability to
think and write in a mature mathematical fashion and to provide a solid understand-
ing of the material most useful for advanced courses. Student readers, take comfort

viii
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Preface ix

from the fact that we do not aim to turn you into theorem-proving wizards. Few of
you will become research mathematicians. Nevertheless, in almost any mathemati-
cally related work you may do, the kind of reasoning you need to be able to do is
the same reasoning you use in proving theorems. You must first understand exactly
what you want to prove (verify, show, or explain), and you must be familiar with the
logical steps that allow you to get from the hypothesis to the conclusion. Moreover,
a proof is the ultimate test of your understanding of the subject matter and of math-
ematical reasoning.

We are grateful to the many students who endured earlier versions of the man-
uscript and gleefully pointed out misprints. We acknowledge also the helpful com-
ments of Edwin H. Kaufman, Melvin Nyman, Mary R. Wardrop, and especially
Douglas W. Nance, who saw the need for a course of this kind at CMU and did a
superb job of reviewing the manuscript.

To the Seventh Edition

The seventh edition is based on the same goals and core material as previous edi-
tions, but with new organization in several places and many new and revised expo-
sitions, examples, and exercises. In the expanded Preface to the Sudent, we have
gathered together preliminary ideas that should already be familiar to students
(including properties of the number systems, definitions of even, odd and prime
numbers, naive notions of sets, and the basic terminology of functions). This
arrangement makes the prerequisite material easier to locate and keeps the focus of
the text on the use of mathematical reasoning.

The rewritten introduction to concepts of elementary number theory in Section
1.7 is deliberately placed early in the text, before any discussion of inductive proofs
and the Well-Ordering Principle, as an opportunity to practice basic proof methods
on a coherent set of results about divisibility, the greatest common divisor, and lin-
ear combinations. Placing this content here (and accepting the Division Algorithm
without proof until inductive proofs are introduced in Chapter 2) allows students to
experience significant results that are achieved with relatively simple proof forms.
Later, students can observe the power of inductive methods to prove the Division
Algorithm and related results.

In Chapter 4 properties of one-to-one and onto functions are now grouped
more efficiently and there is a separate section on one-to-one correspondences and
permutations of a set. In Section 5.3 on countable sets, the major results (that sub-
sets and unions of countably many countable sets are countable) are moved up to
make them more accessible. In Chapter 7, there is even more emphasis on the
meaning of the completeness property of the real number system.

Chapter 1 introduces the propositional and predicate logic required by
mathematical arguments, not as formal logic, but as tools of reasoning for more
complete understanding of concepts (including some ideas of arithmetic, ana-
lytic geometry, and calculus with which the student is already familiar). We
present methods of proof and carefully analyze examples of each method, giving
special attention to the use of definitions and denials. The techniques in this
chapter are used and referred to throughout the text. In Chapters 2, 3, and 4 on
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X Preface

sets, relations, and functions, we emphasize writing and understanding proofs
that require the student to deal precisely with the concepts of set operations,
equivalence relations and partitions, and properties of injective and surjective
functions.

These first four chapters contain the core material of the text and, in addition,
offer the opportunity for further work in several optional sections: basics of number
theory (Section 1.7), combinatorial counting (Section 2.6), order relations and
graph theory (Sections 3.4 and 3.5), and image sets and sequences (Sections 4.5 and
4.6). See the diagram on the inside front cover for a diagram that highlights the core
and shows the prerequisite relationships among sections. For a one-semester
course, we recommend the core material along with any one of Chapters 5, 6, or 7,
or a selection of optional sections and excursions into one or two of the later chap-
ters—for example, Sections 4.6, 5.1, 5.2,5.3, 7.1, and 7.2.

Chapters 5, 6, and 7 make use of the skills and concepts the student has acquired
in the first four chapters, and thus are a cut above the earlier chapters in terms of level
and rigor. Chapter 5 emphasizes a working knowledge of cardinality: finite and infi-
nite sets, denumerable sets and the uncountability of the real numbers, and properties
of countable sets. We include sections on the ordering of cardinals and applications of
the Cantor-Schréder—Bernstein Theorem and a brief discussion of the Axiom of
Choice. In Chapter 6 we consider properties of algebras with a binary operation,
groups, substructures, and homomorphisms, and relate these concepts to rings and
fields. Chapter 7 considers the completeness property of the real numbers by tracing
its consequences: the Heine—Borel Theorem, the Bolzano—\Weierstrass Theorem, and
the Bounded Monotone Sequence Theorem, and back to completeness.

We sincerely thank our reviewers for the seventh edition: David Bayer,
Columbia University; Fernando Burgos, University of South Florida; Yves
Nievergelt, Eastern Washington University; and Don Redmond, Southern Illinois
University.

We also thank our reviewers of earlier editions: Mangho Ahuja, Southeast
Missouri State University; William Ballard, University of Montana; David
Barnette, University of California at Davis; Gerald Beer, California State
University-Los Angeles; Harry Conce, Mankato State University; Sherralyn
Craven, Central Missouri State University; Robert Dean, Stephen F. Austin State
University; Ron Dotzel, University of Missouri; Harvey Elder, Murray State
University; Michael J. Evans, North Carolina State University; Gerald Farrell.
California Polytechnic State University; Benjamin Freed, Clarion University of
Pennsylvania; Robert Gamble, Winthrop College; Dennis Garity, Oregon State
University; Robert P. Hunter, Pennsylvania State University; Jack Johnson,
Brigham Young University—Hawaii; L. Christine Kinsey, Canisuis College; Daniel
Kocan, State University of New York, Potsdam; James McKinney, California
Polytechnic State University; Blair Madore, The State University of New York at
Potsdam; Andrew Martin, Morehead State University; Edward Mosley, Lyon
College; Van C. Nall, University of Richmond; Yves Nievergelt, Eastern
Washington University; Yewande Olubummo, Spelman College; Hoseph H.
Oppenheim, San Francisco State University; John S. Robertson, Georgia College &
State University; Victor Schneider, University of Southwestern Louisiana; Dale
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Preface Xi

Schoenefeld, University of Tulsa; Kenneth Slonnegar, State University of New
York at Fredonia; Douglas Smith, University of the Pacific; Joseph Teeters,
University of Wisconsin; Mary Treanor, Valparaiso University; and Lawrence
Williams, University of Texas, San Antonio.

We also wish to thank Roger Lipsett for his suggestions after proofreading of
the final manuscript and the staff at Cengage for their exceptional professional
assistance in the development of this edition and previous editions.

Finally, we note that instructors who adopt this text can sign up for online
access to complete solutions for all exercises via Cengage’s Solution Builder serv-
ice at www.cengage.com/solutionbuilder.

Douglas D. Smith
Richard &. Andre
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PREFACE TO THE STUDENT

Welcome to the study of mathematical reasoning. The authors know that many stu-
dents approach this material with some apprehension and uncertainty. Some students
feel that “This isn’t like other mathematics courses,” or expect that the study of
proofs is something they won’t really have to do or won’t use later. These feelings
are natural as you move from calculation-oriented courses where the goals empha-
size performing computations or solving certain equations, to more advanced
courses where the goal may be to establish whether a mathematical structure has cer-
tain properties. This textbook is written to help ease the transition between these
courses. Let’s consider several questions students commonly have at the beginning
of a “transition” course.

Why write proofs?

Mathematicians often collect information and make observations about particular
cases or phenomena in an attempt to form a theory (a model) that describes patterns
or relationships among quantities and structures. This approach to the development
of a theory uses inductive reasoning. However, the characteristic thinking of the
mathematician is deductive reasoning, in which one uses logic to develop and
extend a theory by drawing conclusions based on statements accepted as true.
Proofs are essential in mathematical reasoning because they demonstrate that the
conclusions are true. Generally speaking, a mathematical explanation for a conclu-
sion has no value if the explanation cannot be backed up by an acceptable proof.

Why not just test and repeat enough examples to confirm
a theory?

After all, as is typically done in natural and social sciences, the test for truth of a
theory is that the results of an experiment conform to predictions, and that when
the experiment is repeated under the same circumstances the result is always the
same. The difference is that in mathematics we need to know whether a given

Xii
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Preface to the Student Xiii

statement is always true, so while the statement may be true for many (even infi-
nitely many) examples, we would never know whether another example might
show the statement to be false. By studying examples, we might conclude that the
statement

“x% — 3x 4 43 is a prime number”

is true for all positive integers x. We could reach this conclusion testing the first 10
or 20 or even the first 42 integers 1, 2, 3, ..., 42. In each of these cases and others,
such as 44, 45, 47, 48, 49, 50 and more, x> — 3x + 43 isa prime number. But the
statement is not always true because 432 — 3(43) + 43 = 1763, which is 41 - 43.
Checking examples is helpful in gaining insight for understanding concepts and
relationships in mathematics, but is not a valid proof technique unless we can
somehow check all examples.

Why not just rely on proofs that someone else has done?

One answer follows from the statement above that deductive reasoning character-
izes the way mathematicians think. In the sciences, a new observation may force a
complete rethinking of what was thought to be true; in mathematics what we know
to be true (by proof) is true forever unless there was a flaw in the reasoning. By
learning the techniques of reasoning and proof, you are learning the tools of the
trade.

The first goal of this text is to examine standard proof techniques, especially
concentrating on how to get started on a proof, and how to construct correct proofs
using those techniques. You will discover how the logical form of a statement can
serve as a guide to the structure of a proof of the statement. As you study more
advanced courses, it will become apparent that the material in this book is indeed
fundamental and the knowledge gained will help you succeed in those courses.
Moreover, many of the techniques of reasoning and proof that may seem so diffi-
cult at first will become completely natural with practice. In fact, the reasoning that
you will study is the essence of advanced mathematics and the ability to reason
abstractly is a primary reason why applicants trained in mathematics are valuable
to employers.

What am I supposed to know before beginning Chapter 1?

The usual prerequisite for a transition course is at least one semester of calculus. We
will sometimes refer to topics that come from calculus and earlier courses (for
example, differentiable functions or the graph of a parabola), but we won’t be solv-
ing equations or finding derivatives.

You will need a good understanding of the basic concepts and notations from
earlier courses. The list of definitions and relationships below includes the main
things you will need to have ready for immediate use at any point in the text.
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Xiv Preface to the Student

Be aware that definitions in mathematics, however, are not like definitions in ordi-
nary English, which are based on how words are typically used. For example, the ordi-
nary English word “cool” came to mean something good or popular when many people
used it that way, not because it has to have that meaning. If people stop using the word
that way, this meaning of the word will change. Definitions in mathematics have pre-
cise, fixed meanings. When we say that an integer is odd, we do not mean that it’s
strange or unusual. Our definition below tells you exactly what odd means. You may
form a concept or a mental image that you may use to help understand (such as “ends
in1,3,5,7,or9”), but the mental image you form is not what has been defined. For this
reason, definitions are usually stated with the “if and only if” connective because they
describe exactly—no more, no less—the condition(s) to meet the definition.

Sets

A set is a collection of objects, called the elements, or members of the set. When
the object x is in the set A, we write xe€ A; otherwise x ¢ A. The set
K = {6, 7, 8, 9} has four elements; we see that 7 € K but 3 ¢ K. We may use set-
builder notation to write the set K as

{x: xis an integer greater than 5 and less than 10},

which we read as “the set of x such that x is . . .” Observe that the set whose only
element is 5 is not the same as the number 5; that is, {5} # 5. The empty set J is
a set with no elements.

We say that A is a subset of B, and write A C B, if and only if every element of
Ais an element of B. If sets A and B have exactly the same elements, we say they
are equal and write A= B.

We use these notations for the number systems:

N = {1, 2, 3,...} is the set of natural numbers.
7=4...-3,-2,-1,0,1,2,...}is the set of integers.
Q is the set of all rational numbers.

R is the set of all real numbers.

C is the set of all complex numbers.

A set is finite if it is empty or if it has n elements for some natural number n.
Otherwise it is infinite. Thus the set {6, 7, 8, 9} is finite. All the number systems
listed above are infinite.

The Natural Numbers

The properties below describe the basic arithmetical and ordering structure of the set N.

1. Successor properties
1 is a natural number.
Every natural number x has a unique successor x + 1.
1 is not the successor of any natural number.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Preface to the Student XV

2. Closure properties
The sum of two natural numbers is a natural number.
The product of two natural numbers is a natural number.
3. Associativity properties
Forallx,y,ze N, x4+ (y+2=(x+Yy)+2
Forall x, vy, ze N, x(y2) = (xy)z
4, Commutativity properties
Forallx,ye N, x+y=y+x
Forall x,y e N, xy = yx.
5. Distributivity properties
Forall x,y,ze N, x(y+ 2) = xy + xz
Forallx,y,ze N, (y+ 2x = yx + zx.

6. Cancellation properties
Forallx,y,ze N, ifx+z=y+ zthenx=y.
Forallx,y,ze N, if xz=yz thenx=y.

For natural numbers a and b we say a dividesb (or ais a divisor of b, or b is
a multiple of a) if and only if there is a natural number k such that b = ak. For
example, 7 divides 56 because there is a natural number (namely 8) such that
56 =7-8.

A natural number p is primeif and only if p is greater than 1 and the only nat-
ural numbers that divide p are 1 and p. A composite is a natural number that is
neither 1 nor prime.

The Fundamental Theorem of Arithmetic:

Every natural number larger than 1 is prime or can be expressed uniquely as a prod-
uct of primes. For example, 440 can be expressed as 440 = 23 .5 . 11. If we list the
prime factors in increasing order, then there is only one prime factorization: the
primes and their exponents are uniquely determined.

The Integers

The integers share properties 2 through 6 listed above for N (with the exception that
we can’t cancel z= 0 from the product xz = yz). Other important properties are:

Forallxin Z,x4+0=0,x-0=0and x+ (—x) =0.

Forall x,y,zinZ,ifx<yand z> 0, xy < yz

The product of two positive or two negative integers is positive; the product of
a positive and a negative is negative.

The natural numbers and integers provide excellent settings for developing an
understanding of the structure of a correct proof, so we will use the following defi-
nitions extensively in early examples of proof writing. In those proofs we make use
of the properties of number systems and the fact that every integer is either even or
odd, but not both.
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Xvi Preface to the Student

An integer x is even if and only if there is an integer k such that x = 2k. An inte-
ger x is odd if and only if there is an integer j such that x = 2j + 1. For integers a
and b with a=£ 0 we say a divides b if and only if there is an integer k such that
b = ak.

Real and Rational Numbers

We think of the real numbers as being all the numbers along the number line. Each
real number can be represented as an integer together with a finite or infinite deci-
mal part. We use the standard notations for intervals on the number line. For real
numbers aand b with a < b:

(a, b) ={x:xe Rand a < x < b} is the open interval from atob.

[a, b] ={x xe Rand a < x < b} is the closed interval from atob.

(@, 00)={xxeRanda<x} and (—oo,b)={xxeRandx < b} are
open rays.

[a, 0)={xxeRanda<x} and (—oo,b]={x:xeRandx < b} are
closed rays.

Note that the infinity symbol “oco™ is simply a notational convenience and does
not represent any real number. Also, one should be careful not to confuse (1, 6) with
{2, 3, 4, 5}, since (1, 6) is the set of all real numbers between 1 and 6 and contains,
for example, 2, 7, 4/13, and %7

The real number x is rational if and only if there are integers p and g, with
g # 0, such that x = p/q.

The rationals are exactly the numbers along the number line that have termi-
nating or repeating decimal expressions. All other real numbers are irrational. In
Chapter 1 we will see a proof that /2 is irrational. The number systems R and @
share many of the arithmetic and ordering properties of the naturals and integers,
along with a new property:

Every number x except 0 has a multiplicative inverse; that is, there is a number
y such that xy = 1.
Complex Numbers

A complex number has the form a4 bi, where a and b are real numbers and
i = +/—1. The conjugate of a + bi is a — bi and (a + bi)(a — bi) = a® + b2 The
set of reals is a subset of the complex numbers because any real number x may be writ-
ten as x 4 0i. Complex numbers do not share the ordering properties of the reals.

Functions

A function (or a mapping) is a rule of correspondence that associates to each ele-
ment in a set A a unique element in a second set B. No restriction is placed on the
sets A and B, which may be sets of numbers, or functions, or vegetables. To denote
that f is a function from Ato B, we write

f:A—>B
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Preface to the Student xvii
and say “f maps Ato B.” If a € A and the corresponding element of B is b, we write
f(a)=h.

The elements of A are sometimes called the arguments or inputs of the function.
If f (@) = b we say that b is the image of a, or b is the value of the function f at a.
We also say that a is a pre-image of b.

For example, f: R — R given by f (x) = x? + 1 represents the correspondence
that assigns to each real number x the number that is one more than the square of x.
The image of the real number 2 is 5 and —3 is a pre-image of 10.

The features that make f a function from A to B are that every element of A
must have an image, that image must be in B, and most importantly, that no element
of A has more than one image. It is this single-valued property that make functions
so useful.

If f: A— B, the set A is the domain of f, denoted Dom(f), and B is the
codomain of f. The set

Rng (f) = {f(X): xe A}

of all images under the function f is called the range of f. The range of the function
f:R — Rgivenby f(x) =x%+ 1is[1, o).

It is sometimes convenient to describe a function by giving only a domain and
a rule. For functions whose domains and codomains are subsets of R, the domain is
sometimes left unspecified and assumed to be the largest possible subset of R for
which image values may be obtained. With this assumption, the domain of
g(X) = v/x+ 1is[—1, c0), because this is the largest set of real numbers for which
+/X+ 1 may be calculated.

When we say that f: A — B, it is required that Rng (f) < B. However, it may
be that some elements of the codomain are not images under the function f; that is,
the set Rng (f) may not be equal to B. In the special case when the range of f is
equal to B, we say f maps A onto B. It may also be that two different elements of
A have the same image in B. In the special case when any two different arguments
have different images, we say that f is one-to-one. Because the range of
f(X)=x?+1is[1, 00), f isnotonto R. Since f (3) and f (—3) have value 10, f
is not one-to-one.

What am | allowed to assume for a proof?

You may be given specific instructions for some proof writing exercises, but gener-
ally the idea is that you may use what someone studying the topic of your proof
would know. That is, when we prove something about intersecting lines we might
use facts about the slope of a line, but we probably would not use properties of
derivatives. This really is not much of a problem, except for our first proof exam-
ples, which deal with elementary concepts such as even and odd (because they pro-
vide meaningful examples and a familiar context in which to study logic and
reasoning). For these proofs we are allowed to use the properties of integers and
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Xviii Preface to the Student

natural numbers that we already know except what we already know about even-
ness and oddness.

Remember, we don’t expect you to become an expert at proving theorems
overnight. With practice—studying lots of examples and exercises—the skills will
come. Our goal is to help you write and think as mathematicians do, and to pres-
ent a solid foundation in material that is useful in advanced courses. We hope you
enjoy it.

Douglas D. Smith
Richard &. Andre
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CHAPTER 1

Logic and Proofs

We recommend that you read the Preface to the Student before beginning this first
chapter. Most of the terms and concepts in that Preface should be familiar to you,
but it is well worth making sure you know the terminology and notations we will
use throughout the book. It is especially important that you know precisely the def-
initions of such terms as: “divides,” “prime,” “rational,” and “even” and “odd.”

As described in the Preface, mathematics is concerned with the formation of a
theory (collection of true statements) that describes patterns or relationships
among quantities and structures. It is characterized by deductive reasoning, in
which one uses logic to develop and extend a theory by drawing conclusions based
on statements accepted as true. We give proofsto demonstrate that our conclusions
are true. This chapter will provide a working knowledge of the basics of logic and
how to construct a proof.

1.1 Propositions and Connectives

Our goal in this section is to understand truth values of propositions and how propo-
sitions can be combined using logical connectives.

Most sentences, such as “m > 3” and “Earth is the closest planet to the sun,”
have a truth value. That is, they are either true or false. We call these sentences
propositions. Other sentences, such as “What time is it?” and “Look out!” are inter-
rogatory or exclamatory; they express complete thoughts but have no truth value.

DEFINITION A proposition is a sentence that has exactly one truth
value: true, which we denote by T, or false, which we denote by F.

Some propositions, such as “72 = 60,” have easily determined truth values. It
will take years to determine the truth value of the proposition “The North Pacific
right whale will be an extinct species before the year 2525.” Other statements, such

1
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2 CHAPTER 1 Logic and Proofs

as “Euclid was left-handed,” are propositions whose truth values may never be
known.

Sentences like “She lives in New York City” and “x? = 36” are not proposi-
tions because each could be true or false depending upon the person to whom “she”
refers and what numerical value is assigned to x. We will deal with sentences like
these in Section 1.3.

The statement “This sentence is false” is not a proposition because it is neither
true nor false. It is an example of a par adox—a situation in which, from premises
that look reasonable, one uses apparently acceptable reasoning to derive a conclu-
sion that seems to be contradictory. If the statement “This sentence is false” is true,
then by its meaning it must be false. On the other hand, if the given statement is
false, then what it claims is false, so it must be true. The study of paradoxes such as
this has played a key role in the development of modern mathematical logic. A
famous example of a paradox formulated in 1901 by Bertand Russell* is discussed
in Section 2.1.

By applying logical connectives to propositions, we can form new propositions.

DEFINITION The negation of a proposition P, denoted ~P, is the
proposition “not P.” The proposition ~P is true exactly when P is false.

The truth value of the negation of a proposition is the opposite of the truth
value of the proposition. For example, the negation of the false proposition “7 is
divisible by 27 is the true statement “It is not the case that 7 is divisible by 2,” or “7
is not divisible by 2.”

DEFINITIONS Given propositions P and Q, the conjunction of P and
Q, denoted P A Q, is the proposition “P and Q.” P A Q is true exactly
when both P and Q are true.

The digunction of P and Q, denoted PV Q, is the proposition
“PorQ.” PV Qis true exactly when at least one of P or Q is true.

Examples. If Cis the proposition “19 is composite” and M is “45 is a multiple of
3,” we know C is false and M is true. Thus “19 is composite and 45 is a multiple of
3,” written using logical connectives as C A M, is a false proposition, while “19 is
composite or 45 is a multiple of 3,” which has form C v M, is true. The false propo-
sition “Either 19 is composite or 45 is not a multiple of 3” has the form C v ~M.

The English words but, while, and although are usually translated symbolically
with the conjunction connective, because they have the same meaning as and. For

* Bertrand Russell (1872-1970) was a British philosopher, mathematician, and advocate for social
reform. He was a strong voice for precision and clarity of arguments in mathematics and logic. He coau-
thored Principia Mathematica (1910-1913), a monumental effort to derive all of mathematics from a
specific set of axioms and well-defined rules of inference.
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1.1 Propositions and Connectives 3

example, we would write “19 is not composite, but 45 is a multiple of 3” in sym-
bolic form as: (~C) A M.

An important distinction must be made between a statement and the form of a
statement. In the previous example “19 is composite and 45 is a multiple of 3” is a
proposition with truth value F. We used the form C A M to represent this proposi-
tion, but theform C A M itself has no truth value unless C and M are assigned to be
specific propositions. If we let C be “Copenhagen is the capital of Denmark” and M
be “Madrid is the capital of Spain,” then C A M would have the value T.

To repeat: a propositional form does not have a truth value. Instead, each form
has a list of truth values that depend on the values assigned to its components. This
list is displayed by presenting all possible combinations for the truth values of its
components in a truth table. Since the connectives A and v involve two components,
their truth tables must list the four possible combinations of the truth values of those

components:
P Q PAQ P Q PvQ
T T T T T T
F T F F T T
T F F T F T
F F F F F F

Since the value of ~P depends only on the two possible values for P, its truth
table is

P ~P
T F
F T

Frequently you will encounter compound propositions formed from more than
two propositional variables. The propositional form (P A Q) v ~R has three vari-
ables P, Q, and R; it follows that there are 2° = 8 possible combinations of truth

values. The two main components are P A Q and ~R. We make truth tables for
these and combine them by using the truth table for V.

QO

PAQ ~R (PAQ) v~R

MATM AT AT A | T
R e e e B e B
mTTmmmMmA-4-+4-4 | O
mTTmTm—a4Tmmn-H
b Wi M B M e e e
e B e B i B e n B |

The statement “Either 7 is prime and 9 is even or else 11 is not less than 3” may
be symbolized by (P A Q) v ~R, where P is “7 is prime,” Q is “9 is even,” and R
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4 CHAPTER 1 Logic and Proofs

is “11 is less than 3.” We know P is true, Q is false and R is false. Therefore,
(P A Q) isfalse and ~Ris true. Thus (P A Q) v ~Ris true, in agreement with line
7 of the table. Thus the proposition “Either 7 is prime and 9 is even or else 11 is not
less than 3” is a true statement.

Some compound forms always yield the value true just because of the way they
are formed; others are always false.

DEFINITIONS A tautology is a propositional form that is true for
every assignment of truth values to its components.

A contradiction is a propositional form that is false for every assignment
of truth values to its components.

For example, the Law of Excluded Middle, P v ~P, is a tautology because
P v ~P is true when P is true and true when P is false. We know that a statement
like “The absolute value function is continuous or it is not continuous” must be true
because it has the form of the Law of Excluded Middle.

Example. Show that (P Vv Q) v (~P A ~Q) is a tautology.

The truth table for this propositional form is

P Q PvQ ~P ~Q ~PA~Q (PvQ) Vv (~PA~Q)
T T T F F F T
F T T T F F T
T F T F T F T
F F F T T T T

Since the last column is all true, (P v Q) v (~P A ~Q) is a tautology.

Both ~ (P v ~P) and Q A ~Q are examples of contradictions. The negation
of a contradiction is, of course, a tautology.

Writing a proof requires the ability to connect statements so that the truth
of any given statement in the proof follows logically from previous statements
in the proof, from known results, or from basic assumptions. Particularly
important is the ability to recognize or write a statement equivalent to another.
Sometimes, it is the form of a compound statement that may be used to find a
useful equivalent.

DEFINITION Two propositional forms are equivalent if and only
if they have the same truth tables.
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1.1 Propositions and Connectives 5

Example. The propositional forms P and ~(~P) are equivalent. The truth tables
for these forms may be combined in one table to show that they are the same:

P ~P  ~(~P)

T F T
F T F

The fact that P and ~ (~P) have the same truth value for each line of the truth
table means that whatever proposition we choose for P, the truth value of P and
~(~P) are identical.

Some of the most commonly used equivalent forms are presented in the fol-
lowing theorem.

Theorem 1.1.1 For propositions P, Q, and R, the following are equivalent:
@ P and ~(~P) Double Negation Law
Eg)) E X 8 :23 SX E } Commutative Laws
Eg)) E X Eg X g Zzg Eg X 8; X ? } Associative Laws
8) g C 8 X g Zzg EE)C 8; X EE C g } Distributive Laws
EB) :Eg C 8; 223 :E X :8 } DeMorgan’s* Laws

Proof.

(@  See the discussion above.

(h) By examining the fourth and seventh columns of their combined truth tables
as shown here,

PAQ ~(PAQ) ~P ~Q ~PVv~Q

MmM—T—H | DO
44 | O
mT -
b B e |
b B |
AT
-

we see that the truth tables for ~(P A Q) and ~P v ~Q are identical. Thus
~(P A Q) and ~P v ~Q are equivalent propositional forms.
Proofs of the remaining parts are left as exercises. ]

In addition to making tables to verify the remaining parts of Theorem 1.1.1,
you should also think about why two propositional forms are equivalent by looking

* Augustus DeMorgan (1806-1871) was an English logician and mathematician whose contributions
include his notational system for symbolic logic. He also introduced the term “mathematical induction”
(see Section 2.4) and developed a rigorous foundation for that proof technique.
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6 CHAPTER 1 Logic and Proofs

at their meanings. For part (h), negation is applied to a conjunction. The form
~ (P A Q) is true precisely when P A Q is false. This happens when one of P or Q
is false, or in other words, when one of ~P or ~Q is true. Thus, ~(P A Q) is
equivalent to ~P v ~Q. That is, to say “You don’t have both P and Q” is the same
as saying “You don’t have P or you don’t have Q.”

As an example of how this theorem might be useful in dealing with statements,
suppose we are told that the statement “The function f is increasing and concave
upward” is false. The statement has the form P A Q, where P is the statement “f is
increasing” and Q is the statement “f is concave upward.” The negation ~ (P A Q)
is “It is not the case that f is increasing and f is concave upward.” By part (h) above,
this is equivalent to ~P v ~Q, which is

“It is not the case that f is increasing or it is not the case that f is concave
upward.”

An easier way to say this is
“f is not increasing or f is not concave upward.”

A denial of a proposition P is any proposition equivalent to ~P. A proposition
has only one negation, ~P, but always has many denials, including ~P, ~~~P,
~~~n~~P, etc. DeMorgan’s Laws provide others ways to construct useful denials.

Example. A denial of “Either Miss Scarlet is not guilty or the crime did not take
place in the ballroom” is “The crime took place in the ballroom and Miss Scarlet is
guilty.” This can be verified by writing the two propositions symbolically as
(~S) v (~B) and B A S respectively, and checking that their truth tables have
exactly opposite values. We could also observe that B A Sis equivalentto SA B so
a denial of B A Sis equivalent to ~ (S A B), which we know by DeMorgan’s Laws
is equivalent to (~S) v (~B).

Example. The statement “Line L; has slope 3/5 or line L, does not have slope —4”
may be symbolized using the form P v ~Q, so its negation is ~ (P v ~Q). We can
write a simpler denial (~P) A Q by applying DeMorgan’s Laws and the Double
Negation Law. The simplified denial says “Line L; does not have slope 3/5 and line
L, has slope —4.”

Notice that someone might read the negation ~ (P v ~Q) as “It is not the case
that L; has slope 3/5 or line L, does not have slope —4.” This sentence is ambigu-
ous because without some further explanation, it is not clear if the phrase “It is not
the case” refers to the entire remainder of the sentence or to just “L; has slope 3/5.”

Ambiguities like the one above are sometimes allowable in English but can
cause trouble in mathematics. To avoid ambiguities, you should use delimiters,
such as parentheses (), square brackets [ ], and braces { }.

To avoid writing large numbers of delimiters, we use the following rules,
which we refer to as the hierarchy of connectives.

First, ~ always is applied to the smallest proposition following it.
Then, A always connects the smallest propositions surrounding it.
Finally, v connects the smallest propositions surrounding it.
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1.1 Propositions and Connectives 7

Thus, ~P v Q is an abbreviation for (~P) v Q, but ~(P v Q) is the only way to
write the negation of P v Q. Here are some other examples:

P Vv Q A Rabbreviates P v (Q A R).

P A ~Q Vv ~Rabbreviates [P A (~Q)] V (~R).

~P v ~Q abbreviates (~P) Vv (~Q).

~P A ~RV ~P A Rabbreviates [(~P) A (~R)] v [(~P) A R].

When the same connective is used several times in succession, parentheses
may be omitted. We reinsert parentheses from the left, so that P v Q v Riis really
(PVv Q) Vv R Forexample, RA P A ~P A Q abbreviates [(RA P) A (~P)] A Q,
whereas Rv P A ~P v Q, which does not use the same connective consecutively,
abbreviates (RV [P A (~P)]) v Q. Leaving out parentheses is not required;
some propositional forms are much easier to read with a few well-chosen “unnec-
essary” parentheses.

Exercises 1.1

1. Use your knowledge of number systems to determine whether each is true or
false.
(@) 11isarational number.
* (b) 5 is a rational number.
(c) There are exactly 3 prime numbers between 40 and 50.
(d) There are exactly 5 prime numbers less than 10.
(e) 29 is a composite number.
(f) Oisa natural number.
* (@) (54 2i)(5 — 2i) isareal number.
(h) 18 isamultiple of 12.

2. Which of the following are propositions? Give the truth value of each proposition.
(@) What time is dinner?
(b) Itis not the case that 5 + 7 is not a rational number.
* (C) x/2is arational number.
(d) 2x+ 3yis areal number.
(e) Either 3 + s is rational or 3 — 7 is rational.
* (f) Either 2 is rational and 7 is irrational, or 27 is rational.
(g) Either 57 is rational and 4.9 is rational, or 3z is rational.
(h) —% is rational, and either 37 < 10 or 37 > 15.
(i) Itis not the case that 39 is prime, or that 64 is a power of 2.
(3) There are more than three false statements in this book and this state-
ment is one of them.

3. Make truth tables for each of the following propositional forms.
* (@ PA~P. (b) Pv~P.
* () PA~Q (d) PA(QQV~Q).
* () (PAQ)V~Q ® ~(PAQ).
9 (Pv~Q)AR (h)y ~PA~Q.
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8 CHAPTER 1 Logic and Proofs

* (i) PA(QVR). () (PAQ)V (PAR).
(k) PAP. O (PAQ)V (RA~S).
4. 1f P, Q, and Rare true while Sand T are false, which of the following are true?
* (@ QA(RAYS). (b) QV(RAS).
* () (PvQ)A (RVYS). (d) (~Pv~Q)V (~Rv ~S).
() ~Pv~Q * () Qv AQVS).
* (@ (PVvS)AMPVT).
5. Use truth tables to prove the remaining parts of Theorem 1.1.1.
6. Which of the following pairs of propositional forms are equivalent?
* (@ PAPP. (by PVPP
* () PAQQAP. d) (~P)Vv(~Q), ~(Pv~Q).
* (& ~PA~Q ~(PA~Q). ® ~(PArQ),~PA~Q
* (@9 PAQ)VRPA(@QVR). (h)y PAQ)VRPV(QAR).
7. Determine the propositional form and truth value for each of the following:

(a) Itis not the case that 2 is odd.

(b) f(x) = e*isincreasing and concave up.

(c) Both 7 and 5 are factors of 70.

(d) Perth or Panama City or Pisa is located in Europe.

8. P, Q, and Rare propositional forms, and P is equivalent to Q, and Q is equiv-
alent to R. Prove that

* (&) QisequivalenttoP.
(b) Pisequivalentto R
(c) ~Qisequivalentto ~P.

9. Use atruth table to determine whether each of the following is a tautology, a
contradiction, or neither.
@ (PAQ)V(~PA~Q).
(b) ~(PA~P).

* (€ (PAQ)V(~PV~Q).
(d (AAB)V (AA~B)V (~AAB)V (~AA~B).
e (QA~P)A~(PAR).
) PVI(~QAP)A(RVQ)]

10. Suppose Ais a tautology and B is a contradiction. Are the following tautolo-

gies, contradictions, or neither?

* (a) AAB. (b) AA~B.

* () AvVB. (d) ~(~AAB).

11. Give a useful denial of each statement.

* (a) xisa positive integer. (Assume that x is some fixed integer.)
(b) Cleveland will win the first game or the second game.

* () 5>3.
(d) 641,371 is a composite integer.

* (€) Rosesare red and violets are blue.
(f) Tisnotbounded or T is compact. (Assume that T is a fixed object.)
(9) M isodd and one-to-one. (Assume that M is some fixed function.)
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1.2 Conditionals and Biconditionals 9

(h) The function f has positive first and second derivatives at xo. (Assume
that f is a fixed function and X is a fixed real number.)

(i)  The function g has a relative maximum at x = 2 or x = 4 and a relative
minimum at x = 3. (Assume that g is a fixed function.)

(j) Neither z< snor z <t is true. (Assume that z s, and t are fixed real
numbers.)

(k) Ris transitive but not reflexive. (Assume that R is a fixed object.)

12. Restore parentheses to these abbreviated propositional forms.

@ ~~Pv~QA~S

(b) QA ~SV~(~PAQ).

¢ PA~Q v~PA~RV~PAS

d ~PvQA~~PAQVR

13. Other logical connectives between two propositions P and Q are possible.

(@ The word or is used in two different ways in English. We have presented
the truth table for v, the inclusive or, whose meaning is “one or the other
or both.” The exclusive or, meaning “one or the other but not both” and
denoted @), has its uses in English, as in “She will marry Heckle or she
will marry Jeckle.” The “inclusive or” is much more useful in mathemat-
ics and is the accepted meaning unless there is a statement to the contrary.

* (i) Make a truth table for the “exclusive or” connective Q).

(ii) Show that AQ B is equivalentto (Av B) A ~(A A B).

(b) “NAND” and “NOR?” circuits are commonly used as a basis for flash
memory chips. A NAND B is defined to be the negation of “Aand B.” A
NOR B is defined to be the negation of “A or B.”

(i) Write truth tables for NAND and NOR connectives.

(i) Show that (ANAND B) v (ANOR B) is equivalent to (A NAND B).
(iii) Show that (A NAND B) A (A NOR B) is equivalent to (A NOR B).

1.2 Conditionals and Biconditionals

Sentences of the form “If P, then Q” are the most important kind of propositions in
mathematics. You have seen many examples of such statements in mathematics
courses: from precalculus, “If two lines in a plane have the same slope, then the
lines are parallel”; from trigonometry, “If sec 6 = 5, then sin 0 = ﬂ."; from calcu-
lus, “If f is differentiable at X, and f(xp) is a relative minimum for f, then
f'(x)=0."

DEFINITIONS For propositions P and Q, the conditional sentence
P = Q is the proposition “If P, then Q.” Proposition P is called the
antecedent and Q is the consequent. The conditional sentence P = Q is
true if and only if P is false or Q is true.
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10 CHAPTER 1 Logic and Proofs

The truth table for P = Qs

MH4TH | T
44 | O
—Amn—- |

According to this table, there is only one way that P = Q can be false: when P is
true and Q is false. Thus, this truth table agrees with the way we understand prom-
ises: the only situation where a promise is broken is when the antecedent is true but
the person making the promise fails to make the consequent true.

Example. Suppose someone says to a friend “If the concert is sold out, I’ll take you
sailing.” This promise is broken (the conditional sentence is false) only when the
concert was sold out (the antecedent is true) and the person who made the promise
did not take the other person sailing (the consequent is false). This is line 3 of the
truth table. In all other situations, the promise is true. If there were tickets left (lines
2 and 4 of the table), we don’t say the promise was broken, regardless of whether the
friends decided to go sailing. The promise is also kept in the situation where the con-
cert is sold out and the friends went sailing, which is line 1 of the table.

One curious consequence of the truth table for P = Q is that a conditional sen-
tence may be true even when there is no connection between the antecedent and the
consequent. The reason for this is that the truth value of P = Q depends only on the
truth value of components P and Q, not on their interpretation. For this reason all of
the following are true:

“If sin 7w = 1, then 6 is prime.” (line 4 of the truth table)
“13 > 7 = 2+ 3 =5." (line 1 of the truth table)
“m = 3 = Paris is the capital of France.” (line 2 of the truth table)

and both of these are false by line 3 of the truth table:

“If Saturn has rings, then (2 + 3)? = 22 4 32.”
“If 4 > 10, then 1 is a prime number.”

Other consequences of the truth table for P = Q are worth noting. When P is
false, it doesn’t matter what truth value Q has: P = Q will be true by lines 2 and 4.
When Q is true, it doesn’t matter what truth value P has: P = Q will be true by lines
1 and 2. Finally, when P and P = Q are both true (on line 1), Q must also be true.

Example. Both propositions

“If Isaac Newton was born in 1642, then 3 -5 = 15"
“If Isaac Newton was born in 1643, then 3 -5 = 15"

are true because the consequent “3 - 5 = 15” is true.
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1.2 Conditionals and Biconditionals 11

Our truth table definition for P = Q captures the same meaning for “If ...,
then ...” that you have always used in mathematics. For example, if we think of x
as some fixed real number, we all know that

“If x> 8, then x > 5”

is a true statement, no matter what number x we have in mind. Let’s examine why
we say this sentence is true for some specific values of x, where the antecedent P is
“x > 8” and the consequent Q is “x > 5.”

In the case x = 11, both P and Q are true, as in line 1 of the truth table. The case
X = 7 corresponds to the second line of the table, and for x = 3 we have the situation in
line 4. There is no case corresponding to line 3 because P = Q is true. Note that when
we say “If P, then Q" is true, we don’t claim that either P or Q is true. What we do say
is that no matter what number we think of, if it’s larger than 8, it’s also larger than 5.

Two propositions closely related to P = Q are its converse and contrapositive.

DEFINITION Let Pand Q be propositions.

The converseof P= QisQ = P.
The contrapositive of P = Qs (~Q) = (~P).

For the conditional sentence “If 7 is an integer, then 14 is even,” the converse
of the sentence is “If 14 is even, then 7 is an integer” and the contrapositive is “If
14 is not even, then 7 is not an integer.” The converse is false, but the sentence and
its contrapositive are true.

For the sentence “If 1 + 1 = 2, then /10 > 3,” the converse and contraposi-
tive are, respectively, “If V10 > 3, then 1 + 1 =2 ” and “If 4/10 is not greater
than 3, then 1 + 1 is not equal to 2.” In this example, all three sentences are true.

The previous two examples suggest that the truth values of a conditional sen-
tence and its contrapositive are related, but there seems to be little connection
between the truth values of P = Q and its converse. We describe the relationships
in the following theorem.

Theorem 1.2.1 For propositions P and Q,

(@ P = Qisequivalent to its contrapositive (~Q) = (~P).
(b) P = Qisnotequivalent to its converse Q = P.

Proof. The proofs are carried out by examination of the truth tables.

P Q P=Q ~P ~Q (~Q=(P) Q=P
T T T F F T T
FooT T T F T F
T F F F T F T
F F T T T T T
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12 CHAPTER 1 Logic and Proofs

(@ P = Qisequivalentto (~Q) = (~P) because the third column in the truth
table is identical to the sixth column in the table.

(b) P = Qisnotequivalent to Q = P because column 3 in the truth table dif-
fers from column 7 in rows 2 and 3. |

We have seen cases where a conditional sentence and its converse have the
same truth value. Theorem 1.2.1(b) simply says that this need not always be the
case—the truth values of P = Q cannot be inferred from its converse Q = P.

The next connective we need is the biconditional connective <. The double
arrow < reminds one of both < and =, and this is no accident, because P < Q
is equivalent to (P = Q) A (Q = P).

DEFINITION  For propositions P and Q, the biconditional sentence
P < Q is the proposition “P if and only if Q.” P < Q is true exactly
when P and Q have the same truth values. We also write P iff Q to abbre-
viate P if and only if Q.

The truth table for P < Qs

P Q P Q
T T T
F T F
T F F
F F T

Examples. The proposition “2% = 8 iff 49 is a perfect square” is true because both
components are true. The proposition “z = 22/7 iff/2 is a rational number” is true
because both components are false. The proposition “6 + 1 = 7 iff Lake Michigan
is in Kansas” is false because the truth values of the components differ.

Definitions, fully stated with the “if and only if” connective, are important
examples of biconditional sentences because they describe exactly the condition(s)
to meet the definition. Although sometimes a definition does not explicitly use the
iff wording, biconditionality does provide a good test of whether a statement could
serve as a definition or just a description.

Example. The statement “Vertical lines have undefined slope” could be used as a
definition because a line is vertical iff its slope is undefined. However, “A zebra is
a striped animal” is not a definition, because the sentence “An animal is a zebra iff
the animal is striped” is false.

Because the biconditional sentence P < Q is true exactly when the truth

values of P and Q agree, we can use the biconditional connective to restate the
meaning of equivalent propositional forms:
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1.2 Conditionals and Biconditionals 13

The propositional forms P and Q are equivalent precisely when P < Qisa
tautology.

Thus each statement in Theorem 1.1.1 may be restated using the < connec-
tive. For example, DeMorgan’s Laws are:

~(PAQ) < (~PVv~Q)and
~(PvQ) & (~PA~Q).

All of the statements in Theorem 1.1.1 are used regularly in proofs. The next theo-
rem contains several additional important pairs of equivalent propositional forms
that involve implication. They, too, will be used often.

Theorem 1.2.2 For propositions P, Q, and R,

(@ P= Qisequivalentto ~P Vv Q.

(b) P« Qisequivalentto (P= Q) A (Q= P).

() ~(P= Q)isequivalentto P A ~Q.

(d) ~(PAQ)isequivalentto P = ~Qandto Q= ~P.
() P=(Q= R)isequivalentto (PA Q) =R

() P=(QAR)isequivalentto (P= Q) A (P=R).
(@ (Pv Q)= Risequivalentto (P=R) A (Q=R).

Exercise 8 asks you to prove each part of Theorem 1.2.2. The natural way to
proceed is by constructing and then comparing truth tables, but you should also
think about the meaning of both sides of each statement of equivalence. With part
(a), for example, we reason as follows: P = Q is false exactly when P is true and
Q is false, which happens exactly when both ~P and Q are false. Since this happens
exactly when ~P v Q is false, the truth tables for P = Q and ~P v Q are identical.

Note that many of the statements in Theorems 1.1.1 and 1.2.2 are related. For
example, once we have established Theorem 1.1.1 and 1.2.2(a), we reason that part
(c) is correct as follows:

~(P = Q) is equivalent, by part (a), to

~ (~P v Q), which is equivalent, by Theorem 1.1.1(i), to
~(~P) A ~Q, which is equivalent, by Theorem 1.1.1(a), to
PA~Q.

Recognizing the structure of a sentence and translating the sentence into sym-
bolic form using logical connectives are aids in determining its truth or falsity. The
translation of sentences into propositional symbols is sometimes very complicated
because some natural languages such as English are rich and powerful with many
nuances. The ambiguities that we tolerate in English would destroy structure and
usefulness if we allowed them in mathematics.

Even the translations of simple sentences can present special problems. Sup-
pose a teacher says to a student

“If you score 74% or higher on the next test, you will pass this course.”
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14 CHAPTER 1 Logic and Proofs

This sentence clearly has the form of a conditional sentence, although almost every-
one will interpret the meaning as a biconditional.

Contrast this with the situation in mathematics where “If x =2, then x is a
solution to x? = 2x” must have only the meaning of the connective =, because
x? = 2x does not imply x = 2.

Shown below are some phrases in English that are ordinarily translated by
using the connectives = or <. In the accompanying examples, think of aand t as
fixed real numbers.

Use P = Q to translate: Examples:

If P, then Q. Ifa>5,thena> 3.

P implies Q. a> 5impliesa > 3.

P is sufficient for Q. a > 5 is sufficient for a > 3.

P only if Q. a>5onlyifa> 3.

Q,ifP. a> 3, ifa>>5.

Q whenever P. a > 3 whenever a > 5.

Q is necessary for P. a > 3 is necessary for a > 5.

Q, when P. a> 3, whena> 5.

Use P < Q to translate: Examples:

P if and only if Q. [t| = 2ifand only if t? = 4.

P if, but only if, Q. [t| =2 if, butonly if, t? = 4.

P is equivalent to Q. [t| =2 is equivalent to t* = 4.

P is necessary and sufficient for Q. [t] =2 isé necessary and sufficient
fort==4.

The word unlessis one of those connective words in English that poses special
problems because it has so many different interpretations. See Exercise 11.

Examples. In these sentence translations, we assume that S G, and e have been
specified. It is not necessary to know the meanings of all the words because the
form of the sentence is sufficient to determine the correct translation.

“Sis compact is sufficient for Sto be bounded” is translated
Sis compact = Sis bounded.

“A necessary condition for a group G to be cyclic is that G is abelian” is
translated

G is cyclic = G is abelian.
“Aset Sis infinite if Shas an uncountable subset” is translated
Shas an uncountable subset = Sis infinite.

“A necessary and sufficient condition for the graph G to be a tree is that
G is connected and every edge of G is a bridge” is translated

Gisatree < (Gis connected A every edge of G is a bridge).

Example. If we let P denote the proposition “Roses are red” and Q denote the
proposition “Violets are blue,” we can translate the sentence “It is not the case that
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1.2 Conditionals and Biconditionals 15

roses are red, nor that violets are blue” in at least two ways: ~(P v Q) or
(~P) A (~Q). Fortunately, these are equivalent by Theorem 1.1.1(h). Note that the
proposition “Violets are purple” requires a new symbol, say R, since it expresses a
new idea that cannot be formed from the components P and Q.

The sentence “17 and 35 have no common divisors” shows that the meaning,
and not just the form of the sentence, must be considered in translating; it cannot be
broken up into the two propositions: “17 has no common divisors” and “35 has no
common divisors.” Compare this with the proposition “17 and 35 have digits total-
ing 8,” which can be written as a conjunction.

Example. Suppose b is a fixed real number. The form of the sentence “If b is an
integer, then b is either even or odd” is P = (Q v R), where P is “b is an integer,”
Qis “biseven,” and Ris “bis odd.”

Example. Suppose a, b, and p are fixed integers. “If p is a prime number that
divides ab, then p divides a or b” has the form (P A Q) = (RV S), where P is “p
is a prime,” Q is “p divides ab,” Ris “p divides a,” and Sis “p divides b.”

The hierarchy of connectives in Section 1.1 that governs the use of parentheses
for propositional forms can be extended to the connectives = and <:
The connectives ~, A, Vv, =, and < are always applied in the order listed.
Thus, ~ applies to the smallest possible proposition, then A is applied with the next
smallest scope, and so forth. For example,

P = ~Q Vv R« Sisan abbreviation for (P= [(~Q) VR]) & S
P v ~Q < R= Sisan abbreviation for [P v (~Q)] & (R=9),

and

P = Q = Ris an abbreviation for (P= Q) = R

Exercises 1.2

1. Identify the antecedent and the consequent for each of the following condi-
tional sentences. Assume that a, b, and f represent some fixed sequence,
integer, or function, respectively.

* (@) If squares have three sides, then triangles have four sides.

(b) If the moon is made of cheese, then 8 is an irrational number.
(c) bdivides 3 only if b divides 9.

* (d) The differentiability of f is sufficient for f to be continuous.
(e) Asequence ais bounded whenever a is convergent.

* (f)  Afunction f is bounded if f is integrable.

(99 1+2=3isnecessaryforl+1=2.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



16 CHAPTER 1 Logic and Proofs

(h) The fish bite only when the moon is full.
* (i)  Atime of 3 minutes, 48 seconds or less is necessary to qualify for the
Olympic team.
2. Write the converse and contrapositive of each conditional sentence in Exercise 1.

3. What can be said about the truth value of Q when
(8 PisfalseandP = Q istrue? (b) Pistrueand P = Qs true?
(c) PistrueandP = Q isfalse? (d) Pisfalseand P < Qs true?
(e) Pistrueand P < Qs false?

4. ldentify the antecedent and consequent for each conditional sentence in the
following statements from this book.

(@ Theorem 1.3.1(a) (b) Exercise 3 of Section 1.6
(c) Theorem2.1.4 (d) The PMI, Section 2.4

(e) Theorem 2.6.4 (fy  Theorem 3.4.2

(g) Theorem 4.2.2 (h) Theorem 5.1.7(a)

5. Which of the following conditional sentences are true?
* (@) If triangles have three sides, then squares have four sides.
(b) If ahexagon has six sides, then the moon is made of cheese.
* (¢) If7+4+6=14,then5+5=10.
(d) If5<2,thenl0<7.
* (e) If one interior angle of a right triangle is 92°, then the other interior
angle is 88°.
(f)y If Euclid’s birthday was April 2, then rectangles have four sides.
(g) 5isprimeif V2 is not irrational.
(h) 1+ 1=2issufficient for 3 > 6.

6. Which of the following are true?
* (a) Triangles have three sides iff squares have four sides.
(b) 7+5=12iff1+1=2.
* (c) biseveniff b+ 1isodd. (Assume that b is some fixed integer.)
(d) mis odd iff P is odd. (Assume that mis some fixed integer.)
(€ 5+6=6+5iff741=10.
(f) Aparallelogram has three sides iff 27 is prime.
(g) The Eiffel Tower is in Paris if and only if the chemical symbol for
helium is H.
(h) V10 + /13 < V11 + V12iff /13 — V12 < +/11 — V10,
(i) x?=0iff x> 0. (Assume that x is a fixed real number.)
(i) X2 —y?=0iff (x—y)(x+y) = 0. (Assume that x and y are fixed real

numbers.)
(k) x?+y?=50iff (x+y)?>=50. (Assume that x and y are fixed real
numbers.)
7. Make truth tables for these propositional forms.
@ P=(QAP). * (b)) (~P=Q)Vv (Q&P)
* () ~Q=(Q&P). d) (PvQ)= (PAQ).

e (PAQV(QAR)=PVR
® [(Q=9A(Q=R)]=[(PvQ)= (SVR)]
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1.2 Conditionals and Biconditionals 17

Prove Theorem 1.2.2 by constructing truth tables for each equivalence.

Determine whether each statement qualifies as a definition.

(@ y="f(x)isalinear function when its graph is a straight line.

(b) y=Tf(x) is a quadratic function when it contains an x? term.

() mis a perfect square when m = n? for some integer n.

(d) Atriangle is a right triangle when the sum of two of its interior angles
is 90°.

(e) Two lines are parallel when their slopes are the same number.

(f) Asundial is an instrument for measuring time.

Rewrite each of the following sentences using logical connectives. Assume

that each symbol f, Xo, 0, X, S B represents some fixed object.

(@) If f has a relative minimum at %o and if f is differentiable at xo, then
f'(x0) = 0.

(b) If nisprime, then n= 2 or nis odd.

() Anumber x s real and not rational whenever x is irrational.

(d) Ifx=1orx=—1,then |x| =1.

(e) fhasacritical point at xq iff f'(Xg) = 0 or f'(xg) does not exist.

(f) Sis compact iff Sis closed and bounded.

(g) Bisinvertible is a necessary and sufficient condition for det B # 0.

(h) 6>=n—-3onlyifn>4orn> 10.

(i) xis Cauchy implies X is convergent.

(i) fiscontinuous at X whenever XIi_)mXO f(X) = f(Xg).

(k) If fis differentiable at X, and f is strictly increasing at Xo, then f'(xo) > 0.

Dictionaries indicate that the conditional meaning of unless is preferred, but

there are other interpretations as a converse or a biconditional. Discuss the

translation of each sentence.

(@ 1'will go to the store unless it is raining.

(b) The Dolphins will not make the playoffs unless the Bears win all the rest
of their games.

(c) You cannot go to the game unless you do your homework first.

(d) You won’t win the lottery unless you buy a ticket.

Show that the following pairs of statements are equivalent.

@ (PvQ)=Rand ~R= (~P A ~Q).

(b) (PAQ)=Rand (PA~R)=~Q.

(0 P=(QAR)and (~QV ~R) = ~P.

(d P=(QVvR)and (PA~R)= Q.

(& (P=Q)=Rand(PA~Q)VR

(f) P Qand(~PVvQ)A(~QVP).

Give, if possible, an example of a true conditional sentence for which

(@) the converse is true. (b) the converse is false.

(c) the contrapositive is false. (d) the contrapositive is true.
Give, if possible, an example of a false conditional sentence for which
(@) the converse is true. (b) the converse is false.

(c) the contrapositive is false. (d) the contrapositive is true.
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18 CHAPTER 1 Logic and Proofs

15. Give the converse and contrapositive of each sentence of Exercises 10(a), (b),
(c), and (d). Tell whether each converse and contrapositive is true or false.

16. Determine whether each of the following is a tautology, a contradiction, or neither.
* (8 [(P=Q)=P]=P.
(b) P=PA(PVQ).
(0 P=QsPA~Q
* (d) P=[P=(P=Q)
(e PA(QV~Q)< P
6 QA P=Q)]=P
@ (P=Q < ~(~PvQ)Vv(~PAQ)
(h)y [P=QVR)]=[Q=R)Vv(R=P)
i) PA(P=QA~Q
) (PvQ)=Q=P.
k) [P=QAR)]=[R= (P=Q)]
N [P=QAR]I=R= (P=Q).
17. The inverse, or opposite, of the conditional sentence P = Q is ~P = ~Q.
(8 Show that P = Q and its inverse are not equivalent forms.
(b) For what values of the propositions P and Q are P = Q and its inverse
both true?
(c) Which is equivalent to the converse of a conditional sentence, the con-
trapositive of its inverse, or the inverse of its contrapositive?

1.3 Quantifiers

Unless there has been a prior agreement about the value of x, the statement “x > 3" is
neither true nor false. A sentence that contains variables is called an open sentence or
predicate, and becomes a proposition only when its variables are assigned specific val-
ues. For example, “x > 3” is true when X is given the value 7 and false when x = 2.
When P is an open sentence with a variable x, the sentence is symbolized by
P(x). Likewise, if P has variables x3, Xo, X3, . . ., X, the sentence may be denoted by
P(x1, X2, X3, - - -, Xn)- FOr example, for the sentence “x + y = 32" we write P(X, Y, 2),
and we see that P(4, 5, 3) is true because 4 + 5 = 3(3), while P(1, 2, 4) is false.
The collection of objects that may be substituted to make an open sentence a
true proposition is called the truth set of the sentence. Before a truth set can be
determined, we must be given or must decide what objects are available for consid-
eration; that is, we must have specified a univer se of discour se. In many cases the
universe will be understood from the context. For a sentence such as “x likes choco-
late,” the universe is presumably the set of all people. We will often use the number
systems N, Z, Q, R, and C as our universes. (See the Preface to the Student.)

Example. The truth set of the open sentence “x?> < 5” depends upon the collection
of objects we choose for the universe of discourse. With the universe specified as the
set N, the truth set is {1, 2}. For the universe Z, the truth set is {—2, —1, 0, 1, 2}.
When the universe is R, the truth set is the open interval (— V5, ﬁ).
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1.3 Quantifiers 19

DEFINITION  With a universe specified, two open sentences P(x) and
Q(X) are equivalent iff they have the same truth set.

Examples. The sentences “3x 4+ 2 = 20" and “x= 6" are equivalent open sen-
tences in any of the number systems we have named. On the other hand, “x? = 4”
and “x = 2” are not equivalent when the universe is R. They are equivalent when
the universe is N.

The notions of truth set, universe, and equivalent open sentences should not be
new concepts for you. Solving an equation such as (x*> + 1)(x — 3) = 0 is a matter
of determining what objects x make the open sentence “(x? + 1)(x — 3) = 0" true.
For the universe R, the only solution is x = 3 and thus the truth set is {3}. But if we
choose the universe to be C, the equation may be replaced by the equivalent open
sentence (X + i)(x — i)(x — 3) = 0, which has truth set (solutions) {3, i, —i}.

A sentence such as

“There is a prime number between 5060 and 5090”

is treated differently from the propositions we considered earlier. To determine
whether this sentence is true in the universe N, we might try to individually exam-
ine every natural number, checking whether it is a prime and between 5060 and
5090, until we eventually find any one of the primes 5077, 5081, or 5087 and con-
clude that the sentence is true. (A quicker way is to search through a complete list
of the first thousand primes.) The key idea here is that although the open sentence
“x is a prime number between 5060 and 5090” is not a proposition, the sentence

“There is a number x such that x is a prime number between 5060 and 5090”

does have a truth value. This sentence is formed from the original open
sentence by applying a quantifier.

DEFINITION For an open sentence P(x), the sentence (IX)P(X) is
read “There exists x such that P(x)” or “For some X, P(x).” The sentence
(IX)P(X) is true iff the truth set of P(X) is nonempty. The symbol 3 is
called the existential quantifier.

An open sentence P (x) does not have a truth value, but the quantified sentence
(3X) P(x) does. One way to show that (3x) P (x) is true for a particular universe is
to identify an object a in the universe such that the proposition P () is true. To show
(IX) P(x) is false, we must show that the truth set of P (x) is empty.

Examples. Let’s examine the truth values of these statements for the universe R:

@ (3(x=3)
(b) (3> =0)
© (I =-1)
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20 CHAPTER 1 Logic and Proofs

Statement (a) is true because the truth set of x > 3 contains 3, 7.02, and many other
real numbers. Thus the truth set contains at least one real number. Statement (b) is
true because the truth set of x?> = 0 is precisely {0} and thus is nonempty. Since the
open sentence x> = —1 is never true for real numbers, the truth set of x? = —1 is
empty. Statement (c) is false.

In the universe N, only statement (a) is true. The three statements are all true
in the universe {0, 5, i} and all three statements are false in the universe {1, 2}.

Sometimes we can say (3x) P (X) is true even when we do not know a specific
object in the universe in the truth set of P(X), only that there (at least) is one.

Example. Show that (3X)(x” — 12x3 4 16x — 3 = 0) is true in the universe of real
numbers.

For the polynomial f(x) = x" — 12x3+ 16x — 3, f(0) = —3 and f(1) =2.
From calculus, we know that f is continuous on [0, 1]. The Intermediate Value Theo-
rem tells us there is a zero for f between 0 and 1. Even if we don’t know the exact value
of the zero, we know it exists. Therefore, the truth set of x” — 12x3 + 16x —3 =0
is nonempty. Hence (3x)(x” — 12x3 4 16x — 3 = 0) is true.

The sentence “The square of every number is greater than 3” uses a different
quantifier for the open sentence “x? > 3.” To decide the truth value of the given
sentence in the universe N it is not enough to observe that 3% > 3, 4% > 3, and so
on. In fact, the sentence is false in N because 1 is in the universe but not in the truth
set. The sentence is true, however, in the universe [1.74, co) because with this uni-
verse the truth set for x> > 3 is the same as the universe.

DEFINITION  For an open sentence P(X), the sentence (Vx) P (x) is read
“For all x, P(X)” and is true iff the truth set of P(X) is the entire universe.
The symbol V is called the universal quantifier.

Examples. For the universe of all real numbers,

(VX)(X + 2 > X) is true.

(VX)(x > 0 v x=0 Vv x < 0)istrue. That is, every real number is positive,
zero or negative.

(YX)(x > 3) is false because there are (many) real numbers x for

which x > 3 is false.

(YX)(|x| > 0) is false, because 0 is not in the truth set.

There are many ways to express a quantified sentence in English. Look for key
words such as “for all,” “for every,” “for each,” or similar words that require uni-
versal quantifiers. Look for phrases such as “some,” “at least one,” “there exist(s),”
“there is (are),” and others that indicate existential quantifiers.

You should also be alert for hidden quantifiers because natural languages allow for
imprecise quantified statements where the words “for all” and “there exists” are not
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present. Someone who says “Polynomial functions are continuous” means that “All
polynomial functions are continuous,” but someone who says “Rational functions have
vertical asymptotes” must mean “Some rational functions have vertical asymptotes.”

We agree that “All apples have spots” is quantified with V, but what form does
it have? If we limit the universe to just apples, a correct symbolization would be
(¥YX)(x has spots). But if the universe is all fruits, we need to be more careful. Let
A(X) be “x is an apple” and S(x) be “x has spots.” Should we write the sentence as
(YX[A(X) A S(X)] or (VX)[A(X) = S(X)]?

The first quantified form, (VX)[A(X) A S(X)], says “For all objects x in the uni-
verse, X is an apple and x has spots.” Since we don’t really intend to say that all fruits are
spotted apples, this is not the meaning we want. Our other choice, (VX)[A(X) = S(X)],
is the correct one because it says “For all objects x in the universe, if x is an apple then
x has spots.” In other words, “If a fruit is an apple, then it has spots.”

Now consider “Some apples have spots.” Should this be (IX)[A(X) A S(X)] or
(F[A(X) = S(X)]? The first form says “There is an object x such that it is an apple
and it has spots,” which is correct. On the other hand, (3X)[A(X) = S(X)] reads
“There is an object x such that, if it is an apple, then it has spots,” which does not
ensure the existence of apples with spots. The sentence (IX)[A(X) = S(X)] is true
in every universe for which there is an object x such that either x is not an apple or
x has spots, which is not the meaning we want.

In general, a sentence of the form “All P(X) are Q(X)” should be symbolized
(VX[P(X) = Q(X)]. And, in general, a sentence of the form “Some P (x) are Q(x)”
should be symbolized (IX)[P(X) A Q(X)].

Examples. The sentence “For every odd prime x less than 10, x? + 4 is prime”
means that if x is prime, and odd, and less than 10, then x? + 4 is prime. It is writ-
ten symbolically as

(YX)(xis prime A xisodd A X < 10 = X2 + 4 is prime).

The sentence “Some functions defined at 0 are not continuous at 0” can be written
symbolically as (3f)(f is defined at 0 A f is not continuous at 0).

Example. The sentence “Some real numbers have a multiplicative inverse” could
be symbolized

(3X)(x is a real number A x has a real multiplicative inverse).

However, “x has an inverse” means there is some number that is an inverse for x
(hidden quantifier), so a more complete symbolic translation is

(IX)[x is a real number A (3y)(y is a real number A xy = 1)].

Example. One correct translation of “Some integers are even and some integers
are odd” is

(IX)(xis even) A (IX)(x is odd)
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because the first quantifier (3x) extends only as far as the word “even.” After that,
any variable (even x again) may be used to express “some are odd.” It would be
equally correct and sometimes preferable to write

(3X)(x is even) A (Ty)(y is odd),
but it would be wrong to write
(3X)(x is even A xis odd),
because there is no integer that is both even and odd.
Several of our essential definitions given in the Preface to the Sudent are in

fact quantified statements. For example, the definition of a rational number may be
symbolized:

r is a rational number iff (Ip)(3QY(peZAqeZ ANQ#OAT = g)

Statements of the form “Every element of the set A has the property P” and
“Some element of the set A has property P occur so frequently that abbreviated
symbolic forms are desirable. “Every element of the set A has the property P” could
be restated as “If x € A, then . . .” and symbolized by

(Vx e A P(X).
“Some element of the set A has property P” is abbreviated by
(Ix e A P(X).

Examples. The definition of a rational number given above may be written as
r is a rational number iff (3pe Z2)(3qe Z)(Q# O AT = %).

The statement “For every rational number there is a larger integer” may be symbol-
ized by

(VX)[xe Q@ = (32(ze Zand z > X)]
or
(Vxe Q)(Fze Z)(z> X).

DEFINITION Two quantified sentences are equivalent in a given
univer se iff they have the same truth value in that universe. Two quanti-
fied sentences are equivalent iff they are equivalent in every universe.

Example. (VvX)(x > 3) and (Vx)(x > 4) are equivalent in the universe of integers
(because both are false), the universe of natural numbers greater than 10 (because
both are true), and in many other universes. However, if we chose a number
between 3 and 4, say 3.7, and let U be the universe of real numbers larger than 3.7,
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then (VX)(x > 3) is true and (Vx)(x > 4) is false in U. The sentences are not equiv-
alent in this universe, so they are not equivalent sentences.

As was noted with propositional forms, it is necessary to make a distinction
between a quantified sentence and its logical form. With the universe all inte-
gers, the sentence “All integers are odd” is an instance of the logical form
(YX) P (X), where P(X) is “xis odd.” The form itself, (¥x) P(x), is neither true nor
false, but becomes false when “x is odd” is substituted for P(x) and the universe
is all integers.

The pair of quantified forms (IX)([P(X) A Q(X)] and (ZX)([Q(X) A P(X)] are
equivalent because for any choices of P and Q, P A Q and Q A P are equivalent
propositional forms. Another pair of equivalent sentences is (VX)[P(X) = Q(X)]
and (VX)[~Q(X) = ~P(X)].

The next two equivalences are essential for reasoning about quantifiers.

Theorem 1.3.1 If A(X) is an open sentence with variable x, then

@  ~(VX)A(X) is equivalent to (Ix) ~A(X).
(b) ~(3X)A(X) is equivalent to (¥YX) ~A(X).

Proof.
(@) Let U be any universe.
The sentence ~ (Vx) A(X) is true in U

iff (VX)A(X) is falsein U

iff the truth set of A(X) is not the universe

iff the truth set of ~A(X) is nonempty

iff (3X) ~A(X) is true in U.
(b)  The proof of this part is Exercise 7. =

Theorem 1.3.1 is helpful for finding useful denials (that is, simplified forms of

negations) of quantified sentences. For example, in the universe of natural numbers,
the sentence “All primes are odd” is symbolized (VX)(x is prime = x is odd). The
negation is ~(Vx)(x is prime = x is odd). By applying Theorem 1.3.1(a), this
becomes (3x)[~(x is prime = x is odd)]. By Theorem 1.2.2(c) this is equivalent to

(3X)[x is prime A ~(x is odd)]. We read this last statement as “There exists a num-
ber that is prime and is not odd” or “Some prime number is even.”

Example. A simplified denial of (VX)(3Y)(F2(Vu)(AVIX+ Y+ z> 2u+ V)
begins with its negation
~(YX)(IY)(TD) (VU)(IV)(X + Y + 2> 2U + V).

After 5 applications of Theorem 1.3.1, beginning with the outermost quantifier
(¥Xx), we arrive at the simplified form

(VYY) EU)(YVV)(X+ Y+ zZ < 2u+ V).

Example. For the universe of all real numbers, find a denial of “Every positive
real number has a multiplicative inverse.”
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The sentence is symbolized (VX)[x > 0 = (3y)(xy = 1)]. The negation and
successively rewritten equivalents are:

~(V9[x> 0= (3y)(xy =1)]
(3) ~[x> 0= (Fy)(xy=1)]
(I[x > 0 A ~(EFy)xy = 1)]
(I)[x > 0 A (Vy) ~(xy = 1)]
(3)[x > 0 A (vy)(xy # 1)]

This last sentence may be translated as “There is a positive real number that has no
multiplicative inverse.”

Example. For the universe of living things, find a denial of “Some children do not
like clowns.”

The sentence is (3x) [xis achild A (Vy)(yisaclown = xdoes not like y)]. Its
negation and several equivalents are:

~(3x) [xisachild A (Vy)(yisaclown = xdoes not like y)]

(VX) ~[xisachild A (Vy)(yisaclown = xdoes not like y)]
(VX)[xisachild = ~(Vy)(yisaclown = xdoes not likey)]
(VX)[xisachild = (3y) ~(yisaclown = x does not likey)]
(VX)[xisachild = (Jy)(yisaclown A ~xdoes not likey)]
(VX)[xisachild = (3y)(yisaclown A xlikesy)]

The denial we seek is “Every child has some clown that he/she likes.”

We sometimes hear statements like the complaint one fan had after a great Little
League baseball game. “The game was fine,” he said, “but everybody didn’t get to
play.” We easily understand that the fan did not mean this literally, because otherwise
there would have been no game. The meaning we understand is “Not everyone got to
play” or “Some team members did not play.” Such misuse of quantifiers, while toler-
ated in casual conversations, is always to be avoided in mathematics.

The 3! quantifier, defined next, is a special case of the existential quantifier.

DEFINITION  For an open sentence P (X), the proposition (3!x) P(X) is
read “there existsa unique x such that P(x)” and is true iff the truth set
of P(x) has exactly one element. The symbol 3! is called the unique exis-
tential quantifier.
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Recall that for (3x) P(X) to be true it is unimportant how many elements are in
the truth set of P(X), as long as there is at least one. For (3!x) P(x) to be true, the
number of elements in the truth set of P(X) is crucial—there must be exactly one.

In the universe of natural numbers, (3!X) (x is even and x is prime) is true
because the truth set of “x is even and x is prime” contains only the number 2. The
sentence (3!X)(x% = 4) is true in the universe of natural numbers, but false in the
universe of all integers.

Theorem 1.3.2 If A(X) is an open sentence with variable x, then

@ (GEAXNAX = (I AX).
(b) (@) A(X) is equivalent to (IX) AX) A (YV)(Y2(AY) A A(D = Yy = 2).

Part (a) of Theorem 1.3.2 says that 3! is indeed a special case of the quantifier
3. Part (b) says that “There exists a unique x such that A(x)” is equivalent to “There
is an x such that A(x) and if both A(y) and A(2), then y = z” The proofs are left to
Exercise 11.

Exercises 1.3

1. Translate the following English sentences into symbolic sentences with quan-
tifiers. The universe for each is given in parentheses.
* (@) Not all precious stones are beautiful. (All stones)
(b) All precious stones are not beautiful. (All stones)
(c) Some isosceles triangle is a right triangle. (All triangles)
(d) No right triangle is isosceles. (All triangles)
(e) All people are honest or no one is honest. (All people)
(f) Some people are honest and some people are not honest. (All people)
(g) Every nonzero real number is positive or negative. (Real numbers)
* (h) Every integer is greater than —4 or less than 6. (Real numbers)
(i) Every integer is greater than some integer. (Integers)
* (j) No integer is greater than every other integer. (Integers)
(k) Between any integer and any larger integer, there is a real number. (Real
numbers)
* (1) There is a smallest positive integer. (Real numbers)
* (m) No one loves everybody. (All people)
(n) Everybody loves someone. (All people)
(o) For every positive real number x, there is a unique real number y such
that 2¥ = x. (Real numbers)

2. For each of the propositions in Exercise 1, write a useful denial, and give a
translation into ordinary English.

3. Translate these definitions from the Preface to the Sudent into quantified
sentences.
(@) The integer x is even.
(b) The integer x is odd.
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() The integer a dividesthe integer b.
(d) The natural number nis prime.
(e) The natural number n is composite.

4. Translate these definitions in this text into quantified sentences. You need not
know the specifics of the terms and symbols to complete this exercise.
(&) The relation Ris symmetric. (See page 147.)
(b) The relation Ris transitive. (See page 147.)
(c) The function f is one-to-one. (See page 208.)
(d) The operation * is commutative. (See page 277.)

5. The sentence “People dislike taxes” might be interpreted to mean “All people
dislike all taxes,” “All people dislike some taxes,” “Some people dislike all
taxes,” or “Some people dislike some taxes.” Give a symbolic translation for
each of these interpretations.

6. Let T={17}, U ={6}, V={24}, and W= {2, 3, 7, 26}. In which of these
four different universes is the statement true?

* a) (3Ix)(xis odd = x > 8).

b) (Ix)(xisodd A x > 8).
¢ (YX)(xisodd = x> 8).
d) (VX (xisodd A x > 8).

7. (a) Complete this proof of Theorem 1.3.1(b):
Proof: Let U be any universe.
The sentence ~ (3x) A(X) is true in U
iff ...
iff (VX) ~A(X) is true in U.
(b) Give a proof of part (b) of Theorem 1.3.1 that uses part (a).

8.  Which of the following are true? The universe for each statement is given in
parentheses.
@ (Y(x+x=x). (R)
* (b) (Y)(x+x=x). (N)
(€ (I@x+3=6x+7).(N)
(d) (IE=x).[R)
* (6 (INE=x).(R)
) (3INEE2—-x=5+8(1—x). (R)
@ (VX% +6x+ 5= 0). (R)
*x(h) (YX)(X? + 4x + 5> 0). (R)
(i)  (3X)(x? — x+ 41 is prime). (N)
()  (YX)(x* — x+ 41 is prime). (N)
(K)  (YX)(x® + 172 + 6x + 100 > 0). (R)
) (VY(WIx<y= (FW)(x <w <y)]. (Q)
9. Give an English translation for each. The universe is given in parentheses.
@ (Y(x=1).(N)
* (b)) (3X(x=0Ax=0).(R)
(©)  (VX)(xisprime A X5 2 = xis odd). (N)
*(d)  (3X(logex = 1). (R)
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~ (3¢ < 0). (R)
(A = 0). (R)
(VX)(x is odd = X2 is odd). ()

Which of the following are true in the universe of all real numbers?

@
(b)
(©
(d)
(e
Q)
(9)
(h)
(i)
0);
(k)

(V)(EY)(x+y=0).
(F)(vVY(x+y=0).
(INEYE + y? = —1).
(Y)[x> 0= (3y)(y <0 A xy > 0)].
(YW(EX) (YD) (xy = x2).

() (YY) (x < ).

(YY) (39X = Y).

Ay <0Ay+3>0).
(EN(VY)(x = y?).
(YWEX (X =Y?).
ENAEY)(YW)W > x — ).

Let A(X) be an open sentence with variable x.

Q)
(b)
(©
(d)
()
Q)
(b)
(©
(d)

Prove Theorem 1.3.2 (a).

Show that the converse of Theorem 1.3.2 (a) is false.

Prove Theorem 1.3.2 (b).

Prove that (3!'X) A(X) is equivalent to (IX)[AX) A (YY)(A(Y) = x=VY)].
Find a useful denial for (3!x) A(X).

Write the symbolic form for the definition of “f is continuous at a.”
Write the symbolic form of the statement of the Mean Value Theorem.
Write the symbolic form for the definition of “lim f (x) = L.”

Write a useful denial of each sentence in parts )E;),a(b), and (c).

Which of the following are denials of (3!x) P (x)?

Q)
(b)
(©
(d)

(VX)P(X) Vv (VX) ~P(X).

(Vx) ~P(X) v (3Y)(3D(y # z A P(y) A P(2).
(V[P = BY)(P(Y) A X#Y)].

~ (Y(YWI(PC) A P(Y)) = x=Y].

Riddle: What is the English translation of the symbolic statement Y33Vv?

1.4 Basic Proof Methods |

In mathematics, a theorem is a statement that describes a pattern or relationship
among quantities or structures and a proof is a justification of the truth of a theo-
rem. Before beginning to examine valid proof techniques it is recommended that
you review the comments about proofs and the definitions in the Preface to the
Sudent.

We cannot define all terms nor prove all statements from previous ones. We

begin with an initial set of statements, called axioms (or postulates), that are
assumed to be true. We then derive theorems that are true in any situation where the
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axioms are true. The Pythagorean* Theorem, for example, is a theorem whose
proof is ultimately based on the five axioms of Euclidean’ geometry. In a situation
where the Euclidean axioms are not all true (which can happen), the Pythagorean
Theorem may not be true.

There must also be an initial set of undefined ter ms—concepts fundamental to the
context of study. In geometry, the concept of a point is an undefined term. In this text
the real numbers are not formally defined. Instead, they are described in the Preface to
the Student as the decimal numbers along the number line. While a precise definition of
a real number could be given*, doing so would take us far from our intended goals.

From the axioms and undefined terms, new concepts (new definitions) can be
introduced. And finally, new theorems can be proved. The structure of a proof for a par-
ticular theorem depends greatly on the logical form of the theorem. Proofs may require
some ingenuity or insightfulness to put together the right statements to build the justifi-
cation. Nevertheless, much can be gained in the beginning by studying the fundamental
components found in proofs and examples that exhibit them. The four rules that follow
provide guidance about what statements are allowed in a proof, and when.

Some steps in a proof may be statements of axioms of the basic theory upon
which the discussion rests. Other steps may be previously proved results. Still other
steps may be assumptions you wish to introduce. In any proof you may

At any time state an assumption, an axiom, or a previously proved result.

The statement of an assumption generally takes the form “Assume P” to alert
the reader that the statement is not derived from a previous step or steps. We must
be careful about making assumptions, because we can only be certain that what we
proved will be true when all the assumptions are true. The most common assump-
tions are hypotheses given as components in the statement of the theorem to be
proved. We will discuss assumptions in more detail later in this section.

The statement of an axiom is usually easily identified as such by the reader
because it is a statement about a very fundamental fact assumed about the theory.
Sometimes the axiom is so well known that its statement is omitted from proofs, but
there are cases (such as the Axiom of Choice in Chapter 5) for which it is prudent
to mention the axiom in every proof employing it.

Proof steps that use previously proven results help build a rich theory from the
basic assumptions. In calculus, for example, before one proves that the derivative

. . . . X .
of sin x is cos x, there is a proof of the separate result that lim =1 1ltis

AX—0  AX
easier to prove this result first, then cite the result in the proof of the fact that the
derivative of sin x is cos x.

* Pythagoras, latter half of the 6th century, B.c.E., was a Greek mathematician and philosopher who
founded a secretive religious society based on mathematical and metaphysical thought. Although
Pythagoras is regularly given credit for the theorem named for him, the result was known to Babylonian
and Indian mathematicians centuries earlier.

T Euclid of Alexandria, circa 300 B.c.E., made his immortal contribution to mathematics with his famous
text on geometry and number theory. His Elements sets forth a small number of axioms from which
additional definitions and many familiar geometric results were developed in a rigorous way. Other
geometries, based on different sets of axioms, did not begin to appear until the 1800s.

T See the references cited in Section 7.5.
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An important skill for proof writing is the ability to rewrite a complex state-
ment in an equivalent form that is more useful or helps to clarify its meaning.
You may:

At any time state a sentence equivalent to any statement earlier in the proof.

This replacement rule is often used in combination with the equivalences of
Theorems 1.1.1 and 1.2.2 to rewrite a statement involving logical connectives. For
example, suppose we have been able to establish the step

“It is not the case that x is even and prime.”

Because the form of this statement is ~ (P A Q), where P is “Xx is even” and Q is “x
is prime,” we may deduce that

“X is not even or x is not prime,”

which has form ~P v ~Q. We have applied the replacement rule, using one of De
Morgan’s Laws. A working knowledge of the equivalences of Theorems 1.1.1 and
1.2.2 is essential.

The replacement rule allows you to use definitions in two ways. First, if you are
told or have shown that x is odd, then you can correctly state that for some natural
number k, x = 2k + 1. You now have an equation to use. Second, if you need to
prove that x is odd, then the definition gives you something equivalent to work
toward: It suffices to show that x can be expressed as x = 2k + 1, for some natural
number k. You’ll find it useful in writing proofs to keep in mind these two ways we
use definitions.

Example. If a proof contains the line “The product of real numbers a and b is
zero,” we could assert that “Either a = 0 or b = 0.” In this example, the equivalence
of the two statements comes from our knowledge of the real numbers that
(@b=0)«< (a=00rb=0).

Tautologies are important both because a statement that has the form of a tau-
tology may be used as a step in a proof, and because tautologies are used to cre-
ate rules for making deductions in a proof. The tautology rule says that you may:

At any time state a sentence whose symbolic trandation is a tautology.

For example, if a proof involves a real number X, you may at any time assert “Either
x> 0 or x < 0,” since this is an instance of the tautology P v ~P.

The rules above allow us to reword a statement or say something that’s always
true or is assumed to be true. The next rule is the one that allows us to make a con-
nection so that we can get from statement P to a different statement Q.

The most fundamental rule of reasoning is modus ponens, which is based on
the tautology [P A (P = Q)] = Q. As we have seen in Section 1.2, what this
means is that when P and P = Q are both true, we may deduce that Q must also be
true. The modus ponensrule says you may:

At any time after P and P = Q appear in a proof, statethat Q istrue.
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Example. From calculus we know that if a function f is differentiable on an inter-
val (&, b), then f is continuous on the interval (a, b). A proof writer who had already
written:

f is differentiable on the interval (a, b)
could use modus ponens to write as a subsequent step:
Therefore f is continuous on the interval (a, b).

This deduction uses the statements D, D = C, and C, where D is the statement “f is
differentiable on interval (a, b)” and C is “f is continuous on the interval (a, b).”

Notice that in this example it would make the proof shorter and easier to read
if we didn’t write out the sentence D = C in the proof. This is because the connec-
tion between differentiability and continuity is a well-known theorem, which the
proof writer may assume that the reader knows.

When we use modus ponens to deduce statement Q from P and P = Q, the
statement P could be an instance of a tautology, a simple or compound proposition
whose components are either hypotheses, axioms, earlier statements deduced in the
proof, or statements of previously proved theorems. Likewise, P = Q may have
been deduced earlier in the proof or may be a previous theorem, axiom, or tautology.

Example. You are at a crime scene and have established the following facts:

(1) [Ifthe crime did not take place in the billiard room, then Colonel Mustard is guilty.
(2) The lead pipe is not the weapon.

(3) Either Colonel Mustard is not guilty or the weapon used was a lead pipe.

From these facts and modus ponens, you may construct a proof that shows the
crime took place in the billiard room:

Proof.
Statement (1) ~B=M
Statement (2) ~L
Statement (3) ~Mv L
Statements (1) and (2) and (3) (~B=>M) A~LA(~M VL)
Statements (1), (2), and (3) [B=M) A~LA(~MVL)]=B

imply the crime took place is a tautology (see Exercise 2).
in the billiard room.
Therefore, the crime took place B
in the billiard room. =

The last three statements above are an application of the modus ponens rule:
We deduced Q from the statements P and P= Q, where Q is B and P is
(~B= M) A~LA(~MVL).
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The previous example shows the power of pure reasoning: It is the forms of the
propositions and not their meanings that allowed us to make the deductions.

Because our proofs are always about mathematical phenomena, we also need
to understand the subject matter of the proof—the concepts involved and how they
are related. Therefore, when you develop a strategy to construct a proof, keep in
mind both the logical form of the theorem’s statement and the mathematical con-
cepts involved.

You won’t find truth tables displayed or referred to in proofs that you encounter
in mathematics: It is expected that readers are familiar with the rules of logic and
correct forms of proof. As a general rule, when you write a step in a proof, ask your-
self if deducing that step is valid in the sense that it uses one of the four rules above.
If the step follows as a result of the use of a tautology, it is not necessary to cite the
tautology in your proof. In fact, with practice you should eventually come to write
proofs without purposefully thinking about tautologies. What is necessary is that
every step be justifiable.

The first—and most important—proof method is the direct proof of statement
of the form P = Q, which proceeds in a step by step fashion from the antecedent P
to the consequent Q. Since P = Qs false only when P is true and Q is false, it suf-
fices to show that this situation cannot happen. The direct way to proceed is to
assume that P is true and show (deduce) that Q is also true. A direct proof of P = Q
will have the following form:

DIRECT PROOFOFP = Q
Proof.
Assume P.

Theréfore, Q.
Thus, P = Q. =

Some of the examples that follow actually involve quantified sentences. Since
we won’t consider proofs with quantifiers until Section 1.6, you should imagine for
now that a variable represents some fixed object. Out first example proves the famil-
iar fact that “If x is odd, then x + 1 is even.” You should think of x as being some
particular integer.

Example. Let x be an integer. Prove that if x is odd, then x + 1 is even.

Proof. (ThetheoremhastheformP = Q, wherePis“xisodd” and Qis“x+ 1
iseven.”) Let x be an integer. (\We may assume this hypothesis since it is given
in the statement of the theorem.) Suppose X is odd. (We assume that the antecedent
P istrue. The goal isto derive the consequent Q as our last step.) From the defi-
nition of odd, x = 2k + 1 for some integer k. (This deduction is the replacement
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of P by an equivalent statement—the definition of “ odd.” We now have an equa-

tion to use.) Then x+ 1= (2k+ 1) + 1 for some integer k. (This is another

replacement using an algebraic property of N.) Since

2k+1)+1=2k+2=2(k+1), x+1 is the product of 2 and an integer.
(Another equivalent using algebra.) Thus x + 1 is even. (We have deduced Q.)

Therefore, if xis an odd integer, then x + 1 is even. (Weconcludethat P = Q.)

|

In this example, we did not worry about what would happen if x were not odd.
Remember that it is appropriate to assume P is true when giving a direct proof of
P = Q. (If Pis false, it does not matter what the truth of Q is; the statement we are
trying to prove, P = Q, will be true.) The process of assuming that the antecedent
is true and proceeding step by step to show the consequent is true is what makes this
type of proof direct.

This example also includes parenthetical comments offset by (...) and in ital-
ics to explain how and why a proof is proceeding as it is. Such comments are not a
requisite part of the proof, but are inserted to help clarify the workings of the proof.
The proof above would stand alone as correct with all the comments deleted, or it
could be written in shorter form, as follows.

Proof. Let x be an integer. Suppose x is odd. Then x = 2k + 1 for some integer k.
Then x+1=02k+1)+1=2k+2=2(k+1). Since k+ 1 is an integer and
X+ 1=2(+ 1), x+ 1liseven.

Therefore, if X is an odd integer, then x + 1 is even. |

Great latitude is allowed for differences in taste and style among proof
writers. Generally, in advanced mathematics, only the minimum amount of
explanation is included in a proof. The reader is expected to know the defini-
tions and previous results and be able to fill in computations and deductions as
necessary. In this text, we shall include parenthetical comments for more com-
plete explanations.

Example. Suppose a, b, and c are integers. Prove that if a divides b and b divides
¢, then a divides c.

Proof. Let a, b, and ¢ be integers. (\We start by assuming that the hypothesis is
true.) Suppose a divides b and b divides c. (The antecedent is the compound sen-
tence“ adividesb and b dividesc.”) Then b = ak for some integer kand ¢ = bmfor
some integer m. (\\e replaced the assumptions by equival ents using the definition of
“divides.” Notice that we did not assume that k and m are the same integer.) (To
show that a divides ¢, we must write ¢ as a multiple of a.) Therefore,
¢ = bm= (akim = a(km). Then cis a multiple of a. (We usethefact that if kand m
are integers, then kmisan integer.)

Therefore, if adivides b and b divides c, then a divides c. =
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Both of the above examples and many more to follow use the following strat-
egy for developing a direct proof of a conditional sentence:

1. Determine precisely the hypotheses (if any) and the antecedent and consequent.
2. Replace (if necessary) the antecedent with a more usable equivalent.

3. Replace (if necessary) the consequent by something equivalent and more read-
ily shown.

4. Beginning with the assumption of the antecedent, develop a chain of state-
ments that leads to the consequent. Each statement in the chain must be
deducible from its predecessors or other known results.

As you write a proof, be sure it is not just a string of symbols. Every step of
your proof should express a complete sentence. Be sure to include important con-
nective words.

Example. Suppose a, b, and c are integers. Prove that if a divides b and a divides
¢, then adivides b — c.

Proof. Suppose a, b, and c are integers and a divides b and a divides c. (Now use
the definition of divides.) Then b = an for some integer n and ¢ = am for some
integer m. Thus, b — ¢ =an — am=a(n — m). Since N — mis an integer (using
the fact that the difference of two integersisan integer ), adivides b — c. ]

Our next example of a direct proof, which comes from an exercise in precalcu-
lus mathematics, involves a point (x, y) in the Cartesian plane (Figure 1.4.1). It uses
algebraic properties available to students in such a class.

Example. Prove that if X < —4 and y > 2, then the distance from (x, y) to (1, —2)
is at least 6.

Proof. Assume that x < —4 and y > 2. Then x — 1 < —5, s0 (x — 1)? > 25. Also
y+ 2> 4,50 (y+ 2)> > 16. Therefore,

VX= 172+ (y+ 2> > /25 + 16 > /36,

so the distance from (x, y) to (1, —2) is at least 6. ]
y
(Xv y) L [
L yo2
L1 I — i I X
Xx=-4 ~
[ .(11 _2)
Figure 1.4.1
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To get a sense of how a proof of P = Q should proceed, it is sometimes useful
to “work backward” from what is to be proved: To show that a consequent is true,
decide what statement could be used to prove it, another statement that could be
used to prove that one, and so forth. Continue until you reach a hypothesis, the
antecedent, or a fact known to be true. After doing such preliminary work, construct
a proof “forward” so that your conclusion is the consequent.

Example. Let a and b be positive real numbers. Prove that if a <b, then
b2 —a?>0.

Proof. (Working backward, rewrite b> —a?> 0 as (b —a)(b+ a) > 0. This
inequality will be true when both b —a > 0 and b + a > 0. The first inequality
b — a > 0 will be true because we will assume the antecedent a < b. The second
inequality b + a > 0 istrue because of our hypothesisthat a and b are positive. We
now proceed with the direct proof.) Assume a and b are positive real numbers and
that a < b. Since both a and b are positive, b+ a > 0. Since a<b, b—a=> 0.
Because the product of two positive real numbers is positive, (b — a)(b + a) > 0.
Therefore b> — a2 > 0. ]

Itis often helpful to work both ways—backward from what is to be proved and
forward from the hypothesis—until you reach a common statement from each
direction.

Example. Prove that if x? < 1, then x> — 7x > — 10.
Working backward from x> — 7x > —10, we note that this can be deduced from
x? — 7x + 10 > 0. This can be deduced from (x — 5)(x — 2) > 0, which could be
concluded if we knew that x — 5 and x — 2 were both positive or both negative.
Working forward from x> < 1, we have —1 < x < 1, so x < 1. Therefore,
x <5 and x < 2, from which we can conclude that x—5 <0 and x — 2 < 0,
which is exactly what we need.

Proof. Assume that x2 < 1. Then —1 < x < 1. Therefore x < 1. Thus x < 5 and
X < 2, and so we have x —5 < 0 and x — 2 < 0. Therefore, (x — 5)(x — 2) > 0.
Thus X2 — 7x + 10 > 0. Hence X2 — 7x > —10. [

We now consider direct proofs of statements of the form P = Q when either P
or Q is itself a compound proposition. We have in fact already constructed proofs
of statements of the form (P A Q) = R When we give a direct proof of a statement
of this form, we have the advantage of assuming both P and Q at the beginning of
the proof, as we did in the proof (above) that if a divides b and a divides c, then a
divides b — c.

A proof of a statement symbolized by P = (Q A R) would probably have two
parts. In one part we prove P = Q and in the other part we prove P = R We
would use this method to prove the statement “If two parallel lines are cut by a
transversal, then corresponding angles are equal and corresponding lines are
equal.”
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To prove a conditional sentence whose consequent is a disjunction, that is, a
sentence of the form P = (Q Vv R), one often proves either the equivalent
PA~Q= R or the equivalent P A ~R= Q. For instance, to prove “If the
polynomial f has degree 4, then f has a real zero or f can be written as the product
of two irreducible quadratics,” we would prove “If f has degree 4 and no real zeros,
then f can be written as the product of two irreducible quadratics.”

A statement of the form (P v Q) = R has the meaning: “If either P is true or Q
is true, then Ris true,” or “In case either P or Q is true, R must be true.” A natural
way to prove such a statement is by cases, so the proof outline would have the form:

Casel. Assume P....Therefore R
Case2. Assume Q....Therefore R

This method is valid because of the tautology
[(PVvQ =R+« [P=RA(Q=R)]

The statement “If a quadrilateral has opposite sides equal or opposite angles equal,
then it is a parallelogram” is proved by showing both “A quadrilateral with opposite
sides equal is a parallelogram” and “A quadrilateral with opposite angles equal is a
parallelogram.”

The two similar statement forms (P= Q) =R and P=(Q=R) have
remarkably dissimilar direct proof outlines. For (P = Q) = R, we assume P = Q
and deduce R. We cannot assume P; we must assume P = Q. On the other hand, in
a direct proof of P = (Q = R), we do assume P and show Q = R. Furthermore,
after the assumption of P, a direct proof of Q = R begins by assuming Q is true as
well. This is not surprising since P = (Q = R) is equivalentto (P A Q) = R

The main lesson to be learned from this discussion is that the method of proof
you choose will depend on the form of the statement to be proved. The outlines we
have given are the most natural, but not the only ways, to construct correct proofs.
Of course constructing a proof also requires knowledge of the subject matter.

Example. Suppose n is an odd integer. Then n=4j + 1 for some integer j, or
n = 4i — 1 for some integer i.

Proof. Suppose nis odd. Then n=2m+ 1 for some integer m. (A little experi-
mentation shows that when m is even, for example when n is 2(—2) + 1,
2(0) + 1, 2(2) + 1, 2(4) + 1, etc., n has the form 4j + 1; otherwise n has the form
4i — 1. Wenow show that (P v Q) = (R, vV Ry), wherePis“miseven,” Qis“m
isodd,” Ry is“n=4j+ 1 for some integer j,” and R, is “n=4i — 1 for some
integer i.” The method we chooseisto showthat P= R; and Q = R,.)

Casel. If mis even, then m=2j for some integer j, and so n=2(2j)) +1 =
4 + 1.

Case2. If mis odd, then m= 2k + 1 for some integer k. In this case, n =
2(2k+ 1)+ 1=4k+ 3 =4(k+ 1) — 1. Choosing i to be the integer
k+ 1, we have n=4i — 1. =
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The form of proof known as proof by exhaustion consists of an examination
of every possible case. The statement to be proved may have any form P. For exam-
ple, to prove that every number X in the closed interval [0, 5] has a certain property,
we might consider the cases x=0, 0 < X < 5, and x = 5. The exhaustive method
was our method in the example above, and in the proof of Theorem 1.1.1, where we
examined all four combinations of truth values for two propositions. Naturally, the
idea of proof by exhaustion is appealing only when the number of cases is small, or
when large numbers of cases can be systematically handled. Care must be taken to
ensure that all possible cases have been considered.

Example. Let x be a real number. Prove that — x| < X < |X].

Proof. (Snce the absolute value of x is defined by cases (|x| =X if x> 0;
|X| = —xif x < 0) this proof will proceed by cases.)

Casel. Suppose x> 0. Then|x|= x. Since x>0, we have —x < X. Hence,
—X < X < X, Which is —| x| < x <|x| in this case.

Case2. Suppose x < 0. Then|x| = —x. Since X < 0, x < —x. Hence, we have
X< X< =%Xo0r—(—x) <x=< —x whichis —|x| < x <|x].

Thus, in all cases we have — x| < X <|X]. ]

There have been instances of truly exhausting proofs involving great numbers of
cases. In 1976, Kenneth Appel and Wolfgang Haken of the University of lllinois
announced a proof of the Four-Color Theorem. The original version of their proof of
the famous Four-Color Conjecture contains 1,879 cases and took 3 %years to develop.*

Finally, there are proofs by exhaustion with cases so similar in reasoning that
we may simply present a single case and alert the reader with the phrase “without
loss of generality” that this case represents the essence of arguments for the other
cases. Here is an example.

Example. Prove that for the integers mand n, one of which is even and the other
odd, m? + r? has the form 4k + 1 for some integer k.

Proof. Let mand n be integers. Without loss of generality, we may assume that m
is even and n is odd. (The case where mis odd and n is even is similar.) Then there
exist integers s and t such that m=2s and n=2t+ 1. Therefore, m? 4+ =
(292 4+ (2t +1)2 =42 + 42+ 4t + 1 = 4(P +t2 + 1) + 1. Since L +t2+t is an
integer, M 4 n? has the form 4k + 1 for some integer k. m

* The Four-Color Theorem involves coloring regions or countries on a map in such a way that no two
adjacent countries have the same color. It states that four colors are sufficient, no matter how intertwined
the countries may be. The fact that the proof depended so heavily on the computer for checking cases
raised questions about the nature of proof. Verifying the 1,879 cases required more than 10 billion cal-
culations. Many people wondered whether there might have been at least one error in a process so
lengthy that it could not be carried out by one human being in a lifetime. Haken and Appel’s proof has
since been improved, and the Four-Color Theorem is accepted; but the debate about the role of comput-
ers in proof continues.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



1.4 Basic Proof Methods I 37

Exercises 1.4

1. Analyze the logical form of each of the following statements and construct
just the outline of a proof. Since the statements may contain terms with which
you are not familiar, you should not (and perhaps could not) provide any
details of the proof.

*» (@) Outline a direct proof that if (G, *) is a cyclic group, then (G, =) is

abelian.

(b) Outline a direct proof that if B is a nonsingular matrix, then the determi-
nant of B is not zero.

(c) Suppose A, B, and C are sets. Outline a direct proof that if A is a subset
of B and B is a subset of C, then A'is a subset of C.

(d) Outline a direct proof that if the maximum value of the differentiable
function f on the closed interval [a, b] occurs at xo, then either
Xo=aor xg=bor f'(xg) =0.

(e) Outline a direct proof that if A is a diagonal matrix, then A is invertible
whenever all its diagonal entries are nonzero.

2. Atheorem of linear algebra states that if A and B are invertible matrices, then
the product AB is invertible. As in Exercise 1, outline
(a) adirect proof of the theorem.
(b) adirect proof of the converse of the theorem.

3. Verify that [(~B= M)A ~LA(~M Vv L)]= B is a tautology. See the
example on page 30.

4. These facts have been established at a crime scene.
(i)  If Professor Plum is not guilty, then the crime took place in the kitchen.
(it)  If the crime took place at midnight, Professor Plum is guilty.
(iii) Miss Scarlet is innocent if and only if the weapon was not the candlestick.
(iv) Either the weapon was the candlestick or the crime took place in the
library.
(v) Either Miss Scarlet or Professor Plum is guilty.

Use the above and the additional fact(s) below to solve the case. Explain your
answer.
*» (@) The crime lab determines that the crime took place in the library.

(b) The crime lab determines that the crime did not take place in the library.

(c) The crime lab determines that the crime was committed at noon with the
revolver.

(d) The crime took place at midnight in the conservatory. (Give a complete
answer.)

5. Letxandy be integers. Prove that
(a) ifxandy are even, then x + y is even.
(b) if xis even, then xy is even.
(c) ifxandy are even, then xy is divisible by 4.
(d) if xandy are even, then 3x — 5y is even.
(e) ifxandyareodd, then x + y is even.
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(f)
(9)
* (h)
(i)

if xand y are odd, then 3x — 5y is even.

if xand y are odd, then xy is odd.

if x is even and y is odd, then x + y is odd.
if xis even and y is odd, then xy is even.

6. Letaand b be real numbers. Prove that

(@)
(b)
(©)
(d)
(€
(f)

|ab| = |allb].
la—b| =|b—al.
al lal

‘B‘ = b/’ forb=£0.

la+b] < |a| + |b].
if |a] < b, then—-b<ac<h.
if -b <a<hbthen|a] <h.

7. Suppose a, b, ¢, and d are integers. Prove that

(@
* (b)
(©
(d)
(e
()
* (9)
(h)
* (i)
()
(k)
0}
(m)

2a — 1isodd.

if ais even, then a+ 1 is odd.

if ais odd, then a + 2 is odd.

a(a+1)iseven.

1 divides a.

adivides a.

if aand b are positive and a divides b, then a < b.
if adivides b, then a divides bc.

if aand b are positive and ab =1, thena=b = 1.
if aand b are positive, a divides b and b divides a, then a = b.
if adivides b and c divides d, then ac divides bd.
if ab divides c, then adivides c.

if ac divides bc, then a divides b.

8. Give two proofs that if n is a natural number, then n? 4 n + 3 is odd.

(@)
(b)

Use two cases.
Use Exercises 7(d) and 5(h).

9. Leta, b, and c be integers and x, y, and z be real numbers. Use the technique
of working backward from the desired conclusion to prove that

(@)

(b)
(©
(d)
()

if x and y are nonnegative, then er Yo Wy

Where in the proof do we use the fact that x and y are nonnegative?

if adivides b and a divides b + c, then a divides 3c.

if ab > 0 and bc < 0, then ax? 4 bx 4 ¢ = 0 has two real solutions.

if X34+ 2x2 < 0, then 2x 4+ 5 < 11.

if an isosceles triangle has sides of length x, y, and z, where x =y and
zZ= «/iy then it is a right triangle.

10. Recall that except for degenerate cases, the graph of Ax? 4 Bxy + Cy? +
Dx+Ey+F=0is

an ellipse iff B> — 4AC < 0,
a parabola iff B> — 4AC =0,
a hyperbola iff B — 4AC > 0.
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* (@) Prove that the graph of the equation is an ellipse whenever A > C >
B> 0.
(b) Prove that the graph of the equation is a hyperbola if AC <0 or
B<C<4A<O.
(c) Prove that if the graph is a parabola, then BC = 0 or A = B?/(4C).

Proofs to Grade 11. Exercises throughout the text with this title ask you to examine “Proofs to
Grade.” These are allegedly true claims and supposed “proofs” of the claims.
You should decide the merit of the claim and the validity of the proof and then
assign a grade of

A (correct), if the claim and proof are correct, even if the proof is not the
simplest or the proof you would have given.

C (partially correct), if the claim is correct and the proof is largely cor-
rect. The proof may contain one or two incorrect statements or justi-
fications, but the errors are easily correctable.

F (failure), if the claim is incorrect, or the main idea of the proof is incor-
rect, or there are too many errors.

You must justify assignments of grades other than A and if the proof is incor-
rect, explain what is incorrect and why.
*» (@) Suppose ais an integer.
Claim. If ais odd then a® + 1 is even.
“Proof.” Leta. Then, by squaring an odd we get an odd. An odd plus
odd is even. So a + 1 is even. ]
(b) Suppose a, b, and c are integers.
Claim. If adivides b and adivides c, then a divides b + c.
“Proof.”  Suppose a divides b and a divides c. Then for some integer
g, b=aq, and for some integer g, c=aq. Then b+ c=aq+ aq =
2aq = a(2q), so adivides b + c. u
*» (c) Suppose xis a positive real number.
Claim. The sum of x and its reciprocal is greater than or equal to 2.
That is,

X+ > 2.

x|

“Proof.” Multiplying by x, we get x>+ 1>2x. By algebra,
x? —2x+1>0. Thus, (x—1)2>0. Any real number squared is

greater than or equal to zero, so X + % > 2 is true. |
* (d) Suppose mis an integer.

Claim. If n? is odd, then mis odd.

“Proof.” Assume m is odd. Then m= 2k + 1 for some integer k.

Therefore, m? = (2k + 1)? = 4k? + 4k + 1 = 2(2k? + 2k) + 1, which is

odd. Therefore, if n? is odd, then mis odd. u

(e) Suppose ais an integer.

Claim. a®+ a?iseven.

“Proof.” a°+ a®>=a?(a+ 1), which is always an odd number times

an even number. Therefore, a3 + a? is even. [
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1.5 Basic Proof Methods 11

In the last section, we saw that the method of direct proof for P = Q proceeds as a
chain of statements from the antecedent to the consequent. This is the most basic
form of proof and is the foundation for several other proof techniques. The tech-
niques in this section are based on tautologies that replace the statement to be
proved by an equivalent statement or statements. We call these indirect proofs.

A proof by contraposition or contrapositive proof for a conditional sentence
P = Q makes use of the tautology (P = Q) < (~Q = ~P). Since P= Q and
~Q = ~P are equivalent statements, we first give a proof of ~Q = ~P and then
conclude by replacement that P = Q.

PROOF BY CONTRAPOSITIONOFP= Q
Proof.
Assume ~Q.

Therefore, ~P.
Thus, ~Q = ~P
Therefore, P = Q. |

This method can work well when the connection between denials of P and Q are
easier to understand than the connection between P and Q themselves, or when the
statement of either P and Q is itself a negation.

In the following examples of proof by contraposition we use familiar proper-
ties of inequalities and the property that every integer is either even or odd, but not
both. As in the last section, we assume that variables represent fixed quantities.

Example. Let mbe an integer. Prove that if n? is even, then mis even.
Proof. (The antecedent isP, “n? iseven” and the consequent is Q, “ miseven.”)
Suppose that the integer m is not even. (Suppose ~Q.) Then m is odd so
m= 2k + 1 for some integer k. Then
M = (2k + 1)? = 4k% + 4k + 1 = 2(2k? + 2K) + 1.

Since n? is twice an integer, plus 1, n? is odd. (Sncek isan integer, 2k? + 2kisan
integer.) Therefore, n? is not even. (We have concluded ~P.)

Thus, if mis not even, then n? is not even. By contraposition, if n? is even,

then mis even. ]

Example. Let x and y be real numbers such that x < 2y. Prove that if
7xy < 3x2 + 2y, then3x <.
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Proof. Suppose x and y are real numbers and x < 2y. (Let P be 7xy < 3x% 4 2y?
and Q be 3x<vy.) Suppose 3x>y. (We assume ~Q.) Then 2y — x>0
and 3x—y>0. Therefore, (2y —X)(3x—Yy) =7xy —3x> —2y?* > 0. Hence,

7xy > 3x% + 2y°.
We have shown that if 3x >y, then 7xy > 3x? + 2y?. Therefore, by contra-
position, if 7xy < 3x? + 2y%, then3x <. n

Another indirect proof technique is proof by contradiction. The logic behind
such a proof is that if a statement cannot be false, then it must be true. Thus, to
prove by contradiction that a statement P is true, we temporarily assume that P is
false and then see what would happen. If what happens is an impossibility—that is,
a contradiction—then we know that P must be true. Here is an example of a proof
by contradiction.

Example. Prove that the graphs of y = x2 + x + 2 and y = x — 2 do not intersect.

Proof. Suppose the graphs of y = x? + x+ 2 and y = x — 2 do intersect at some
point (a, b). (Suppose ~P.) Since (a, b) is a point on both graphs, b = a®> + a + 2
and b=a — 2. Therefore,a— 2 =a® + a+ 2, so & = —4. Thus, a® < 0. But ais
a real number, so a > 0. This is impossible. (The statement a> <0 A &> 0 isa
contradiction.) Therefore, the graphs do not intersect. |

A proof by contradiction is based on the tautology P < [(~P) = (Q A ~Q)].
That is, to prove a proposition P, we prove (~P) = (Q A ~Q) for some proposition Q.
In the example above, Q is the statement a2 < 0. A proof by contradiction has the fol-
lowing form:

PROOF OF P BY CONTRADICTION
Proof.
Suppose ~P.

Therefore, Q.
Therefore, ~Q.

Hence, Q A ~Q a contradiction.
Thus, P. [

Two aspects about proofs by contradiction are especially noteworthy. First, this
method of proof can be applied to any proposition P, whereas direct proofs and
proofs by contraposition can be used only for conditional sentences. Second, the
proposition Q does not appear on the left side of the tautology. The strategy of prov-
ing P by proving ~P = (Q A ~Q), then, has an advantage and a disadvantage. We
don’t know what proposition to use for Q, but any proposition that will do the job
is a good one. This means a proof by contradiction may require a spark of insight to
determine a useful Q.
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The next proof by contradiction is a classical result whose proof can be traced
back to Hippasus, a disciple of Pythagoras, circa 500 B.c.E. One of several legends
has it that Hippasus proved that /2 is not a rational number while traveling by ship
with his Pythagorean colleagues. The Pythagoreans, steadfast believers that all
numbers are rational*, supposedly threw him into the sea to drown.

The proof relies on the definition of a rational number: r is rational iff r = 2
for some integers a and b, with b =£ 0. We may assume that that a and b have no
common factors, because otherwise we would simply reduce % by cancelling any
common factors.

Example. /2 is an irrational number.

. . a
Proof. Assume that +/2 is a rational number. (We assume ~P.) Then V2= b for

some integers aand b, where b = 0 and a and b have no common factors. ( The state-
2

. a a
ment Q is “a and b have no common factors.”) From fz =5 we have 2 = o

which implies that 2b? = a?. Therefore a? is even and so a is even. (Recall the exam-
ple we proved on page 40.) It follows that there exists an integer k such that a = 2k
and therefore

2b? = a2
= (2K)?
= 4K?,

Thus b? = 2k, which shows b? is even. Therefore b is even. Since both a and b are
even, aand b do have a common factor of 2. (e have deduced the statement ~Q.)
This is a contradiction. We conclude that ﬁ is irrational. [ |

Recall that a natural number greater than 1 is prime iff its only positive divisors
are 1 and itself. The next proof by contradiction, attributed to Euclid, shows that there
are infinitely many primes. By this we mean that it is impossible to list all of the prime
numbers from the first to the kth (last) one, where k is a natural number. It uses the
fundamental result that every natural number greater than 1 has a prime divisor.

Example. The set of primes is infinite.

Proof. Suppose the set of primes is finite. (Suppose ~P. This means that the set of
primes has k elements for some natural number k. Then the set of all primes can be
listed, fromthefirst oneto the kth (last) one.) Let p1, p2, Ps, - - -, Pk be all those primes.
Let nbe one more than the product of all of them: n= (pyp2ps3. .. px) + 1. (Wemade
up a number n which will not have any of the p; as prime factors.) Then n is a natural
number, so n has a prime divisor g. Since q is prime, g > 1. (The Q statement is

*You may wonder why J2is important or why it should be the first number to be proved irrational. The
ancient Greeks geometers constructed numbers (lengths of line segments) using only a compass and a
straightedge. It’s easy to construct a square with sides of length 1, for which the length of a diagonal is
/2. The fundamental Pythagorean belief that all numbers that arise in nature are either integers or ratios
of integers is disproved by the irrationality of /2.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



1.5 Basic Proof Methods Il 43

“g > 1.”) Since qis a prime and py, P2, Ps, - - -, Pk are all the primes, q is one of the
pi in the list. Thus, q divides the product p; p. ps. . . P Since q divides n, q divides
the difference n — (p.p2ps. - - Px). But this difference is 1, so g = 1. (Thisis ~Q.)
From the contradiction, g > 1 and g = 1, we conclude that the assumption that the
set of primes is finite is false. Therefore, the set of primes is infinite. |

Example. Prove the square shown in Figure 1.5.1(a) cannot be completed to form
a “magic square” whose rows, columns, and diagonals all sum to the same number.

1 2 3 1 2 3 a
4 5 6 b 4 5 6
7 8 7 c 8 d
9 10 e 9 f 10
(a) (b)
Figure 1.5.1

Proof. Suppose the square can be completed with entries a, b, ¢, d, e, f, as shown
in Figure 1.5.1(b). Since the sums of the second row and second column are the
same, b 4+ 15 = ¢ + 15. Thus, b = c. Comparing the sums of the first column and
the lower-left to upper-right diagonal, 1+b+7+e=e+c+5+a Thus,
a = 3 and the first row sums to 9. Thus, the “magic sum” is 9. (Thisisour Q state-
ment.) But the main diagonal sum (1 + 4 + 8 4+ 10 = 23) isnot 9. (Thisisour ~Q
statement.) This is a contradiction. We conclude that the square cannot be
completed. ]

Proofs of biconditional sentences P < Q often make use of the tautology
(P Q) < (P= Q) A (Q= P). Proofs of P < Q generally have the following
two-part form:

TWO-PART PROOFOFP < Q
Proof.
(i) Show P = Q.
(i) Show Q= P.
Therefore, P < Q. u

The separate proofs of parts (i) and (ii) may use different methods. Often the
proof of one part is easier than the other. This is true, for example, of the proof that

“The natural number p is prime iff there is no positive integer greater than 1
and less than or equal to «&that divides x.”
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It immediately follows from the definition of prime that “x is prime” implies “there

is no positive integer greater than 1 and less than or equal to V/x that divides x.” The
converse requires more thought and is an exercise in the next section.

The parity of an integer is the attribute of being either odd or even. The integer 31
has odd parity while 42 has even parity. The integers 12 and 15 have opposite parity.
The next example is a proof of a biconditional statement about parity with a two part
proof. Both parts of the proof have two cases. The proof we give is not the shortest pos-
sible, but it does illustrate the two part approach to proving a biconditional statement.

Example. Let mand n be integers. Then mand n have the same parity iff m? + n?
is even.

Proof.
(i) Suppose mand n have the same parity. We have two cases.

(@ If both mand n are even then m= 2k and n = 2j for some integers k
and j. Then m? 4+ n? = (2K)? + (2j)? = 2(2k? + 2j?), which is even.

(b) If both m and n are odd then m=2k+1 and n=2j+1 for
some integers k and j. Then m? +n?>=(k+ 1)+ (2j + 1)?=
2(2k? 4 2K + 2j2 + 2j + 1), which is even.

In both cases m? + n? is even.

(i)  Suppose m? + r? is even. (To show that n has the same parity as m, we use
some previous examples and exercises about even and odd integers.) Again
we have two cases.

(@ If mis even, then n? is even. Therefore, since n? + n? is even and n?
is even, n> = (m? + n?) — n¥ is even. From n? is even, we conclude
that n is even.

(b) If mis odd, then n? is odd. Therefore, since m? 4 n? is even and n?
is odd, n? = (m? 4 n?) — n¥ is odd. From n? is odd, we conclude that

nis odd.
Hence, if mis even, then nis even, and if mis odd, then nis odd. Therefore,
mand n have the same parity. [

In some cases it is possible to prove a biconditional sentence P < Q that uses
the “iff” connective throughout. This amounts to starting with P and then replacing it
with a sequence of equivalent statements, the last one being Q. With n intermediate
statements Ry, Ry, . . ., Ry, a biconditional proof of P < Q has the form:

BICONDITIONAL PROOFOFP < Q
Proof.
Piff R

iff R

iff R,
iff Q. ]
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Example. The triangle in Figure 1.5.2 has sides of length &, b, and c. Use the Law
of Cosines to prove that the triangle is a right triangle with hypotenuse c if and only
if a% + b? = c2

a

Figure 1.5.2

Proof. By the Law of Cosines, a® + b? = ¢® — 2ab cos 6, where 6 is the angle
between the sides of length a and b. Therefore,

a2+ b?2=c? iff 2abcosf#=0
iff cos6=0
iff 6 =90°.

Thus, a? + b? = ¢? iff the triangle is a right triangle with hypotenuse c. [

As the following example shows, many theorems are amenable to more than
one proof technique. Two of the proofs below will use the fact that if a prime (2 in
our case) divides the product of two integers, then it must divide at least one of the
integers. This property, known as Euclid’s Lemma, will be proved in Section 1.7.

Example. For given integers x and y, give a direct proof, a proof by contraposition,
and a proof by contradiction of the following statement: If x and y are odd integers,
then xy is odd.

Direct Proof. Assume X is odd and y is odd. Then integers mand n exist so that
x=2m+ 1landy=2n+ 1. Thus,

Xy =(2m+ 1)(2n + 1)
=4mn+2m+2n+1
=2(2mn+ m+n) + 1.

Thus xy is an odd integer. u
Proof by Contraposition. (Thecontrapositiveof xisodd A yisodd = xyisoddisthe
statement Xy iseven = ~(xisodd A yisodd), or equivalently,

xyiseven = (xiseven Vv yiseven).)

Assume xy is even. Thus, 2 is a factor of xy. But since 2 is a prime number and
2 divides the product xy, then either 2 divides x or 2 divides y by Euclid’s Lemma.
We have shown that if Xy is even, then either x or y is even. Thus, if x and y are odd,
then xy is odd. =
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Proof by Contradiction. Suppose that the statement “If x and y are odd integers, then
xy is odd” is false. Then x is odd and y is odd, and xy is not odd. Since Xy is not odd, xy
is even. Therefore 2 divides xy. Then by Euclid’s Lemma, 2 divides x or 2 divides y.
Thus either x is even or y is even. But x is odd and y is odd. This is a contradiction. We
conclude that if xand y are odd integers, then xy is odd. =

By now you may have the impression that, given a set of axioms and defini-
tions of a mathematical system, any properly stated proposition in that system can
be proved true or proved false. This is not the case. There are important examples
in mathematics of consistent axiom systems (so that there exist structures satisfy-
ing all the axioms) for which there are statements such that neither the statement
nor its negation can be proved. It is not a matter of these statements being difficult
to prove or that no one has yet been clever enough to devise a proof; it has been
proved that there can be no proof of either the statement or its negation within the
system. Such statements are called undecidable in the system because their truth is
independent of the truth of the axioms.

The classic case of an undecidable statement involves the fifth of five postu-
lates that Euclid set forth as his basis for plane geometry: “Given a line and a point
not on that line, exactly one line can be drawn through the point parallel to the line.”
For centuries, some thought Euclid’s axioms were not independent, believing that
the fifth postulate could be proved from the other four. It was not until the 19th cen-
tury that it became clear that the fifth postulate was undecidable. There are now the-
ories of Euclidean geometry for which the fifth postulate is assumed true and
non-Euclidean geometries for which it is assumed false. Both are perfectly reason-
able subjects for mathematical study and application.

Exercises 1.5

1. Analyze the logical form of each of the following statements and construct
just the outline of a proof by the given method. Since the statements may con-
tain terms with which you are not familiar, you should not (and perhaps could
not) provide any details of the proof.

* (a) Outline a proof by contraposition that if (G, *) is a cyclic group, then (G, *)

is abelian.
(b) Outline a proof by contraposition that if B is a nonsingular matrix, then
the determinant of B is not zero.

* (c) Outline a proof by contradiction that the set of natural numbers is not

finite.
(d) Outline a proof by contradiction that the multiplicative inverse of a
nonzero real number X is unique.

* (e) Outline a two-part proof that the inverse of the function f from Ato B is

a function from B to A if and only if f is one-to-one and onto B.
(f)  Outline a two-part proof that a subset A of the real numbers is compact
if and only if Ais closed and bounded.
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2. Atheorem of linear algebra states that if A and B are invertible matrices, then
the product AB is invertible. As in Exercise 1,
(@) outline a proof of the theorem by contraposition.
(b) outline a proof of the converse of the theorem by contraposition.
(c) outline a proof of the theorem by contradiction.
(d) outline a proof of the converse of the theorem by contradiction.
(e) outline a two-part proof that A and B are invertible matrices if and only
if the product AB is invertible.

3. Letx, Yy, and zbe integers. Write a proof by contraposition to show that
* (@) ifxiseven,then x+ 1is odd.

(b) if xis odd, then x + 2 is odd.

(c) if x?is not divisible by 4, then x is odd.

(d) if xy is even, then either x or y is even.

(e) if x4+ yiseven, then x and y have the same parity.

(f) if xyis odd, then both x and y are odd.

(g) if 8 does not divide x?> — 1, then x is even.

(h) if x does not divide yz, then x does not divide z

4. Write a proof by contraposition to show that for any real number x,
(@ ifx*+2x<0,thenx<O.

* (b) ifx*—5x+6<0,then2 <x< 3.
() ifx®+ x>0, then x> 0.

5. Acircle has center (2, 4).
(@) Prove that (—1, 5) and (5, 1) are not both on the circle.
(b) Prove that if the radius is less than 5, then the circle does not intersect
the liney =x — 6.
() Provethatif (0, 3) is not inside the circle, then (3, 1) is not inside the circle.
6. Suppose aand b are positive integers. Write a proof by contradiction to show
that
(@) ifadividesb,thena < b.
» (b) ifabisodd, then both aand b are odd.
(c) ifaisodd, thena+ 1iseven.
(d) ifa— bisodd, thena+ bis odd.
(e) ifa<bandab < 3,thena=1.

7. Suppose a, b, ¢, and d are positive integers. Write a proof of each bicondi-
tional statement.
(@) acdivides bcif and only if a divides b.
(b) a+ 1divides band bdividesb + 3ifand only ifa=2andb=3.
(c) aisoddifandonlyifa+ 1iseven.
(d a+c=band2b—a=difandonlyifa=b—candb+ c=d.

8. Let mand nbe integers. Then prove that mand n have different parity iff

m? — n? is odd.
9. Prove by contradiction that if nis a natural number, then
n n
> .
n+1 n+2
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10. Prove that «@ is not a rational number.

11. Three real numbers, x, y, and z, are chosen between 0 and 1 with0 < x <y <
z < 1. Prove that at least two of the numbers X, y, and zare within % unit from
one another.

Proofsto Grade 12. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(8) Suppose mis an integer.
Claim. If n? is odd, then mis odd.
“Proof.”  Assume that n? is not odd. Then n? is even and n? = 2k for
some integer k. Thus 2K is a perfect square; that is, V2k is an integer.
If \/ﬁ( is odd, then Jﬁ(: 2n + 1 for some integer n, which means
M =2k=(2n+1)2 =4’ +4n+1=2(2n°+2n)+ 1. Thus n? is
odd, contrary to our assumption. Therefore V/2k=m must be even.
Thus if n? is not odd, then m is not odd. Hence if m? is odd, then m
is odd. =
* (b) Suppose t is a real number.
Claim. Iftis irrational, then 5t is irrational.
“Proof.”  Suppose 5t is rational. Then 5t = p/q, where p and g are
integers and q # 0. Therefore, t = p/(50), where p and 5q are integers
and 59 #0, so t is rational. Therefore, if t is irrational, then 5t is
irrational. u
(c) Suppose x and y are integers.
Claim. Ifxandy are even then x + y is even.
“Proof.” Suppose x and y are even but X + y is odd. Then, for some
integer k, X + y = 2k + 1. Therefore, x + y + (—2)k = 1. The left side
of the equation is even because it is the sum of even numbers. However,
the right side, 1, is odd. Since an even cannot equal an odd, we have a
contradiction. Therefore, x +y is even. u
(d) Suppose a, b, and c are integers.
Claim. If adivides both b and c, then a divides b + c.
“Proof.”  Assume that a does not divide b 4 c. Then there is no integer
k such that ak = b+ c. However, a divides b, so am=b for some
integer m; and a divides c, so an=c for some integer n. Thus
am+ an = a(m+ n) = b 4 c. Therefore k= m+ n is an integer satis-
fying ak = b + c. Thus the assumption that a does not divide b + c is
false, and a does divide b + c. =

1.6 Proofs Involving Quantifiers

Recall that in our first example of a direct proof in Section 1.4 we proved the state-
ment “If x is odd then x 4 1 is even.” That statement has the meaning “For every
integer x, if xis odd then x + 1 is even.” We dealt with the quantifier in that exam-
ple by asking you to think of the variable x as some fixed integer. This section dis-
cusses specifically the proof methods for statements with quantifiers.
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To prove a proposition of the form (Vx) P(x), we must show that P(x) is true
for every object x in the universe. A direct proof is begun by letting x represent an
arbitrary object in the universe, and then showing that P(x) is true for that object.
In the proof we may use only properties of x that are shared by every element of the
universe. Then, since x is arbitrary, we can conclude that (Vx) P(X) is true.

Thus a direct proof of (Vx)P(x) has the following form:

DIRECT PROOF OF (Vx) P (x)

Proof.

Let x be an arbitrary object in the universe. (The universe should be
named or its objects described.)

Hence P (X) is true.
Since x is arbitrary, (VX)P(X) is true. |

Acreview of the proof examples in Sections 1.4 and 1.5 shows that whenever the
statement was universally quantified, the proof given had the form of a complete
proof, because each begins with an assumption such as “Let x be an integer” or “Let
x and y be real numbers.”

Example. Prove that for every natural number n, 4n?> — 6.8n + 2.88 > 0.

Proof. (The statement hasthe form (¥x) P (X), where the universeisN and P(x) is
“4n®> — 6.8n+ 2.88 > 0.”) Let n be a natural number. Then n>1, so n— .8
and n — .9 are both positive. Therefore 4(n — .8)(n — .9) = 4n’ — 6.8n + 2.88 is
positive. We conclude that 4n? — 6.8n + 2.88 > 0 for all natural numbers n. ]

Since the open sentence P (x) in (Vx) P (X) will often be a combination of other
open sentences joined by the logical connectives, the selection of an appropriate
proof technique will depend on the logical form of P (x). In the next example P (X)
has the form of a conditional sentence.

Example. If xis an even integer, then x? is an even integer.

Proof. (The statement has the form (VX)(A(X) = B(x)), where the universe is Z,
A(X) is“xiseven,” and B(X) is “x? iseven.”) Let x € Z. (\We give a direct proof of
A(X) = B(X), which we begin by assuming A(X).) Assume X is even. Then x = 2k for
some integer k. Thus x? = (2k)? = 2(2k?). Since 2k is an integer, X2 is even. Since x
is arbitrary, we have that for all x € Z,if x is even, then x? is even. ]

It is essential in a direct proof of (Vx)P(X) that the first step assume nothing
about x other than it is an object in the universe. In the example above there are two
assumptions about the variable x — for two very different reasons. The assumption
“Let x € Z” appears first because we are assuming X is an object in the universe.
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We make the statement “Assume X is even” because we are initiating a direct proof
of a conditional sentence, which starts by assuming the antecedent.

It is a mistake to give an example (or several examples) of the statement “If x
is even, then x? is even” and then claim that the statement has been proved for all
natural numbers n. Examples may sometimes help decide whether a statement is
true. Examples can also help guide our thinking about how to proceed with a proof.
However, we cannot prove that a universally quantified statement is true by show-
ing that it’s true for selected values of the variable.

The next example involves two quantifiers.
. X+Yy. .
Example. For all rational numbers x and y, — is a rational number.

Proof. (The statement hasthe form (Vx) (Vy) P (X, y), where the universeis @ and

L X . . .
P(x,y) is “ ty isrational.”) Let x and y be rational numbers. Then

X+y 1<p s)_ 1<pt+qs)_ pt + gs
2 2 2 - ‘

qt)” 2\ ¢ 20t

Both pt 4+ gsand 2qt are integers and 2qt # 0. (The sums and products of integers
are integers. The product of three nonzero numbers is not zero.) Therefore,

y is a rational number. [

The method of proof by contradiction is often used to prove statements of the
form (Vx)P(x). Since ~(VX)P(x) is equivalent to (3x) ~P(x), the form of the
proof is as follows:

PROOF OF (Vx)P(x) BY CONTRADICTION
Proof.

Suppose ~ (VX) P(X).

Then (3X) ~P(X).

Let t be an object such that ~P(t).

Therefore Q A ~Q.
Thus (3X) ~P(X) is false, so (YX) P(x)is true. u

The following example of a proof by contradiction comes from an exercise in
a trigonometry class. It uses algebraic and trigonometric properties available to stu-
dents in the class.

T

Example. Prove that forall x e (O, 5),sin X+ cos X > 1.

Proof. (The statement hasthe form('x) P (x), where the universeisthe open interval
(0, %) and P (x) is“sin x + cos x > 1.”) Suppose that the statement is false. Then there
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exists a real number t, with0 < t < % suchthatsint 4+ cos t < 1. (e have deduced
(3t) ~ P(t).) Since the functions sin x and cos x are positive for every x € (0, %)
sint > 0and cost > 0. Therefore,

O<sint4cost<1

0< (sint+cost)?<12=1
0 <sint4 2sintcost4 cos’t < 1
0<1+42sintcost<1

—1<2sintcost < 0.

(We use the identity sin? t + cos?t = 1.) But 2 sin t cos t < 0 is impossible since
both sintand cos t are positive. Therefore, if 0 < X < g thensinx+cosx>1. =

Notice the different roles that the symbols “x” and “t” play in the above exam-
ple. The variable x is used to express the statement of the theorem and also appears
as the independent variable in the sine and cosine functions. The symbol t represents
some fixed value in (O, %) with the property that sint 4 cos t < 1.

There are several ways to prove existence theorems—that is, propositions of the
form (3x) P(x). In a constructive proof we actually name an object a in the universe
such that P (a) is true, which directly verifies that the truth set of P(X) is nonempty.
Some constructive proofs are quite easy to devise. For example, to prove that “There
is an even prime natural number,” we simply observe that 2 is prime and 2 is even.

Other constructive proofs have eluded mathematicians for centuries. The
question of whether any nth power is a sum of fewer than n nth powers was
raised by Leonard Euler* in the mid 1700s. A computer search in 1968 discov-
ered a fifth power that was the sum of four fifth powers. Here is an example for
fourth powers.

Example. Prove that there exists a natural number whose fourth power is the sum
of three other fourth powers.

Proof. 20,615,673 is one such number because
20615673 = 2682440* 4 1536539* + 18796760". ]

Another strategy to prove (3x) P(x) is to show that there must be some object
for which P(x) is true, without ever actually producing a particular object. Both
Rolle’s Theorem and the Mean Value Theorem from calculus are good examples of
this. Here is another.

* Leonard Euler (1707-1783) was a brilliant Swiss mathematician who spent much of his career at the
Imperial Russian Academy of Sciences in St. Petersburg and the Berlin Academy. He made profound
contributions to calculus, number theory, and graph theory as well as physics and astronomy. He was the
first to introduce the idea of function and the familiar f(x) notation.
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Example. Prove that the polynomial

r(x) =x"*—2x%4+5x-0.3
has a real zero.

Proof. (The universe is R. The statement has the form (3t)(r (t) = 0).) By the
Fundamental Theorem of Algebra’, r () has 71 zeros that are either real or complex.
Since the polynomial has real coefficients, its nonreal zeros come in pairs (by the
Complex Root Theorem). Hence the number of nonreal zeros is even, and that leaves
an odd number of real zeros. Therefore, r (X) has at least one real zero. u

Existence theorems may also be proved by contradiction. The proof technique
has the following form:

PROOF OF (3x)P(x) BY CONTRADICTION
Proof.

Suppose ~(3X) P(X).

Then (vX) ~ P(X)

Therefore, ~Q A Q, a contradiction.
Thus ~(3X) P(X) is false.
Therefore (3X) P(X) is true. [

The core of a proof of (3x) P(X) by contradiction involves making deductions
from the statement (¥x) ~ P(X).

Example. Starting at 9 am. on Monday a hiker walked from a base camp up a
mountain trail and reached the summit at exactly 3 p.m. The hiker camped for the
night and then hiked back down the same trail, again starting at 9 a.m. On this second
walk the hiker stopped to look at a scenic overlook, but walked faster on other parts
of the trail and returned to the starting point in exactly six hours. Prove that there is
some point on the trail that the hiker passed at the identical time on the two days.

Proof. Clearly, the point on the trail is not at the base camp or summit. (The uni-
verse is the open interval (0, 6), representing the time betweent =0 (9 a.m.) and
t =6 (3 p.m.) along the trail. The statement has the form 3t € (0, 6) (the point on
thetrail at time t on Monday is the same as the point on the trail at timet on Tues-
day).) Suppose there is no such point along the trail. Then for every time t € (0, 6),
the point where the hiker is at time t on Monday is different from the point where
the hiker is at time t on Tuesday. Have two other people simultaneously walk the
trail, starting at 9 a.m. One goes up the trail at exactly the pace set by the hiker on

T The Fundamental Theorem of Algebra says that every polynomial in one variable with complex coef-
ficients and degree n > 0 has exactly n zeros, counting multiplicities.
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Monday and the other walks down the trail at exactly the pace set by the hiker on
Tuesday. Since these two people are at different points at every time between 9 a.m.
and noon, they will never meet. But they must meet at some point on the trail. This
is a contradiction. Therefore there is some point on the trail that the hiker passed at
the same time on the two days. |

Sometimes a statement to be proved has the form (3x) P (x) = Q. As a first step,
we assume (3x) P (x). However, the fact that some object x in the universe has the
property P (x) does not give us much to work with. A useful next step is to name some
particular object that has the property and use the property of the object to derive Q.

Example. The graph of x> 4+ y? = r?, with r > 0, is a circle with center (0, 0) and
radius r. Prove that if one of the x-intercepts of the circle has rational coordinates,
then all four intercepts have rational coordinates.

Proof. Suppose an x-intercept (a, 0) of the circle has rational coordinates. Then a
is a rational number and a®> 4 0> =r?, so & =r? and a= =+r. Then the other
x-intercept is (—a, 0). To find the y-intercepts, we solve 0% 4 y> =r? and find
y = +r = +a. Therefore, the four intercepts are (a, 0), (—a, 0), (0, a), and (0,—a),
all of which have rational coordinates. =

Many statements have more than one quantifier. We must deal with each in
succession, starting from the left.

Example. Between any two rational numbers x and y, where X < v, there is always
another rational number z

Proof. (The statement may be symbolized (Vxe Q)(Vye Q)[x<y=
(3ze Q)(X < z< y)]. We begin with the two universal quantifers.) Suppose X

and y are rational numbers. Assume that x <y. (Now we must prove the

existence of a rational number z with the given property.) We choose z = %

By a previous example, zis a rational number. Furthermore,

X+X X+y y+y
2 2 2
Thereforex <z <. |

Example. Prove that for every natural number n, there is a natural number M such
that for all natural numbers m> M,

1 1

< —.
m  3n

Proof. (The statement may be symbolized by

(Yne N)(IM € N)(Vvm e N) (m >M= %< 31n>
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We begin with the universal quantifier ontheleft.) Let n be a natural number. (\We must
provethe existence of a natural number M with the given property.) Choose M to be 3n.
Let m be a natural number, and suppose m > M. Then m > 3n, and 3mn > 0, soO

1 1
dividing by 3mn we have m=< a (The choice of 3n for M is the result of some
1 1
scratchwork, working backward fromthe intended conclusi on._ < %.) u

Example. There is a real number with the property that for any two larger num-
bers there is another real number that is larger than the sum of the two numbers and
less than their product.

Proof. (TheuniverseisR. A symbolic form of the statement is
(FD(V)(VW[(X>zAY>2) = (IWX+Y < W< xy)].

We must choose z so that the statement
X>zAYy>2) = (@EWX+Yy<W<Xy)

will be true for all x and y.) We chose z= 2. (To understand this choice for z, first
noticethat x + yisnot alwayslessthan xy. For example, letx = 1.6 andy = 1.4.) Let
x and y be real numbers such that x > zand y > z Without loss of generality, we may
assume that y > x. (Otherwise, we could rename x and y.) Then

X+Yy <2y <Xxy.

Now choose w to be the midpoint between x + y and xy, so w = W We

haveX +y <w < xy. ]

A proof of a statement about unique existence always involves multiple
quantifiers. The standard technique for proving a proposition of the form
(3X)P(x) is based on proving the equivalent statement: (IX)P(X) A (VY)(V2)
[P(y) A P(2) = y = 2]. Since the main connective is a conjunction, the method
will have two parts:

PROOF OF (3!x) P(x)
Proof.
(i) Prove that (3x) P(X) is true. Use any method.
(ii) Prove that (Vy)(V2)[P(y) A P(2 = y=17].
Assume that y and z are objects in the universe such that P(y) and P(2)
are true.

Therefore,y =z
From (i) and (ii) conclude that (3!x) P(x) is true. |
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Example. Every nonzero real number has a unique multiplicative inverse.

Proof. (The statement has the form (Vxe R)(x# 0 = (3ly e R)(xy=1).) Let
X # 0. (We show there is a unique real number y such that xy = 1 in two steps: First
show that such a number y exists, and then show that x cannot have two different
inverses.)

1
(i) (This part is a constructive proof.) Let y=x Since x#0, y is a real

1 T
number. Then xy = X<x> = 1. Therefore, x has a multiplicative inverse.

(i) Now suppose that y and zare multiplicative inverses for x. (W do not assume
that thisy isthe same astheyin part (i).) Then xy =1 and xz= 1, so

Xy =Xz
Xy—xz =0
x(y—2 =0.
Sincex## 0,y — z=0. Thereforey =z |

Great care must be taken in proofs that contain expressions involving more than
one quantifier. Here are some manipulations of quantifiers that permit valid deductions.

(V) (YY)P(x y) & (YW (YR P (X Y).

(FEY)P X Y) < (IYEIP X Y).

[(Y)P(X) v (V) Q(X)] = (YX[P(X) v Q(X)].
(VI[P(X) = Q)] = [(YXYP () = (VX Q(X)].
(VI[P A QY] <= [(YXIP(X) A (YX)Q(X)].
() (YW)P(xy) = (YWEXPX ).

You should convince yourself that each of these is a logically valid conditional
or biconditional. For example, the last on the list is always true because if
(3X) (YY) P(x, y) is true, then there is (at least) one x that makes P(X, y) true no mat-
ter what y is. Therefore, for any y, (3x) P (X, y) is true because this particular x exists.

It is important to be aware of the most common incorrect deductions making
use of quantifiers. We list four here and show by example that each is not valid.
Notice that statements 2, 3, and 4 in the following list are the converses, respec-
tively, of valid deductions of statements 3, 4, and 6 above.

1. (3P = (VX)P(x)isnot valid.
The implication says that if some object has property P, then all objects have
property P. If the universe is all integers and P(X) is the sentence “x is odd,”
then P(5) is true and P(8) is false. Thus, (IX)P(X) is true and (VX)P(X) is
false, so the implication fails.

2. (YI[PX Vv QM) = [(VXP(X) Vv (YX)Q(X)] isnot valid.
This implication says that if every object has one of two properties, then either
every object has the first property or every object has the second property.

o 0k wbdPE
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Suppose the universe is the integers, P(X) is “x is odd” and Q(X) is “x is
even.” Then it is true that “All integers are either odd or even” but false that
“Either all integers are odd or all integers are even.”

3. [(VIYP(X) = (VX Q)] = (YX[P(X) = Q(X)] isnot valid.
The implication says that if every object has property P implies every object has
property Q, then every object that has property P must also have property Q.
Again, let the universe be the integers and let P(x) be “x is odd” and Q(X) be “x
is even.” Because (Vx)P(x) is false, (VX)P(X) = (VX) Q(X) is true. However,
(V[P (X) = Q(x)] is false.

4. (YWEXPXY) = (3X)(VY)P(x Yy) isnot valid.
This is probably the most troublesome of all the possibilities for dealing with
quantifiers. The implication says that if for every y there is some x that satisfies
P, then there is an x that works with every y to satisfy P. Let the universe be
the set of all married people and P(Xx, y) be the sentence “x is married to y.”
Then (VY)(3X)P(x,y) is true, since everyone is married to someone. But
(3X) (Vy) P(x, y) would be translated as “There is some married person who is
married to every married person,” which is clearly false.

There are times when we will want to prove a quantified statement is false. We
know that (Vx)P(X) is false precisely when ~ (Vx) P (X) is true and ~ (VX)P(X) is
equivalent to (3x) ~P(X). Therefore, one way to prove (Vx) P(x) is false is to prove
(3IX) ~P(x) is true.

A constructive proof of (3x)(~ P (X)) names an object a in the universe such
that P(a) is false. The object a is called a counterexample to (Vx)P(x). The
number 2 is a counterexample to the statement “All primes are odd.” The function
f (X) = | x| is a counterexample to “Every function that is continuous at 0 is dif-
ferentiable at 0.”

Example. Some beginning algebra students believe that (x + y)? = x%+y2 In
symbolic terms, they believe that (VX) (Vy)[(X + y)? = x% + y?] is true in the uni-
verse of real numbers. This mistake could be corrected by providing a counter-
example—for instance, x =3 and y = 4.

Our last example in this section is a proof of a statement of the form
~(3IX)P(x), which means it is also an example of a proof of an equivalent
statement of the form (Vx)~P(x). We proved in Section 1.4 that every odd
integer can be written in the form 4j — 1 or 4k 4+ 1. We now show that there
does not exist an integer that can be written in both of these forms. The proof
is by contradiction.

Example. There is no odd integer that can be expressed in the form 4j — 1 and in
the form 4k 4 1 for integers j and k.

Proof. Suppose n is an odd integer, and suppose n=4j —1 and n=4k+ 1
for integers j and k. Then 4j — 1 = 4k 4 1, so 4] — 4k = 2. Therefore, 2j — 2k = 1.
The left side of this equation is 2(j — K), which is even, but 1 is odd. This is a
contradiction. ]
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Exercises 1.6

1. Prove that
* (@) there exist integers mand nsuch that 2m+ 7n = 1.
(b) there exist integers mand n such that 15m+ 12n = 3.
* (c) there do not exist integers mand n such that 2m + 4n =7.
(d) there do not exist integers mand n such that 12m+ 15n = 1.
(e) for every integer t, if there exist integers mand n such that 15m+16n=t,
then there exist integers r and ssuch that 3r + 8s=.
(f) if there exist integers mand n such that 12m+ 15n =1, then mand n
are both positive.
(g) for every odd integer m, if m has the form 4k + 1 for some integer k,
then m + 2 has the form 4j — 1 for some integer j.
(h) for every odd integer m, n? = 8k + 1 for some integer k. (Hint: Use the
fact that k(k + 1) is an even integer for every integer k.)
(i) for all odd integers mand n, if mn = 4k — 1 for some integer k, then m
or nis of the form 4j — 1 for some integer j.

2. Prove that for all integers a, b, and c,
(a) ifcdividesaand cdivides b, then for all integers xand y, c divides ax + by.
» (b) ifadividesb — 1and adivides ¢ — 1, then adivides bc — 1.
(c) ifadivides b, then for all natural numbers n, a" divides b".
(d) ifaisodd, c> 0, cdivides aand cdivides a + 2, thenc= 1.
(e) if there exist integers mand n such that am + bn=1 and ¢ # +1, then
¢ does not divide a or c does not divide b.

3. Prove that if every even natural number greater than 2 is the sum of two primes,*
then every odd natural number greater than 5 is the sum of three primes.

4. Provide either a proof or a counterexample for each of these statements.

(@) For all positive integers x, x> + x + 41 is a prime.

(b)  (VX)(IY)(X+ y=0). (Universe of all reals)

© (V)(VY)(X>1AYy>0= y'>Xx). (Universe of all reals)

(d) Forintegers a, b, ¢, if adivides bc, then either adivides b or adivides c.

(e) Forintegers a, b, ¢, and d, if adivides b — cand a divides ¢ — d, then a
divides b — d.

(f)  For all positive real numbers x, x> — x > 0.

(g) For all positive real numbers x, 2* > x + 1.

(h) For every positive real number x, there is a positive real number y less
than x with the property that for all positive real numbers z, yz > z

(i)  For every positive real number x, there is a positive real number y with
the property that if y < x, then for all positive real numbers z, yz> z

5. (a) Prove that the natural number x is prime iff x > 1 and there is no posi-
tive integer greater than 1 and less than or equal to V/x that divides x.

* No one knows whether every even number greater than 2 is the sum of two prime numbers. This is the
famous Goldbach Conjecture, proposed by the Prussian mathematician Christian Goldbach in 1742. You
should search the Web to learn about the million dollar prize (never claimed) for proving Goldbach’s
Conjecture. Fortunately, you don’t have to prove Goldbach’s Conjecture to do this exercise.
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(b) Prove that if p is a prime number and p # 3, then 3 divides p? + 2.
(Hint: When pis divided by 3, the remainder is either 0, 1, or 2. That is,
for some integer k, p=3korp=3k+ 1orp=3k+2)

6. Prove that 1
(a) for every natural number n, as 1. (Hint: Use the fact that n> 1 and

divide by the positive number n.)

(b) there is a natural number M such that for all natural numbers n > M,

1
— < 0.13.
n

* (c) for every natural number n, there is a natural number M such that 2n < M.

(d) there is a natural number M such that for every natural number n, % <M.
(e) there is no largest natural number.
(f) there is no smallest positive real number.

* (g) forevery real number e > 0, there is a natural number M such that for all

1
natural numbers n > M, n<¢&
(h) for every real number ¢ > 0, there is a natural number M such that if

1 1
m>n> M, then- — — < ¢.
n m

. . 1 .
(i) there is a natural number K such that - < 0.01 whenever r is a real
r

number larger than K.

(j) there exist integers L and G such that L < G and for every real number
X if L < X < G, then 40 > 10 — 2x > 12.

(k) there exists an odd integer M such that for all real numbers r larger than

1
M,Z— < 0.01.

(I for e\r/ery natural number x there is an integer k such that 3.3x + k < 50.
(m) there exist integers X < 100 and y < 30 such that x + y < 128 and for all
real numbersr and s, if r > x and s>y, then (r — 50)(s — 20) > 390.
(n) for every pair of positive real numbers x and y where x <y, there exists
a natural number M such that if n is a natural number and n > M, then

%< (y —x).

Proofsto Grade 7. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.

* (a) Claim. Every polynomial of degree 3 with real coefficients has a real zero.
“Proof.” The polynomial p(x) =x% — 8 has degree 3, real coeffi-
cients, and a real zero (X = 2). Thus the statement “Every polynomial of
degree 3 with real coefficients does not have a real zero” is false, and
hence its denial, “Every polynomial of degree 3 with real coefficients
has a real zero,” is true. [ |

* (b) Claim. There is a unique polynomial whose first derivative is 2x + 3
and which has a zero at x = 1.

“Proof.” The antiderivative of 2x+ 3 is x>+ 3x+ C. If we let
p(X) = x% 4+ 3x — 4, then p’(x) = 2x+ 3 and p(1) = 0. So p(x) is the
desired polynomial. [ |
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(c) Claim. Every prime number greater than 2 is odd.
“Proof.” The prime numbers greater than 2 are 3, 5, 7, 11, 13, 17,
19, ... . None of these are even, so all of them are odd. =

* (d) Claim. There exists an irrational number r such that rv2 is rational.
“Proof.” If +/3¥2 is rational, then r = /3 is the desired example.
Otherwise, +/3¥2 is irrational and (+/3%2)¥2 = (+/3)2 = 3, which is
rational. Therefore either +/3 or +/3¥2is an irrational number r such that

rV2is rational. =
(e) Claim. For every real number x, |x| > 0.
“Proof.”  We proceed by three cases: x > 0, x =0, and x < 0.

Casel. x> 0. Choose, for example, x=4. Then |4]| =4. Thus
IX| > 0.

Case2. x=0.Then |0] =0. Thus, |x| >0.

Case3. x < 0. Choose, for example, x= —5. Then |—-5| = 5. Thus
IX| > 0. u

(fy Claim. If xis prime, then x + 7 is composite.
“Proof.” Let x be a prime number. If x = 2, then x+ 7 = 9, which is
composite. If X # 2, then xis odd, so X + 7 is even and greater than 2. In
this case, too, X + 7 is composite. Therefore, if x is prime, then X + 7 is
composite. =
(g) Claim. For all irrational numberst, t — 8 is irrational.
“Proof.”  Suppose there exists an irrational number t such thatt — 8 is
rational. Thent — 8 = g, where p and q are integers and q # 0. Then

P+38q
q

t= g+ 8= , with p+ 8q and q integers and g = 0. This is a

contradiction because t is irrational. Therefore, for all irrational numbers

t,t — 8 isirrational. ]
(h) Claim. For real numbers xandy, if xy=0thenx=0o0ry=0.

“Proof.”

Casel. Ifx=0,thenxy=0y=0.

Case2. Ify=0,thenxy=x0=0.

In either case, xy = 0. =
(i) Claim. For every real number ¢ > 0, there is a natural number K such

1
that for all real numbers x > K, x < &.
1
“Proof.” Let ¢ > 0 be a real number. Let K be 2 Assume X is a real

1 1
number and x > K. Then x > 2" SO X > s Therefore, 4xe > 1, so
1 | |
4X < €.
(j) Claim. For every natural number n, n < ré.
“Proof.” Let n be a natural number. Since n is a natural number,
1 < n. Since nis positive, n- 1 < n- n. Therefore, n < n? for all natural
numbers n. [ |
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1.7 Additional Examples of Proofs

This section contains no new proof techniques but does offer pointers about how to
begin a proof and how the form of the statement to be proved usually suggests a
method for proving it. These discussions include references to exercises that have
complete solutions in the Answers to Selected Exercises section. And because the
subject provides an excellent setting for examples of proofs, we conclude this sec-
tion with additional concepts from number theory.

Here are some strategies to consider when you begin to write a proof.

1. Makeastart. For most people, the hardest part of writing a proof is knowing
where or how to start. The most important step isto make a start—almost any
start. Once you’ve begun you may get stuck and need to begin again with a dif-
ferent approach, but often the first attempt will give you some ideas that can be
useful in a new approach. Writing a proof is not done by staring at a statement
to be proved until a full-blown proof pops into your head. It is done step by
step, piecing together facts, definitions, and previous results, and building
toward the statement to be proved.

2. ldentify the assumption(s) and conclusion. Most theorems can be stated in the
form of a conditional sentence. The antecedent gives your hypotheses; the conse-
quent is your goal. Look for known facts and previous results that might connect
the antecedent with the consequent. For example, later in this section we shall see
that theorems about the greatest common divisor use the Division Algorithm.

3. Try working backwards and/or fill in the “middle’ of the proof. Once the
hypotheses and conclusion have been identified, write your assumptions, leave
some space, and write the conclusion as the last line. Try to deduce statements
from the hypothesis that are more useful. Rewrite the conclusion or find a suitable
statement from which the conclusion follows. The idea is to try to reason forward
from your assumption and backward from your conclusion until you join them. At
the middle you will have steps that follow from the hypotheses and from which
the conclusion follows. This makes a complete proof. See Exercise 1(a).

4. Understand the concepts. Make sure you know the definitions of any techni-
cal terms that appear in the statement to be proved. Often the terms are defined
by equations or formulas that can be manipulated for use in the next steps of
the proof, as we did in previous sections with the definitions of even and odd
integers, rational numbers, and other terms. See Exercise 1(b).

5. Determinethelogical form of the statement. It is important to be able to write
(or at least visualize) the complete symbolic translation, with quantifiers, of the
statement to be proved, because the logical form of the statement will usually
offer you insight into how to proceed. Don’t be overly concerned with naming
different types of proofs and devising “formulas” for writing proofs of a given
type. It’s not true that if a statement has a certain form you must always use a
certain proof technique. However, for each logical form there is always at least
one natural outline for its proof, as described in the following examples.
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“If P, then Q.” First consider a direct proof. Begin with the first step, “Assume P.”
P may be a conjunction of several statements, so we may assume all of these state-
ments are true. See Exercise 5(a). When a direct proof fails, consider a proof by
contrapositive, especially when Q has the form of a negation. See Exercise 3(a). If
direct proofs of P = Q and ~Q = ~P both fail, try the method of proof by contra-
diction. Assuming P and ~Q gives you more hypotheses to work with as you aim
for some contradiction. See Exercise 5(b).

“If Py Vv Py, then Q.” It is usually best to first try to prove this by cases because
(P1 v Py) = Qis equivalent to (P = Q) A (P, = Q). That is, try to show that (i)
P; = Q and (ii) P, = Q. See Exercise 7(b). Any proof of P = Q that is done by
considering cases has this form. See Exercise 1(h).

“If P, then Q1 v Q.. A good first step is to try to prove the equivalent form
(P A ~Q1) = Q.. This method has that advantage of assuming that both P and
~Qq are true, giving you more hypotheses to utilize. Or if you prefer, you could
assume both P and ~Q,, and deduce Q;. See Exercises 1(d) and (e).

“Piff Q.” What you should hope for is an “iff” proof in which you construct a list
of equivalent statements linking P and Q. But usually, and especially when P and Q
are complicated, you will need to prove P = Q and Q = P separately. Rather than
worrying about which proof form to use, a good strategy is to begin by proving
either of the two implications and then checking to see whether each step can be
reversed so that (by modifying the words that connect statements) the proof can be
converted to an “iff” proof. See Exercise 1(c).

Here are some strategies for writing proofs of quantified sentences.

*(V¥x) P(x).” Usually there will be one or more universal quantifiers, which may be
hidden. Your first sentence will almost always have the form “Let x be an object in
" or “Suppose X is in ,” where we specify the universe. See Exercises
1(f) and 2(c). Proofs by contradiction of universally quantified statements are not so
common. See the comments below on the form ~(3x) P (x), and Exercise 1(g).

“(3x)P(x).” You may be able to construct or guess an object that has the desired
property. See Exercise 6(b). If not, you may be able to still prove existence without
producing an actual object, perhaps by contradiction. See Exercise 4(b).

~ (IX) P (x).” You have two options, and the one you choose will depend on the
form of P(x). You might first try a direct proof of the equivalent statement
(VX) ~P(X). The alternative is to assume (3x) P(x) and find a contradiction. (This
amounts to proving (Vx) ~P(x) by contradiction.) See Exercise 1(g).

“(3X)P(x).” First prove (3x) P(x) as described above. To prove uniqueness, you
may choose any one of several approaches. You may (1) prove that any two objects
with the property must be equal, (2) derive a contradiction from the assumption that
two different objects have the property, or (3) prove that every object with the prop-
erty is identical to some specific object. See Exercises 3(c) and 4(d).
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The remainder of this section is devoted to examples of proofs from
elementary number theory—that branch of mathematics concerned with the
integers and questions about divisibility, primes, and factorizations. The term
“elementary” is used, not because the subject is low level, but because no meth-
ods from other fields of mathematics are used. Some of the most simply stated,
yet still unsolved problems in mathematics come from elementary number
theory.

Our proof examples are all concerned with the greatest common divisor (gcd)
of two integers; a concept that is probably already familiar to you. We can’t rely on
just a general idea of gcd to prove theorems: It’s not enough just to be able to find
the gcd of 12 and 15. As you gain experience you will find that writing good proofs
requires that we understand and use concepts precisely. By precisely, we mean as
specified by the definition.

The most fundamental theorem about the integers is the Division Algorithm, which
we state here without proof. In Chapter 2 the Division Algorithm will be presented as
Theorem 2.5.1 and proved using a technique that will be introduced in Section 2.5.

The Division Algorithm (See Theorem 2.5.1)

For all integers a and b, with a = 0, there exist unique integers g and r such that
b=ag+rand0 <r < |a.

The integer a is the divisor, q is the quotient, and r is the remainder. For
example, 23 divided by 4 gives a quotient of 5 and remainder 3, because
23 =4 -5+ 3. Note, however, it would be incorrect to say that —23 divided by 4
has quotient —5 and remainder —3, even though —23 = 4(-5) + (—3). Remain-
ders can’t be negative, so when we divide by 4 the only possible remainders are
0, 1, 2, and 3. Thus when —23 is divided by 4 the quotient is —6 and the remain-
deris 1.

It is the fact that the remainder must be nonnegative and as small as possible
that makes the quotient and remainder unique. Notice that dividing b by a produces
a remainder of 0 exactly when there is an integer g such that b = aq + 0, which
happens exactly when a divides b.

One of the most useful concepts regarding integers is that of the greatest com-
mon divisor.

DEFINITIONS Leta, b, ¢, and d be nonzero integers.

We say c is a common divisor of aand b iff c divides a and c divides b.
We say d is the greatest common divisor of a and b, and write
d = gcd(a, b), iff

(i) disacommon divisor of aand b, and

(ii) every common divisor c of aand b is less than or equal to d.
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For example, the common divisors of 18 and 24 are —6, —3, -2, —1, 1, 2, 3,
and 6, so gcd(18, 24) = 6. There is no requirement that a and b must be positive.
For example gcd(—5, 20) = 5, gcd(21,—35) = 7, and gcd(—9,—27) = 9. The inte-
gers 24 and 35 have no positive common divisors except 1, so gcd(24, 35) = 1.
Since gcd(a, b) is greater than or equal to any common divisor of nonzero integers
aand b, gcd(a, b) is always a positive integer.

An integer of the form ax + by, for integers x and y, is called a linear combi-
nation of aand b. For example, some linear combinations of 3 and 7 are:

1=3.(-2)+7-1 —2=3.4+7-(-2)
586=3.10+7-4 7=3.047-(-1).

You could experiment with different values of x and y to find that every integer mul-
tiple of 3 is a linear combination of 12 and 15. For example,

0=12-0+15-0 3=12-(-1)4+15-1
—-3=12-(-4)+15-3 6=12-8+15-(—6).

An exercise in the previous section established an interesting result
about linear combinations: For all integers x and y, if ¢ divides both aand b, then
c also divides ax + by. This fact (Exercise 2(a)) can be restated in our new ter-
minology as:

Theorem 1.7.1 Let aand b be integers. If ¢ is a common divisor of a and b, then ¢ divides every
linear combination of a and b. In particular, gcd(a, b) divides every linear
combination of aand b.

There is much more to be said about linear combinations. Whereas we look for
the greatest common divisor of a and b, we look for the smallest positive linear
combination of aand b. We see from the example above that 1 is a linear combina-
tion of 3 and 7, and so 1 must be the smallest positive linear combination. We also
see above that 3 is a linear combination of 12 and 15, so the smallest positive linear
combination of 12 and 15 must be 1, 2, or 3. But we can see that 1 is not a linear
combination of 12 and 15 (See Exercise 1(d) of Section 1.6), and we can show in
the same way that 2 is not a linear combination. Therefore, 3 is the smallest posi-
tive linear combination of 12 and 15.

It’s a natural question to ask whether there is, for every pair a, b of nonzero
integers, a smallest positive linear combination of aand b. There is, but once again
we simply state the result here and wait until we have the tools in Chapter 2 to give
the proof. See Theorem 2.5.2. Still, it’s not too soon to see how we can use this
result and basic proof techniques to understand the essential connection between
the gcd and linear combinations.
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Lemma 1.7.2 Let aand b be nonzero integers. Then the smallest positive linear combination of a
and b is a common divisor of aand b.

Proof. Letd = as+ bt be the smallest positive linear combination of aand b. (\We
need to show that d divides a and d divides b.) By the Division Algorithm there
exist integers g and r such that a=dq + r, where 0 < r < d. Then

r=a-—dq
=a— (as+ ht)q
=a—as— htq

=a(l — ) + b(—tq),

which is a linear combination of aand b. But 0 < r < dand d is the smallest positive
linear combination. We conclude that r = 0, so d divides a. In the same way, d divides
b. Thus d is a common divisor of aand b. ]

Theorem 1.7.3 Let a and b be nonzero integers. The gcd of a and b is the smallest positive linear
combination of aand b.

Proof. Letd = as+ bt be the smallest positive linear combination of a and b. By
Lemma1.7.2, dis acommon divisor of aand b. We must now show that every com-
mon divisor of aand b is less than or equal to d.

(To show that every common divisor islessthan or equal to d, we first prove
that if c isany common divisor of a and b, then ¢ divides d.) Suppose ¢ is a com-
mon divisor of aand b. Then for some integers nand m, a= cnand b = cm. Then

d=as+ bt
= (cn)s+ (cm)t
= c(ns + nt).

Therefore c divides d. We conclude that ¢ < d. (\We have used Exercise 7(g) of
Section 1.4.) Therefore d is the greatest common divisor of aand b. =

Now we know that gcd(a, b) is a linear combination of aand b, in fact the small-
est linear combination, and it divides every linear combination. These facts are use-
ful in many important applications, from coding theory to the solution of equations
with integer coefficients. One immediate application is in establishing divisibility
relationships among integers. For example, if we know that we can write 1 as a lin-
ear combination of two integers, then the only common divisors of those integers are
land —1.

DEFINITION We say nonzero integers a and b are relatively prime,
or coprime, iff gcd(a, b) = 1.
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The numbers 12 and 35 are relatively prime. The numbers 15 and 36 are not,
because gcd(15, 36) = 3. The integer 2 is coprime with every odd integer.

Theorem 1.7.4 Let a and b be nonzero integers that are relatively prime, and let ¢ be an integer.
Then the equation ax + by = c has an integer solution.

Proof. See Exercise 18. |

The next result, which is found in Euclid’s Elements, makes use of the concepts
of gcd and relatively prime.

Lemma 1.7.5 Euclid’sLemma. Let a, b, and p be integers. If pis a prime and p divides ab, then
p divides a or p divides b.

Proof. Suppose p is prime and p divides ab. Assume that p does not divide a.
(We must show that p divides b.) Since p does not divide a, p and a are relatively
prime, so there exist integers s and t such that as+ pt = 1. Then b = abs + bpt.
Since p divides abs and bpt, it divides their sum, so p divides b. We conclude that
p divides a or p divides b. u

Euclid’s Lemma is frequently used in one of its equivalent forms:

if p divides ab and p does not divide a, then p must divide b,

or
if p does not divide a and p does not divide b, then p does not divide ab.
Exercises 1.7
1
* (@) Prove that if nis an integer and 3n + 1 is odd, then 2n + 8 is divisible

by 4.

» (b) Assume a# 3. Prove that if a is a solution to x> — x — 6 = 0, then a is
asolutionto X3 + 2x% + x+ 3 =0.

» (c) Assume a 3. Prove that a is a solution to x> —x — 6 =0 iffais a
solution to x® 4 2x> + x + 3 =0.

» (d) Let x be a real number. Prove that if x> =2x+ 15, then x < 2 or
(x—4)
x=3) > 0.

* (e) Letxandy be real numbers. Prove that if x + y is irrational, then either
X ory is irrational.

* (f)  Prove that if two nonvertical lines are perpendicular, then the product of
their slopes is —1. (Recall that nonvertical lines are those lines in the
plane that have slope.)

* (g) No point inside the circle (x — 3)> +y?> =6 is on the line y = x + 1.

3| x—2|
— <4
X <

* (h) Prove that for all real numbers x > 1,
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2.

Prove that

(@) for all integers n, 5% 4 3n + 4 is even.

(b) for all odd integers n, 2n? + 3n + 4 is odd.

(c) the sum of 5 consecutive integers is always divisible by 5.

(d) if two nonvertical lines have slopes whose product is —1, then the lines
are perpendicular.

(e) forall integers n, n® — n s divisible by 6.

(f) forall integers n, (n* — n)(n + 2) is divisible by 12.

Let L be the line 2x + ky = 3k. Prove that

(a) if k# —6, then L does not have slope %

(b) for every real number k, L is not parallel to the x-axis.
(c) there is a unique real number k such that L passes through (1, 4).

(&) Prove that if x is rational and y is irrational, then x + y is irrational.

(b) Prove that there exist irrational numbers x and y such that x+y is
rational.

(c) Prove that for every rational number z, there exist irrational numbers x
andysuchthatx+y=1z

(d) Prove that for every rational number z and every irrational number X,
there exists a unique irrational number y such thatx +y =z

(@) Prove that except for two points on the circle, if (x, y) is on the circle
with center at the origin and radius r, then the line passing through (x, y)
and (r, 0) is perpendicular to the line passing through (x, y) and (—r, 0).
Which two points are the exceptions?

(b) Let (%, y) be a point inside the circle with center at the origin and radius
r. Prove that the line passing through (x, y) and (r, 0) is not perpendicu-
lar to the line passing through (x, y) and (—r, 0).

Prove that

(a) every point on the line y = 6 — x is outside the circle with radius 4 and
center (—3, 1).

(b) Prove that there exists a three-digit natural number less than 400 with
distinct digits, such that the sum of the digits is 17 and the product of the
digits is 108.

(c) Use the Extreme Value Theorem to prove that if f does not have a
maximum value on the interval [5, 7], then f is not differentiable on
[5, 7]

(d) Use Rolle’s Theorem to show that x* 4+ 6x — 1 = 0 does not have more
than one real solution.

Prove that for all real numbers X,
[2x — 1|
- <

(& ifx>0,then 2.

(x—=1)(x+2)

b) if -2 1 3,then-——— "~ 0.
(b) i <x<lorx> en(x_3)(x+4)>
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8. Prove or disprove:
* (@) Every point inside the circle (x — 3)2 + (y — 2)? = 4 is inside the circle
X2 +y* =41
(b) If (x, y) is inside the circle (x — 3)> + (y — 2)? = 4, then x — 6 < 3y.
(c) Every point inside the circle (x — 3)? + (y — 2)> = 4 is inside the circle
(x—5)2+ (y+ 1)*=25.
9. For each given pair a, b of integers, find the unique quotient and remainder
when b is divided by a.
(@ a=8,b=310
(b) a=5b=36
(0 a=-5b=36
* (d) a=5b=-36
(e a=7,b=44
(f) a=-8b=-52
10. (@) Letaand b be integers and a > b. Prove that if b > 0, then when b is
divided by a, the quotient is 0.
(b) Letaand b be integers and a > b. Prove that if the quotient is 0 when b
is divided by a, then b > 0.

11. For each pair of integers, list all positive and negative common divisors, and
find gcd (a, b).
(@ a=38,b=2310
(b) a=-5b=36
(0 a=18,b=-54
(d a=-8b=-52
12. (a) Write 2 in two different ways as a linear combination of 12 and 22.
(b) Write —4 in two different ways as a linear combination of 12 and 22.
() What is the set of all linear combinations of 12 and 22?

13. Find d = gcd(a, b) and integers x and y such that d = ax + by.
(@ a=13,b=15
(b) a=26,b=32
(c0 a=9,b=230.
14. Leta, b, and ¢ be natural numbers and gcd(a, b) = d. Prove that
(@) if cdivides aand c divides b, then c divides d.
(b) adividesbiffd=a.
(c) ifadivides bcand d= 1, then adivides c.
(d) if c divides a and c divides b, then gcd(%, %) = g. In particular,
a by __
ged(§. g) = 1.
(e) for every natural number n, gcd(an, bn) = dn.
15.  Which elements of the set {3, 6, 10, 63} are relatively prime to 7? to 21? to 30?

16. Prove that for every prime p and for all natural numbers a,
(@) gcd(p, @) =p iffpdivides a.
(b) gcd(p, @) =1 iff pdoes not divide a.

»*
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17. Let g be a natural number greater than 1 with the property that g divides a or
g divides b whenever q divides ab. Prove that q is prime.

18. Letaand bbe nonzero integers that are relatively prime, and let ¢ be an integer.
Prove that the equation ax + by = c has an integer solution. (Theorem 1.7.4.)
Hint: Use the fact that 1 is a linear combination of aand b.

19. Letaand bbe nonzero integers and d = gcd(a, b). Let m= g andn= g. Show

that if x = sand y = t is a solution to ax + by = c, then so is x = s+ kmand
y =1t — kn for every integer k. (This shows how linear combinations help to
describe solutions to equations.)

20. For nonzero integers a and b, the integer n is a common multiple of aand b
iff adivides nand b divides n. We say the positive integer mis the least com-
mon multiple of aand b, written as lcm(a, b), iff
(i) misacommon multiple of aand b, and
(if) if nis a positive common multiple of aand b, then m < n.

Find Icm(a, b) for

* (@) a=6,b=14
(b) a=10,b=35
(0 a=21,b=39
(d a=12,b=48

21. Let a, b, and c be natural numbers, gcd(a, b) = d and Icm(a, b) = m. Prove
that
(a) adividesbiff m=nh.

(b) m<abh.

(c) ifd=1,then m=ab.

(d) if cdivides aand cdivides b, then lem(3, 2) =T
(e) for every natural number n, lcm(an, bn) = mn.

(f) gcd(a, b) - lem(a, b) = ab.

22. Letaand b be integers, and let m = Icm(a, b). Use the Division Algorithm to
prove that if ¢ is a common multiple of a and b, then mdivides c.

Proofsto Grade 23. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(@ Claim. There isa unique 3-digit number whose digits have sum 8 and
product 10.
“Proof.” Let %, y, and z be the digits. Then x+y+2z=8 and
xyz = 10. The only factors of 10 are 1, 2, 5, and 10, but since 10 is not
a digit, the digits must be 1, 2, and 5. The sum of these digits is 8.
Therefore, 125 is the only 3-digit number whose digits have sum 8 and

product 10. [
* (b) Claim. Thereisaunique set of three consecutive odd numbers that are
all prime.

“Proof.”  The consecutive odd numbers 3, 5, and 7 are all prime. Sup-
pose X, y, and zare consecutive odd numbers, all prime, and x # 3. Then
y =X+ 2 and z= x + 4. Since x is prime, when X is divided by 3, the
remainder is 1 or 2. In case the remainder is 1, then x = 3k 4 1 for some
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integer k> 1. But then y=x+2=3k+ 3 =3(k+ 1), so y is not
prime. In case the remainder is 2, then x= 3k + 2 for some integer
k> 1. Butthenz=x+ 4 =3k+ 2+ 4 =3(k+ 2), so zis not prime. In
either case we reach the contradiction that y or zis not prime. Thus x = 3
andy =5, z= 7. Therefore, the only three consecutive odd primes are 3,

5,and 7. ]
(c) Claim. If xis any real number, then either 7 — x is irrational or 7 + X
is irrational.

“Proof.” Itis known that 7 is an irrational number; that is, 7= cannot be
written in the form 2 for integers a and b. Consider x = . Then
7 — X =0, which is rational, but = + x = 2x. If 27 were rational, then
21 = %for some integers aand b. Then = = 2%, so s is rational. This
is impossible, so 2 is irrational. Therefore either = — x or = + X is

irrational. ]
(d) Claim. |If xis any real number, then either = — x is irrational or 7 + X
is irrational.

“Proof.” It is known that = is an irrational number; that is, 7z cannot
be written in the form 2 for integers a and b. Let x be any real number.
Suppose both 7 — x and 7 + x are rational. Then since the sum of
two rational numbers is always rational, (7 — X) + (7 + X) = 27 is
rational. Then 2 = { for some integers aand b. Then 7 = 3, s0 7 is
rational. This is impossible. Therefore, at least one of = — x or = + x
is irrational. ]
(e) Claim. For all natural numbers n, gcd(n, n+ 1) = 1.
“Proof.” (i) 1 divides n and 1 divides n+ 1. (ii) Suppose c divides n
and cdivides n + 1. Then 1 divides c. Therefore, gcd(n,n+1)=1. =
(fy Claim. For all natural numbers n, gcd(2n — 1, 2n + 1) = 1.
“Proof.” Obviously 1 divides both 2n — 1 and 2n+ 1. Suppose ¢
divides 2n — 1 and 2n+ 1. Then c divides their sum, 4n, so c also
divides 4n?. Furthermore, ¢ divides their product, 4n> — 1. Since ¢
divides 4n? and 4n? — 1, ¢ divides 4n? — (4n> — 1) = 1. Therefore,
¢ < 1. Thus 1 is the greatest common divisor. |
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CHAPTER 2

Set Theory

Starting from the theory of sets, one can construct all the number systems, func-
tions, calculus, and other areas of mathematics. Thus, the study of sets is the foun-
dation for the entire structure of mathematics.

This chapter does not develop these constructions but does provide some
set-theoretic concepts used throughout the text and advanced mathematics.
Sections 2.1 and 2.2 provide precise definitions for familiar concepts such as
union and intersection. In Section 2.3 we extend the union and intersection oper-
ations to collections of sets and discuss how to use indices to organize a family
of sets. Proofs methods using forms of mathematical induction are discussed in
Sections 2.4 and 2.5. Basic methods for counting the elements in a finite set
appear in the optional Section 2.6.

2.1 Basic Concepts of Set Theory

We assume that you have had some experience with sets, set notations, and
common sets of numbers such as the integers and real numbers as described in
the Preface to the Student. In general, capital letters will be used to denote sets
and lowercase letters to denote the elements in sets. To designate a set, we use the
notation

{xP(},

where P(X) is a one-variable open sentence description of the property that defines
the set. For example, the set A= {1, 3,5, 7, 9, 11, 13} may be written as

{x:xe N, xisodd, and x < 14}.

The set of all integer multiples of 3 is the set 37 = {3z z € Z}, and this set contains
0,3, -3,6,—6,9, -9, etc.

71
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72 CHAPTER 2 Set Theory

A word of caution: Some sentences P(X) may not be used to define a set. In
1902, when the theory of sets was new, Bertrand Russell* and others pointed out
flaws in the then common assumption that for every open sentence P(X), there cor-
responds a set {x: P(X)}. See Exercise 3 for a version of the Russell paradox.

The resolution of Russell’s and other paradoxes involved making a distinction
between sets and arbitrary collections of objects. Sets may be defined within a system
of axioms for set theory, first developed by Ernst Zermelo™ and Abraham Fraenkel . **
Their axioms assert, for example, that a collection of two sets constitutes a set (Axiom
of Pairing) and that the collection of all subsets of a set is a set (Axiom of Powers).
Under their system, known paradoxes such as Russell’s are avoided.

It is not our purpose here to carry out a formal study of axiomatic set theory. '’
However, all of our discussions of sets are consistent with the Zermelo—Fraenkel
system of axiomatic set theory.

A second word of caution: Recall that the universe of discourse is a collection
of objects understood from the context or specified at the outset of a discussion and
that all objects under consideration must belong to the universe. Some ambiguity
may arise unless the universe is known. For example, membership in the set
A = {x: x? — 6x = 0} depends on an agreed upon universe. For the universe of real
numbers A'is {0, 6}, but Ais {6} for the universe of natural numbers.

DEFINITION  Let @ = {x: xs x}. Then Jis a set, called the empty
set or null set.

It is an axiom that (J is a set. Since for every object x in every universe, X is
equal (identical) to x, there are no elements in the collection (J. That is, the state-
ment x € J is false for every object x. We could define other empty collections,
such as B = {x: x € R and x? < 0}, but we will soon prove that all such collections
are equal, so there really is just one empty set.

In the Preface to the Student we said A is a subset of B and wrote A C B if and
only if every element of A is an element of B. If A is not a subset of B we write
AgZB.ForX={2,4}, Y={2,3,4,5},andZ={2,3,6}, XC Y and X Z Z

In symbols, we write the definition of A C B as

ACB< (VX)(xe A= xeB).

* Bertrand Russell (1872—1970) was a British philosopher and mathematician and strong proponent for
social reform. He coauthored Principia Mathematica (1910-1913), a monumental effort to derive all of
mathematics from a specific set of axioms and a well defined set of rules of inference.

Ernst Zermelo (1871-1953) was a German mathematician whose work on the axioms of set theory has
profoundly influenced the foundations of mathematics. In 1905 he discovered a paradox similar to the
Russell paradox. He developed a theory of sets based on seven axioms, but was unable to prove that no
new paradoxes could arise in his system.

** Abraham Fraenkel (1891-1965), born in Germany, spent much of his career in Israel. In the 1920s he
made attempts to improve the set theoretic axioms of Zermelo to eliminate paradoxes. Within his system
of ten axioms he proved the independence of the Axiom of Choice. (See Section 5.5.)

T A complete study of the foundations of set theory from the Zermelo—Fraenkel axioms may be found
in Notes on Set Theory by Y. N. Moschovakis (Springer-Verlag, Berlin, 1994). The study of set theory is
still active today, with many unsolved problems.
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Therefore, a proof of the statement A C B is often a direct proof, taking the form:

DIRECT PROOFOFACB
Proof.

Let x be any object.

Suppose x € A

Thus x € B.
Therefore A C B. u

Example. LetA= {2, —3}and B = {x e R: x3+3x? —4x — 12 = 0}. Prove that
ACB.

Proof. Suppose x € A. (Weshow A C B by individually checking each element of A.)
Thenx=20orx= —3.Forx=2,22+3(2%) —4(2) —12=8+4+12 —8 - 12=0.
For x=—3, (=3)% +3(—3)? — 4(-3) — 12 = —27 + 27 + 12 — 12 = 0. In both
cases, X € B. Thus, A C B. n

Example. Letaand bbe natural numbers, and let aZ and bZ be the sets of all inte-
ger multiples of a and b, respectively. Prove that if a divides b, then bZ C aZ.

Proof. Suppose that a divides b. Then there exists an integer ¢ such that b = ac.
(Toshow bZ C aZ, we start with an element frombZ.) Let x € bZ. Then xis a mul-
tiple of b, so there exists an integer d such that x =bd. But then x=bd =
(ac)d = a(cd). Therefore x is a multiple of a, so x € aZ. ]

Theorem 2.1.1 (@) ForeverysetA JCA
(b) ForeverysetA ACA
(c) ForallsetsA B,andC,if ACBandB C C,then AC C.

Proof.

(@) LetAbeany set. Let x be any object. Because the antecedent is false, the sen-
tence x € & = x € Alis true. Therefore, J C A.

(b) Let A be any set. (To prove A C A, we must show that for all objects x,
if xe A then xe A) Let x be any object. Then xe A= xe€ A is true.
(Herewe use the tautology P = P.) Therefore, (VX)(x € A= x € A) and so
ACA

(c)  See Exercise 8. |

Recall that sets A and B are equal iff they have exactly the same elements;
that is,

A=Biff (VX)(xe A= xe B).
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Thus, one method to prove A= B is to give a sequence of equivalent state-
ments starting with the statement x e A and ending with x € B. However,
since xe A< xe B is equivalent to (xe A= xeB)A (xeB=xecA), we
may also say
A=Biff ACBandBC A

For this reason, a proof that A = B will typically have the form:

TWO PART PROOFOFA =B
Proof.
(i) Prove that A € B (by any method).
(ii) Prove that B C A (by any method).
(iii) Therefore A = B. |

Example. Prove that X =Y where X={xe R:x? = 1=0} and Y={-1,1}.

Proof.

(i) Weshow Y C Xhy individually checking each element of Y. By substitution,
we see that both 1 and —1 are solutions to x> — 1 = 0. Thus Y C X.
(i)  Next, we must show X C VY. Let t € X. Then, by definition of X, t is a solu-
tion to x> — 1 = 0. Thus t> — 1 = 0. Factoring, we have (t — 1)(t + 1) = 0.
This product is 0 exactly whent —1=0ort+ 1= 0. Therefore, t =1 or
t= —1. Thus if t is a solution, thent =1 ort = —1; so t € Y. This proves
XCY.
(iii) By (i) and (ii), X=. [ |

The set B is a proper subset of the set A iff B C A and A # B. To denote that
B is a proper subset of A, some authors write B C A and others write B C A. The
only improper subset of A is the set A itself.

We are now in a position to prove that there is only one empty set, in the sense
that any two empty sets are equal.

Theorem 2.1.2 If Aand B are sets with no elements, then A = B.
Proof. Since A has no elements, the sentence (VX)(xe A= xe B) is true.

Therefore, A C B. Similarly, (VX)(x € B= x € A) is true, so B C A. Therefore, by
definition of set equality, A= B. |

Theorem 2.1.3 For any sets Aand B, if AC Band A # &, then B £ .

Proof. Suppose A C B and A # . Since A is nonempty, there is an object t such
thatt € A. Since t € A, t € B. Therefore, B £ . u
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We sometimes use Venn* diagrams to display simple relationships among sets.
For example, suppose we want to find nonempty sets A, B, and C such that A C B,
A#B,CC A and A ¢ C. We begin with three overlapping sets that represent the
sets A, B, and C in Figure 2.1.1(a). Since A C B, there are no elements in the two
regions of A that are outside B. Since C C A, there are no elements in the two
regions of C that are outside A. These four regions are shaded in Figure 2.1.1(b).
Since A is not a subset of C, there is some element x in the remaining region of A
that does not overlap C, and since A # B there is some element y in B that is not in
A. Finally, C is required to be nonempty, so there is an element z in C. There may
be other elements in these sets, but the solution we have found is A= {x, z},
B={x Y, z} and C = {z}. (See Figure 2.1.1(c).)

A B A B

@) (b) (©
Figure 2.1.1

One of the axioms of set theory asserts that for every set A, the collection of all
subsets of A is also a set.

DEFINITION Let Abe aset. The power set of A is the set whose ele-
ments are the subsets of A and is denoted % (A). Thus

P (A) = {B: B C A}.

Notice that the power set of a set A is a set whose elements are themselves sets,
specifically the subsets of A. For example, if A= {a, b, ¢, d}, then the power set of
Ais

P(A) ={J, {a}, {b}. {c}. {d} {a b}, {a c}, {a d}, {b, c}, {b, d}, {c, d},
{a b, c}, {a b, d}, {a c, d}, {b, c d}, A}.

When we work with sets whose elements are sets, it is important to recognize
the distinction between “is an element of ” and “is a subset of.” To use A € B cor-
rectly, we must consider whether the object A (which happens to be a set) is an ele-
ment of the set B, whereas A C B requires determining whether all objects in the set
AarealsoinB. If xe Aand B C A, the correct terminology is that A containsx and
Aincludes B.

* John Venn (1834-1923) was a British philosopher and logician best known for his diagrams to describe
relationships.
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Example. Let X={{1, 2, 3}, {4, 5}, 6}. Then X is a set with three elements,
namely, the set {1, 2, 3}, the set {4, 5}, and the number 6. % (X) = {J, {{1, 2, 3}},
{{4, 5}}, {6}, {{1, 2, 3}, {4, 5}}, {{1, 2, 3}, 6}, {{4, 5}, 6}, X}. The set {{4, 5}}

has one element; it is {4, 5}. For the set X:

6eX and {4,5}eX, but 4¢X

{4} ¢ {4,5} but {4} C {4,5}.

{4,5} ¢ X because 5 ¢ X

{6} =X but {6}e¢X

{6} e P(X) but {6} £ P(X).

{{4,5}} € X because {4,5}e X

{4,5}y ¢ P(X) but {{4,5}} e P(X).
JCX, so Je P(X), and {J} < P(X).

Notice that for the set A= {a, b, c, d}, which has four elements, % (A) has
16 = 2* elements and for the set X above with three elements, % (X) has 8 = 23 ele-
ments. These observations illustrate the next theorem.

Theorem 2.1.4 If Ais a set with n elements, then P (A) is a set with 2" elements.*

Proof. (The number of elementsin % (A) is the number of subsets of A. Thus to
prove this result, we must count all the subsets of A.) If n =0, that is, if A is the
empty set, then P (&) = {J}, which is a set with 2° = 1 elements. Thus the theo-
rem is true for n= 0.

Suppose A has n elements, for n > 1. We may write Aas A= {x, X, ..., Xn}-
To describe a subset B of A, we need to know for each x; € A whether the element is
in B. For each x, there are two possibilities (X € B or x ¢ B), so there are
2-2-2----- 2 (n factors) different ways of making a subset of A. Therefore % (A)
has 2" elements. (The counting rule used here is called the Product Rule. See
Theorem 2.6.5 and the discussion following that theorem. ) u

The next theorem is a good example of a biconditional statement for which a
two-part proof is easier than an iff proof.

Theorem 2.1.5 Let Aand B be sets. Then A C B iff (A) € ?(B).

Proof.

(i) We must show that AC B implies ?(A) € %(B). Assume that ACB
and suppose X e %P(A). We must show that X e P (B). But X e P(A)
implies X C A. Since X € A and A C B, then X C B by Theorem 2.1.1. But
X C B implies X € ?(B). Therefore, X % (A) implies X e % (B). Thus
P(A) € P(B).

(i)  We must show that % (A) € P (B) implies A C B. Assume that % (A) € P (B).
By Theorem 2.1.1 ACA; so Ae P (A). Since ?(A) € P(B), Ae P(B).
Therefore A C B. [

* This theorem is the reason that some mathematicians use 2” to denote the power set of A.
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The second half of the proof of Theorem 2.1.5 could have been done differ-
ently. We could have shown that A C B by giving a direct proof that x € A implies
X € B. A proof that consists of a series of steps beginning with “Assume x € A” and
leads to a conclusion that “Therefore x € B” is often called an element-chasing
proof, and is the natural way to prove the most basic facts about sets. As we build
our knowledge of set properties in the next section, we may use theorems already
proved, as we did above by using Theorem 2.1.1, to shorten our proof of Theorem
2.1.5. An element-chasing proof of part (ii) would be just as correct, but most peo-
ple prefer a shorter, more elegant proof. When you write proofs, you may choose
one method of proof over another because it is shorter, is easier to understand, or
for any other reason.

Exercises 2.1

1. Write the following sets by using the set notation {x: P(X)}.
* (@) The set of natural numbers strictly less than 6
(b) The set of integers whose square is less than 17

* (0 [2,€]
(d (=1,9]
(e [-5 -1

(f)  The set of rational numbers less than —1

2. Let X={x: P(X)}. Are the following statements true or false?
(@ Ifae X then P(a).
(b) If P(a),thenae X
(c) If~P(a),thenag X

3.x (@) (Russdl paradox) A logical difficulty arises from the idea, which at
first appears natural, of calling any collection of objects a set. Let’s say
that set Bis ordinary if B ¢ B. For example, if B is the set of all chairs,
then B ¢ B, because B is not a chair. It is only in the case of very unusual
collections that we are tempted to say that a set is a member of itself.
(The collection of all abstract ideas certainly is an abstract idea.) Let
X = {x: xis an ordinary set}. Is X € X? Is X ¢ X? What should we say
about the collection of all ordinary sets?

(b) Inthe town of Seville, the (male) barber shaves all the men, and only the
men, who do not shave themselves. Let A be the set of all men in the
town who do not shave themselves. Who shaves the barber? (That is, is
the barber an element of A? Is he not an element of A?)

4. True or false?

* (@ NcQ. (b) @cz.

« (© NCR. @ [55ca
=@ [p3leh) 0 Rca

* () [7,10)C{7,8,9, 10} (i) (6,9] <6, 10)
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D % % % % % U

*

10.

12.
13.

14.

15.
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True or false?

(@ Je{d {I}}. (b) ©c{JI {1}
(© {J}e{d {I}}. d) {2} {9 {1}
(€ {J}}e{d {J}} 6 {91} {9 {7}

(g) ForeverysetA e A (h) ForeverysetA {J} C A

(i) L {c{o{gy}}). () {1L.2ye{{1,23}{1,3}12}
(k) {1.2,3<c{1,2,3 {4} () {43}r<c{1.23 {4}

Give an example, if there is one, of sets A, B, and C such that the following
are true. If there is no example, write “Not possible.”

(@ AcBB¢CandAcCC.

(b) ACBBCC,andCCA

(0 AZBB¢ZCandAcCC.

(d AcBB¢CandA¢C.

Prove that if x ¢ B and A C B, then x ¢ A.

Prove part (c) of Theorem 2.1.1: For all sets A, B,and C,if AC Band BC C,
then A C C.

Provethatif ACB,BC C,andCC A thenA=Band B=_C.

Suppose that X = {x: x e R and x is a solution to x?> — 7x + 12 = 0} and
Y = {3, 4}. Prove that X =Y.

Let X={xeZ: |x|<3} and Y={-3,-2,-1,0,1, 2,3} Prove that
X=Y.

Prove that X =Y, where X = {x e N: x?> < 30} and Y = {1, 2, 3, 4, 5}.

For a natural number a, let aZ be the set of all integer multiples of a. Prove
that foralla,be N, a=Db iff aZ = bZ.

Write the power set, % (X), for each of the following sets.

(@ X={0,4,0} (b) X={S{S}}

(© X={I {a}.{b}.{ab}} (d) X={1{I} {2 {3}}}
Let A, B, and C be sets and x and y be any objects. True or false?
(@ IfxeA thenxe P(A).

(b) IfxeA then{x} € ?(A).

(©) IfxeA then{X} € ?(A).

(d) If{x,y}eP(A),thenxe Aandye A

(e IfBC A then{B} e P?(A).

(f) IFBCA thenBe P(A).

(99 IfBe®(A),thenBC A

(h) IfC<CBandBe P(A),thenCe P(A).

List all of the proper subsets for each of the following sets.

@ 9 (b) {9 {}}

o {12} (d) {0, A, O}

True or false?

(@ DeP{D,{I}. (b) {T} e ?({Q, {}}).

© {GHe?{{@{g}). () J<P{D {})).
(€ {J}c?{D {1} ) {1 c2{D.A{1D.
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* (g 3€Q. (h) {3} c2(Q).

(i) {3re2(Q). () {81} c2(W).
* (k) {3rcq. ) {{8}} e 2 (D).

18. Let Aand B be sets. Prove that A = B iff % (A) = % (B).

Proofsto Grade 19. Assign a grade A (correct), C (partially correct), or F (failure) to each. Justify
assignments of grades other than A.
(@ Claim. IfX={xeN:x?<14}andY={1,2 3}, thenX=Y.
“Proof.” Since1’=1<14,22=4 <14, andF =9 <14, X=Y. =
(b) Claim. If A B,and Caresets,and AC Band BC C,the ACC.
“Proof.” LetA=4{1,5,8} B={14,5,8,10}, and C={1,2,4,5,
6,8,10}. Then AC B, andBC C, and AC C. u
* (c) Claim. If A B,and Caresets,and AC Band B C C,then AC C.
“Proof.”  Suppose x is any object. If x € A, then x € B, since AC B.
If xe B, then x e C, since BC C. Thus, x e C. Therefore, ACC. =
(d) Claim. If A/ B,and Caresets,and ACBand B C C,then AC C.
“Proof.” If xe C, then, since BC C, xe B. Since AC Band xe B,
it follows that x € A. Thus x € C implies x € A. Therefore, ACC. =
* (e) Claim. If A B,and Caresets,and AC Band B C C,then AC C.
“Proof.” Suppose AC Band B < C. Then xe A and x € B, because
ACB. Then xe B and x € C, because B C C. Therefore, x € A and
xe C,soACC. L
(f) Claim. IfAisaset, AC P (A).
“Proof.” Assume A is a set. Suppose xe A. Then xC A. Thus
x e P(A). Therefore A< P (A). |
(g Claim. IfAisaset, ACP(A).
“Proof.” Assume A is a set. Suppose xe A. Then {x} € A Thus
{3 € P(A). Therefore, A P (A). =
* (h) Claim. If Aand Bare setsand % (A) € %(B), then A C B.
“Proof.” xeA={JCcA
=G eP(A
= {x} (B
={x}cB
= xeB.
Therefore, xe A= xe B. Thus AC B. u
*x (i) Claim. IfAcBandB¢ C,then A¢Z C.
“Proof.”  Suppose AC B and B ¢ C. Then there exists x € B such
that x ¢ C. Since x € B, x € A by definition of subset. Thus x € A and
x ¢ C. ThereforeA ¢ C. u

*

2.2 Set Operations

In this section we give precise definitions and prove some well-known properties of
familiar operations on sets. Set union, interesection, and difference are called
binary operations because each combines two sets to produce another set.
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DEFINITIONS Let Aand B be sets.

The union of A and B isthe set AUB = {x: xe Aor x e B}.
The intersection of Aand B isthe set AN B = {x: xe Aand x € B}.
The differenceof Aand B isthe set A— B={x: xe Aand x ¢ B}.

The set AU B is a set formed from A and B by choosing as elements the
objects contained in at least one of A or B; AN B consists of all objects that
appear in both A and B; and A — B contains exactly those elements of A that are
not in B. The shaded areas in the first three Venn diagrams of Figure 2.2.1 repre-
sent, respectively, the result of forming the union, intersection, and difference of
two sets. These visual representations are often useful for understanding relation-
ships among sets. However, when there are more than three sets involved, it is
difficult or impossible to use Venn diagrams.

PICDIICDI OO

AUB ANB A-B Disjoint sets Aand B

Figure 2.2.1

Examples. ForA={1,2,4,5 7}and B={1, 3,5, 9},

AUB={1,23,4,5,7,9},

ANB ={1,5},
A—B=1{24,T1}
B—A={3 9}

Examples. For intervals of real numbers, we have

[3.6]U[4,8) =[3, 8)
[3,6] N [4,8) =[4,6]
[3,6] —[4.8)=[3,4)
[4,8) —[3,6] = (6, 8)
[4,8) — (5, 6] =[4,5] U (6, 8).

Two sets are said to be disjoint if they have no elements in common.

DEFINITION Sets Aand Bare digoint iff AN B = (.
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As shown in the last Venn diagram of Figure 2.2.1, when sets A and B are
known to be disjoint we represent them as non-overlapping regions.

Examples. The sets {1, 2, b} and {—1, t, v, 8} are disjoint. The set of even natural
numbers and the set of odd natural numbers are disjoint. The intervals (0, 1) and
[1, 2] are disjoint, but (0, 1] and [1, 2] are not disjoint because they both contain
the element 1.

The set operations of union, intersection, and difference obey certain rules
that allow us to simplify our work or replace an expression with an equivalent
one. Some of the 18 relationships in the next theorem seem to be obviously true,
especially if you compare sets using Venn diagrams. For example, the Venn dia-
grams for AN B and B N A are exactly the same (see part (h)). However, simply
drawing a Venn diagram does not constitute a proof. Each statement requires a
confirmation of the relationship between the sets by using the set operation
definitions. We prove parts (b), (f), (h), (m), and (p) and leave the others as
exercises.

Theorem 2.2.1 For all sets A, B, and C

(@ ACAUB.
() ANBCA
© AnNG=d.
d AUT=A
(e ANA=A
f) AUA=A.

Eg)) 2% g = 2 X 2 } Commutative Laws
i) A-O=A
i) T-A=0.

(k) Au(BuC)=(AuB)UC.

() ANn(BNnC)=(AnB)NC.

(m) An(BuC)=(ANnB)U(ANCQC).
(n) Au(BNC)=(AUuB)N (AUC).
(o) ACBIiff AuB=B.

(p) ACBIffANB=A

(@ IfACB,thenAUCCBUC.

(@) IfACB, thenANCCBNC.

} Associative Laws

} Distributive Laws

Proof.

(b)  (We must show that, if xe AN B, then x e A). Suppose x € AN B. Then
x € Aand x € B. Therefore x € A. (We used the tautology P A Q = Q.)

® (We must show that xe AU A iff xe A). By the definition of union,
xe AUAIff xe A or xe A This is equivalent to xe A. Therefore,
AUA=A
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(h)  (Thishiconditional proof uses the definition of intersection and the equiva-
lenceof PA Qand Q A P.)

xe ANBiff xe Aandxe B
iff xeBandxe A
iff xe BN A.

(m)  (Asyou read this proof, watch for the steps in which the definitions of union
and intersection are used (two for each). Watch also for the use of the equiv-
alence from Theorem 1.1.1 (f).)

xe AN (BUC)iff xe AandxeBUC
iff xe Aand (xe Borxe C)
iff (xe Aandxe B) or (xe Aand xe C)
iff xeAnBorxe ANC
iff xe (ANB)U (ANC).

Therefore AN (BUC)= (ANB)U (ANC).

(p)  (Wegive separate proofs for each implication, making use of earlier parts
of this theorem.) First, assume that A C B. We must show that AN B = A.
Suppose x € A. Then from the hypothesis A € B, we have x € B. Therefore
xe A and x € B, so xe AN B. This shows that A € An B, which, com-
bined with AN B € A from part (b) of this theorem, gives AN B = A.

Second, assume that A N B = A. We must show that A C B. By parts (b)
and (h) of this theorem, we have BN A € Band BN A= AN B. Therefore,
AN B C B. By hypothesis, ANB=A, so ACB. n

When you suspect that a relationship among sets is not always true, try to con-
struct a counterexample. To find a counterexample for (AUB) NC =AU (BN C)
we need sets such that the shaded regions of Figures 2.2.2 (a) and (b) have different
elements. That is, we find sets A, B, and C such that A contains at least one element
that is not in C. One counterexampleisB = {3, 5}, C={4, 5, 6},and A= {2, 3, 4}.
Then (AUB)NC={4,5}whileAU (BN C) ={2, 3, 4, 5}.

C C

(AUB)NnC AU (BN C)
@ (b)
Figure 2.2.2
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Recall that the universe of discourse is a collection of objects understood from
the context or specified at the outset of a discussion and that all objects under con-
sideration must belong to the universe.

DEFINITION  Let U be the universe and A € U. The complement of A
istheset A=U — A

The set AC® is the set of all elements of the universe that are not in A. (See
Figure 2.2.3.)

Figure 2.2.3

For the set A= {2, 4, 6, 8}, we have A® = {10, 12, 14, 16, .. .} if the universe
is all even natural numbers, while A°={1,3,5,7,9, 10, 11, 12, 13, ...} if the
universe is N. For the universe R, if B = (0, c0), then B¢ = (—o0, 0]. If D = {5}
then D¢ = (—o0, 5) U (5, 00).

Since the universe is fixed throughout a discussion, finding the complement
may be thought of as a unary operation—it applies to a single set. The next theorem
includes several results about the relationships between complementation and the
other set operations.

Theorem 2.2.2 Let U be the universe, and let A and B be subsets of U. Then

@ (A)=A

(b) AUA°=U.

() ANA=g.

(d A—B=ANB"

() ACBIff BEC A"

(f)  (AUB)*=A"NB" De Morgan’s Laws
(9 (ANnB)¢=A°UB®

(hy AnB=Jiff ACBC

Proof.

(@ By definition of the complement x € (A®)€ iff x ¢ A°iff x e A. Therefore
(A% =A
(e)  Todemonstrate different styles, we give two separate proofs.
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First proof. (Thisisa two-part proof. The first part is an element chasing proof.
The second part is proved using thefirst part.)

(1) (Show that if AC B then B¢ C A®) Assume that A C B. Suppose x € B®.
Then x ¢ B. Since AC B and x ¢ B, we have x ¢ A. Therefore, x € AC.
Thus, B¢ C AC.

(2)  (Showthat if B¢ C A° then A C B.) Assume that B¢ C AC. Then by part (1),
(A%)E C (B®)C. Therefore, using part (a), A C B.

By parts (1) and (2), we conclude that A C B iff B¢ C A"

Second proof. (Thisiff proof makes use of the fact that a conditional sentence is
equivalent to its contrapositive.)
ACBIff forall x, ifxe Athenxe B
iff forall x, if x ¢ Bthenx ¢ A
iff for all x, if x e B®then x € A®
iff B¢ C A

(fy) xe(AuB)Ciff xg AUB
iff it is not the case thatx e Aorxe B
iff x¢ Aandx ¢ B
iff xe A®and x € B®
iff xe A°N BC.

The proofs of the remaining parts are left as Exercise 8. u

The ordered pair formed from two entities aand b is the object (a, b). Ordered
pairs have the property that if either of the coordinates a or b is changed, the
ordered pair changes. That is, two ordered pairs (a, b) and (c, d) are equal iff
a=cand b=d. Thus, (3,7) # (7, 3) even though the sets {3, 7} and {7, 3} are
equal. A more rigorous definition of an ordered pair as a set is given in Exercise 17.

In previous study you have dealt with the ambiguity of using the same notation
(3, 7) for the ordered pair that represents a point in the plane and also for the open
interval of real numbers with endpoints 3 and 7. The context in which (3, 7) appears
should always make the meaning clear.

We also say the ordered n-tuples(ay, &, . .., a,) and (cy, Cy, . . ., Cp) are equal
iff g = ¢ fori=1,2,...,n. Thusthe ordered 5-tuples (4, 9, 5, 0, 1), (5,4, 9,0, 1)
and (0, 1, 4, 5, 9) are all different.

DEFINITION Let Aand B be sets. The product (or cross product) of
Aand B is

AxB=4{(a b):aeAandbe B}.

We read A x B as “Across B.”
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The set A x Bisthe set of all ordered pairs having first coordinate in Aand sec-
ond coordinate in B. The cross product is sometimes called the Cartesian product
of Aand B, in honor of René Descartes.*

Example. If A={1,2}and B={2, 3, 4}, then
AxB={(,2),(173),(1,4),(2,2),(2,3), (2, 4}

Thus (1,2) e Ax B, (2,1) ¢ A x B, and {(1, 3), (2, 2)} C A x B. In this exam-
ple, A x B # B x Asince

BxA={(21),(2,2),(31),(3,2),(41), 42}

The product of three or more sets is defined similarly. For example, for sets A,
B,andC,Ax B x C={(a,b,c):acA beB,andce C}.

Some useful relationships between the cross product of sets and the other set
operations are presented in the next theorem.

Theorem 2.2.3 If, A, B, C, and D are sets, then

@ Ax(BUC)=(AxB)U(AxC).

() Ax (BNC)=(AxB)Nn (AxC).

o AxT=0.

(d (AxB)Nn(CxD)=(ANC)x (BNnD).
(e (AxB)U(CxD)C (AUC)x (BUD).
f (AxB)Nn(BxA)=(ANB)x (ANB).

Proof.

(@ (SncebothA x (BUC)and (A x B) U (A x C) aresetsof ordered pairs,
their elements have the form (x, y). To show that each set is a subset of the
other weuse an “iff argument.”)

xy)eAx (BUC)iff xeAandyeBUC
iff xe Aand (ye Borye C)
iff (xe Aandye B)or (xe Aandy e C)
iff (xy)eAxBor(x,y)eAxC
iff (x,y)e (AxB)U (AxC).
Therefore, Ax (BUC)= (AxB)U (AxC).

e If xy)e(AxB)U(CxD), then (x,y)eAxB or (xy)eCxD. If
(x,y) e Ax B, then xe A and ye B. Thus xe AUC and ye BUD.
(Because ACAUCand BC BUD.) Thus, (x,y) e (AUC) x (BUD).

* René Descartes (1596-1650) was a French mathematician, philosopher, and scientist. His work Discours
delaméthode defined analytical geometry by combining the geometric notions of curves and areas with alge-
braic equations and computations. He was the first person to use superscripts to indicate exponential powers
of a quantity.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



86 CHAPTER 2 Set Theory
If (x,y) € C x D, a similar argument shows (x,y) € (AUC) x (BUD).
This shows that (A x B) U (C x D) € (AUC) x (BUD). u

Parts (b), (c), (d), and (f) are proved in Exercise 15. Part (e) of Theorem 2.2.3
cannot be sharpened to equality. See Exercise 16(a).

Exercises 2.2

1. Let A={1,3,5 7 9} B={0,2 4,6, 8, C={L 2 4,5, 7 8} and
D={1 2 3,5, 6,7, 8,9, 10}. Find

* (@) AUB. (b) ANB.
* () A-B. (d A-(B-C)
* (e (A-B)-C (f) Au(CnD).
* (9) (ANC)ND. (hy An (BUC).
* (i) (AnB)U(ANC). (j) (AuB)—(CnD).
2. Let the universe be all real numbers. Let A=[3,8), B=[2,6], C=(1,4),
and D = (5, o0). Find
(@ AUB. *» (b) AUC.
(0 ANB. * (d) BNnC.
(e A-B. (f) B-D.
(9 D-A * (h) A
(i) B—(AUC). (i) (AucC)-(BnD).

3. Let the universe be the set Z.Let E, D, Z™, and Z~ be the sets of all even,
odd, positive, and negative integers, respectively. Find

* (@) E—-ZT. (b) Z*—-E. (0 D-E
* (d) (ZM)- (e z+-17-. (f)y E-
* (g9 E—-27Z". (hy (Enz)S i o~
* 4. LetA B, C, and D be as in Exercise 1. Which pairs of these four sets are disjoint?
5. Let A B, C, and D be as in Exercise 2. Which pairs of these four sets are
disjoint?
6. Give an example of nonempty sets A, B and C such that

* (@ CcAuBandANB¢C
() ACBandCC ANB.
(0 AuBcCandC¢ B.
(d AZBUCBZAUCandCCAUB.
(6 ACBUCBCAUC CCAUBANB=ANC,and A#B.
(f) ANnBCSC ANnCcBBNCcAandA=BUC.
7. Prove the remaining parts of Theorem 2.2.1.
8. Prove the remaining parts of Theorem 2.2.2.

9. Let A, B, and C be sets. Prove that
(@ ACBIiIffA-B=.
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(b) ifACBUCandANB=,thenACC.
* () CCANBIiff CCAand CCB.

(d) ifACB,thenA—-CCB-C.

e (A-B)-C=(A-C)— (B-0C).

(fy ifFACCandBC C,thenAUBCC.

(99 (AuB)NCCAU(BNCQC).

(h) A — Band B are disjoint.

10. Let A B, C, and D be sets. Prove that
(@ ifCCAandDcCB,thenCNDCANB.
(b) ifCCAandD CB,thenCUD C AUB.
* (¢) ifCC A DCB,and A and B are disjoint, then C and D are disjoint.
(d ifCcAandDC B, thenD—-ACB-C.
(6 ifFAUBCCUD,ANB=(,and CC A thenBCD.

11. Provide counterexamples for each of the following.
* (@ IfAUCCBUC,then ACB.
(b) FANCCBNC,thenACB.
* () f(A—-B)N(A-C)=g,thenBNC=0.
(dy P(A) —P(B)<P(A-B).
* (¢ A—(B-C)=(A-B)— (A-C).
f) A—-(B-C)=(A-B)-C
12. Let Aand B be sets.
*x (@) Provethat ?(ANB)=%(A) N %(B). Youmay use Exercise 9(c).
(b) Provethat % (A) U P (B) € ?(AUB).
(c) Show by example that set equality need not be the case in part (b). Under
what conditionson Aand Bis (AU B) = ?(A) U % (B)?
* (d) Show that there are no sets A and B such that %(A—B) =
P(A) — P(B).
13. List the ordered pairs in A x Band B x Ain each case:
@ A={1,35}B={aekn,r}.
* (b) A={1,2{12}} B={q {t}, 7}.
© A={J,{T} {2, {G}}}. B={(D, {}). {T}, {9}, D)}
d) A={(24). G D}B={41),(23)}
14. Let Aand B be nonempty sets. Prove that A x B=B x Aiff A=B.

15. Complete the proof of Theorem 2.2.3 by proving
* (@ Ax (BNnC)=(AxB)n (AxC).
by AxIT=0.
(©0 (AxB)n(CxD)=(ANC)x (BNnD).
(d (AxB)n(BxA)=(ANB)x (ANB).
16. Give an example of nonempty sets A, B, C, and D such that
(@ (AxB)U(CxD)# (AUC)x (BUD).
(b) (CxC)—(AxB)#(C—A)x (C-B).
(c) Ax (BxC)# (AxB)xC.
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17. One way to define an ordered pair in terms of sets is to say (a, b) =
{{a}, {a, b}}. Using this definition, prove that (a, b) = (x, y) iff a=x and
b=y.

18. Let A and B be sets. Define the symmetric difference of A and B to be
AAB=(A—B)U (B—A). Prove that

(@ AAB=BAA (b) AAB=(AUB)— (ANB).
Proofsto Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.
* (@) Clam. IfACB,thenA-CCB-C.
“Proof.” Assume A C B. Suppose x € A. Then x € B, since AC B.
Let C be any set. Then xe Aand x ¢ C. Then x € B and x ¢ C. Thus
xeA—Cand xe B— C. Therefore, A—CCB-C. =
(b) Claim. IfACB,thenA—-CCB-C.
“Proof.” Assume A C B. Suppose A— C. Then xe A and x ¢ C.
Then x € B, because AC B. Since xe B and x ¢ C, B— C. There-
fore, A—CCB-C. =
(c0 Clam. IfACB,thenA-CCB-C.
“Proof.” Assume ACB. Then xeA and xeB. Suppose
xeA—-C. Then xeA and xe¢ C. Since xeB and x¢ C,
xe B — C. Therefore, A—CCB-C. =
* (d) Clam. ACBIiff AnNB=A
“Proof.” Assume that A C B. Suppose xe ANB. Then xe A and
xeB, so xe A This shows that ANB=A. Now assume that
ANB=A. Suppose xe A Then xe ANB, since A=ANB; and,
therefore, x € B. This shows that x € Aimpliesx € B,and so A C B. u
* (e) Clam. ANJ=A
“Proof.”  We know that xe AN iff xe Aand x € . Since x € &
is false, xe A and xe J iff xe A Therefore, xe AN iff xe A;
that is, AN = A u
(f) Clam. IfANB#andBNC# U, then ANC# .
“Proof.” Assume ANB# and BNC#J. Since ANB# O,
there exists x such that x € AN B; thus x € A. Since BN C # J, there
exists xe BN C; thus xe C. Hence xe A and xe C. Therefore,
x € AN C, which show AN C # &. u
(g) Clam. ANA°=.
“Proof.” (We show each side is a subset of the other.) By Theorem
2.1.1, & < AN A% Now suppose xe AN AS Then xe A and x € A%
Thus x € Aand x ¢ A. Therefore, X # Xx. Hence, by the definition of J,
x € . Therefore, AN A° C . u
(h) Clam. ?(A-B)—{J} < P?(A) — P(B).
“Proof.” Suppose xe ?(A—B) —{J}. Then xe (A —B) and
X#£ . Since e P(A) and T e P(B), T & P(A) — P(B). Since
xe P(A—B), xe P(A) — P(B). Therefore, we can conclude that
PA-B)—{TJ} < P(A) —P(B). |
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* (i) Claim. IfACB,then AUB=B.
“Proof.” Let AC B. Then Aand B are related as in this figure.

(a) B

Since A U B is the set of elements in either of the sets Aor B, AUB is
the shaded area in this figure.

(a) B

Since thisis B, AUB = B. n

2.3 Extended Set Operations and Indexed Families of Sets

Aset of sets is often called a family or a collection of sets. In this section we extend
the definitions of union and intersection to families of sets and prove generaliza-
tions of parts of Theorem 2.2.1.

Throughout this section we will use script letters, &4, 98, 6, . . . to denote fam-
ilies of sets. For example,

A={{1, 2, 3}, {3, 4,5}, {3, 6}, {2, 3, 6, 7, 9, 10}}
is a family consisting of four sets. Notice that 5 € {3, 4, 5} and {3, 4, 5} € #, but

5¢ o. The set B = {(—x, X): x e R and x > 0} is a family of open intervals. The
sets (—1, 1), (— V2, ﬁ), and (-5, 5) are elements of %B. See Figure 2.3.1.

(_51 5)
(—\/é, \/é)

o (-1,1)

| | | | | | | | | | |
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2.3.1
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DEFINITION Let s be a family of sets. The union over o is

J A= {x xe Aforsome A e si}.
Aesd

Using this definition, for any object x we may write:

xe JAiff@Ae d)(xeA).
Aesd

This symbolic statement expresses the direct relationship between the union over
a family and the existential quantifier 3. To show that an object is in the union of
a family, we must show the existence of at least one set in the family that contains
the object. Figure 2.3.2(a) is a Venn diagram showing the union over the family

M={R ST}
S S
R R
T T
U A (A

Ae.ll Aelt

@ (b)
Figure 2.3.2

For the family s of four sets given above, | JA={1,2,3,4,5,6,7,9,10}.
Aesdd
The union of the family B = {(—x, X): xe R and x > 0} is the set of all real
numbers because every real number b is an element of the open interval
(=Ibl =1, Ib| +1).

DEFINITION Let 4 be a family of sets. The intersection over s is

(1A= {x xe Aforevery Ae s}.
Aedd

For the intersection over a family s, we write

xe [ Aiff (VAe sd)(x e A).
Aed
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Figure 2.3.2(b) shows the Venn diagram for the intersection over the family
M={R S T} Using the family s above again as an example, [ A= {3}

Aed
because 3 is the only object contained in all four sets in s. The intersection of the
family B = {(—x, X): x € R and x > 0} is the set {0} because 0 is the only number
in every set in 9.

Example. For the family o = {{r, k s t,a},{k d, s}}, UA={r kst a d}
Aed

and [ ) A= {k, s}. If there are only two sets in the family, the union and intersection
Aed

over the family are the same as the union and intersection defined in Section 2.2.

Theorem 2.3.1 For every set B in a family s of sets,
@ [1AcB
Aedd
(b) Bc JA
Aed
(c)  If the family &4 is nonempty, then ([JAC | A
Aedd Aesdd

Proof.

(@  Letsd beafamily of setsand B € «{. Suppose x € [ ] A. Thenx e A for every
Aedd

A e «. (Notice that the set A in the last sentence is a dummy symbol. It
stands for any set in the family. The set B is in the family.) In particular,

x € B. Therefore [ | AC B.
Aed

(b)  The proof that B is a subset of the union over s is left as Exercise 3.
(c)  Let s{ be a nonempty family. Choose any set C € 5. By parts (a) and (b)

(JAc Cc |JAand therefore, [JAC JA ]
Aed Aedd Aedd Aed

It was necessary in part (c) that the family s{ be nonempty. If « is the empty
family, then intersection is equal to the universe of discourse. (See Exercise 4.) This
observation is a reason to be cautious about dealing with the empty family of sets.

Example. Let 9B be the collection {Bn: ne N}, where B,={0,1,2, ..., n}.
Members of 9% include B, =4{0,1,2} and Bs={0,1,2, 3,4,5 6} Then

(UB=NuU{0}and [ B={0,1}.
Be® Be®

It is often helpful to associate an identifying tag, or index, with each set in a
family of sets. In the example above, each natural number n corresponds to a set
Bn. By specifying the index, as we did when we selected n = 2 or 6, we specified
the corresponding set. By specifying a set of indices, we can specify the family of
sets we want to consider.
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DEFINITIONS Let A be anonempty set such that for each « € A there
is a corresponding set A,. The family {A,: « € A} isanindexed family of
sets. The set A is called the indexing set and each « € A is an index.

Indexing is a common phenomenon in everyday life. Suppose an apartment
building has six rental units, labeled A through F. At any given time, for each apart-
ment, there is a set of people residing in that apartment. These sets may be indexed
by A = {A B, C, D, E, F}. Let Py be the set of people living in apartment k. Then
P = {Px ke A} is an indexed family of sets. An index is simply a label that pro-
vides a convenient way to refer to a certain set.

Example. For all neN, let Ay={nn+1,2n} Then A ={1,2},
A, ={2, 3,4}, As={3,4,6}, and so forth. The set with index 10 is Ay =
{10, 11, 20}. Except for the set Ay, every set in the family {A;: i € N} has 3 ele-
ments. To form the family of sets that contains only Ay, As, Ao, and Ass, we change
the index set as follows: {Ay, A, As, Ao} = {Ai: i €{2, 3, 10, 15}}.

There is no real difference between a family of sets and an indexed family.
Every family of sets could be indexed by finding a large enough set of indices to
label each set in the family.

Example. For the sets Ay = {1, 2, 4, 5}, A, ={2, 3,5, 6}, and A3 = {3, 4, 5, 6},
the index set has been chosen to be A = {1, 2, 3}. The family s indexed by A is
A ={A, Ao, As} = {Ai:i € A}. The family o could be indexed by another set.
For instance, if I' = {10, 21, n}, and Ao ={1, 2, 4,5}, A1 ={2, 3,5, 6}, and
A, ={3,4,56}then{A:ie A} ={A:iel}

Example. Let A ={0,1,2,3,4} and let A,={2x+ 4, 8,12 — 2x} for each
Xe A. Then Ay={4,8,12}, A ={6,8, 10}, A, ={8}, A;={6,8, 10}, and
Ay ={4, 8, 12}. The indexing set has five elements but the indexed family «{ =
{A¢ X € A} has only three members, since Ay = Ag and Ay = Ay

As the above examples demonstrate, an indexing family may be finite or infi-
nite, the number of elements in the member sets do not have to be the same, and dif-
ferent indices need not correspond to different sets in the family.

The operations of union and intersection over families of sets apply to indexed
families, although the notation is slightly different. For a family o = {A,: « € A},
the notations for unions and intersection are:

UA.= UA and xe JA,iff Qae A)(xe A.

aEA Aedd aEA
NA.= 1A and xe [)ALIff (Yae A)(xe Ay).
aEA Aedd aEA
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In the previous example with A = {0, 1,2, 3,4}, |J A.={4,6,8,10,12}
aeA
and [ A, = {8}.

aeA

Example. For ne N, let A,={n,n+1,2n}. Then |JA,=N. To show, for

neN
example, that 27 € | A, we need only point out some index n such that 27 € A,
neN
Either index 26 or 27 will do. Since there is no number x such that x € C, for all
neN, (A =d.
neN

Example. For each real number x, define B, = [x? x>+ 1]. Then B_i2 =

[%, %] By = [0, 1], and Bjp = [100, 101]. This is another example in which we
have different indices representing the same set. For example, B_, = B, = [4, 5].
Here the index setis R, [ |Bx= &, and | B, = [0, 00).

xeR xeR

There is a convenient variation on the notation for union and intersection when
the index set is the natural numbers. For an indexed family s = {An: n e N},
o0

o0
we can write | J A instead of (J A, The intersection over s is written [ A.
i=1

i= neN i=1

4 15
AIso,AZUA3UA4=UAiandA110A120A130A14ﬁA15: mA|
i=2 i=11

Example. Foreachne N, let A,={n,n+ 1, n%}. For of = {A;:ne N}

o) 6

NA =0 A = {4,5,6,7,16, 25, 36}
i=1 i=4

00 4

UA=N NA={®

3 10

UA= {12349} NA=0C

i=1 i=8

The next theorem restates Theorem 2.3.1 for indexed families and gives a ver-
sion of De Morgan’s Laws for indexed families.

Theorem 2.3.2 Let & = {A.: « € A} be an indexed collection of sets. Then

@ [)A.CSAgforeach B e A.

aceA

(b) Agc |JA,foreach g e A.

aeA
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De Morgan’s Laws

Proof. The proofs of parts (a) and (b) are similar to those for Theorem 2.3.1 and
are left for Exercise 5(a).

@ x<(0a)

iff xe () A,

aeA
iff it is not the case that for every « € A, x € A,
iff forsome B e A, x & Ag
iff for some B € A, x € A

iff xe | AC.
aceA c
Therefore, ( N Aa) = JAS
aeA aeA

(d)  (One proof of part (d) is very similar to that given for part (c) and is left as
Exercise 5(b). However, since part (c) has been proved, it is permissible to
useit. We also use (twice) the fact that (A€ = A.)

(Ua) =(Ueor)

()

—Nee

aeA |

DEFINITION The indexed family ¢ = {A,: @ € A} of sets is pair-
wise digjoint iff for all @ and 8 in A, either A, = Agor A, N Ag = (.

The family {Aq, As, As} in Figure 2.3.3(a) is pairwise disjoint. However, the
family {By, By, Bs} in Figure 2.3.3(b) is not pairwise disjoint. Although
B; N B, = J, the sets B, and Bs are neither identical nor disjoint.
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AO
A B, B,
- -

A

@ (b)
Figure 2.3.3

Two questions are commonly asked about the concept of pairwise disjoint fami-
lies. The first is about why we bother with such a definition when we could simply say
a family is disjoint if and only if ) A, = &. Having an empty intersection is not the

acA

same as being pairwise disjoint and not nearly as useful (see Section 3.3). The family
{C4, C,, C3} with C; = {a, b}, C, = {b, c}, and C; = {a, c} is not pairwise disjoint,

3
even though [ |G =&
i=1

The second common question asks why the definition says “either A, = Ag or
A, N Ag =" instead of “A, N Ag = & whenever « # B.” That is, why not say “if
a # B then A, and Ag are disjoint?” The family {[n, n + 1): n € N} is pairwise dis-
joint because whenever n £ mwe have [n, n+ 1) N [m, m+ 1) = J. However, in
some families of sets it happens that different indices correspond to the same set, so
the definition allows for this possibility.

Example. Suppose B = {By, By, Bs, B4, Bs, Bg}, where

Bl = {a, C, e} BZ = {d, g}
Bs={d g} Bs={b,f, h}
Bs ={a, c, €} Bs ={a, ¢, e}

The family @& is pairwise disjoint. Note that B; = Bs = Bs and B, = Bg, so
B = {Bu, By, Bs}.

Example. Suppose Ax= {—x, x} for every x in R and 9 = {A« x € R}. Then
As={-3,3}=Azand A ;={7, -7} = A;. The family & is pairwise disjoint
because A, = Ay whenever |x| = |y| and AN A, = J whenever [X| # |y].
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Exercises 2.3

1. Find the union and intersection of each of the following families or indexed
collections.
* (@) Let 4=9{{1,2,34,5}{23,4,5,6} {3,4,5 6,7} {4,5,6,7,8}}.
(b) Letsd ={{1,3, 5} {2 4,6} {7,911, 13}, {8, 10, 12}}.
* (c) For each natural number n, let A, ={5n,5n+1,5n+2..., 6n}, and
let f = {As:ne N}.
(d) For each natural number n, let B,=N —{1,2,3,...,n} and let
B ={Bn: ne N}
* (e) Let o be the set of all sets of integers that contain 10.
() LetA={1} A,={2,3}, As={3,4,5}, ..., Ao ={10,11,...,19} and
letsA ={A:ne{l,23,...,10}}.
* (g) For each natural number, let A, = (0, %) and let 4 = {Ay ne N}.
(h) Forr e (0, 00), let Ar =[—m,r),and let A = {A;: r € (0, 00)}.
* (i) For each real number r, let A =T[|r|,2|r] +1], and let o4 =
{A:reR}.
(j) Foreachne N, letMy={..., —3n, —2n, —n, 0, n, 2n, 3n,...}, and let
M ={Mp: ne N}
(k) For each natural number n>3, let A = [% 2+ %] and oA =
{Ax:n> 3}
(N Foreachne Z, letC,=[n,n+1)andlet€¢ ={Cy:ne Z}.
(m) Foreachne Z, let Ay=(n,n+ 1) and A = {A:ne Z}.
(n) Foreachne Z, letD,= (—n, %) and 9 = {Dn: n e N}.
(o) For each prime number p, let pN = {np: n e N} and «{ be the family
{pN: ne N and p is prime}.
* (p) ForeachneZ, letTh={(X,yY)eRxR:0<x<1,0=<y=<x"}and

T ={TaneN}
(q) Foreachne Z,letV,={(x, y)ERxR:0<x<1,x"<y< ffx}and
V ={VnneN}.

2. Which families in Exercise 1 are pairwise disjoint?
3. Prove part (b) of Theorem 2.3.1.

4. Let the universe of discourse be the set R of real numbers, and let 4 be the
empty family of subsets of R.

(@) Showthat (JA=R.
Aed

(b) Show that | J A= .

Aed

(c) Conclude that [ A< | Ais false in this example.
Aesdd Aedd
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5. (a) Prove parts (a) and (b) of Theorem 2.3.2.
(b) Give adirect proof of part (d) of Theorem 2.3.2 that does not use

part (c).
6. Letsd ={A, a € A} be afamily of sets and let B be a set. Prove that

* @ BN UA=U (BNAY.

aeA aeA

(b) BU A=) (BUA,).

acA acA

7. Letsl ={A,;;a e A}and let B = {Bg: B € I'}. Use Exercise 6 to write
* (a) ( U Aa) N ( U B,;) as a union of intersections.

aEA pBel’

(b) ( N Aa) U < N BB) as an intersection of unions.

aEA pBel’

8. Letd ={A. @ € A} be a family of sets, A # J, and B be a set. For each
part either prove the statement is true or give a counterexample.

(@ B—(ﬂAa)= M (B—A).

o 5-(Ur)- Y
o (Qr)-2-na-9
@ (Ur)-e=Yn-e)

9. Ifd ={As ae A}isafamily of setsand I C A, prove that

* @ UAc UA.

ael aEA
b NASA
aEA ael

10. Let o4 be a nonempty family of sets.

* (@) Suppose B C Aforevery A e s. Prove that B C Aﬂ&gA.
eA

» (b) What is the largest set X such that X C Afor all A € s4? That is, find the

set X such that (i) X € Aforall Ae «; and (ii) if VC Aforall Ae oA,
then V C X.

(c) Suppose A C D for every A € si. Prove that | J A C D.

Aesdd

(d) What is the smallest set Y such that A C Y for all A€ «? That is, find
the set Y such that (i) AC Y for all Ae ; and (ii) if A< W for all
Ac g, thenYC W.
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1n.

12.

13.

14.

15.

16.

17.

CHAPTER 2 Set Theory

Let X={1, 2, 3, 4,..., 20}. Give an example of each of the following:
(a) afamily o of subsets of Xsuch that () A={1}and |J A=X

Aesd Aedd
(b) a family & of four pairwise disjoint subsets of X such that | J B = X.
Be®
(c) afamily € of twenty pairwise disjoint subsets of X such that | J C = X.
Ce%

Give an example of an indexed collection of sets {An: n € N} such that each
A,C (0,1),andforallmne N, AnNA,#but () Ay=.

neN

Let o be a family of pairwise disjoint sets. Prove that if % C <« ,then B is a
family of pairwise disjoint sets.
Let o¢ and 9B be two pairwise disjoint families of sets. Let 6 = o4 N A and
D = URB.
(@) Prove that € is a family of pairwise disjoint sets.
(b) Give an example to show that % need not be pairwise disjoint.
(c) Prove that if |J Aand | B are disjoint, then 9% is pairwise disjoint.

Aed Be%
Let o = {A:i e N} be a family of sets and k, m be natural numbers with
k < m. Prove that

k+1 k
(@) iLiJlAi = iLiJlAi U Axs1.
k-T—l T(
&) (A= ANAG
@igAgHm
@igkgik
k m
(e iL:Jlﬁq C iEJlA-.
m k
M (acA

Suppose d = {A: i € N} is a family of sets such that for all i, j e N, if i <j,
then Ay € A (Such a family is called a decreasing nested family of sets.)

k
(@) Prove that forevery ke N, () A = A
i=1

(b) Provethat [ J A = A,
i=1

Give an example of a decreasing nested family {A;: i € N} (see Exercise 16)
for each condition.

@) iDlAa =[0, 1].

(b) iDlAe =(0,1).
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(© Dl A ={0, 1}.

(d) QA=@
=
Proofsto Grade 18. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-

tify assignments of grades other than A.

* (a) Claim. Forevery indexed family {A;: a € A}, [1A. S U A

aeA aeA

“Proof.” Choose any Ag e {A,: @ € A}. Then by Theorem 2.3.2,
(NA.CAs and Agc UA.

iyl';irefore, by transitivity o(:‘Eszt inclusion, ﬂAAa c UAAQ. |
ae ae
* (b) Claim. IfA,CBforallae A, then UAAa CB.
“Proof.” Suppose X e UAAQ. Then, since A, C B for all o€ A,
x € B. Therefore, | J A ga; n
(c) Claim. For eve:;iAndexed family {A.: a € A}, ﬂAAa C UAAQ.

“Proof.” Let A={r,st}, A={abcd} As={b,c,d e}, A=
{c,d, e f}. Then [VA.={c.d}c{abecdef}={JA. (]

aeA aeA

(d) Claim. For every indexed family {A,; a € A}, [V A S U A

aEA aEA
“Proof.”  Assume (A, JA. Then for some xe (A,
aeA aeA aeA
xe& |J A, Since x & |J A,, it is not the case that x € A, for some
aceA aceA
a € A. Therefore, x ¢ A, for every o« € A. But since xe ﬂ A,
aeA
xe A, for every e e A. This is a contradiction, so we conclude
NA.<c UA. n
aeA aeA
* (e) Claim. Ul[n,n+1):[R.
n=

“Proof.” Let xeR. Choose a natural number y such that
y<Xx<y+1 Thus xe[y,y+ 1). Therefore, x is an element of

Un n+1). Since [,n+1) <R forall neN, [ J[nn+1) CR.
n=1 n=1

Therefore, ([ J[n, n+ 1) = R. n

n=1
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2.4 Mathematical Induction

In 1889 Giuseppe Peano* set forth five axioms that provided a complete and rigor-
ous definition of the natural numbers based on the notion of successors. The axioms
assert that

(i) 1isanatural number,
(if)  every natural number has a unique successor, which is a natural number,
(iif)  no two natural numbers have the same successor,
(iv) 1isnota successor for any natural number,
(v) ifaproperty is possessed by 1 and possessed by the successor of every natural
number that possesses it, then the property is possessed by all natural numbers.

These axioms are sufficient to derive all the familiar arithmetic and order prop-
erties of N that are listed in the Preface to the Student. The development of all these
properties as consequences of Peano’s axioms is certainly a worthy activity, but it
would take more time than we can devote to the topic here. Instead, we focus our
attention on the inductive property of N given in the fifth axiom. Peano’s fifth
axiom can be restated as a property of sets of natural numbers.

Principle of Mathematical Induction (PMI)

Let Sbe a subset of N with these two properties:

(i) 1eS
(i) forallneN,ifneSthenn+1€S
Then S=N.

A set Sof natural numbers is called an inductive set iff it has the property that
whenever ne S thenn+ 1€ S The set {5, 6, 7, 8, ...} is inductive, as is the set
{100, 101, 102, 103, ...}. We leave it as an exercise to show that N and J are
inductive sets. The set {1, 3,5, 7, 9, ...} is not inductive because, for example, 7 is
a member but 8 is not. Many sets of natural numbers have the inductive property,
but only one set is inductive and contains 1. By the Principle of Mathematical
Induction, that set is N.

An important use of the PMI is to make inductive definitions. These definitions
follow the form of the PMI: We define a first object, and then the (n + 1)st object is
defined in terms of the nth object. The PMI ensures that the set of all n for which
the corresponding object is defined is N.

Example. The noninductive definition of the factorial of a natural number n is
n=n-(n-1)-----3-2-1.

* Giuseppe Peano (1858-1932) was an Italian mathematician who made many contributions to mathe-
matical logic and set theory, especially its language and symbolism. He was the first to use the modern
symbols for union and intersection. His “Formulario Mathematico” manuscript (1908) contains 4,200
precisely stated mathematical formulae and theorems. Other contributions include his “space filling
curve” counterexample, a forerunner of fractal images.
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For example, 5! =5-4.3.2.1=120. The inductive definition of n! is

iy 1U=1
(i) ForneN,(n+1)!=(n+ 1)nl.

To show that the inductive definition defines n! for all natural numbers n, we let
Shbe the set of n for which n! is defined. First, 1 € Sbecause of part (i). Second, Sis
inductive because if n € S then n! is defined and hence, by part (ii), (n + 1)! is also
defined. Thus n 4+ 1 € S By the PMI, S= N. In other words, the set of numbers for
which the factorial is defined is N, so n! has been defined for all natural numbers.

The inductive definition makes clear the relationship between the factorial of a
number and the factorial of the next number; if you happen to know that
11! = 39,916,800, then you compute 12! = 12 - 11! = 479,001,600.

Example. Sets may be defined inductively. Suppose we let T be the set of integers
defined by

(i) 5eT,
(i) ifxeT thenx+4€eT.

Theset T= {5, 9, 13, 17,...}, which may also be defined using the non-inductive
definition T = {4k 4+ 1: k e N}.

The real power of the Principle of Mathematical Induction is as a method for
proving statements that are true for all natural numbers. For example, we note that
the sum of the first three odd numbers is 1 4+ 3 + 5 = 9, which happens to be 32, the
sum of the first four odd numbers is 1 + 3 4+ 5 + 7 = 16, which is 42, the sum of
the first five odd numbers is 25 = 52, and the sum of the first 6 odd numbers is 62.
This pattern leads to the conjecture that

forallneN,1+3+5+ -4 (2n—1)=n?

We could never verify this statement by checking all possible values for n, but we
can prove it using the PMI.

Example. Prove that for every natural number n,

14345+ +02n—-1)=nr’
Proof. LetS={neN:1+3+5+ -+ (2n— 1) = n’}. (We have defined Sto
be the set of natural numbers for which the statement istrue. We show the statement

istruefor all natural numbers by showing that S= N.)

() 1=1%s01leS
(if) Let nbe a natural number such that n € S Then

14345+ +02n—-1)=nr’
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(We have assumed that some n is in S From this assumption we will show
thatn+ 1 € S Showing n + 1 € Sisaccomplished by verifying that

14+34+5++[2n+1) —-1]=(n+ 1>

At this point in the proof it is essential to compare the statements for n and for
n + 1. Notice that the left-hand sides of the two equations are almost identical, but
the statement about n + 1 has one more term.) By adding 2(n + 1) — 1 to both
sidesof 1 + 3 +5+---+ (2n — 1) = n?, we have

143454 +@n—1)+[2N+1) -1 =r+[2(n+1) - 1]
=m+2n+1
=(n+1)2

This shows thatif ne S thenn+1e€ S
(iii) BythePMI, S=N. Thatis, 1 +3 + 5+ -+ (2n — 1) = n? for every nat-
ural number n. [

The first key step in the proof above was to define the set Sas the set of all nat-
ural numbers for which 1 +3 + 5 +--- + (2n — 1) = n? is true. In general, for an
open sentence P(n), the statement (Vn e N)P(n) is true iff the set of numbers for
which P(n) is true equals N.

The second key step in the proof above was to assume that some natural num-
ber nis in S This assumption is called the hypothesis of induction. Notice that we
must not assume that n € Sfor all n € N, because that would be assuming what we
want to prove. For a direct proof of the inductive step, we start from the assumption
that n € S(for some natural number n) and deduce thatn+ 1€ S

The third key step in the proof above was to compare the statement about n
with the statement about n + 1. Every good proof by induction will use the hypoth-
esis of induction to show that n+ 1 € S Finding the connection between these
statements is the heart of a proof by induction.

Thus, a proof of (Vn e N)P(n) using the PMI may take the form:

PROOF OF (Vn € N)P(n) USING THE PMI
Proof.
Let S={ne N: P(n) is true}.
(i) (Basis step) Show that1 € S
(i)  (Inductive step) Show that forallne N, ifne Sthenn+ 1€ S
(iii)  Therefore, by the PMI, S= N. Thus (Vn € N)P(n) is true. |

In actual practice, very few induction proofs start by defining the set S. Since
“1 e S” is equivalent to “P(1) is true,” the basis step is a determination that P(1)
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is true. Since “n € Simplies n+ 1 € S” is equivalent to “P(n) implies P(n + 1),”
the inductive step often takes the form of a direct proof that “for all n e N, P(n)
implies P(n + 1).” This gives us the preferred form for the outline of a proof using
the PMI:

PROOF OF (Vn € N)P(n) USING THE PMI
Proof.
(i)  (Basis step) Show that P(1) is true.
(i) (Inductive step) Suppose P(n) for some n € N.

Therefore P(n + 1).
(iii)  Therefore, by the PMI, (Vn € N)P(n) is true. |

Proofs by induction may be used to establish inequalities and divisibility prop-
erties. Notice in the following examples that it is not enough just to figure out what
the correct statement is for n 4+ 1. To construct a valid inductive step, look for a
connection between what we know about some number n and what we want to
know about the next number n + 1.

Example. Forallne N, n+ 3 <5n?

Proof.

(i) 143 <5-1? so the statement is true for 1.
(i)  Assume that for some ne N, n+ 3 < 5n?, Then

n+1)+3=n+3+1
<5’ +1
<5n?+10n+5
=5(n+1)%
Thus the statement is true for n + 1.

(iii) By the Principle of Mathematical Induction, n + 3 < 5 foreveryne N. =

Example. The polynomial x —y divides the polynomials x*> — y? and x® — y3
because x? — y? = (X — y)(x + y) and x3 — y3 = (x — y)(x* + xy + y?). This sug-
gests the possibility that for every natural number n, x — y divides x" — y". We
prove this by induction.

Proof.

(i) x—ydivides x! — y! = x — ybecause x — y = 1(x — y). Thus the statement
holds for n= 1.
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(i)  Assume that x — y divides x" — y" for some n (this is the hypothesis of
induction). We must show that x — y divides x"*1 — y"*+1, We write

Xn+l _ yn+l = xx" — yyn
=XXn_an+an_yyn
= (X = y)X"+ y(x" —y").

Now x —y divides the first term because that term contains the factor
(x —y). Also x —y divides the second term because it divides x" — y"
(by the hypothesis of induction). Therefore, x — y divides the sum. That is,
X — y divides x"+1 — yn+1,

(iii) By the PMI, x — y divides x" — y" for every natural number n. u

Recall that sigma notation is a compact way to write sums. We may write the
suml+3454---4+(2n—1)as Z(Zl — 1). Our first result proved by induction

was that Z (2i — 1) = n. The notation for products uses the capital Greek letter I1.
i=1

For example

H(u +1)=2.5.10-17=1700.
i=1

Note that products with n 4 1 factors may be rewritten, as in

n+1l

1'[(2|) =(@2n+2)- 1'[(2|)

Our next example involves both factorial and product notation.

Example. Prove thatforallne N, ]_[(4| —2)= (2n)
Proof.
. ) Lo (-1
(i) The statement is true for n=1 because [](4i —2) =2 and T 2.
i=1
(i)  Assume that ]_[(4| —-2)= & ) -——— for some n € N. (We now use the hypothesis
- . ““ : 2(n+1))!
of induction to prove that 4i—2)=-———-"".)Then
P il:[1( ) (n+1)! )
n+1 n
[T@i-2) = {]_[(4i — 2)}(4(n+ 1) —2)
i=1 i

(2”)
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We also compute

@n+1))!  @n+2)!
(n+1!  (n+1)!
(2n 4+ 2)(2n 4 1)(2n)!

- (n+ )n!
2(2n + 1)(2n)!

n!
(4n + 2)(2n)!

n! '

Since these expressions are equal, the statement is true for n + 1.

n 2n)!
(iii) By the Principle of Mathematical Induction, [](4i — 2) =( n)
i=1

for all
n!
ne N.

The following examples show some other situations where induction is used.

Example. Consider any “map” formed by drawing straight lines in a plane to rep-
resent boundaries. Figure 2.4.1 shows ten countries, labeled A through J, formed by
drawing four lines in the plane. The problem is to color the countries so that adjoin-
ing countries (those with a line segment as a common border) have different colors.
This has been done in Figure 2.4.2 using only two colors—blue and white. We will
use induction to prove that every map formed by drawing n straight lines can be col-
ored using exactly two colors.

Proof.
(i) If a map is made by drawing one straight line, then there are only two

countries. Thus every map formed with one line can be colored with two
colors.

Figure 2.4.1
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Figure 2.4.2

(i)  Assume that for some n, every map formed by drawing n lines can be col-
ored with exactly two colors. Now consider a map with n + 1 lines. Before
coloring this map, choose any one of the lines and label it L. Now color the
map as though the line L were not there, using exactly two colors. This can
be done, initially, by the hypothesis of induction. (Such a coloring is shown
in Figure 2.4.3, with the line L shown as a dashed line. Of course, only part
of the plane can be shown.) To color the map with line L, proceed as follows.
Call one half-plane determined by L side 1, and the other half-plane side 2.
Leave all colors on side 1 exactly as they were but change every color on
side 2 to the other color. This gives a coloring to every country in the map
with line L. (See Figure 2.4.4.) It remains to verify that adjacent countries in
this map with n + 1 lines have different colors.

Suppose we have two adjacent countries. There are two cases to consider:

Casel. Suppose L is the border between the two countries, which means
that one country is on side 1 and the other on side 2. Initially, the
two countries had the same color because they were parts of the
same country in the map with n lines. When L was added to the
map, the color of the country on side 2 switched to a different color
from the country on side 1.

Figure 2.4.3
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Figure 2.4.4

Case2. Suppose L is not the border between the two countries. Then both
countries are either on side 1 or side 2. If both countries are on side
1, they were initially colored differently and remain so when L is
added. If both countries are on side 2, their colors were initially
different, but are now switched, and still different.

In both cases, the two adjoining countries have different colors.

(iii) By the PMI, every map can be colored using only two colors. ]
The next example involves computations using trigonometry and complex
numbers.
Theorem 2.4.1 De Moivre’s Theorem

Let 6 be a real number. For all n € N, (cos 6 + i sin §)" = cos nf + i sin né.

Proof. (In this proof we use addition and multiplication of complex numbers and
the following “ sum of angles’ formulas from trigonometry:

cos (a + B) = (cosa)(cos B) — (sina)(sin B)
sin(a + B) = (sina)(cos B) + (cosa)(sin B).)

(i) For n=1, the equation is (cos@ + i sin@)! = cosé + i sin@, which is cer-
tainly true.

(i)  Assume that (cos6 + i sin@)* = cos kd + i sinkd, for some natural number
k. Then, using the sum of angles formulas,

(cos@ + i sing)k+!
= (cosf + i sinB)*(cosh + i sin6)
= (coskb + i sinkf)(cosh + i sin@) (by the hypothesis of induction)
= coskd cos@ + i sinkd cosh + i coskd sind + i sinkd sinf
= (coskd cosf — sinkd sind) + i(sinkd cosb + coska sinh)

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



108 CHAPTER 2 Set Theory

= cos(kd + 6) + i sin(ko + 6)
= cos(k+ 1)0 + i sin(k + 1)6.

(iii) By steps (i) and (ii) and the PMI, (cosé + i sin®)" = cosnf + i sinnd is
true forall ne N. ]

As one more example of the use of the Principle of Mathematical Induction,
we prove a seemingly simple but useful result, known as the Archimedean Princi-
ple, about the comparative sizes of natural numbers. Archimedes* said that given a
fulcrum and a long enough lever, he could move the world. See Figure 2.4.5. This
statement illustrates the principle of physics that relates the forces at the ends of a
lever to their distances from the fulcrum point. Even though it would take a very
large force to move the Earth, and a person could exert only a small force, the force
is multiplied when applied to a long lever.

Earth Fulcrum Archimedes

Figure 2.4.5

To understand the next theorem, think of aand b as any two natural numbers, with
a being much larger than b. The Archimedean Principle says that a can eventually be
surpassed by taking natural number multiples of b. We give a proof by induction.

Theorem 2.4.2 Archimedean Principle for N
For all natural numbers a and b, there exists a natural number s such that sb > a.

Proof. Let b be a fixed natural number. The proof proceeds by induction on a.

(i) Ifa=1,choosestobe2 Thensb=2b> a.

(if)  Suppose the statement is true when a = n, for some natural number n. Then
there is a natural number t such that tb > n. Choose sto be t + 1. Then we
have sb= (t+ 1)b=tb+b>n+1, so the statement is true when

a=n+1
(iif) By parts (i) and (ii) and the PMI, the statement is true for all natural numbers
aand b. =

* Archimedes (c. 287 B.c.E.—C. 212 B.C.E.) is considered the greatest scientist of his era, having made
fundamental discoveries in mathematics, astronomy, physics, and engineering. Many of his drawings of
proposed machines proved to be very effective devices. His “method of exhaustion” to calculate areas
under curves is similar to the methods of integral calculus used today.
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Some statements are not true for all natural numbers, but are true for numbers
in some inductive subset of N. To prove such statements in such cases, we need a
slightly generalized form of the PMI, where the basis step starts at some number
other than 1.

Generalized Principle of Mathematical Induction

Let k be a natural number. Let Sbe a subset of N with these two properties:
(i) kes
(i) forallne Nwithn>k ifne Sthenn+1eS

Then Scontains all natural numbers greater than or equal to k.
Example. Prove by induction that 2 —n — 20 > 0 for all n > 5.

Proof. (Wewill use the Generalized PMI starting at n = 6.)

(i) Forn=6,6%—6— 20 =10, which is greater than zero.
(i)  Assume for some natural number k > 5 that k> — k — 20 > 0. Then

(K+1)? —(k+1) —20=K +2k+1—k—1—20
= k2 — k— 20+ 2k

Since k? — k — 20 > 0 (by the induction hypothesis) and 2k > 0 (sincek is
anatural number), k?> — k — 20 4+ 2k > 0. (The sumof two positive integers
ispositive.) Thus (k + 1)> — (k+ 1) — 20 > 0.

(iii) By the Generalized PMI, n? — n — 20 > O is true for all n > 5. ]

We note that an algebraic proof of the last example is possible: Since
"-n—-20=(n+4n-5 and n+4>0 for all natural numbers n,
n’> —n— 20 > 0 for n > 5. Neither proof is “more correct” than the other. We
chose the first proof to demonstrate the Generalized PMI.

Exercises 2.4

1. Which of these sets have the inductive property?

(@ {20,21,22,23,...} * (b) {2,4,6,810,...}
© {1,2,4,56,7,...} * (d) {17}
(e {xeN:x2< 1000} * (f) {1,2,3,4,5,6,7 8
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2. Suppose Sis inductive. Which of the following must be true?
(@ Ifn+leSthennes * (b) IfneSthenn+2€S
(¢ Ifn+1eg¢SthennegsS (d If6eSthenllesS

* (60 6eSandl1leS

3. (a) Prove that N is inductive.
(b) Prove that & is inductive.

4. Evaluate or simplify each.

@ & b)) 7! © %
8! (n+2)! (n+3)!
@ 3 RIS B O P

(@ (M+3n+2)n!

5. Give an inductive definition for each:
(@ {n:n=>5kforsomeke N}
(b) {n:neNandn> 10}.
* (c) {n:n=2%for some k € N}.
(d) {a,a+d,a+2d a+ 3d,...}, where aand dare real numbers. (The ele-
ments of the set form an arithmetic progression.)
(e {a ar,ar? ar® ...}, where aand r are real numbers. (The elements of
the set form a geometric progression.)
n

(f) (UA, for some indexed family {A;: i € N}.

i=1

n
() Theproduct [[xi =X % - X3 - - X, of nreal numbers.
i=1

6. Use the PMI to prove the following for all natural numbers n.
* (a) i(Si —-2)=35(@3n-1).

(b) I3:Jlr11+19+-~-+(8n—5)=4n2— n.

© Proamig

(d) '1=-11!+2-2!+3-3! 4+ 4n-n=(Mn+1)!—1.

(€) 13+23+...+n3:{n(n2+1)r

(f) _i(zi — 13 =n22n? — 1),

=
@ 112+213+3?4 +"'+n(nl+1):n21'
(h)%+; +(n+nl)!=1_(n+11)!'
® Zni @i - 1)(2| 1) 2nr]r 1

0 (- p)= i
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L _(2n)!
(k) i]:[1(2|—1)_ NP

)] (éum of a finite geometric series)

n-1 (n )
Zr' = “forreR,r#1,andn> 1.

7. Use the PMI to prove the following for all natural numbers:
(@ n®+5n4 6 is divisible by 3.
* (b) 4" — lisdivisible by 3.
(©) n3—nisdivisible by 6.
(d) (n —n)(n+ 2) is divisible by 12.
(e 8divides 5% — 1.
(f) 10"14 3.4 4 5isdivisible by 9.
(g) 8divides 9" — 1.
(hy 3">142"
* (i) 33> (n+3)%
(i) 44> (n+4)~

no1
1
k —<2-=
( ) |=Zl i2 - n
(I)  For every positive real number x, (1 + X)" > 1 + nx.
" n 7n.
(m) —+ —+ —— isaninteger.

3 5 15
(n) Using the differentiation formulas %(x) =1land %( fg) = f% +4g %,
prove that forallne N, % (x") = nx"1,
(0) IfasetAhas nelements, then % (A) has 2" elements.
8. Use the Generalized PMI to prove the following.
*x (@ n®<nl!foralln=> 6.
(b) 2">n?foralln> 4.
(© (n+1)!>2"*3forn>5.
(d) n!'>3nforn=>4.

ni2—1 n+4+1

(e i];[2 T = an forall n> 2.
n

) H%_Z‘”fornz4.
i=1

(g) Forall n> 2, the sum of the angle measures of the interior angles of a
convex polygon of nsides is (n — 2) 180°.

(h) \fn<[+\lf+\1[+ +%forn>2

9. Use the PMI to prove DeMorgan’s Laws for an indexed family {A;:i € N}.
You may use [%e Morgan’s Laws for two sets.
n n

(a) (Dl A,-) = lUAjC forall ne N.

=1

(b) (LHJA.> = ﬁAFforallneN.
i=1

i=1
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10. LetPy, Py, ..., Pybenpointsin a plane with no three points collinear. Show that

N —n

the number of line segments joining all pairs of points is
forn=>5.

. See the figure
Py

Ps

P, P,

11.  Apuzzle called the Towers of Hanoi consists of a board with 3 pegs and several
disks of differing diameters that fit over the pegs. In the starting position all the
disks are placed on one peg, with the largest at the bottom, and the others with
smaller and smaller diameters up to the top disk (see the figure). Amove is made
by lifting the top disk off a peg and placing it on another peg so that there is no
smaller disk beneath it. The object of the puzzle is to transfer all the disks from
one peg to another.

|
| |

With a little practice, perhaps using coins of various sizes, you should con-
vince yourself that if there are 3 disks, the puzzle can be solved in 7 moves. With
4 disks, 15 moves are required. Use the PMI to prove that with n disks, the puz-
zle can be solved in 2" — 1 moves. (Hint: In the inductive step you must describe
the moves with n + 1 disks, and use the hypothesis of induction to count them.)

12. In a certain kind of tournament, every player plays every other player exactly
once and either wins or loses. There are no ties. Define a top player to be a player
who, for every other player X, either beats x or beats a player y who beats x.
(8 Show that there can be more than one top player.
(b) Use the PMI to show that every n-player tournament has a top player.
Proofsto Grade 13. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
* (@) Claim. All horses have the same color.
“Proof.”  We must show that for all n € N, in every set of n horses, all
horses in the set have the same color. Clearly in every set containing
exactly 1 horse, all horses have the same color.
Now suppose all horses in every set of n horses have the same color.
Consider a set of n 4+ 1 horses. If we remove one horse, the horses in the
remaining set of n horses all have the same color. Now consider a set of
n horses obtained by removing some other horse. All horses in this set
have the same color. Therefore all horses in the set of n + 1 horses have
the same color. By the PMI, the statement is true for every n € N. |
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» (b) Claim. Forall ne N, n®+ 44nis divisible by 3.

“Proof.”
(i) 13+ 44(1) = 45, which is divisible by 3, so the statement is true
forn=1.

(i) Assume the statement is true for some ne N. Then n® 4 44n is
divisible by 3. Therefore (n+ 1)% + 44(n + 1) is divisible by 3.
(iif) By the PMI, the statement is true for all n e N. =
(c) Claim. For every natural number n, n> + nis odd.
“Proof.” The number n = 1 is odd. Suppose n € N and n? 4 n is odd.
Then

n+1D24+Mm+)=r+2n+14+n+1
=(MP+n+@2n+2)

is the sum of an odd and an even number. Therefore, (n + 1)% + (n + 1)

is odd. By the PMI, the property that n? + n is odd is true for all natural

numbers n. =
(d) Claim. For every natural number n, the matrix

R
s=nen:2 =[5 1)
NG

so 1 € S Assume that

{1 1}““ {1 n+ 1}
01 |0 1 ]
Thenn+1eS soneSimpliesn+1eS By the PMI, S=N. =
* (e) Claim. Every natural number greater than 1 has a prime factor.
“Proof.”
(i) Letn=2.Then nis prime.
(ii) Suppose k has a prime factor x. Then k= xy for some y. Thus
k4+1=xy+ 1= (x+ 1)(y+ 1), which is a prime factorization.
(iii) By the PMI, the theorem is proved. =
(f) Claim. For all natural numbers n> 4, 2" < n!
“Proof.” 2*=16 and 4! =24, so the statement is true for n=4.
Assume that 2" < n! for some ne N. Then 2"t =2(2") < 2(n!) <
(n+ (") = (n+ 1), s0 2" < (n + 1)!. By the PMI, the statement is
true for all n > 4. |

Clearly,
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25 Equivalent Forms of Induction

In the previous section, we used the Principle of Mathematical Induction to prove a
variety of statements about natural numbers. The goal of this section is to learn how
to use two other versions of induction. The value of these new forms of induction is
that they may be used in situations where it would be difficult to apply the PMI.
Both new forms are equivalent to the PMI, which means that either of them could
replace the PMI in the list of axioms for N.

To prove that a statement is true for all natural numbers using the PMI, the key step
is to assume that a statement is true for an arbitrary natural number nand then show that
the statement is true for n 4+ 1. When there might be no apparent connection between
the statement for nand the statement for n 4 1, there may be a connection between the
statement for the n 4+ 1 case and the statement for some value or values less than n.
There is a variation of the PMI to handle this situation. A much stronger assumption is
made in this alternate form of induction, called complete (or strong) induction.*

Principle of Complete Induction (PCI)
Suppose Sis a subset of N with this property:

For all natural numbers n, if {1, 2,3,...,n—1} Cc Sthenne S
Then S=N.

This form of induction begins with the assumption that a statement is true for
every natural number less than n and shows that the statement is also true for n.
Thus, we are allowed to assume the statement is true for each of k =1, 2, 3, all the
way through n — 1, rather than just for n — 1.

Notice that the statement of the PCI does not require a basis step in which we
show that 1 € S Nevertheless, for n = 1, the PCI property has the form

JCS=1eS§

which is equivalent to 1 € S Practically speaking then, it is almost always best to
begin a PCI proof by verifying that 1 is in S Sometimes special consideration is
also needed for n = 2 or larger integers. We saw in Section 2.4 that this caution may
be necessary for the PMI as well (see Exercise 13(a) of Section 2.4).

Our first example of a proof using the PCI revisits the first example from
Section 2.4.

Example. Prove for all natural numbers n that 1+3+45 +---+ (2n—1) =n

Proof. Let S={neN:1+3+5+ -+ (2n—1)=r’}. (We must show that
{1,2,3,...,m— 1} € S= me Sand then conclude S= N by the PCI.)

* Because this form of induction employs such a strong assumption, the Principle of Mathematical
Induction is sometimes referred to as “weak induction.”
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Suppose mis a natural number and also that {1, 2,3,...,m— 1} C S In the
special case that m= 1, we note that 1 = 12 and so me S Otherwise, m— 1€ S
(sincem—-1€{1,2,3,....m-1}<9s01+3+5+-+@2m-1)—-1=
(m — 1)2. Adding 2m — 1 to both sides of this equality yields

143454+ @m—-1)—1)+ @m—1)
=(m-1)2+ (2m-1)
=m—-2m+1+2m-1
=n?.

Thus me Sand we conclude S= N by the PCI. |

Like the PMI, the PCI has variations where the induction starts at some number
greater than one. To prove, for example, that some property holds for all numbers
greater than 6 we would verify that for all natural numbers n> 6, if
{7,8,...,n—1} C S then ne S Our next example is a proof that every natural
number greater than 1 has a prime factor. This fact was used without proof in
Chapter 1 because we did not yet have induction available as a method of proof. It is
a good example of a proof where the PCI is much more natural to use than the PMI.

Example. Prove that every natural number greater than 1 has a prime factor.

Proof. LetSbe {ne N: n> 1and n has a prime factor}. Notice that 1 is notin S
but 2 is in S Let m be a natural number greater than 1. Assume that for all
ke {2,...,m— 1}, ke S We must show that m € S If mhas no factors other than
1 and m, then mis prime, and so m has a prime factor—itself. If m has a factor x
other than 1 and m, then 1 < x < mso x € S Therefore x has a prime factor (by the
induction hypothesis), which must also be a prime factor of m. In either case,
m e S Therefore, S= {n € N: n > 1}, and every natural number greater than 1 has a
prime factor. |

Like the PMI, the PCI can be used to create inductive definitions, one of which
is the definition of the sequence 1,1, 2,3,5,8, 13,... examined by Leonardo
Fibonacci” in the 13th century (see Exercise 4). These numbers have played impor-
tant roles in applications as diverse as population growth, flower petal patterns, and
highly efficient file sorting algorithms in computer science. For each natural num-
ber n, the nth Fibonacci number f, is defined inductively by

fi=1fh=1and f, o= 1 +f, forn>1
We see that f; =2,f, =3, fs =5, fg = 8, and so on.

* Leonardo of Pisa, also called Leonardo Fibonacci (c. 1170—c. 1250) was a prominent mathematician in
the Middle Ages. His text, Liber Abaci (Book of Calculation) was influential in the European adoption of
Hindu-Arabic numerals. He did not invent the sequence named for him, but used it as an example.
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Inductive proofs of properties of the Fibonacci numbers usually involve the
PCI because we need to “reach back” to both f,_; and f,_, to prove the property
for f,.. Here is a typical example.

Example. Let « be the positive solution to the equation x> = x + 1. (The value of
(14 +/5)
ais——=

5 approximately 1.618.) Prove that f, < o"~'forall n> 1.

Proof. In the special cases of m= 1 and m = 2, the inequality f,, < a™ 1 is true
sincefp=1<a’=1andf,=1 < o = (1 + +/5)/2. Let mbe a natural number,
m > 3, and assume that fy < a**forallke {1,2,3,...,m— 1}. Form> 3, we
have

fm = 1:m—l + fm—2
< a™ 2 4+ o™3 (by the induction hypothesisfor m — 1 and m — 2)
=a" 3(a + 1)

=aM 3 (sinceaisasolutiontox’=x+1,a+1=a?
= o™ 1,
Therefore, f, < a™ 1.

By the PCI, we conclude that f, < o"~* forall n > 1. ]

Theorem 2.5.4, at the end of this section, shows that the PMI and PCI are
equivalent. Thus both properties are true for N.

A third property that characterizes the set N is the Well-Ordering Principle.
Although it is quite simple to state, the WOP turns out to be a powerful tool for con-
structing proofs. The WOP, like the PCI, may be derived from the Peano Axioms
and is equivalent to the PMI. (See Theorem 2.5.5.)

Well-Ordering Principle (WOP)*

Every nonempty subset of N has a smallest element.

Proofs using the WOP frequently take the form of assuming that some desired
property does not hold for all natural numbers. This produces a nonempty set of
natural numbers that do not have the property. By working with the smallest such
number, one can often find a contradiction.

In the next example, we prove again that every natural number greater than
1 has a prime factor. Compare the structure of this proof using the WOP with that
of the PCI proof given earlier.

Example. Every natural number n > 1 has a prime factor.

* Some mathematicians refer to the Well-Ordering Principle as the Well-Ordering Property. They
reserve the use of the term Well-Ordering Principle for the statement that for every set there is an order
that makes the set a well-ordered set. Orderings are discussed in Section 3.4.
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Proof. If nis prime, then nis a prime factor of n. If nis composite, then n has fac-
tors other than 1 and n. Therefore the set

T={me N: mdividesn, m=n,and m= 1}

is a nonempty subset of N. By the WOP, T has a smallest element, which we call p.
(We will show by contradiction that p isprime.)

Suppose p is composite. Then p has a divisor d, with d = p, and d £ 1. Since
d divides p and p divides n, d divides n. Therefore, d € T. But this is a contradiction
since d < p and p is the smallest element of T. Therefore p is a prime factor of n. =

As another example, we will prove that for every ne N, n+1 =1+ n. The
purpose of this example is not to establish the fact that n+ 1 =1 + n, but to see
how a proof using the WOP is done. So imagine for a moment that we did not know
that addition is commutative, and we will show how the statement can be proved
(from the associative property) by using the WOP.

Example. For every natural numbern,n+1=1+n.

Proof. Suppose there exists a natural number nsuch that n + 1 £ 1 4+ n. Let b be
the smallest such number. Obviously, 1 + 1 =1+ 1, so b # 1. Thus b must be of
the form b= c + 1 for some c e N. (See the successor properties for N.) Then
(c+1)+1+#1+(c+1). Therefore, by the associative property for N,
(c+1)+1#(1+c)+ 1. Subtracting 1 (from the right side) from each expres-
sion, we have ¢ + 1 = 1 + c. But this is a contradiction because ¢ < b and b is the
smallest natural number with the property. We conclude that n 4+ 1 = 1 + n for all
natural numbers n. =

The next three theorems were stated without proof earlier in the text. Each may
be proved using the WOP. The Division Algorithm was the primary result that we
used in Section 1.7 to develop interesting results about the greatest common divi-
sor (gcd) of two integers and linear combinations of the integers.

Theorem 2.5.1 The Division Algorithm
For all integers a and b, with a £ 0, there exist unique integers g and r such that
b=ag+rand0<r < |al.

Proof. Letaand b be integers and a = 0. Assume that a > 0. (The proof in the case
a < Oissmilar, andisleft asan exercise.) We must first show the existence of gand r.

Let S={b — ak: kis aninteger and b — ak > 0}. If 0 is in S then a divides b,
and we may take qto be the integer gand r = 0. Now assume that 0 ¢ S

It follows from the assumption 0 ¢ Sthat b # 0. (Otherwiseb —a0 =0€ S)
Now if b>0thenb—a0e S and if b <0 then b — a(2b) =b(1 —2a) e S In
either case, the set Sis nonempty.

By the Well-Ordering Principle, Shas a smallest element, which we will call r.
Then r = b — aq for some integer g, so b=aq + r, and r > 0. We must also show
thatr < |a] =a Suppose r >a Thenb—a(+1)=b—ag—a=r—a=>0,
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sob—a(q+ 1) e SButb—a(g+ 1) <b— agand b — aqis the smallest mem-
ber of S We conclude thatr < |a].

To complete the proof, we must show that g and r are unique. Suppose there
exist integers g, ', r, and r " such that

b=ag+r with0O <r < |a| and
b=ag +r'with0 <r’ < |al.

Without loss of generality, we may assume that r’ > r. (Otherwise, we could re-
label randr’.) Thenag+r =aq’ + r’, which impliesa(q— q’) =r’ —r. Then a
dividesr’—r,and0 <r’—r <r’ < |a|. Thenr’ —rmustbe0,sor’ =r. Since
aQ-9)=0a0a=gq -

Section 1.7 also contained the following result about linear combinations of
integers. The short proof using the WOP is Exercise 8.

Theorem 2.5.2 Let a and b be nonzero integers. Then there is a smallest positive linear
combination of aand b.

The Fundamental Theorem of Arithmetic, stated in the Preface to the Sudent,
may also be proved using the WOP. See Exercise 9.

Theorem 2.5.3 The Fundamental Theorem of Arithmetic
Every natural number greater than 1 is prime or can be expressed uniquely as a
product of primes.

The final two theorems of this section show that the PMI, the PCI, and the
WOP are all equivalent.

Theorem 2.5.4 The Principle of Mathematical Induction and the Principle of Complete Induction
are equivalent.

Proof. (The proof proceedsin two parts: Thefirst part showsthat PMI impliesthe
PCI, and the second part shows the converse.)

Part 1. Assume that the PMI holds for N. Suppose Sis a subset of N with this
property:

* for all natural numbers m, if {1,2,3,..., m— 1} C Sthenme S

As a step toward proving S= N, we first use the PMI to show that for every natu-
ral numbern, {1,2,3,...,n} C S

(i) For n=1, the set {1,2,3,...,n—1} is the empty set. Thus,
{1,2,3,...,n—1} C S Therefore, by the property * for S 1 € S Thus,
{1} € S Hence, forn=1,we have {1,2,3,...,n} C S

(i) Assumethat{1,2,3,...,n} €S (Memustshow{1,2,3,...,n+ 1} CS)
Since {1, 2, 3,..., n} C S by the property *, we have n+ 1 € S Therefore,
{1,2,3,...,n,n+1}CS
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(iii) By steps (i) and (ii), and the PMI, {1, 2, 3, ..., n} C Sfor every natural
number n. Now let n be a natural number. Then {1,2,3,...,n} C S so
ne N. This shows N C S Since Sis a subset of N, we conclude that
S=N.

Part 2. Now assume that the PCI holds for N. (To show that the PMI istrue, we
assume its hypothesis and use the PCI to show that the conclusion of the PMI
(S= N) must also betrue.) Suppose Sis a subset of N with two properties:

i) 1es
(ii)  For all natural numbers n,ifne Sthenn+ 1€ S

We will prove S= N. (To prove that S= N, we show that S satisfies the hypothesis
for the PCl; namely, that for all meN, if {1,2,3,..., m— 1} C S then
me S) Let mbe a natural number such that {1, 2, 3,..., m— 1} C S There are
two cases:

Casel If m=1, then 1€ S by the first property of S Thus the statement
{1,2,3,...,m— 1} C Simplies me Sis true when m= 1.

Case2 If m> 1, thenfrom{l,23,..., m—1}C S we have m— 1 S But
then by the second property for S we have me S In this case, too, we
have {1,2,3,...,m— 1} C Simpliesme S

We conclude that the statement {1, 2, 3,..., m— 1} C S implies m € Sis true for

all natural numbers m. Therefore, by the PCI, S= N. ]
Theorem 2.5.5 The Well-Ordering Principle is equivalent to the Principle of Mathematical
Induction.

Proof. (Thisproof, like Theorem2.5.4, proceedsin two parts: Thefirst part shows
that the PMI implies the WOP, and the second part shows the converse.)

Part 1.  Assume that the PMI holds for N. (To show that the WOP is true, we show
that every nonempty subset of N has a smallest element.) Suppose T is a honempty
subset of N. Let S= N — T. Since T # J, S# N. (The proof now proceeds by con-
tradiction. We suppose T has no smallest element and use the PMI to show that
S=N.) Suppose that T has no smallest element.

(i) Since 1 is the smallest element of N and T has no smallest element, 1 ¢ T.

Therefore, 1 € S

(if)  Suppose that n € S No number less than n belongs to T, because, if any of
the numbers 1, 2, 3,..., n— 1 were in T, then one of those numbers would
be the smallest element of T. We know n ¢ T because n € S Therefore,
n+ 1 cannot be in T, or else it would be the smallest element of T. Thus,
n+1eS

(iii) By parts (i) and (ii) and the PMI, S= N, which is a contradiction to S# N.

Therefore, T has a smallest element.

Part 2. The proof that the WOP implies the PMI is Exercise 12(b). |
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Exercises 2.5

1. Use the PCI to prove that

(a) every natural number greater than 22 can be written in the form 3s + 4t,
where sand t are integers, s> 3and t > 2.

(b) every natural number greater than 33 can be written in the form 4s + 5t,
where sand t are integers, s> 3and t > 2.

2. Letay=2,a =4, and ay,» =5a,,1 — 6a, for all n> 1. Prove that a, = 2"
for all natural numbers n.
3. In this exercise you are to prove some well-known facts about numbers as a
way of demonstrating use of the WOP. Use the WOP to prove the following:
(@ Ifa=> 0, then for every natural number n, a" > 0.
(b) For all positive integers a and b, b # a + b. (Hint: Suppose for some a
there is b such that b = a + b. By the WOP, there is a smallest a; such
that, for some b, b = ay + b. Apply the WOP again.)

(c) V2 is irrational.

4. 1In 1202, Leonardo Fibonacci posed the following problem: Suppose a partic-
ular breed of rabbit breeds one new pair of rabbits each month, except that a
1-month-old pair is too young to breed. Suppose further that no rabbit breeds
with any other except its paired mate and that rabbits live forever. At 1 month
we have our original pair of rabbits. At 2 months we still have the single pair.
At 3 months, we have two pairs (the original and their one pair of offspring).
At 4 months we have three pairs (the original pair, one older pair of off-
spring, and one new pair of offspring).

(a) Show that at n months, there are f, pairs of rabbits.
(b) Calculate the first ten Fibonacci numbers fy, fp, f3, ..., fio.
(c) Findaformula for f,, 3 — fhi1.

5. Use the PMI to show that each of the following statements about Fibonacci
numbers is true:

(@) fsn is even and both f3,,1 and f3,» are odd for all natural numbers n.
(b) gecd(fp, fre1) = 1 for all natural numbers n.
() gcd(fn, fre2) = 1 for all natural numbers n.

* (d) fy+ fo+ f3+---+ f,= f,, o — 1 for all natural numbers n.

6. Use the PCI to prove the following properties of Fibonacci numbers:
(a) f,isanatural number for all natural numbers n.
(b) foi6 =4 fhy3 + fy for all natural numbers n.
(c) For any natural number a, faf,+ fay1fanr1 = farnss for all natural

numbers n.
(d) (Binet’s formula) Let « be the positive solution and B the negative
. . 1 5
solution to the equation x? = x + 1. (The values are a = + V5 and

1-4/5 2

5 .) Show for all natural numbers n that

'8:

n_ p@n
o P
a—f
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7. Complete the proof of the Division Algorithm (Theorem 2.5.1) for the case
a < 0. That is, show that for all integers a and b, with a < 0, there exist
unique integers gqand r suchthatb=agq+rand0 <r < |a] = —a

8. Letaand b be nonzero integers. Prove that there is a smallest positive linear
combination of aand b. (Theorem 2.5.2)

9. Prove the Fundamental Theorem of Arithmetic: Every natural number greater
than 1 is prime or can be expressed uniquely as a product of primes.

10. In the tournament described in Exercise 12 of Section 2.4, a top player is
defined to be one who either beats every other player or beats someone who
beats the other player. Use the WOP to show that in every such tournament
with n players (n € N), there is at least one top player.

11. Let the “Fibonacci-2” numbers gy be defined as follows:
O=2,0=2,and gn 2 = gny1gn foralln>1.

(a) Calculate the first five “Fibonacci-2” numbers.
(b) Show that g, = 2™
12. Complete the proof of the equivalences of the PMI, PCI, and WOP by
(@) using the PCI to prove the WOP.
* (b) using the WOP to prove the PMI.
(c) using the WOP to prove the PCI.

Proofsto Grade 13. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.

(@ Claim. For all natural numbers n, 5 divides 8" — 3".
“Proof.”  Suppose there is n € N such that 5 does not divide 8" — 3".
Then by the WOP there is a smallest such natural number t. Now t # 1
since 5 does divide 8! — 3. Therefore t — 1 is a natural number smaller
than t, so 5 divides 8! — 3'=1. But then 5 divides 8(8'~* — 3'~%) and
5 divides 5(3'~1), so 5 divides their sum, which is 8 — 3. This is a con-
tradiction. Therefore, 5 divides 8" — 3" forall ne N. =

» (b) Claim. For every natural number n, 3 divides n® + 2n + 1.

“Proof.”  Suppose there is a natural number n such that 3 does not
divide n® 4+ 2n + 1. By the WOP, there is a smallest such number. Call
this number m. Then m — 1 is a natural number and 3 does divide

M-1°+2m-1)+1=m-3m+3m—-1+2m—-2+1
=m — 3m? +5m— 2.

But 3 also divides 3m? — 3m+ 3, so 3 divides the sum of these two

expressions, which is m* 4+ 2m + 1. This contradicts what we know about

m. Therefore, the set {n e N: 3 does not divide n® + 2n + 1} must be

empty. Therefore, 3 divides n® + 2n + 1, for every natural numbern. =
(c) Claim. The PCI implies the WOP.

“Proof.”  Assume the PCI. Let T be a nonempty subset of N. Then

T has some element x. Then {1,2,...,x— 1} € N — T. By the PCI,
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xe N — T. This is a contradiction, because xe T and xe N — T.

Therefore T has a smallest element. =
(d) Claim. The WOP implies the PCI.

“Proof.”  Assume the WOP. To prove the PCI, let She a subset of N such

that for all natural numbers m, {1, 2,3,...,m— 1} C S Letke N. Then

k+1 is an integer, so {1,2,...,(k+1)—1}< S However,

(k+ 1) — 1=k sok e S Thus every natural numberisinSso S=N. =

2.6 Principles of Counting

Recall from the Preface to the Student that a set Ais finite iff A= Jor Ahas nele-
ments for some n € N. For a finite set A the number of elements in A is denoted A.
For example, if A= {p, g} and B= {3, 2, 1, 5, 9} then A= 2 and B = 5. This sec-
tion describes some of the fundamental techniques for counting the number of ele-
ments in finite sets.

A more precise development of the concepts of the cardinality (number of ele-
ments) and finiteness of a set appears in Chapter 5. For this reason, proofs of the
basic counting rules in this section appear in Section 5.1.

Theorem 2.6.1 The Sum Rule

Let Aand B be finite sets with mand n elements, respectively. If Aand B are disjoint
then AUB=m+ n.

We use the Sum Rule so often, we don’t have to think about it: If a basket has
5 oranges and 6 apples, then there are 11 pieces of fruit in the basket. The rule can
be extended to any finite number of sets. We prove the Generalized Sum Rule by
using the Principle of Mathematical Induction.

Theorem 2.6.2 The Generalized Sum Rule
For all ne N and for every family o = {Ai:i=1,2,3,...,n} of n distinct
pairwise disjoint sets, if A, = g for 1 < i < n, then

Cs

Azga

i=1

Proof. The proof is by induction on the number n of sets in the family «.

1 - 1
(i) n=1then JA=A=ar= ) a.
i=1 i=1

I
— n n
(i) Suppose for some ne N that A =a fori=1,2,...,nand [JA =D a
i=1 i=1
for every family ol = {Ai:1 =1, 2,3,..., n} of n distinct pairwise disjoint

sets. Let o = {Al,iAg, As, ..., Anp1} be a family of n + 1 distinct pairwise
disjoint sets with A, =a; fori =1,2,...,n+ 1. Then
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n+1

)UAn+l

A + Ar+1 (bythe SumRulesince U A and A, ; aredigoint)
i=1

n=(Un
y=

a + any1 (by the hypothesis of induction since
{A, Ap A, ... Ay} isacollection of
n distinct pairwise digjoint sets)

n+1
i=

(iii) By the PMI, the Generalized Sum Rule is true for every family of n distinct
pairwise disjoint sets, for all n € N. ]

The Generalized Sum Rule is useful in situations where it would be practically
impossible for any individual to make an acceptably accurate count. For example,
a good estimate of the total population of a country on a fixed date (a census) may
be accomplished by summing the results of the combined work of thousands of
individuals, each of whom does a count for a designated small geographic area.

If sets Aand B are not disjoint (see Figure 2.6.1), then determining the number
of elements in AU B by simply adding A and B overcounts AU B by counting
twice each element of AN B. Theorem 2.6.3 corrects this error by subtracting
ANBfromA+ B.

Figure 2.6.1

Theorem 2.6.3 For finite sets Aand B,AUB=A+B - ANB.

Proof. By the Sum Rule, A=A—B+AnBand B=B— A+ AN B. Applying
the Generalized Sum Rule to the distinct and pairwise disjoint sets A— B, AN B,
andB— A wehave AUB=A-B+ANB+B-A=A+B-ANB. n

If we know the number of elements in A, B, and A U B, we can use Theorem 2.6.3
to determine AN B:

>
D)
vs)
Il
bl
+
os]]
|
>
C
o8}
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Example. During one week a total of 46 patients were treated by Dr. Medical for
either a broken leg or a sore throat. Of these, 32 had a broken leg and 20 had a sore
throat. How many did she treat for both ailments?

Letting B be the set of patients with broken legs and Sthe set of patients with
sore throats, the solution is

—B+S—BUS=232+20—46=6.

vs]

N

wn

Applying the Sum Rule to the disjoint sets B — Sand B N S we could also find
that B — S=B — BN S= 32 — 6, so there were 26 patients with a broken leg but
no sore throat. Similarly, we could determine that 14 patients had just a sore throat.

See Figure 2.6.2.

Figure 2.6.2

Example. French and German are two of the four national languages of Switzer-
land. Suppose 80% of Swiss residents speak German fluently, 66% speak French
fluently, and 52% are fluent in both languages. What percentage of Swiss residents
are not fluent in either French or German?

To solve this problem, we first find the percentage of residents fluent in at
least one of the two languages (80 + 66 — 52 =94) and subtract this result
from 100%. Based on the given estimates, 6% of residents are not fluent in either
language.

Theorem 2.6.3 can be extended to three or more sets by the Principle of I nclu-
sion and Exclusion. The idea is that, in counting the number of elements in the
union of several sets by counting the number of elements in each set, we have
included too many elements more than once; so some need to be excluded, or sub-
tracted, from the total. When more than two sets are involved, this first attempt at
exclusion will subtract too many elements, so that some need to be added back or
included again, and so forth. For three sets A, B, C, the Principle of Inclusion and
Exclusion states that

AUBUC=[A+B+C]|-[ANB+ANC+BNC]+ANBNC.

The inclusion and exclusion formulas for more than 3 sets are lengthier. (See
Exercise 5.) The Principle is often applied to determine the number of elements not
in any of several sets, as in Exercise 6.

The next basic counting rule is as simple to state as the Sum Rule.
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Theorem 2.6.4 The Product Rule
If A and B be finite sets with mand n elements, respectively, then A x B = mn.

The Product Rule may be applied to counting the total number of ways to
perform two independent tasks (jobs or activities). By independent we mean that
the occurrence of one task has no influence on the occurrences of other tasks. For
example, if we want to select one prime number (task #1) and one composite number
(task #2) from the set {10, 11, 12, ... 20}, there are 4 - 7 = 28 possible ways to per-
form the two tasks.

Like the Sum Rule, the Product Rule can be extended to more than 2 sets.

Theorem 2.6.5 The Generalized Product Rule B
For all n e N and for every family s{ = {A:i=1,2,3, ..., n}of nsets, if A = &
for 1 <i <n,then

n
Al X Ao XX Aq= ]_[a.
i=1
Proof. See Exercise 12. |

Example. To find the number of three-digit positive integers, we must perform
three tasks: Choose each of the three digits. There are 10 possibilities for the units
digit and 10 for the tens digit, but only 9 possibilities for the hundreds digit, because
it can’t be zero. By the product rule there are 10 - 10 - 9 = 900 ways to form a
three-digit positive integer. We can check this result easily: Of the 999 numbers
from 1 to 999, the first 99 have only one or two digits, so 900 have three digits.

Example. To find the number of three-digit positive integers with no repeated digits,
we might begin by observing that there are 10 possibilities for the units digit and nine
remaining possibilities for the tens digit. At this point we see that the task of choosing
the hundreds digit is not independent of the other tasks: The number of possibilities
depends on whether 0 is chosen for either the units or the tens digit. To use the Product
Rule we must think of a different sequence of tasks, or perhaps of carrying out these
tasks in a different order. Beginning with the hundreds digit there are 9 possibilities
(everything but 0), then 9 possibilities for the tens digit, and 8 for the units digit. Thus
there are 9 - 9 - 8 = 648 three-digit positive integers with no repeated digits.

Example. To find the number of odd three-digit positive integers with no repeated
digits, one method is to choose the units digit (there are 5 possibilities), then the
hundreds digit (8 possibilities, to avoid 0 and the chosen units digit), and finally the
tens digit (again, 8 possibilities). Thus, there are 320 odd three-digit positive inte-
gers with no repeated digits.

It is instructive to use another method for this problem. A situation similar to that
of the previous example arises if we begin with the units digit, then the tens digit, and
finally the hundreds digit. To resolve this problem, we consider two disjoint sets of
three-digit integers: those with 0 as the tens digit and those with a nonzero tens digit.
For the first set, there are 5 possible units digits, only one possible tens digit, and 8
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possible hundreds digits. There are 40 such integers. For the second set, there are 5
possible units digits, 8 possible tens digits, and 7 possible hundreds digits, making
280 integers in this set. By the Sum Rule, there are a total of 320 odd three-digit pos-
itive integers with no repeated digits.

If the set A has n elements, then forming a subset of A amounts to carrying out
n independent tasks, where each task is to decide whether to place the element in
the subset. Since each task has two outcomes, there are 2" ways this process can be
carried out, so % (A) has 2" elements. This argument is a restatement of the proof of
Theorem 2.1.4.

DEFINITION  Apermutation of a set with n elements is an arrangement
of the elements of the set in a specific order.

Example. To find all permutations of the set A= {a, b, ¢, d}, we might begin by
writing down all the arrangements of elements of A that begin with the element a.
These are:

abcd abdc acbd acdb adbc adch

The other permutations of A are:

bacd badc  bcad bcda bdac bdca
cabd cadb chad <cbda cdab cdba
dabc dacb dbac dbca dcab dcbha

There are 24 permutations of the 4-element set A.
Recall that n! (n-factorial) is defined inductively by
=1
n=nn-1)! forn>1
orexplicitlyasn'=nn—-1)(n—2) ----- 3-2-1. We also define 0! = 1.
Theorem 2.6.6 The number of permutations of a set of n elements is n!.
Proof. See Exercise 13. u

Example. A shuffle of the playlist on a portable music device is simply a permu-
tation of the set of song titles. For a playlist of 10 songs there are 10! = 3,628,800
possible different playlists.

Example. Find the number of possible user passwords with 7 characters that con-
sist of digits or letters of the alphabet, without repetition.

Ignoring the case of the letters, we can think of the problem as having to select
7 different symbols without repetition from a set of 36, and then arranging them in
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some order. For the first symbol there are 36 choices; for the second

symbol there are 35 choices, and so on. The number of arrangements is
36! .

36-35-34.33-32-31-30= 291" according to the next theorem.

Theorem 2.6.7 The Permutation Rule
If nis a natural number and r is an integer such that 0 < r < n, then the number of
permutations of any r distinct objects from a set of n objects is
n!
(n—=r)!

Proof. See Exercise 14. |

Example. An entertainment agent has five celebrity clients and wants to list three
of them on an Internet pop-up ad. Celebrities want to be listed first, not last, so the
5! 51

— = 60 permutations from which to

order is important. The agent has G- =5

choose.

If the ad were animated with the three pictures rotating around a circle, the
order of selection would not be important—we simply select a group of three
clients from the five. This is a combination of 5 people taken 3 at a time.

DEFINITIONS  For a natural number nand an integer r with0 <r <n, a
combination of n elementstaken r at atimeis a subset with r elements from
a set with n elements.

The number of combinations of n elements taken r at a time is called the

. . . n . .
binomial coefficient (r) read “n choose r” or “n binomial r.”

Example. Choosing three people from a set of five people is the same as forming
5
a 3-element subset. There are (3)different possible combinations. If we identify

the five people as R, C, W, H, and P, the 3-element subsets are {R, C, W}, {R, C,
H}’ {Rl C! P}’ {R’ W’ H}l {R’ W’ P}! {R, H! P}, {C! Wl H}i {Cl W; P}! {Cy Hl P}y

5
and {W, H, P}. Thus, 3)= 10.

For any set with n elements, there is only one way to select a subset of n ele-

ments. Therefore,
(:) =1forallne N.

Also, there is only one way to construct a subset with zero elements. Therefore,

(3) =1forallne N.
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In particular, there is only one 0-element subset of J—the empty set itself. Thus

(0

Example. The set A= {a, b, c, d} has four subsets with one element and four sub-
sets with three elements. A has six subsets with two elements. They are {a, b}, {a, ¢},

{a, d}, {b, c}, {b, d}, and {c, d}. Thus, (i) =4, (g) =6, and (: =4,

The next theorem develops a simple calculation for binomial coefficients. The
proof is a good example of a technique called two-way counting, in which expres-
sions for a given quantity are determined using two different counting approaches,
thereby creating an equality.

Theorem 2.6.8 The Combination Rule
Let n be a positive integer and r be an integer such that 0 < r < n. Then

()7

Proof. (The quantity we count in two different ways is the number of ways to
arrange the n objects in an n-element set.) Let A be a set with n elements. By
Theorem 2.6.6, the number of permutations of all n objects in Ais n!

The nelements of the set A may also be arranged as follows: Select r objects,
order them, and then order the remaining n — r objects. Selecting r objects can be

n
done in (r) ways; ordering the r objects can be done in r! ways; and ordering

the remaining n — r objects can be done in (n — r)! ways. Thus, the number of
. . ... (n
permutations of all n objects in Ais (r - (n—r)h
Comparing the two methods for counting the number of permutations of the

I
elements of A, we have (n) crl-(n—=r)l=nl. Therefore(n) = L.
r r ri(n —r)!

Example. Inacompany with 15 employees, suppose 5 are selected for bonus pay.
The number of ways the 5 employees could be selected is

= 3003.

(15)_ 15!  15.14.13.12-11
5) 51100 5.4.3.2-1

For this calculation, we assumed that all 5 employees will receive the same bonus
amount, so that there is no need to think of the 5 employees as being selected in any
order. They may be selected simultaneously as a subset of the 15.

If the 5 selected employees are to get different bonus amounts, we need to
arrange these employees in order. There are 5! ways to order 5 employees. Thus the
number of ways to give 5 different bonuses is the number of combinations times the
number of permutations within each combination, or 3003(5!) = 360,360.
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If we know from the start that there will be five different bonus amounts, we
use the Permutation Rule to conclude that the five employees can be selected, in
order,in15-14-13 .12 - 11 = 360,360 ways.

Example. Let A=4{2, 3,6, 18, 38, 81, 442, 469, 574, 608}. In how many ways
can four elements of A be selected so that their sum is (a) less than 400? (b) odd?
(c) even and less than 400?
(@  For the sum to be less than 400, we can choose any four of the six elements
. . (6

of Athat are less than 100. This can be done in (4) = 15 ways.

(b)  There are three odd numbers in A, so for the sum to be odd we must select
. . 3
either all three of them or exactly one. There is only 3)= 1 way to

7
choose all three of them, and then <1> =7 ways to choose the fourth

summand from the seven even numbers. By the Product Rule there are
1.7 =7 combinations using all three odd numbers. To form an odd sum

3
with only one odd summand, there are 1)= 3 ways to choose the odd

7
number and <3> = 35 ways to choose three even numbers from A. By the

Product Rule there are 3 - 35 = 105 combinations involving one odd num-
ber. Thus there are 7 + 105 =112 combinations of four elements of A
whose sum is odd.

(c)  Acontains two odd numbers less than 400; for an even sum we must use both

. 2\/( 4
of them or neither. There are <2>( 2> = 1.6 = 6 ways to choose two odd

2\/4
and two even numbers and oNa)= 1.1 =1 way to choose four even

numbers less than 400. Thus, there are seven combinations whose sum is
even and less than 400. As an alternative, we could compute that an odd sum
less than 400 requires one of two odd elements of A and three of the four
4

3
leaves 7 of the 15 sums that are even.

2
even elements. There are (1> . ( ) = 2 - 4 = 8 such combinations, which

The next theorem describes some relationships among binomial coefficients.
First, part (a) explains why (r) is called a binomial coefficient: The coefficient

n
of a"b" " in the expansion of (a+b)" is <r> For example, (a+ b)® =
a® + 5a*b + 10a°b? + 10a%b® + 5ab* + b®. Thus, the coefficient of a%b? is
5 5
<3) =10, and the coefficient of alb* is (l) =5.

Part (b) tells us that there are as many ways to choose r objects out of a set with
n elements as there are ways to choose n — r objects from the set. This must be true
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because choosing r elements to take out is the same as choosing n — r objects to
leave behind. We will consider an interpretation of part (c) at the end of this section.

Relationships among binomial coefficients can often be proved either alge-
braically or combinatorially. An algebraic proof is one that applies formulas such as
those in Theorem 2.6.8. Combinatorial proofs are based on the meaning of the bino-
mial coefficients. In Theorem 2.6.9, we give a combinatorial proof for part (a) and
an algebraic proof for part (b).

Theorem 2.6.9 Let n be a positive integer and r be an integer such that 0 < r < n.

(@ ForabeR, (a+b"= i (?)a’b“'.

o O-(,")
@ ()=(" ) (I =

Proof.
(@ Since(@a+b)"=(a+ b)(a+ b)...(a+ b), each term of the expansion
n factors

of (a+ b)" contains one term from each of the n factors (a + b). Thus,
each term of (a + b)" contains a total of n a’s and b’s and, therefore, each
term includes a factor of the form a'b"~' for some 0 < r < n. For a given
r, the coefficient of a"b"~" is the number of times a"b" " is obtained in the
expansion of (a+ b)". Since the term with a"b"~" is obtained by choosing

a from exactly r of the factors (a + b), the coefficient for a’b"~" is (r:)

n n! n! n
(b) (r)z nMn—n! — (n—n{n—(n—n) :(n—r>'
(c)  See Exercise 21. [

Part (a) of Theorem 2.6.8 provides another way to count the number of subsets of
. . n
a finite set. If a set A has n elements, we start with o) the number of 0-element

n
subsets of A, plus < 1), the number of 1-element subsets of A, and so on, up through

n n/n
(n)’ the number of n-element subsets of A. The sum, Y (r) is the number of
r=0

0. /n 0. /n
subsets of A. By part (), 2"= (1 + 1)"= Y _ (r)lrlr‘r =) (r ) Therefore, A
r=0 r=0
has 2" subsets.
To explain the relationship among coefficients in part (c) of Theorem 2.6.9, we
refer to Pascal’s” triangle, shown in Figure 2.6.3. The triangle provides a simple

* Blaise Pascal (1623-1662) was a French mathematician, physicist, and philosopher. He made pro-
found contributions to projective geometry. He used the triangle, which was known centuries earlier by
Chinese, Indian, and Arabian mathematicians, to advance the study of probability.
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means for computing binomial coefficients. For example, we read on row n=4

(rows are labeled on the left) the coefficients for a"b"", for r increasing from 0 to
4. Thus

(a+ b)* = 1a* + 4a%b + 6a?b? + 4ab® + 1b*.

Q
Va
n=0 1 ) s>
n= 1 1 \ //%
1 2 1 ) /(b
n= 7
s ™
n= 1 3 3 1 7
“
n=4 1 4 6 4 1 J
©
n= 1 5 10 10 5 1 e
n=6 1 6 15 20 15 6 1
Figure 2.6.3

Pascal’s triangle illustrates part (c) of Theorem 2.6.9. The triangle is con-
structed by beginning with the first two rows

1
1 1

and constructing the next row by putting 1 on the far left and far right. All other
entries in a row are found by adding the two entries immediately to the left and right
in the preceding row. Thus, the first 10 in the fifth row is the sum of 4 and 6 from
the fourth row. Part (c) of Theorem 2.6.9 tells precisely how each entry in one row
of the triangle is formed from the two entries in the row above.

Exercises 2.6

1. Find the number of elements in each set.

(@ {neZ: nr* <41} (b) {2,6,2,6,2}
(© {xeR:x?=-1}. (d) {neN:n+1=4n-10}.
2. Suppose A=24, B=21, AUB=37, AnNC=11, B—C=10, and
C — B=12. Find
(@ ANB. * (b)) A—B
(© B-A (d BUC
(e C. (f) AUC.

3. How many natural numbers less than or equal to 1 million are either squares
or cubes of natural numbers?
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4. Of the four teams in a softball league, one team has four pitchers and the other
teams have three each. Give the counting rules that apply to determine each of
the following.

(@ The number of possible selections of pitchers for an all-star team, if
exactly four pitchers are to be chosen.

(b) The number of possible selections if one pitcher is to be chosen from
each team.

() The number of possible selections of four pitchers, if exactly two of the
five left-handed pitchers in the league must be selected.

(d) The number of possible orders in which the four pitchers, once they are
selected, can appear (one at a time) in the all-star game.

5. State the Principle of Inclusion and Exclusion for four sets, A, B, C,
and D.

6. Among the 40 campers at Camp Forlorn one week, 14 fell into the lake during
the week, 13 suffered from poison ivy, and 16 got lost trying to find the dining
hall. Three of these campers had poison ivy rash and fell into the lake, 5 fell
into the lake and got lost, 8 had poison ivy and got lost, and 2 experienced all
three misfortunes. How many campers got through the week without any of
these mishaps?

7. (&) Ifyou have 10 left shoes and 9 right shoes and do not care whether they
match, how many “pairs” of shoes can you select?

(b) Acafeteria has 3 entrée selections, 2 side dishes, and 4 dessert selections
for a given meal. If a meal consists of one entrée, one side dish, and one
dessert, how many different meals could be constructed?

(c) There are 3 roads from Abbottville to Bakerstown, 4 roads from Baker-
stown to Cadez, and 5 roads from Cadez to Detour Village. How many
different routes are there from Abbottville through Bakerstown and then
Cadez to Detour Village?

8. Calculate the number of even three-digit positive integers with no repeated
digits by finding the number of such integers that have (a) units digit 0 and (b)
nonzero units digit. Verify your answer by comparing the number of odd
three-digit positive integers with no repeated digits with the total number of
three-digit positive integers with no repeated digits.

9. (a) Find the number of four-digit positive integers with no repeated digits.

(b) Find the number of odd four-digit positive integers with no repeated digits.

(c) Without using your results from (a) and (b), find the number of even
four-digit positive integers with no repeated digits.

* 10. A square is bisected vertically and horizontally into 4 smaller squares, and

each of the 4 smaller squares is to be painted so that adjacent squares have dif-
ferent colors. If there are 20 paints available, in how many ways can the 4
smaller squares be painted?

11. Prove that if A and B are disjoint and C is any other set, then
AUBUC=A+B+C—-ANnC-BNC.

12. Prove Theorem 2.6.5 by induction on the number of sets.

13. Prove Theorem 2.6.6 by induction on the number of elements.
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14. Prove Theorem 2.6.7.
(@) by using the Product Rule.
(b) by induction on n. Use part (c) of Theorem 2.6.9.

15. Find the number of passwords that use each of the digits 3, 4, 5, 6, 7, 8, 9
exactly once.

16. In how many of the passwords of Exercise 15
(a) are the first three digits even?
(b) are the three even digits consecutive?
(c) are the four odd digits consecutive?
(d) are no two odd digits consecutive?

17. The number of four-digit numbers that can be formed using exactly the digits
1, 3, 3, 7 is less than 4!, because the two 3’s are indistinguishable. Prove that
the number of permutations of n objects, m of which are alike, is n!/m!. Gen-
eralize to the case when my are alike and my, others are alike.

18. Among ten lottery finalists, four will be selected to win individual amounts of
$1000, $2000, $5000, and $10,000. In how many ways can the money be
distributed?

19. A vacationer is selecting 3 out of 19 recommended books to take along for
reading at the beach. Eleven are fiction books.
(@) How many selections are possible?
(b) How many of these selections have exactly 2 of the 11 fiction books?
(c) How many of these selections have exactly one fiction book?

20. Among 14 astronauts training for a Mars landing, 5 have advanced train-
ing in exobiology. If 4 astronauts are to be selected for a mission, how
many selections can be made in which 2 astronauts have expertise in
exobiology?

21. Prove these parts of Theorem 2.6.9 as follows:
(@) Prove part (a) by induction on n.
(b) Prove part (c) algebraically.

* (c) Prove part (c) using a combinatorial argument.

22. Find
(@ (a+b)t
(b) (a+2b)4
(c) the coefficient of a®b'® in the expansion of (a + b)*2.
(d) the coefficient of a?b'® in the expansion of (a + 2b)*2.

23. (a) Giveacombinatorial proof that if nis an odd integer, then the number of
ways to select an even number of objects from a set of n objects is equal
to the number of ways to select an odd number of objects.

(b) Give a combinatorial proof of Vandermonde’s identity: For positive
integers mand n, and r an integer suchthat 0 <r < n+m,

(-G () (0
e ()
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(c) Prove that
<2n>+< 2n >:1<2n+2>
n n+1 2\n+1
Proofsto Grade 24. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.

"4 n n’—n
(@ Claim. ForallnzO,T—i_:n-i- 5

“Proof.” Consider a set of n 4+ 1 elements, and let one of these elements

n+1>_n2+n

be x. There are(n )= ways to choose n — 1 of these elements.

n
Of these, there are( 1) =n ways to choose the n — 1 elements

. . n "’ —n
without choosing x, and (n 2) == ways to choose n — 1 ele-

24+n N —n

n
ments including x. Therefore, T+ =n+ 5 |

(b) Claim. Forn>1,

(3) - (2) * (2) —"'+(—1)k(’|:) R (—D”(E) 0.

“Proof.”

0= (-1+17= 3 (1) (-

()0 ()l

(c) Claim. For n> 1, the number of ways to select an even number of
objects from n is equal to the number of ways to select an odd number.
“Proof.” From part (b) of this exercise (The claim made there is
correct.), we have that

()@ -0+

The left side of this equality gives the number of ways to select an even
number of objects from n and the right side is the number of ways to
select an odd number. [ |
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CHAPTER 3

Relations and Partitions

Given a set of objects, we may want to say that certain pairs of objects are related
in some way. For example, we may say that two people are related if they have the
same citizenship or the same blood type, or if they like the same kinds of food. If a
and b are integers, we might say that aisrelated to b when a dividesb. In this chap-
ter we will study the idea of “isrelated to” by making precise the notion of arela-
tion and then concentrating on certain relations called equivalence relations. The
last two sections of the chapter introduce order relations and the theory of graphs.

3.1 Cartesian Products and Relations

When we speak of arelation on a set, weidentify the notion of “aisrelated to b” with
the ordered pair (a, b). For the set of all people, if Phoebe and Monica were born on
the same day of the year, then the pair (Phoebe, Monica) is in the relation “has the
same birthday as” Thus a relation may be defined ssimply as a set of ordered pairs.

DEFINITIONS LetAandBbesets Risareationfrom AtoB iff Ris
asubset of A x B. A relation from Ato Aiscalled arelation on A.

If (&, b) € R, wewriteaRband say aisR-related (or smply related)
tob. If (a, b) ¢ R, wewritea R b.

Examples. 1fA={—-1,2 3,4} andB={1,2, 4,5, 6}, let

R= {(_11 5)’ (21 4)! (21 1)1 (41 2)}1
S={(52),(4,3),(1,3)}, and
T={(-123), (2 3), (4, 4)}.

Then Risarelation from Ato B, Sisarelation from Bto Aandtheset Tisarela
tion on A.

135
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136 CHAPTER 3 Relations and Partitions

We could describe the relation R by writing —1 R5, 2R 4, 2R 1, and 4R 2.
Since (3, 5) ¢ R, wewrite 3 R 5. We can also describe R by listing the pairsof Rina
two-column table, by displaying the relation with an arrow diagram, or by drawing the
graph of Rasin Figure 3.1.1.

A
6 1-
e 5.
-11|5 N 4 °
214 \ % 31
N7
211 " 21 °
4|2 14- °
—————+—>
-1 2 3 4
(a) Tablefor R (b) Arrow diagram for R (c) Graph of R

Figure 3.1.1

An equation, inequality, expression, or graph is often used to describe arelation,
especialy when listing al pairsisimpractical or impossible. For example, the rela-
tion LT={(x,y) € R x R: x <y} is the familiar “less than” relation on R, since
X LTyiff x <y. Thegraph of LT is shown (shaded) in Figure 3.1.2.

AY

x<y

Figure 3.1.2

You have worked with the graphs of relations in previous courses, because, as
we will seein Chapter 4, functions are relations that satisfy an additional condition.

Example. The phone faceplate pictured on the next page may be used to define a
relation from the set of digits A ={0,1,2,...,9} to the set of 26 letters
I'={A,B, C, ...}. Therelation R defined by “appear on the same phone button” is
asubset of A x I" containing 24 pairs. The pair (4, G) € Rsince4 and G appear on
the same button. Likewise, ORY and 6 RM aretrue. (3, T) ¢ Rsince3 and T do
not appear together. Also 1 RE and 4 R P are true.
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ABC DEF
1 2 3
GHI JKL MNO
4 5 6
PRS TUV WXY
7 8 9
* 0 #

N 7

Consider the relation S on the set N x N given by (m,n) S(k, j) iff
M+ n=Kk+j. Then (3, 17) S(12, 8), but (5, 4) is not Srelated to (6, 15). Notice
that Sis arelation from N x N to N x N and consists of ordered pairs whose
entries are themselves ordered pairs. For thisreason, the description aboveis some-
what simpler than defining Swith set notation:

S={((mn), (k) e(N xN)x(NxN):m+n=k+j}.

The empty set J and the set A x B are relations from A to B. In general,
there are many different relations from a set A to a set B because every subset of
A x Bisarelation from A to B. In Exercise 12 you are asked to prove that if A
has m elements and B has n elements, then there are 2™ different relations from
AtoB.

DEFINITIONS Thedomain of therelation R from Ato B isthe set
Dom (R) = {x € A: thereexistsy € B such that x Ry}.
Therange of therelation Ris the set
Rng (R) ={y € B: there exists x € A such that x Ry} .

Thus the domain of R is the set of all first coordinates of ordered pairsin R, and
the range of Risthe set of all second coordinates. By definition, Dom (R) € A and
Rng (R) € B.

For the relation R={(-1,5), (2, 4),(2, 1), (4,2}, Dom(R) ={-1, 2,4}
and Rng (R) ={1, 2, 4, 5}. For therelation LT on R, where x LT y iff X <y, both
the domain and range are R. For the relation defined by “ appears on same phone but-
ton,” thedomainis{2, 3,4, 5, 6, 7, 8, 9} and therange isthe set of all capital letters
except Q and Z.

Every set of ordered pairsisa relation. If M is any set of ordered pairs, then M
isarelation from A to B, where A and B are any sets for which Dom (M) € A and
Rng (M) C B.
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2 2
Example. LetS= {(x, yeR x R: &"’é < 1}. The graph of Sisthe shaded

areain Figure 3.1.3. Thedomain is[—18, 18] and therangeis[—8, 8].

y
8

48&_/18 B
|

-8
\

| Dom(S) = [-18,18] |

Figure 3.1.3

We can use a directed graph or digraph to represent arelation R on a small
finite set A. We think of the objectsin A as points (called vertices) and the relation
R as telling us which vertices are connected by arcs. Arcs are drawn as arrows:
Thereisan arc from vertex ato vertex b iff (a, b) € R Anarcfrom avertex to itself
iscalled aloop. For example, let A = {2, 5, 6, 12} and R= {(6, 12), (2, 6), (2, 12),
(6, 6), (12, 2)}. Thedigraph for Risgivenin Figure 3.1.4.

The digraph of therelation “divides” on the set {3, 6, 9, 12} hasaloop at each
vertex, as shown in Figure 3.1.5.

DEFINITION  For any set A, the relation I = {(X, X): x € A} is caled
the identity relation on A.

For A={1,2a b}, 1a={(1 1), (2 2),(a a), (b, b)}. Clearly, for any set A,
Dom (1) = A and Rng (1) = A. The graph of the identity relation on [—2, co) is
shown in Figure 3.1.6.

y
3
3 ,
6 2 2, )
2 1=
o5
L1 L1 1,y
-2 -1 1 2 3
9 12 1
. 2 () Sl
Figure 3.1.4 Figure 3.1.5 Figure 3.1.6
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The remainder of this section is devoted to methods of constructing new rela-
tions from given relations. These ideas are important in the study of relations, and
will be used again when we study functions.

Sincerelations from set A to set B are subsets of A x B, the union and intersec-
tion of two relations from A to B are again relations from A to B.

Example. Let X=[2,4] and Y= (1, 3) U {4}. Let Sbetherelation on R defined
by xSy iff xe X, and let T be the relation on R defined by x Ty iff ye Y. The
graphsof Sand T aregiven in Figures 3.1.7(a) and (b). Figure 3.1.7(c) showsthe graph
of SNT. Notethat S=Xx R, T=R x Y, and SNT= X x Y. Figure 3.1.7(d)
showsthegraphof SUT.

| \ L,y T R B R L X TR T X
_1k1 3|5 12345 _1k1 345 N 3|5
-2 -2+ -2 -2

@S (b) T ©SnT (dSuT
Figure 3.1.7

DEFINITION If Risarelation from Ato B, then theinver se of Risthe
relation

R ={(y.x: (xy) eR}.

Since inversion is a matter of switching the order of each pair in arelation, if
Risarelation from Ato B, then R-* isarelation from B to A.

Examples. The inverse of the relation R={(1, b), (1, ¢), (2, ¢)} is the relation
R1={(b, 1), (c, 1), (c, 2)}. For any set A, theinverse of |, is |, itself. For the real
numbers, theinverse of the “lessthan” relation LT = { (X, y) € R x R: x < y} isthe
“greater than” relation on R because

(x,y) € LTLiff (y,x) elLT
iff y<x
iff x>vy.

In case Risarelation on A, the digraph of R~ is obtained from the digraph of
R by copying all the loops and arcs, but reversing the direction of the arrows for
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arcs. Figure 3.1.8 shows the digraphs of R and R~1, where R is the relation € on
the set {<J, {1}, {3}, {1, 2}}.

aaf) aaf )
O

{1 {3 {1 {3

: O
(@c (b)yct
Figure 3.1.8

Example. Let EXPbetherelationon R givenby x EXPy iff y = e*. Theinverse of
EXP is given by x EXPlyiff x=¢&’. We know that x = €' iff y = Inxiff xIny,
where In is the naturd logarithm. Thus, the inverse of EXP is the relation In. The
familiar graphs of EXP and In are givenin Figure 3.1.9.

y

N W A~ OO N

()

. 1 2 3 4 5 6 7 8
\ L1 1y 1 1
2 -1 1 2 3 (g'_l)

(a) x EXPy: y=¢eX (b) In=EXPLy=Inx
Figure 3.1.9

In the previous example, Dom (EXP) = R and Rng (EXP) = (0, c0), while
Dom (In) = (0, oo) and Rng(In) = R. The next theorem says that this switch of the
domain and range of a relation to the range and domain of inverse relation aways
happens.

Theorem 3.1.2 Let Rbearelation from A to B.

(@ Dom(R1)=Rng(R).
() Rng (R 1) =Dom(R).
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Proof.

(@) beDom(R™1)iff there exists a € A such that (b, @) € R1 iff there exists
ae Asuchthat (a, b) € Riff b e Rng (R).
(b)  The proof is similar to the proof for part (a). ]

Given arelation from A to B and another from B to C, composition is a method
of constructing arelation from Ato C.

DEFINITION Let Rbearelation from A to B, and let She arelation
from B to C. The composite of Rand Sis

SoR={(a, ¢): thereexistsb € Bsuchthat (a,b) e Rand (b, c) € §.

Therelation So RisarelationfromAtoCsinceSo RC A x C. Itisalwaystrue
that Dom (So R) € Dom (R) but it is not aways true that Dom (SoR) =
Dom (R). (See Exercise9.)

We have adopted the right-to-left notation for So R that is commonly used in
analysis courses. To determine So R, you need to remember that R is the relation
from thefirst set to the second and Sis the relation from the second set to the third.
Thus, to determine So R, we apply the relation Rfirst and then S,

Example. LetA={1,23,4,5,andB={p,q,r,s t},andC={x,y, z, w}. Let
R be the relation from A to B:

R={(1p).(10q).(20.@Gr) (49}

and Stherelation from B to C:

S={(p. %), (@ %). (a.y). (s 2, (t. )}

Figure 3.1.10

These relations are illustrated in Figure 3.1.10 by arrows from one set to another.
An element a from A is related to an element ¢ from C under So R if there is
at least one “intermediate” element b of B such that (a,b) e R and (b,c) € S
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For example, since (1,p) e R and (p, X) € S then (1, x) € So R By following
al possible paths along the arrows from A to B and B to C in Figure 3.1.10, we
have

SoR= {(11 X)! (11 y)v (2! X)! (2! y)! (41 Z)} .

If Risarelation from A to B, and Sis arelation from B to A, then Ro Sand
So R are both defined, but you should not expect that Ro S= So R. Even when
R and Sare relations on the same set, it may happenthat Ro S# So R,

Example. LetR={(x,y)e RxR:y=x+1} andS={(x,y) eR x R:y =x%.
Then

RoS={(x,y): (X, 2 € Sand (z,y) € Rfor somez e R}
={(x,y): z=x%?andy = z+ 1 for someze R}
={(xy):y=x2+1}.

SoR={(Xy): (X,2 € Rand (z, y) € Sfor somez e R}
={(xy):z=x+landy = 7’ for somez e R}
={(xy):y=(x+1)?%}.

Clearly, Soc R# Ro S since x? + 1 is seldom equal to (x + 1)2.

The last theorem of this section presents several results about inversion, com-
position, and the identity relation. We prove part (b) and the first part of (c), leaving
the rest as Exercise 10.

Theorem 3.1.3 Suppose A, B, C, and D are sets. Let Rbearelation from Ato B, Sbearelation from
Bto C, and T be arelation from C to D.

@ RYHY =R

(b) To(SoR)=(To 9 oR,socomposition is associative.
(C) lgcR=RandRolp=R

(d (SeR1t=R1lost

Proof.

(b) Thepair (x,w) € To (So R) for somexe Aandw € D
iff (3ze C)[(x,2) € So Rand (z, w) € T]
iff (3ze C)[(AyeB)((x,y) e Rand (y,2 € § and (z, w) € T]
iff (3ze C)(Iy e B)[(x,y) e Rand (y, 2) € Sand (z, w) € T]
iff (y e B)(3ze C)[(x,y) e Rand (y, 2) € Sand (z, w) € T]
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iff (3yeB)[(x,y) e Rand(3ze C)((y,2) € Sand (z, w) € T)]

iff (3yeB)[(x,y) e Rand (y,w) e To §]

iff x,wWe(To9oR
Therefore, To (SocR) = (To§oR

(©0  (Wefirst show that Igo RC R.) Suppose (X, y) € Ig © R. Then there exists

ze B such that (x,2 eR and (z,y) € lg. Since (z,y) €lg,z=Yy. Thus
(X, y) € R(since(x,y) = (X, 2 € R).
Conversely, suppose (p, q) € R. Then (g, g) € Ig and thus (p,g) € Ig° R
ThuslgoR=R. u

The storage and manipulation of datain tables (n-tuple relations) is an important
field of computer science called relational databases. Operations such as union and
composition for ordered pairs may be extended to operations on n-tuples. One gen-
eralization of composition in relational databasesisthe “join” of two tables.

Example. Suppose the student information at a small university includes both
directory information and billing information. We let A be the set of first names, B
be last names, C be 4-digit student ID numbers, D be names of campus residence
halls, E be residence hall room numbers, F be tuition amounts due, and G be room
charges due.

The student records in the directory may be described in atable R:

R (directory)
First Name Last Name Student ID Residence Hall Room Number
Krista Maire 1234 Orlando 7
Harold Dorman 2490 Mountain 455
Ferlin Husky 5555 Dove 213A
Martha Reeves 3215 Vandella 238
Kim Anen 6920 Bowie 1979

The directory relation R is a subset of A x B x C x D x E consisting of five
5-tuples. The 5-tuple (Krista, Maire, 1234, Orlando, 77) is one student record in the
directory R.

The financial information relation Sisasubset of C x F x G:

S(financial)
Student ID Tuition Room Charges
1234 $80 $40
2490 $150 $20
5555 $75 $25
3215 $0 $0
6920 $0 $60
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The join of these two tables, denoted R® S is a table with 7 columns. The
rows of the table are obtained by merging 5-tuples from R and 3-tuples from Sthat
share acommon ID number:

R®S
First Last Student Residence Room Room
Name Name ID Hall Number Tuition Charges
Krista Maire 1234 Orlando 77 $80 $40
Harold Dorman 2490 Mountain 455 $150 $20
Ferlin Husky 5555 Dove 213A $75 $25
Martha Reeves 3215 Vandella 238 $0 $0
Kim Anen 6920 Bowie 1979 $0 $60

The join operation is one of several database operations that allow a manager
to create tables in response to requests for information (queries). There are many
advantages to storing datain simpletableslike Rand S, but requests such as“What
is the room charge for Harold Dorman?’ cannot be answered using either of the
tables by itself.

Exercises 3.1

1. Let T be the relation {(3, 1), (2, 3), (3,5), (2, 2), (1, 6), (2, 6), (L, 2)}. Find

(@ Dom(T). (b) Rng(T).

© T @d (TH
2. Find the domain and range for the relation Won R given by x Wy iff
* (@) y=2x+1. (b) y=x?>+3.

1

* (0 y=+vx-1 @ y=2
*x () y<xx (f) x| <2andy=3.

(@ Ix] <2o0ry=3. (h) y#x

3. Sketch the graph of each relation in Exercise 2.

4, Theinverse of R={(X,y) e R x R: y=2x+ 1} may be expressed in the
fomR1= {(x, y)eR x R: y=>(;1},thesetofall pairs (X, y) subject to
some condition. Use this form to give the inverses of the following relations.
In (i), (j), and (k), P isthe set of al people.

* (@ Ri={(xy)eRxRy=x
b)) R={XYy)eR xR y=-5x+2}

* () Re={(x,y)eR x R:y=7x— 10}

(d) Re={(xyY)eRxRy=x?>+2}
* (6 Re={(xy)eR xR y=—4x?+ 5}
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f Re={(x,y)eR xR:y<x+ 1}
* (@) Ri={(xy)eRxR:y>3x—4}
(h) Rgz{(x,y)e[R{x[R:yzx?(z}
* () Rg={(xy) € P x P:yisthefather of x}
(j) Rwo={(xy) € P x P:yisasibling of x}
(k) Ru={(xy) eP x P:ylovesx}
5 Let R={(1,5),(2,2),(3,4),(5,2},S={(24),(3,4),(3,12),(55)}, ad
T={(1,4),(3,5), (4, 1)}. Find

(@ RoS. * (b) RoT.
(c) ToS * (d) RoR
(e SoR (f) ToT.
(9) Ro(SoT). (hy (RoS)oT.
6. Find these composites for the relations defined in Exercise 4.
* (@ RioRy (b) Ri°R,
(0 RoR * (d) RoRs
(6 ReoRy () RioR
* (9) RuoRs (h) ReoRe
(i) ReoRa * (j) Re°Re
(k) RroRy () RsoRs
(m) RsoRg * (n) RsoRg
(0) RsoRs (P) Ro°Rg
7. Givethedigraphsfor theserelationson the set {1, 2, 3}.
@ = (b) S={(1,3),(2 1)}
(o < (d)y S whereS={(1,3), (2, 1)}
8. Let A={a,b,c,d}. Give an example of relations R, S, and T on A such that
(8@ RoS#SoR (b) (SocR)1#AS1oR™L

(0 SoR=ToRbutS#T.
(d) RandSarenonempty, and Ro Sand So Rare empty.

9. LetRbearelation from Ato B and She arelation from B to C.
(@) Provethat Dom (So R) € Dom (R).
(b) Show by example that Dom (So R) = Dom (R) may be false.
() Which of these two statements must be true:

Rng(S) C Rng(SoR) or Rng(SoR) C Rng(S)?

Give an example to show that the other statement may be false.
10. Complete the proof of Theorem 3.1.3.
11. Show by examplethat (A x B) x C= A x (B x C) may befalse.

12. Prove that if A has m elements and B has n elements, then there are 2™
different relations from A to B.
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13. (@) LetRbearelationfrom AtoB. For a € A, definethe vertical section of
RatatobeR,={yc B:(a y) € R}. Provetha | JR,= Rng (R).

A
(b) LetRbearelationfrom AtoB. Fora e A, defi ne?he horizontal section
of Rat btobepR={x € A: (x, b) € R}. Provethat | J,R= Dom (R).

beB
14. We may define ordered triples in terms of ordered pairs by saying that
(a, b, ¢) = ((a, b), ). Use this definition to prove that (a, b, ¢) = (X, Y, 2) iff
a=xandb=yandc=2z

Proofsto Grade 15. Assignagradeof A (correct), C (partialy correct), or F (failure) to each. Justify
assignments of grades other than A.
* (@) Clam. (AxB)UC=(AxC)U(BxC).
“Proof” xe(AxB)UC
iff xe AxBorxeC
iff xe Aandxe Borxe C
iff xe AxCorxeBxC
iff xe (Ax C)U(Bx C). u
* (b) Clam. IfACBandCcCD,thenAx CC B x D.
“Proof” Suppose A x C ¢ B x D. Then there exists (a,c) e Ax C
with (a,¢) ¢ B x D. But (a,¢) € A x C impliesthat a A and c e C,
whereas (a, c) ¢ B x D impliesthat a ¢ B and ¢ ¢ D. However, AC B
and CC D, so ae B and ce D. This is a contradiction. Therefore,
Ax CCBxD. [
(c) Claim. IfAxB=AxCandA+#J,thenB=_C.
“Proof.” Suppose A x B=A x C. Then

A x B_Ax C
A A
Therefore B = C. ]

* (d) Claim. IfAxB=AxCandA+#J,thenB=_C.
“Proof” To show B=C, suppose beB. Choose any aeA.
Then (a,b) e Ax B. But since Ax B=Ax C, (a,b) e Ax C. Thus
be C. This proves BC C. A proof of CC B is similar. Therefore,
B=_C. =
(e) Claim. Let Rand Sberelationsfrom Ato B and from B to C, respec-
tively. ThenSo R= (Ro S)~%
“Proof” Thepair (x,y) € So Riff (y,X) eRo Siff (x,y)e (RoS)™*
Therefore, So R= (Ro S)~L. n
(f) Claim. LetRbearelationfromAtoB. TheniaC RtoR.
“Proof.”  Suppose (x, X) € Ia. Choose any y € B such that (x,y) € R
Then, (y,X) € R°L Thus (x, X) € R"1o R Therefore, I,.C R 1oR =
(g) Claim. SupposeRisarelationfromAtoB. ThenRtoRC I
“Proof” Let (x,y) € R"*o R Then for some ze B, (x,2 €R and
(zy) e RL.Thus(y, 2 € R Since(x, 2 € Rand(y, 2 € R, x=Yy. Thus
X y) =X and xe A, s0(X,Y) € la. =

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



3.2 Equivalence Relations 147

3.2 Equivalence Relations

The goal of this section is to describe a way to equate objects in a set according
to some value, property, or meaning. We might say that among all students who
completed a certain math class, students are equivalent if they had the same
numeric score on the final exam. With this meaning of equivalence, a student
with ascore of 87 on the final exam isrelated to every other student with a score
of 87 and not related to any other student. We could aso have said that two stu-
dents are equivalent if they have the same favorite movie, or if they have the
same blood type.

The three properties we define next, when taken together, comprise what we
mean by objects being equivalent.

DEFINITIONS Let Abeaset and Rbearelation on A.

Risreflexiveon A iff for all xe A, xRx.
Rissymmetriciff for al xandy € A, if xRy, theny Rx.
Ristransitiveiff foral x,y,andze A, if xRyandy Rz thenx Rz

The relation R, defined as * had the same final exam score,” on the set C of all
studentsin agiven class has all three of these properties. Ris symmetric because if
student x had the same score as student y, then student y must have had the same
score as student x. Ristrangitive because if student x had the same score as student
y and student y had the same score as student z, then x had the same score as z
Finaly, for every student x in C, x must have had the same score as x. Thus R is
reflexive on C.

To prove that arelation R is symmetric or transitive, we usually give a direct
proof, because these properties are defined by conditional sentences. A proof that
R is reflexive on A is different. What we must do is show that for all x € A, x is
R-related to x.

For a relation R on a nonempty set A, only the reflexive property actually
asserts that some ordered pairs belong to R. The empty relation (J is not reflexive
on aset A except in the special case when A isthe empty set. The empty relation &
is, however, symmetric and transitive for any set A. See Exercise 4. For each of the
three propertiesthereis an alternate condition (involving the identity relation or the
operations of inversion or composition) that may be used to provethat arelation has
or does not have that property. See Exercise 13.

To prove that arelation R on a set A is not reflexive on A, we must show that
there exists some x € A such that x R x. Since the denial of “If x Ry theny RX" is
“XxRyandnotyRxX,” arelation Risnot symmetric iff thereareelementsxandyin
Asuch that x Ry and y R x. Likewise, Ris not transitive iff there exist elements x,
y,andzin Asuchthat x Ryandy Rzbut x Rz
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Examples. For B={2,56,7}, let S={(2,5),(5,6),(2,6),(7,7)} and T=
{(2,6), (5 6)}.Since6 g6 and 2 I 2, neither Snor T isreflexive on B. Therelation
Sis not symmetric because 2 S5, but 5 2. Likewise, T is not symmetric because
5T6but6F5.

Both Sand T are transitive relations. To verify that Sis transitive we check all
pairs (x, y) in Swith al pairs of theform (y, 2). We have (2, 5) and (5, 6) in S sowe
must have (2, 6); we have (7, 7) and (7, 7) in Sso we must have (7, 7). Therelation
Tistransitive for adifferent reason: there do not exist X, y, zin B such that x T y and
y T z. Because its antecedent is false, the conditional sentence “If x Tyandy T z,
thenx T Z" istrue.

Example. Let Rbetherelation “isasubset of” on %(Z), the power set of Z. Ris
reflexive on %(Z) since every set is a subset of itself. Ris transitive by Theorem
2.1.1(c). Noticethat {1, 2} <{1,2,3} but {1,2,3} ¢ {1, 2}. Therefore, Ris not
symmetric.

Example. Let STNR designatetherelation{(x,y) € Z x Z: xy > 0} on Z. Inthis
example, X STNR x for al xin Z except the integer 0; hence the relation STNR is
not reflexive on Z. STNR is symmetric since, if x and y are integers and xy > 0,
then yx > 0. STNR is aso transitive. To verify this, we assume that x STNR y and
y STNR z Then xy > 0 and yz > 0. If y is positive, then both x and z are positive;
so xz > 0. If y is negative, then both x and z are negative; so xz > 0. Thusin either
case, X STNR z Thisrelation getsits name from the fact that it is symmetric, tran-
sitive, and not reflexive on Z.

For arelation R on a set A, the properties of reflexivity on A, symmetry, and
transitivity can also be characterized by propertiesin the digraph of R:

Risreflexive on A iff every vertex of the digraph has aloop.
Rissymmetric iff between any two vertices there are either no edges or
an edge in both directions.

Ristransitive iff whenever there is an edge from vertex xto y and an
edge from vertex y to z, there is an edge (a direct route) from x to z.

Examples. Figure 3.2.1 shows the digraphs of three relations on A= {2, 3, 6}.
Figure 3.2.1(a) is the digraph of the relation “divides’ and Figure 3.2.1(b) is the
digraph of “>." Figure 3.2.1(c) is the digraph of the relation S where x Sy iff
X+y>T7.

Thereisaloop at every vertex in Figure 3.2.1(a) because therelation “ divides”
isreflexive: Every integer dividesitself. Therelations“ >" and Sare not reflexive;
thereisnoloop at 2 in Figure 3.2.1(b) or (c).

Sisasymmetric relation, but the others are not. In Figure 3.2.1(a) thereis an
arc from 2 to 6, but not in the reverse direction; in Figure 3.2.1(b) there is an arc
from 6 to 2, but not from 2 to 6.

Therelation Sisnot transitive—thereisan arc from 2 to 6 and one from 6 to 3,
but no arc from 2 to 3. The other two relations are transitive. Note that for the
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digraph in Figure 3.2.1(a), every pair of arcs to be checked for transitivity involves
aloop. For example, thereis an arc from 3 to 3 and an arc from 3 to 6; the shortcut
isto go directly from 3 to 6.

NS

(a) divides (b) > (©)S

Figure 3.2.1

For every set A, the identity relation |, is reflexive on A, symmetric, and
transitive. The identity relation is, in fact, the relation “equals,” because x | oy iff
x =Y. Equality is a way of comparing objects according to whether they are
the same. Equivalence relations, defined next, are a means for relating objects
according to whether they are, if not identical, at least alike in the sense that they
share a common trait. For example, if T is the set of all triangles, we might say
two triangles are “the same” (equivalent) when they are congruent. This generates
therelation R={(x,y) € T x T: xiscongruent toy} on T, whichisreflexiveon T,
symmetric, and transitive. The notion of equivalence, then, is embodied in these
three properties.

DEFINITION A relation Ron aset Aisan equivalencerelation on A
iff Risreflexive on A, symmetric, and transitive.

Suppose we say two integers are related iff they have the same parity. For this
relation, R={(x,y) € Z x Z: x+ yiseven}, we see that al the odd integers are
related to one another (since the sum of two odd numbersiseven) and al the evens
are related to each other. Therelation Risreflexive on Z, symmetric, and transitive
and is, therefore, an equivalence relation.

For the set P of all people, let L betherelation on P given by x L y iff xand y
have the same family name. We have Lucy Brown L Charlie Brown, James
Madison L Dolly Madison, and so on. If we make the assumption that everyone has
exactly one family name, then L is an equivalence relation on P.

The subset of P consisting of all people who are L-related to Charlie Brown
isthe set of all people whose family name is Brown. This set contains Charlie by
reflexivity. It also contains Sally Brown, James Brown, Buster Brown, Leroy
Brown, and all other people who are like Charlie Brown in the sense that they
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have Brown as afamily name. The sameistrue for the Madisons: The set of peo-
ple L-related to Dolly Madison is the set of all people with the family name
Madison.

DEFINITIONS Let Rbean equivalence relation on aset A. For x € A,
the equivalence class of x determined by Risthe set

X/R={y e A xRy}.

When R is fixed throughout a discussion or clear from the context, the
notations [x] and X are commonly used instead of x/R.

We read x/R as “the class of x modulo R,” or simply “x mod R”

The set A/R={x/R xe A} of al equivalence classes is called
A modulo R.

The equivalence class of Charlie Brown modulo L isthe set of all people whose
family name is Brown. Furthermore, Buster Brown/L is the same set as Charlie
Brown/L.

Example. Therelation H={(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} isan equivalence
relation ontheset A= {1, 2,3}. Here 1/H = 2/H ={1, 2} and 3/H = {3}. Thus
A/H={{12},{3}}.

Example. Let S={(x,y) € R x R: x> =y?}. Sis an equivalence relation on R.
Wehave2 = {2, -2}, 7 = { —m, i}, etc. Also, 0 = {0} . In thisexample, for every
x € R the equivalence class of x and the equivalence class of —x are the same. R
modulo SisR/S= {{x, —x}: x € R}.

Example. For the equivalencerelationR={(x,y) € Z x Z: x+ yiseven} onZ,
there are only two equivalence classes. D, the set of all odd integers and E, the set
of evenintegers. Thus Z/R={D, E}.

Note that in the examples above—A/H, R/S and Z/R—any two equivaence
classes are either equal or digoint. The next theorem tellsusfor al equivalencerela-
tions, distinct equivalence classes never “overlap.”

Theorem 3.2.1 Let R be an equivalence relation on anonempty set A. For al x, yin A,
(@ x/RC A and xe x/R. Thus every equivalence class is a nonempty subset
of A.

(b) xRyiff X’ R=y/R. Thus elements of A are related iff their equivalence
classes areidentical.

() xRyiff x’RNy/R= . Thus elements of A are unrelated iff their equiva-
lence classes are digjoint.
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Proof.

(8 By the definition of x/R, x/R C A. Since R is reflexive on A, X Rx. Thus

xex/R.

(b) (i) Suppose xRy. To show x/R=Yy/R, we first show x/RCy/R. Let
ze x/R. Then x Rz From x Ry, by symmetry, y Rx. Then, by transi-
tivity, yRz Thus z € y/R. The proof that y/R C x/Ris similar.

(i) Supposex/R=y/R.Sinceyey/R y e x/R ThusxRY.

(© (i) Hx/RNy/R=, then sinceyey/R Yy ¢ x/R ThusxRy.

(i) Finally, we show x Ry impliesx/RNy/R = . (\We prove the contra-
positive.) Supposex/RNy/R+# . Letk e x/RNy/R Thenx Rkand
y Rk. Therefore, x Rk and k Ry. Thusx RYy. =

For the rest of this section, we explore the properties of an equivalencerelation
that has a multitude of important applications. This relation, called congruence,
provides a valuable way to deal with questions associated with divisibility in the
integers. The notion of congruence, first introduced by Carl Friedrich Gauss,* leads
to modular arithmetic, which isan abstraction of our usual arithmetic, and thisleads
in turn to methods for converting computational problems with large integers into
more manageabl e problems.

DEFINITIONS Let mbe afixed positive integer. For X,y € Z, we say
X is congruent to y modulo m iff m divides (x — y). We write X =, Y,
or simply x =y (mod m). The number m is called the modulus of the
congruence.

Examples. Using 3 asthe modulus, 4 = 1 (mod 3) because 3 divides 4 — 1. Like-
wise, 10 = 16 (mod 3) because 3 divides 10 — 16 = —6. Since 3 does not divide
5—(—9) =14, we have 5# —9 (mod 3). It is easy to see that 0 is congruent to
0, 3, —3, 6, and —6 and, in fact, O is congruent modulo 3 to every multiple of 3.

Theorem 3.2.2 For every fixed positive integer m, =, is an equivalence relation on Z.

Proof. We note that =, is a set of ordered pairs of integers and, hence, isarela
tion on Z. (Now we show that =, is reflexive on Z, symmetric, and transitive.)

(i) To show reflexivity on Z, let x be an integer. We show that x = x (mod m).
Sincem-0=0=Xx— X, mdividesx — x. Thus =, isreflexive on Z.

(ii)  For symmetry, suppose X =y (mod m). Then mdivides x — y. Thusthereis
an integer k so that x — y = km. But this means that —(x — y) = —(km), or
that y — x = (—K)m. Therefore, mdividesy — x, so that y = x (mod m).

* The German Carl Friedrich Gauss (1777-1855), one of the greatest mathematicians of all time, also
made major contributions to astronomy and physics. Congruence and modular arithmetic (and much
more) appeared in his masterwork Disquisitiones Arithmeticae, which he completed at the age of 21. He
proved the Fundamental Theorem of Algebra and the Prime Number Theorem, among many other
results in number theory, statistics, analysis, and differential geometry.
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(iii)  Suppose x =y (mod m) and y = z (mod m). Thus m divides both x — y and
y — z. Therefore, there exist integers h and k such that x —y = hm and
y — z= km. But then h 4 kisan integer, and

X—zZ=(X—Y)+ (Yy— 2 =hm+ km= (h + km.

Thusmdividesx — z, so x = z(mod m). Therefore, =, istransitive. =

DEFINITION The set of equivalence classes for the relation =, is
denoted Z,y,.

We can now determine the set Z3 of all equivalence classes modulo 3. For
X € Z, the equivaence class of x is{y € Z: x =3y}, which we now denote by X.
Since the integers congruent to 0 (mod 3) are exactly the multiples of 3, we have

0={...,—6,—3,0,3,6,...}.

To form the equivalence class of 1, denoted 1, we begin with 1 (because 1 =3 1) and
repeatedly add or subtract 3. This producesthe positive integers4, 7, 10, 13, ... and
the negative integers —2, —5,—8, ... that are congruent to 1 modulo 3, so

1={...,—8,-5-21,4,7,10,13,.. }.

In the same way we form

2={...,—4,-1,2,5,8,..}.

If we compute 3={..., —6,—-3,0,3,6,...} we find that 3=0 and in fact
4=1,5=26=0, etc., so there are redly only three different equivalence
classes. We have found that Z3 = {0, 1, 2}.

Notice that the class of 0 modulo 3 above is not the same as the congruence
class of 0 modulo 4. The class of 0 modulo 4 contains 0, +4, £8, +12, and all the
other multiples of 4. See Exercise 9.

Using the notation X for the equivalence class of x modulo m works well as
long as the modulus remains unchanged, but suppose we want to compare compu-
tations with two different moduli. To work with elements of, say, Zg aswell asele-
ments of Zs, we will write elements of Zg as [0], [1], [2], [3], [4], and [5], tO
distinguish them from the elements 0, 1, and 2, of Za.

The 12 hours on the clock correspond to the 12 classesin Z,,. Rather than talk-
ing about hours beyond 12 o’ clock, we start over again with 1 o’ clock instead of
13 o'clock because 13 = 1 (mod 12), and 2 o' clock instead of 14 o' clock because
14 = 2 (mod 12), etc. The hours on a clock face show only the hours since the pre-
vious midnight or noon. We are so accustomed to working with equivalence classes
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modulo 12 that we routinely do arithmetic with them: 9 hours after 8 o’clock is
50’ clock, because 8 + 9 = 17 and 17 = 5 (modulo 12) and 4 hours before 3 o’ clock
is11 o' clock, because 3 — 4 = —1 = 11 (modulo 12).

Our next theorem will show that there are aways m different equivalence
classes for the relation =, and the set Z,,isaways {0, 1, 2, ..., m— 1}. Itishelp-
ful to observe that 0, 1, 2,..., and m— 1 are exactly al the possible remainders
when integers are divided by m. For this reason the elements of Z,, are sometimes
called the residue (or remainder) classes modulo m.

Theorem 3.2.3 Let mbe afixed positive integer. Then

(@) Forintegersx andy, x =y (mod m) iff the remainder when x is divided by
m equals the remainder when y is divided by m. o
(b)  Zmconsistsof mdistinct equivalence classes: Z,,={0, 1, 2,..., m— 1}.

Proof.

(8 Let xandy be integers. By the Division Algorithm, there exist integers q,
r, t, and s such that x=mg+r, with 0 <r <m and y=mt+ s, with
0 < s< m. (We must show that x =y (mod m) iff r = s.) Then

x =y (mod m) iff mdividesx —y
iff mdivides (mg +r) — (mt + )
iff mdividesm(g—1t) + (r —9)
iff mdividesr — s
iff r =s. (Thisisbecause0 <r <mand0 < s< m.)

(b) (We first show that Z,={0,1,2,...,m—1}.) For each k, where
0 <k<m-—1,theset kisanequivalenceclass, s0{0,1,2,...,m— 1} is
a subset of Z,. Now suppose X € Z, for some integer x. By the Division
Algorithm, there exist integers q and r such that x=mqg+r, with
O0<r<m Thenx—r =mq, so mdivides x — r. Thus x=r (mod m). By
Theorem 3.2.1(b) X =T. Therefore Z,, < {0, 1,2, ..., m— 1}.

Finally we will know that Z,,, has exactly m elements when we show that
the equivalence classes 0,1, 2, ..., m— 1 are al distinct. Suppose k=T
where0 <r <k <m-— 1. Then k=r (mod m), and thus m divides k — r.
ButO<k—r<m-—1,s0k—r=0. Then k=r. Therefore the m equiva

lence classes are distinct. |

Exercises 3.2

1. Indicate which of the following relations on the given sets are reflexive on a
given set, which are symmetric, and which are transitive.

* (@ {(1,2}on{1,2} (b) <onN
(¢ =onN (d <onN
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* (6 =onN () #onN
(g) “divides’ on N (h) {(xy)yeZx Z.x+y=10}
0 {@5,(5/1),(11)}ontheset A={1,2,3,4,5}
() L={d, m:land marelinesand! is perpendicular to m} on the set of
al linesin aplane
(k) R where(x,y) R(z,w) iff x+z<y+w,onthesat R x R
* (I) S wherex Sy iff xisasibling of y, on the set P of all people
(m) T,where(x,y) T (z,w) iff x+y<z+w,ontheset R x R

2. LetA={1,2, 3}.Listtheordered pairs and draw the digraph of arelation on
A with the given properties.
* (@) not reflexive, not symmetric, and not transitive
(b) reflexive, not symmetric, and not transitive
(c) not reflexive, symmetric, and not transitive
* (d) reflexive, symmetric, and not transitive
(e) not reflexive, not symmetric, and transitive
(f) reflexive, not symmetric, and transitive
(g) not reflexive, symmetric, and transitive
(h) reflexive, symmetric, and transitive

3. For each part of Exercise 2, give an example of a relation on R with the
desired properties.

4. Let Rbearelation onaset A. Prove that
(@) if Aisnonempty, the empty relation & is not reflexive on A.
(b) theempty relation & is symmetric and transitive for every set A.

5. For each of the following, prove that the relation is an equivalence relation.

Then give information about the equivalence classes as specified.

(@ Therdation Ron R given by x Ry iff x — y € Q. Give the equivaence
classof 0; of 1, of /2.

(b) Therelation Ron N given by mRn iff mand n have the same digit in
the tens places. Find an element of 106/R that is less than 50; between
150 and 300; greater than 1,000. Find three such elements in the equiv-
alence class 635/R.

(c) The relation V on R given by xVyiff x=y or xy=1. Give the
equivalence class of 3; of —%; of 0.

(d) OnN, therelation Rgiven by a Rb iff the prime factorizations of a and
b have the same number of 2’s. For example, 16 R 80 because 16 = 2*
and 80 = 2%. 5. Name three elements in each of these classes: 1/R,
4/R, 72/R.

(e Therelation Ton R x R given by (x,y) T (a, b) iff x2+ y2= a2+ b2
Sketch the equivalence class of (1, 2); of (4, 0).

(f) Fortheset X={m,n,p, q,r,s}, let R bethereation on ?(X) given by
ARB iff Aand B havethe same number of elements. List al the elements
in{m}/R; in{m,n, p, g, r, s} /R. How many elements are in X/R? How
many elementsarein % (X)/R?
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(g) The relation P on R x R defined by (X,y) P(z, w)iff [x—y| =
|z— w|. Name at least one ordered pair in each quadrant that is related
to (3, 0). Describe al ordered pairsin the equivalence class of (0, 0); in
the class of (1, 0).

(h) Let Rbethe relation on the set of al differentiable functions defined by
f Rgiff fand g havethe samefirst derivative, thatis, f” = g’. Namethree
elements in each of these classes: x?/R, (4x® + 10x)/R. Describe x3/R
and 7/R.

(i) Therelation Ton R givenby x Ty iff sinx = siny. Describe the equiv-
alence class of 0; of 7/2; of /4.

6. Let R be the relation on @ defined by P R iff pt =gs. Show that R is an

equivalence relation. Describe all ordered pal rs in the equivalence class of 2

7. Which of these digraphs represent relationsthat are (i) reflexive? (ii) symmetri c’?
(iii) trangitive?
* (@) 1 4 (b)

QA
7%

8. Determine the equivalence classes for the relation of
* (@) congruence modulo 5. (b) congruence modulo 8.
(c) congruence modulo 1. (d) congruence modulo 7.

9. Name apositive integer and a negative integer that are
(@) congruent to O (mod 5) and not congruent to O (mod 6).
(b) congruent to O (mod 5) and congruent to 0 (mod 6).
(c) congruent to 2 (mod 4) and congruent to 8 (mod 6).
(d) congruent to 3 (mod 4) and congruent to 3 (mod 5).
(e) congruent to 1 (mod 3) and congruent to 1 (mod 7).
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10. Using the fact that =, is an equivalence relation on Z and without reference
to Theorems 3.2.1 and 3.2.3, prove that for all xandy in Z:
(@ xex (b) X#.
(c) ifx=py, thenx=y. (d) if x=y,thenx=ny.
(e IfXNy#£Y, thenXx=Yy. f) IfXNny=C, thenX#YV.

11. Consider therelation Son N defined by x Sy iff 3 dividesx + y. Prove that
Sisnot an equivalence relation.

12. Supposethat R and Sare equivalence relations on a set A. Prove that RN Sis
an equivalence relation on A.

13. The properties of reflexivity, symmetry, and transitivity are related to the
identity relation and the operations of inversion and composition. Prove that
(@) Risareflexiverelationon Aiff 1a C R
* (b) Rissymmetriciff R=R1
(c) Ristransitiveiff RoRC R
14. Provethat if Risasymmetric, transitive relation on A and the domain of Ris
A, then Risreflexive on A.

15. Let Rbearelation onthe set A.
* (@) Provethat RUR™!is symmetric. (RU Rt is the symmetric closure
of R)
(b) Prove that if Sis asymmetric relationon Aand RC S thenR1C S

16. Let R be a relation on the set A. Define TR={(x, y) € A x A: for some
ne N there exists ag =X, a;, @, ..., a, =Yy € A such that (ag, a), (a1, a),
(@2 @), ..., (@1, 8) € R}.
(@) Provethat Tristrangitive. (Tristhetransitive closure of R.)
(b) Provethat if SisatransitiverelationonAand RC S then TR C S

17. Thecomplement of adigraph hasthe same vertex set asthe original digraph,
and an arc from x to y exactly when the original digraph does not have an arc
from x to y. The two digraphs shown below are complementary. Call a
digraph symmetric (transitive) iff itsrelation is symmetric (transitive).

(@ Show that the complement of a symmetric digraph is symmetric.
(b) Show by example that the complement of a transitive digraph need not
be transitive.

18. LetL bearelation on aset Athat isreflexive on A and transitive but not nec-
essarily symmetric. Let R be the relation defined on A by x Ry iff xL y and
y L x. Prove that Ris an equivalence relation.

Proofsto Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
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(@) Claim. Iftherelation Rissymmetric and transitive, itisalso reflexive.
“Proof.” Since R is symmetric, if (X,y) € R, then (y,X) € R. Thus
(x,¥) € Rand (y, X) € R, and since Ristransitive, (X, X) € R. Therefore,
Risreflexive. =

(b) Claim. Thereation Ton R x R given by (x,y) T(r,s) iff x+y=
r + sissymmetric.

“Proof” Suppose(x,y) € R x R. Then(x,y) T (y, X) becausex +y =
y + X. Therefore, T is symmetric. u

(c) Claim. Therelation Won R x R given by (x,y) W(r, s) iff x—r =
y — sissymmetric.

“Proof” Suppose (x,y) and (r,s) are in R x R and (x, y) W(r, s).
Then x—r =y —s. Therefore, r —x=s—1y, s0 (r,5) W(X,y). Thus
Wis symmetric. ]

(d) Claim. IftherelationsRand Sare symmetric, then RN Sissymmetric.
“Proof.” Let R be the relation of congruence modulo 10 and S the
relation of congruence modulo 6 on the integers. Both R and Sare sym-
metric. If (x,y) € RN S then 6 and 10 divide x — y. Therefore, 2, 3, and
5all divide x — y, so 30 divides x — y. Also if 30 divides x — vy, then 6
and 10 divide x — y, so RN Sistherelation of congruence modulo 30.
Therefore, RN Sis symmetric. ]

(e) Claim. Iftherelations Rand Sare symmetric, then RN Sissymmetric.
“Proof” Suppose(x,y) € RN S Then(x,y) € Rand(x,y) € S SinceR
and Sare symmetric, (y, X) € Rand (y, X) € S Therefore, (y,X) eRN S =

* (f) Claim. If therelations R and Sare transitive, then RN Sis trangitive.
“Proof” Suppose (x,y¥) e RNSand (y,2 e RNS Then (x,y) R
and(y, 2 € S Therefore, (x,2 e RN'S ]

33 Partitions

Partitioning is frequently used to organize the world around us. The United States,
for example, is partitioned in several ways—by postal zip codes, state boundaries,
time zones, etc. In each case nonempty subsets of the United States are defined that
do not overlap and that together comprise the entire country. This section intro-
duces this concept of partitioning of a set and describes the close relationship
between partitions and equivalence relations.

DEFINITION Let A beanonempty set. % isapartition of A iff P is
aset of subsets of A such that

(i) IfXe®P, then X .
(i) fXePadYeP, thenX=YorXNY=.
iy UX=A

XeP
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The set W of all employeesin alarge work area can be partitioned into work
groups by putting up physical partitions (walls) to form cubicles. If we are care-
ful so that (i) every cubicle contains at least one worker, (ii) no worker is
assigned to two different cubicles, and (iii) every worker must be in some cubi-
cle, then we have formed a partition of W. Notice that the workers are not ele-
ments of the partition; each element of the partition is a set of workers within a
common cubicle. In Figure 3.3.1, Wis a set of 6 workers and the partition of W
consists of four sets—two sets each with two workers and two sets each with a
single worker.

Figure 3.3.1

Examples. The 2-dlement family % = { E, D}, where E is the even integers and D
is the odd integers, is a partition of Z. The 3-element collection ¥ ={N, {C}, Z~},
where 7~ is the set of negative integersis also a partition of Z. For each k € Z, let
Ac={3k 3k+1,3k+ 2}. Thefamily T = {Ac: k € Z} isaninfinite family that is
a partition of Z. Some elements of J are Ag={0,1,2}, A, ={3,4,5}, and
A,={-3 -2 -1}.

Two other partitionsof Z are{..., {3}, {—2},{—1}, {0}, {1}, {2}, {3}, ...}
and {Z}. In fact, for any nonempty set A, the families {{x}: x € A} and {A} are
partitions of A.

Example. Foreachne Z, let G,=[n, n+ 1). Thecollection {G,: h € Z} of half
openintervalsis apartition of R.

By definition, a partition of A isa pairwise disjoint collection of nonempty
subsets of A whose union is A. Recall from Section 2.3 that the definition of
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“pairwise disjoint” allows for the possibility that sets in a pairwise disjoint fam-
ily may be equal.

Example. Fortheset A={a, b,c,d, e, thefamily C ={C,, C,, C3}, where
Ci={b&,C={acd},andCs={b, €},

is a partition of A even though the sets C; and Cz are not digjoint. The family
{C4, Cy, Cg}, isthe same as the family {C,, C3}.

Let Whe aset of six peopleand C = {blue, green, red, white}. For eachc € C,
let

B. = {x € W: x iswearing clothing with color c}.

and let B = {Buiue, Bgreens Bred, Buhite} . The family % may not be a partition of W
because any of the three parts of the definition might be violated. If no one is
wearing red, then B isempty, so condition (i) fails. If someoneiswearing green
only, while a second person is wearing green and blue, then the different sets Byue
and Byeen Overlap, in violation of condition (ii). If someone is wearing only
yellow clothing, then that person does not belong to any set in 93, in violation of
condition (iii).

Thefirst half of the connection between partitions and equivalence relationsis:
Every equivalence relation on a set determines a partition of that set.

Theorem 3.3.1 If Risan equivalence relation on anonempty set A, then A/R, the set of equivalence
classesfor R, isa partition of A.

Proof. By Theorem 3.2.1 every equivalence class x/R is a subset of A and is
nonempty because it contains x, and any two equival ence classes are either equal
or disjoint. All that remains is to show that the union over A/Ris equal to A.

First | Jx/R C A because each x/R C A. To prove A C | Jx/R, supposet € A.

xeA XeA

Sincete t/R te [Jx/R ThusA= [Jx/R ]

XeA XeA
Example. Let A={4,5,6, 7} and T be the equivalence relation
{(4,4),(5,5,(6,6),(7,7),(5,7),(7,5), (7,6), (6,7), (5, 6), (6, 5)}.

By Theorem 3.3.1, we can form a partition of A by finding the equivalence classes
of T. These are 4/T ={4} and 5/T=6/T=7/T={5, 6, 7}. The partition pro-
duced by TisA/R={{4},{5,6, 7}}.
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The Five Boroughs of New York City
B1: Manhattan
B,: Brooklyn
B3: Queens
B4: The Bronx
Bs: Staten Island

Figure 3.3.2

New York City is divided into 5 boroughs (counties). The boroughs are labeled
B, through Bs in Figure 3.3.2. If Aisthe set of all residents of New York City, then
Aispartitioned into 5 subsets: the set of residentsliving in By, the residentsliving in
B,, and so on. How can we use this fact to define an equivalence relation on A? We
say that two residents of New York City are equivalent iff they arein the same par-
tition element; that is, they reside in the same borough.

The method we will use to produce an equivalence relation from a partition
is based on this idea that two objects will be said to be related iff they belong
to the same member of the partition. The next theorem proves that this method for
defining arelation always produces an equivalence relation and, furthermore, the
set of equivalence classes of the relation is the same as the original partition.

Theorem 3.3.2 Let % be a partition of the nonempty set A. For x and y € A, define x Q y iff there
existsC e P suchthat xe Candy € C. Then

(@ Qisanequivaencerelationon A.
(b) A/Q=2.

Proof.

(@ Weprove Qistransitive and leave the proofs of symmetry and reflexivity on
A for Exercise 10. Let x,y, ze A. Assume x Qy and y Q z. Then there are
setsCand D in?® such that X,y € Candy, ze€ D. Since % is a partition of
A, the sets C and D are either identical or digoint; but sincey is an element
of both sets, they cannot be digoint. Hence, thereisaset C (= D) that con-
tains both x and z, so that x Q z. Therefore, Q istransitive.

(b)  We first show A/Q C P. Let x/Q e A/Q. Then choose B e % such that
x e B.Weclamx/Q =B. Ify e x/Q, thenx Qy. Then thereissome C € %
suchthat xe Candy e C. Sincexe CN B, C= B, soy € B. On the other
hand, if y € B, thenx Qy, and soy € x/Q. Therefore, x/Q = B.
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To show % C A/Q, let Be %. As an element of a partition, B # .
Choose any t € B; thenwe clam B=1/Q. If se B, thent Q s, so se t/Q.
On the other hand, if se t/Q, thent Q s; so sand t are elements of the same
member of %, which must be B. ]

Example. Let A={1,2, 3,4} and®? ={{1},{2, 3}, {4}} beapartition of Awith
three sets. The equivalence relation Q associated with % is {(1, 1), (2, 2), (3, 3),
(4, 4), (2. 3), (3, 2)}. The three equivalence classes for Q are 1/Q = {1}, 2/Q =
3/Q={2,3},and 4/Q = {4}. The set of all equivalence classesis precisely P.

Example. Theset o = {Ag, A1, Ao, Ag} isapartition of Z, where

Ag={4k:ke Z}.
Ay ={4k+1:keZ}.
Ap={4k+2:ke Z}.
As={4k+3:ke Z}.

Thenintegersx and y areinthe same set A iff x=4n+iandy = 4m+ i for some
integers n and mor, in other words, iff x — y isamultiple of 4. Thus, the equiva
lence relation associated with the partition « is the relation of congruence modulo
4 and each A isthe residue class of i modulo 4, fori =0, 1, 2, 3.

We have seen that every equivalence relation on a set determines a partition for
the set and every partition of a set determines a corresponding equival ence relation
on that set. Furthermore, if we start with an equivalence relation, the partition we
make isthe set of equivalence classes, and if we use that partition to form an equiv-
alence relation, the relation formed is the relation we started with. Thus, each con-
cept may be used to describe the other. This is to our advantage, for we may use
partitions and equivalence relations interchangeably, choosing the one that lends
itself more readily to the situation at hand.

Exercises 3.3

1. Describe four different partitions of the set of all students enrolled at a
university.
2. For the given set A, determine whether % is a partition of A.
(@ A={1,234,2={{12},{23},{3 4}}
(b) A={1,2,34,56,7,?={{12,{3},{45}}
(© A={1,234,56,7,P={{13}, {56} {24, {7}
*  (d) A=N,®?={1,2345 U{neN:n> 5}
fH A=R,?={S:yeRady> 0}, whereS, ={xeR:x <y}
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3. Describe the partition for each of the following equivalence relations.
(@ Forx,yeR,xRyiff x—yeZ.

*» (b) Forn,me Z,nRmiff nand mhave the same tens digit.
(c) Forx,yeR,xRyiff shx=sny.
(d) Forx,yeR,xRyiff x2=y2
(e) For(x,y)and(u,v) eR x R, (X, y) S(u, V) iff xy =uv=0 or xyuv > 0.
® xYy)R(U,V)iff X+v=y-+u.

4, Let C={i, -1, —i, 1}, where i?= —1. The relation R on C given by xRy
iff Xy = 41 isan equivalencerelation on C. Give the partition of C associated
with R,

5. Let C be as in Exercise 4. The rdation Son C x C given by (x,y) S(u, V)

iff xy = uv is an equivalence relaion. Give the partition of C x C associated
with S

6. Describe the equivalence relation on each of the following sets with the given
partition.
@ N,{{1,2,...9,6{10,11,...99}, {100, 101,...999},...}
* (b) Z,{,{—2},{—1},{0},{1},{2},{3,4,5,}}
(C) R! {(—OO, O)! {0}! (Ov OO)}
x (d) R,{,(—?), _2)1{_2}1(_21 _1)1{_1}1(_11 0)7{0}1(01 1)1{1}1
(1,2),{2},(2,3),..}
(e Z,{AB},whereA={xeZ:x<3tandB=7Z—-A

7. ForeachaceR,leA,={(xy)eR x Riy=a—x3.
(a) Sketchagraph of theset A;fora = —2, —1,0,1, and 2.
(b) Provethat {As: a€ R} isapartitionof R x R.
(c) Describe the equivalence relation associated with this partition.

8. List the ordered pairsin the equivalence relationon A= {1, 2, 3, 4, 5} asso-
ciated with these partitions:

* (@) {{12},{345}} (b) {{1}.{2Z.{3, 4. {5}}
(© {{2.3,4,5,{1}}

9. Partition the set D=1{1,2,3,4,5,6,7} into two subsets: those symbols
made from straight line segments only (like 4), and those that are drawn with
at least one curved segment (like 2). Describe or draw the digraph of the cor-
responding equivalence relation on D.

10. Complete the proof of Theorem 3.3.2 by proving that if % isa partition of A,
and x Qy iff thereexists C € % suchthat xe Candy € C, then
(@) Qissymmetric.
(b) Qisreflexiveon A.

* 11. Let R be a relation on a set A that is reflexive and symmetric but not
transitive. Let R(x) = {y: x Ry}. [Note that R(X) is the same as x/R except
that R is not an equivalence relation in this exercise.] Does the set o =
{R(X): xe A} dways form a partition of A? Prove that your answer is
correct.
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12. Repeat Exercise 11, assuming Ris reflexive and transitive but not symmetric.
13. Repeat Exercise 11, assuming Ris symmetric and transitive but not reflexive.

14. Let Abeaset with at least three elements.
* (@) If P ={By, By} isapartition of Awith By # B, is { B}, B5} apartition
of A? Explain. What if B; = B,?

(b) If P ={By, By, Bg} isapartition of A, is { B, B, BS} apartition of A?
Explain. Consider the possibility that two or more of the elements of
may be equal.

(c) IfP ={By, By} isapartitionof A, ¢, isapartition of By, and 6, isapar-
tition of By, and By # By, prove that €, U 6, isapartition of A.

Proofs to Grade 15. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.

(@) Claim. Let R bean equivalence relation on the set A, and let x, y, and
zbeelementsof A. If xe y/Rand z ¢ x/R, thenz ¢ y/R.

“Proof” Assumethat x e y/Rand ze x/R. Theny Rx and X Rz By
transitivity, y Rz, so ze y/R. Therefore, if xe y/R and z ¢ x/R, then
ze¢ y/R u

(b) Claim. Let R bean equivalence relation on the set A, and let x, y, and
zbeelementsof A. If xe y/Rand z ¢ x/R, thenz ¢ y/R.

“Proof” Assume that x € y/R and assume that ze y/R. Then y Rx
and yRz By symmetry, xRy, and by transitivity, x Rz Therefore,
z e x/R. Weconcludethat if x e y/Rand z ¢ x/R,thenz ¢ y/R. =

(c) Claim. If o isapartitionof aset Aand % isapartition of aset B, then

A U R isapartition of AU B.

“Proof”

(i) fXedUB, thenXe o, or XeRB. Ineither case X # .

(i) FTXeduBandYedURB, thenXedandYe A, or Xe A
andYe B,orXeBand¥Y e o, or Xe B andY e ARB. Since both
A and P are partitions, in each case either X =Y or XNY = (.

(i) Since UX=Aad [JX=B, |J X=AUB. n

Xed XeR XeAURB
* (d) Claim. If Bisapartitionof A, andif x Qy iff thereexistsC € % such

that x e Cand y € C, then therelation Q is symmetric.

“Proof” Firgt, xQyiff thereexists Ce % suchthat xe Candy € C.

Also, y Q x iff there exists C € % suchthat y € C and x € C. Therefore,

xQyiff yQx. |

34 Ordering Relations

Familiar ordering relations for N, Z, and R such as “less than,” “greater than,” and
“less than or equa to” are basic to our understanding of number systems but they are
not equivalence relations. For instance, < is not reflexive on R because 3 < 3 is
false, and is not symmetric because 2 < wistruebut & < 2 isfase. Thereation < is
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trangitive, because the conjunction x <y and y < z implies x < z. This section
describes those properties of relations that characterize orderings like < and <. We
begin with some examples.

Example. In addition to transitivity and reflexivity on R, the relation < on R has
two properties we have not previously considered. The first of these properties is
compar ability: every two elements of R are comparable. This means that for all
X, Y € R, either x < yor y < x. The other property isthat foradl x, ye R, if x <y
andy < x, thenx=y.

Example. We saw earlier that the relation “divides’ is reflexive on N. While we
did not use the term “transitive” in Section 1.4, in effect we proved in that section
that “divides’ is transitive. Two other properties of this relation are notable. If a
divides b and b divides a, then a = b. Also, there are elements of N that are not
comparable. That is, there are natural numbers x and y (for example, 10 and 21)
such that both “x dividesy” and “y divides x” are false.

Example. Let X be a set. The set inclusion relation C on the power set of X is
reflexive on % (X) and transitive. Also, if A and B are subsets of X with A € B and
B C Athen A= B. In thisrelation some pairs of elements are not comparable. For
example, if X={1, 2, 3,4}, then {1, 3} and {1, 4} are elements of % (X) but both
{1,3} €{1,4} and{1, 4} {1, 3} arefdse.

Example. Let Y be the relation “is the same age in years or younger than” on
a fixed set P of people. Then Y is reflexive on P and transitive. This relation
also has the property that any two elements of P are comparable. However, the
relation Y has a property that is undesirable for an ordering. If a and b are
two different peoplein P, and both aand b are 20 yearsold, thenaYband b Y a,
but a+ b.

Although we find it acceptable in an ordering for two elements to not be
comparable, we wish to avoid the situation in the previous example where two
different objects are both related to each other. The property we want is called
antisymmetry.

DEFINITION A relation R on a set A is antisymmetric iff for al
x,yeA if xRyandyRx, thenx=y.

Examples. We have already noted that the relations “divides’ on N, < on R, and
C on P (A) are antisymmetric. The relation < differs from the relation < on R
because < isnot reflexive on R. Like <, therelation < is antisymmetric but for a
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different reason: the statement “For all X, yin R, if x<yandy < xthenx=y" is
true because the antecedent isfalse.

Therelation “divides’ is an antisymmetric relation on N. However, “divides’
isnot an antisymmetric relation on Z. For example, 6 divides —6 and —6 divides 6,
but 6 # —6.

Antisymmetry is an important concept for maintaining the chain of command
in the military where the relation “can give ordersto” must be explicit. It would be
chaotic if two different officers could give orders to each other.

A relation may be antisymmetric and not symmetric, symmetric and not anti-
symmetric, both, or neither. See Exercise 2. In Exercise 3, you are asked to show
that if Risan antisymmetric relation, then x Ry and x # yimpliesy R x. That is, the
only possible symmetry that an antisymmetric relation may exhibit isthat an object
may be related to itself.

DEFINITION A relation Ron aset A is a partial order (or partial
ordering) for Aif Risreflexive on A, antisymmetric, and transitive. A set
A with partial order Ris called apartially ordered set, or poset.

Three relations discussed above: “divides’ on N, < on R, and € on % (X) for
any set X, are examples of partial orderings.

Example. Let Wbetherelation on N given by x Wy iff x4+ yisevenand x <.
Then Wisapartial order. For example, 2W4,4W6,6 W8,...,and1W3,3W5,
5W7,..., but we never have mWn where m and n have opposite parity. We verify
that Wisa partial order:

Proof.

(i) (Show W isreflexiveon N.) Let x € N. Then x + X = 2x iseven and x < X,
so X Wx.

(i)  (Show W is antisymmetric.) Suppose x Wy and y Wx. Then x + y is even,
X <y,andy < x. By antisymmetry of < on N, x=.

(i)  (Show Wistransitive.) Supposex Wyandy Wz Thenx <y, X + yiseven,
y <z andy+ zis even. By transitivity of <on N, x < z Also, X+ zis
even because X+ z= (X +Y) + (Y + 2) + (—2y) is the sum of three even
numbers. Therefore, x W z ]

Suppose Risapartial order onthe set A and a, b, ¢ are three distinct elements of
A. Further suppose that aRb, bRc, and cRa. A portion of the digraph of R is
shown in Figure 3.4.1. The chain of relationships aRb, bRc, cRa is called a
closed path (of length 3) in the digraph. (See the next section for more about pathsin
graphs.) The path is closed because as we move from vertex to vertex along the path,
we can start and end at the same vertex. From aRb and b Rc¢, by transitivity
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we must have a R c. (The arc from a to c is not shown in the portion of the digraph
in Figure 3.4.1.) But c Ra is aso true, and this contradicts the antisymmetry prop-
erty of R. Using this reasoning, we conclude that the digraph of a partial order can
never contain a closed path except for loops at individual vertices.

L)

/N

i

Figure 3.4.1

Theorem 3.4.1 If Ris a partial order for a set A and X Rxq, X1 RXp, X2 RX3, ..., Xy RX, then
X=X1=Xp=X3="-=Xp.

Proof. (We prove this by induction on n.) For n = 1, suppose we have x R x; and
X1 Rx. By antisymmetry, we conclude that X = x;.

Now suppose that for some natural number k, whenever X Rxy, X1 R g,
XoRXs, ..., XcRX, then x=x3 =Xy =X3=--- =X and suppose that x Rx,
X1 RXo, X2 RX3, ..., Xk RX¢ 11, X1 RX. By transitivity (applied to xx Rxx1 and
Xr1 RX) we have xx Rx. From x Rxg, X RXy, ..., ¢ Rx and the hypothesis of
induction, we have X =x; =X = --- = X« Since xx = X we have x Rxc,1 and
Xer1 RX, SOX = X 1. Therefore, X =xg =X = -+ = Xk 1 [

DEFINITION Let R be a partial orderingon aset Aand let a,be A
with a # b. Then aiis an immediate predecessor of b iff a Rb and there
doesnot exist c e Asuchthata=£ c,b=#c,aRcandcRb.

In other words, a is an immediate predecessor of b when aRb and no other element
lies “between” a and b.

Example. For A={1,2,3,4,5}, P(A)is partialy ordered by the set inclusion
relation €. For the set {2, 3, 5}, there are three immediate predecessorsin % (A):
{2,3},{2,5},and {3, 5}. The empty set has no immediate predecessor. Also, & is
the only immediate predecessor for {3}. We have {4} C {2, 4, 5}, but {4} is not
an immediate predecessor of {2, 4, 5} because {4} # {4, 5},{4,5} #{2, 4,5},
{4} € {4,5},and{4,5} {2, 4,5}.

Let M ={1, 2, 3,5, 6, 10, 15, 30} bethe set of all positive divisors of 30. The

relation “divides’ isapartial order for M whose digraph is given in Figure 3.4.2(a).
We can simplify the digraph significantly. First, since we know that every vertex
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must have aloop, we need not include them in the digraph. Also, since there are no
closed paths, we can orient the digraph so that all edges point upward; thus we may
eliminate the arrowheads, assuming that each edge has the arrowhead on the upper
end. We can also remove edges that can be recovered by transitivity. For example,
since there is an edge from 2 to 10 and ancther from 10 to 30, we do not need to
include the edge from 2 to 30. In other words, we need only include those edges that
relate immediate predecessors. The resulting simplified digraph, Figure 3.4.2(b), is
called aHasse diagram of the partial order “divides.”

(a) Digraph of “divides” (b) Hasse diagram for “divides”
Figure 3.4.2

Example. LetA={1, 2, 3}. TheHassediagramfor 2(A) partially ordered by <

isgivenin Figure 3.4.3. It bears a striking resemblance to Figure 3.4.2(b) for good
reason. Except for the naming of the elements in the sets, the orderings are the
same. In fact, it can be shown that every partial order is“the same” asthe set inclu-
sion relation on subsets of some set. Although we need the concepts of Chapter 4 to

o

Hasse diagram for C.

Figure 3.4.3
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make precise what we mean by “same,” Exercise 19 outlines how one might start to
show this.

DEFINITIONS Let Rbeapartial order for aset A. Let B be any subset
of Aanda e A. Then

aisan upper bound for B iff b Rafor every b € B.
aisalower bound for B iff aR b for every b € B.
aisaleast upper bound for B (or supremum for B) iff

(i) aisan upper bound for B, and
(if) aRxfor every upper bound x for B.

aisagreatest lower bound for B (or infimum for B) iff

(i) aisalower bound for B, and
(i) x Rafor every lower bound x for B.

We write sup (B) to denote a supremum of B and inf (B) for an infimum
of B.

We shall soon see (Theorem 3.4.2) that thereis at most one supremum and one
infimum for a set.

Examples. ForA={1,2,3,4,56,7,8,9 10}, letB={{1,4,5,7},{1,4,7, 8},
{2,4,7}}. Bisasubset of ?(A). Using the partial order < for %(A), we see that
{1,2,3,4,5,6,7, 8} isan upper bound for B because

{1,4,57 €{1,2,3,4,5,6,7, 8,
{1,4,7,8 €{1,2,3,4,5,6,7,8}, ad
{2,4, 7 {1,

21
2,3,4,5,6,7,8}.
7,

Another upper bound for Bis{2, 4, 5,
sup(B) ={1,2,4,5,7, 8}.

Elements of P(X) that are lower boundsfor Bare, {4}, {7},and {4, 7}. The
greatest lower bound for Bisinf(B) = {4, 7}.

8,9, 10}. The least upper bound for B is

You should natice in the example above that sup(B) is the union of the setsin
B and inf(B) is the intersection of the setsin B. Thisistruein general: for any non-
empty set A with %(A) partially ordered by C, if Bisaset of subsets of A, then

sup(B) = |J Xandinf(B) = () X. See Exercise 14.
XeB XeB

Example. Hereareleast upper boundsand greatest lower bounds for some subsets
of R with the usual ordering <:

for A=[0, 4), sup(A) = 4 and inf(A) = 0.
forB=1{1,6,3,9, 12,4, 10}, sup(B) = 12 and inf(B) = —4.
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for C = {2% k e N}, sup(C) does not exist and inf(C) = 2.
for D ={2* ke N}, sup(D) = 3 and inf(D) = 0.

Example. Let A be the set of all positive divisors of 1000 with the ordering
relation “divides” on A. Let B = {10, 20, 25, 100}. Both 500 and 1000 are upper
bounds for B; the least upper bound is 100. The greatest lower bound for B is 5.
Note that for “divides,” the least upper bound is the lcm (least common multiple)
and the greatest lower bound is the ged (greatest common divisor).

Theorem 3.4.2 Let R be apartial order for aset A and B € A. Then if sup(B) exists, it is unique.
Also, if inf(B) exists, it isunique.

Proof. Suppose that x and y are both least upper bounds for B. (\We prove that
X =1Y.) Since x and y are least upper bounds, then x and y are upper bounds. Since
X is an upper bound and y is a least upper bound, we must have y R x. Likewise,
sincey is an upper bound and x is aleast upper bound, we must have x Ry. From
x Ry and y R x, we conclude that x =y by antisymmetry. Thus, if it exists, sup(B)
isunique.

The proof for inf(B) isleft as an exercise. u

We have seen examples of sets B where, when they exist, the least upper and
greatest lower bounds for B are in B and other examples where they are not in B.

DEFINITION Let R be a partial order for aset A. Let BC A. If the
greatest lower bound for B exists and is an element of B, it is called the
smallest element (or least element) of B. If the least upper bound for Bis
in B, it iscalled the largest element (or greatest element) of B.

The usual ordering of the number systems has the comparability property: for any
xandy, either x <y ory < x. A partiad ordering with this property is called linear.

DEFINITION A partial ordering RonAiscaled alinear order (or total
order) on Aif for any two elementsx and y of A, either xRy ory Rx.

Examples. Eachof N, Z and R with the ordering < islinearly ordered. % (A) with
setinclusion, where A = {1, 2, 3}, isnot alinearly ordered set because thetwo ele-
ments{1, 2} and {1, 3} cannot be compared. Likewise, therelation “divides’ isnot
alinear order for N because 3 and 5 are not related (neither divides the other).

If Risalinear order on A, then by antisymmetry, if x and y are distinct elements

of A, xRy or y Rx (but not both). The Hasse diagram for a linear ordered set is a
set of pointson avertical line.
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For agiven linear order on aset it is not aways true that every subset has a small-
est or largest element. The set of integers with < is linearly ordered but the set
B={1,3,57,...} has neither upper bounds nor a least upper bound. Likewise,
{-2, -4, -8, —16, —32,...} has no greatest lower bound (and hence no smallest
element).

DEFINITION LetL bealinear orderingonaset A. L isawell ordering
on A if every nonempty subset B of A contains a smallest element.

In Chapter 2 we proved the Well-Ordering Principle from the Principle of
Mathematical Induction. Using the terminology of this section, the Well-Ordering
Principle says that the natural numbers are well ordered by <. The integers, Z, on
the other hand, are not well ordered by < because we have seen that { —2, —4, —8,
—16, —32,...} isanonempty subset that has no smallest element.

Finally, we state without proof aremarkable result.

Theorem 3.4.3 Well-Ordering Theorem
Every set can be well ordered.

The Well-Ordering Theorem should not be confused with the Well-Ordering
Principle of Section 2.5, whichisaproperty of the natural numbers. The theorem says
for any nonempty set A there is always away to define alinear ordering on the set so
that every nonempty subset of A has a least element. Even the set of real numbers,
which we know is not well ordered by the usual linear order <, has some other linear
ordering so that R is well ordered by that ordering. The proof of the Well-Ordering
Theorem requires a new property of sets, the Axiom of Choice. (See Section 5.5.)

Exercises 3.4

1. Which of these relations on the given set are antisymmetric?
* (@ A={1,2,345,R={(173),(11),(24),(3,2),(5,49), 4 2)}.
(b) A={1,23,4,5 ,R={(1,4),(1,2),(273),(3,4),(5,2),4,2),(1,3).
* (¢) Z,xRyiff x2=y2
(d) R,xRyiff x <2,
& RxR,xSyiffy=x—1
* (f) A={1,2 3,4}, Rasgiveninthedigraph:

1 2

NN

Ca——=0D
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(9 A={1,2, 3, 4}, Rasgiveninthedigraph:

1 2
4 3

2. LetA={a, Db, c}. Givean exampleof arelation on Athat is
(@) antisymmetric and symmetric.
(b) antisymmetric, reflexive on A, and not symmetric.
(c) antisymmetric, not reflexive on A, and not symmetric.
(d) symmetric and not antisymmetric.
(e) not symmetric and not antisymmetric.

3. Let Rbean antisymmetric relation ontheset Aand x, y € A.

(@) Provethatif xRyand x #vy, theny Rx.

(b) Provethat if Rissymmetric and Dom(R) = A, then R = | a.

4. (a) Giveanexampleof arelation Ronaset Athat isantisymmetric and such
that x R x for some, but not all, x in A.

(b) Give an example of arelation Son the set A={a, b, ¢, d} such that Sis
transitive, antisymmetric, and irreflexive (that is, x Rx isfalse for al x
inA).

5. Show that the relation R on N given by a Rb iff b = 2a for some integer
k> Oisapartia ordering.
6. DefinetherelationRon R x R by (a, b) R(x,y) iff a < xand b <y. Prove

that Risapartial ordering for R x R.

7. Déefinetherelation Ron C by (a+ bi) R(c + di) iff a> 4+ b? < ¢+ d% IsR
apartial order for C? Justify your answer.

8. Let A be a partially ordered set, called “the alphabet.” Let W be the set of
al “words’ of length two—that is, all permutations of two letters of the alpha-

bet. Define the relation < on W as follows: for xix; € W and yiy, € W,

X1Xo < YaYo iff (i) Xg < yp or (ii) X = y1 and x, < y». Prove that < isapartial

ordering for W (called the lexicographic ordering, asin adictionary).

9. Draw the Hasse diagram for the poset % (A) with the set inclusion relation,

where A={a, b, c, d}.

10. For each Hasse diagram, list all pairs of elements in the relation on the indi-
cated set.
* (@) A={ab,c} (b) A={a,b,c,d} (0 A={ab,cd}
d

NV
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11. Useyour own judgment about which tasks should precede othersto draw aHasse
diagram for the partia order among the tasks for each of the following projects.
* (@) Tomake hisspecia stew, Fubini must perform 9 tasks:

t1: wash the vegetables
to: cut up the vegetables
t3: put vegetables in cooking pot
t4: cut up the meat
ts: brown the meat in a skillet
ts: add seasoning to the skillet
t7: add flour to the skillet
tg: put the skillet ingredientsin the pot
tg: cook the stew for 30 minutes
(b) To back acar out of the garage, Kim must perform 11 tasks:
t1: put the key in the ignition
t,: step on the gas
t3: check to seeif the driveway is clear
14 start the car
ts: adjust the mirror
ts: open the garage door
t7: fasten the seat belt
tg: adjust the position of the driver's seat
to: getinthe car
t10: put the car in reverse gear
t11: step on the brake

12. Let A be anonempty set and let 2 (A) be partially ordered by set inclusion.
Show that

* (a) ifBe ®(A)andx e B, then B —{x} isanimmediate predecessor of B.

(b) if Be ®(A)andx ¢ B, then B is an immediate predecessor of B U {x}.

13. Let Rbethe rectangle shown here, including the edges. Let
H be the set of all rectangles whose sides have positive
length, are parallel to the sides of R, and lie within R. H is
partially ordered by set inclusion.

(a) Doesevery subset of H have an upper bound? aleast upper bound?
* (b) Doesevery subset of H have alargest element?
* (c) Doesevery subset of H have alower bound?

(d) Doesevery subset of H have a smallest element?

14. Let Abeaset and C betheordering for 2 (A).
(@) LetCand D be subsets of A. Prove that the least upper bound of {C, D}
is C U D and the greatest lower bound of {C, D} isC N D.
(b) Let % beafamily of subsets of A. Prove that the least upper bound of %

is | B and the greatest lower bound of % is (] B.
Be® Be®

15. Which arelinear orders on N? Prove your answers.
(@ T,wheemTniff m<2n
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(b) V,wheremVn iff
misodd and niseven, or
mandnareevenand m < n, or
mandnareoddandm < n
© S={mn:mneN,m<nandmsz#5} U{(m5): me N}
(d) T={(mn):mneN,m<nandnz5} U{(5 m): meNj}
16. Provethat therelation V in Exercise 15(b) isawell ordering.

17. Indetermining whether a given relation is awell ordering, it is not necessary
to verify al the conditions for a linear order as well as the additional condi-
tion for awell ordering:

(@) Prove that a partial order R on a set A is a well ordering iff every
nonempty subset of A has a smallest element.
(b) Provethat arelation Ron aset Aisawell ordering iff every nonempty
subset B of A contains a unique element that is R-related to every ele-
ment of B.
18. Provethat every subset of awell-ordered set iswell ordered.

19. This exercise provides the steps necessary to prove that every partial order-
ing isin a sense the same as the set inclusion relation on a collection of sub-
sets of a set. Let A be a set with a partial order R For each ae€ A, let
S ={xe A xRa}. Let F ={S; ac A}. Then F is a subset of ?(A) and
thus may be partially ordered by C.

(@ ShowthatifaRb,thenS, C S..
(b) Showthatif S, C S, thenaRb.
(c) Showthat for every b € A, animmediate predecessor of bin A corresponds
to an immediate predecessor of S, in 7.
(d) Show that if B € A and x is the least upper bound for B, then S; is the
least upper bound for {S,: b € B}.
Proofs to Grade 20. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.
Justify assignments of grades other than A.
(@) Claim. LetAbeasetwithapartial order R. If CC B C Aand sup(C)
and sup(B) exist, then sup(C) < sup(B).
“Proof”  sup(B) isan upper bound for B. Therefore, sup(B) isan upper
bound for C. Thus sup(C) < sup(B). ]
* (b) Claim. Let Abe asetwith apartial order R. If BC A, uis an upper
bound for B, and u € B, then sup(B) exists and u = sup(B).
“Proof” Since ue B, u < sup(B). Since u is an upper bound,
sup(B) < u. Thusu = sup(B). ]
(c) Claim. For A, BC R with the usua < ordering, sup(AUB) =
sup(A) + sup(B).
“Proof” If xe AUB, then x e A or x € B. Therefore x < sup(A) or
X < sup(B). Thus x < sup(A) + sup(B), for al x in AU B. Therefore
sup(AU B) < sup(A) + sup(B). AlscAC AUBadB C AU B, so by
part (8), sup(A) < sup(AUB) and sup(B) < sup(AU B). Therefore
sup(A) + sup(B) < sup(AU B). Thus sup(A) + sup(B) = sup(AUB). =
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35 Graphs

In Section 3.1 we used a digraph—a collection of vertices and directed edges—to
represent arelation on aset. In this section we present asimilar, but different, method
to represent some relations. The representation is called simply agraph.

Graph theory is a significant branch of mathematics with applications to many
fields, such as computer science, linguistics, and chemistry. Thereis great variation
in the terminology about graphs and types of graphs, in part because of all the
diverse areas of applications.

Like a digraph of arelation R on a set A, a graph will have a vertex for each
element of A. Vertices may be connected by edges, but unlike digraphs, the edges
are not directed.

DEFINITIONS A graph Gisapair (V, E), where V is a nonempty set
and E is a set of unordered pairs of distinct elements of V.

An element of V is called a vertex and an element of E is called an
edge. An edge between vertices u and viswritten uv (or vu) rather than as
the set {u, v}.

A graph as defined above is aso called a simple graph because the definition
alows at most one edge between two vertices and does not allow loops at vertices.
A more general definition allows multiple edges and loops.

We begin with an exampl e representing conversations at a party. The five peo-
ple (vertices) at the party are Doc, Grumpy, Sneezy, Dopey, and Happy. Rather
than listing ordered pairs in the relation S on this set of people, where x Sy iff x
had a conversation at the party with y, we describe the relation with the graph in

Figure 3.5.1.
Sneezy
Grumpy /R- Doc
Dopey Happy
Figure 3.5.1

This graph has 7 edges; an edge connects vertices x and y exactly when per-
son x has had a conversation with person y. It can be seen from the graph that Doc
spoke with each of the others except Dopey and that Grumpy had a conversation
only with Doc and Happy. The graph does not show anything about where the
party-goers stood, how long they talked, or whether they had more than one
conversation.
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Other graphs could be used to represent the relation S of having had a conver-
sation at the party. For example, both of the two graphs in Figure 3.5.2 convey

exactly the same information as the graph in Figure 3.5.1, because these graphs
have the same vertices and the same edges.

Sneezy
Dopey Sneezy
Happy e Grumpy Happy Doc

Figure 3.5.2

We call two graphs (V1, E;) and (Va, Ey) isomorphic iff their vertices are the
same except for renaming and whenever there is an edge in E; joining two vertices
in Vy there isacorresponding edge in E; that joins the corresponding verticesin V..

Example. Each of the three graphsin Figure 3.5.3 isisomorphic to the other two.
For the first two graphs, the vertices A, B, C, and D correspond, respectively to «,

B, 7, and 8. The edge AB corresponds to the edge a3, the edge BD corresponds to
the edge B8, and so on.

c
B C
: 3 m /
A D o a b d

Figure 3.5.3

DEFINITIONS Let G=(V, E) beagraph. The order of the graph G
is the number of vertices. The size of the graph G isthe number of edges.

Vertices u and v are adjacent iff uv € E; the edge uv is said to be
incident with u and with v.

The degree of avertex u isthe number of edges incident with u.

A vertex isisolated iff it has degree zero.

The order of our conversation graph is 5 and the size is 7. Doc has degree 3,
meaning he held conversations with three other people. Dopey and Sneezy are
adjacent, whereas Dopey and Doc are not.
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The definition of agraph G = (V, E) alowsfor E to be empty. Such agraph is
anull graph. Figure 3.5.4 isanull graph of order 5. Every vertex of anull graph is
isolated.

2e
le 3

5e 4
The null graph of order 5.

Figure 3.5.4

A graph in which every pair of distinct vertices are adjacent is called a com-
plete graph. If G = (V, E) has order n and is complete, then every vertex has
degree n — 1. The complete graph of order nis denoted K. Figure 3.5.5 shows the
complete graphs of order 5 and less.

2
1 1 2
[ ] e e
1
K K 3
1 2 Ka
2
1 2
1 3
4 3
5 4
K4 K5
Figure 3.5.5

If you look again at Figure 3.5.1, you will see that the degrees of the verticesare
3, 3,4, 2, and 2. The sum of the degrees is 14, which is even. The explanation for
the fact that the sum of the degrees of the vertices of agraph is even is the same as
the explanation for the fact that if a group of people shake hands, the total number
of hands shaken must be even.

Theorem 3.5.1 (@ TheHandshaking Lemma. For every graph G, the sum of the degrees of the
vertices is twice the number of edges. Thus the sum of the degrees is even.
(b)  For every graph G, the number of vertices of G having odd degree is even.

Proof.

(@) Eachedgeisincident with two vertices. Thus the sum of the degrees of the
vertices is exactly twice the number of edges. Therefore, the sum is even.
(b)  Obviously, the sum of the degrees of the vertices that have even degreeisan
even number. If there were an odd number of vertices with odd degree, then
the sum of all the degrees would be odd. By the Handshaking Lemma, thisis
impossible. =
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For the complete graph Ky, each vertex has degree n — 1. Therefore, the sum

of the degrees of the verticesis n(n — 1). Since this number is twice the number of
-1

edges, the number of edgesin K is n(n 5 ).

The graph (V’, E”) isasubgraph of thegraph (V, E) if and only if V' € V and
E’ C E. Thus we can form a subgraph of (V, E) by selecting some of the vertices
from V and some of the edgesfrom E, but it is understood that an edge cannot bein
E’ unless both its vertices are in V’. Figure 3.5.6 shows three subgraphs of our

graph of conversations.

Sneezy
Dopey Sneezy Dopey Sneezy

Happy Doc Happy Happy Doc

Figure 3.5.6

DEFINITIONS A walk* in agraph G is afinite sequence of vertices
Vo, V1, Vo, V3, ..., Vm, Whereeach viv; , ; isanedgein G. Thewalk issaid to
traver se the vertices in the sequence, starting with the initial vertex v
and ending with the terminal vertex vy, The length of the walk
ism, the number of edges. If vo = v, thewalk is closed.

A path in G is awalk where all the vertices, except for possibly the
initial and terminal vertices, are distinct.

Some sequences in the graph of order 6 of Figure 3.5.7 are

P1: 6,3,5
P2 1,2,5,6,4,3
ps:3,2,5,2,3
Pa: 2,5 3,4
ps:1,2,5,4,3,6,1.
2
1 3
6 4
5
Figure 3.5.7

* What we call awalk is called by some a path, an edge-sequence, aroute, atrail, or achain.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



178 CHAPTER 3 Relations and Partitions

The sequence p; isawalk because there is an edge from 6 to 3 and from 3 to 5; the
initial vertex of p; is 6 and the terminal vertex 5. The sequence p, is not a walk
because the graph has no edge from 6 to 4. The sequence ps isawalk but not a path
because of the repeated vertex 2. The walk ps isclosed. Walk py4 is apath of length
3 and is not closed. Walk ps is a closed path of length 6 with initial and terminal
vertices 1.

The graph in Figure 3.5.7 might represent airline routes among 6 cities. It's
natural to think of planning a trip that would traverse certain vertices (cities) by
taking a sequence of edges (flights). If we think of the graph in this way, then a
salesperson’s trip would be a walk through certain cities. Because the salesperson
does not want to visit cities twice, the route should be a path. In addition, the path
should be closed so that the trip starts and ends in the city of the salesperson’s home
office.

Since the vertices of a path p in agraph are distinct, the length of pislimited
by the order of the graph.

Theorem 3.5.2 Let G be agraph of order n.

(@) Ifthereisawalk originating at v and terminating at u in agraph G, then there
isapath from v to u.

(b)  Thelength of apath in G that isnot closed isat most n — 1. Thelength of a
closed path is at most n.

Proof.

(@) Supposev, vy, Vs, ..., uisawalk fromvto u, with v # u. If the walk is not
apath, then some vertex appearstwice in the sequence. Let x be thefirst such
vertex. Then the walk contains at least one closed wak of the form
X, Vi, Vg1, oy Vim, X

Delete the vertices v, Vi 11, . . ., Vim, X from the sequence v, vy, Vo, ..., U.
If the result is a path, we are done. Otherwise another such repeated vertex
can be found and the deletion process repeated. Since we delete at least one
vertex each time and there are finitely many vertices in v, v, Vo, ..., U,
eventually no more vertices can be deleted, so this process must result in a
path from v to u.

In the case v = u, the same process is applied to delete all repetitions
of vertices except the initial and terminal vertex. The result is a closed
path.

(b)  Consider apath in the graph G, where G has n vertices. If the path haslength
t, then there are t + 1 vertices traversed by the path. In a path that is not
closed, all vertices are distinct so there are at most n vertices traversed. Thus
t + 1 < n and the path has length at most n — 1. In a closed path the initial
and terminal vertices are the same and there is no other repeated vertex. Thus
if the closed path haslengtht, there aret distinct vertices. Therefore, if G has
n vertices, the length of a closed path is at most n. =
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DEFINITIONS Let G be agraph and u be avertex of G. The vertex v
isreachable (or accessible) from u if and only if there is a path from u to
v. The number of edgesin a path of minimum length fromuto viscalled
the distance from u to v, denoted d(u, v). For any vertex u, we say u is
reachable from itself and d(u, u) = 0.

Example. Let G be the graph with vertex set V={a,b,c,q,ef, g, h,i,j, k
shown in Figure 3.5.8. The vertex q is reachable from the vertices g, ¢, g, h, j, and k
and from no other vertices in G. The distances to vertex g are d(q, q) =0,
d(g,c) =1, d(g,9) =2, d(g,h)=1, d(g,j)=3, and d(qg, k) =2. Likewise,
d(@f)=1d(ei) =1, and d(q, b) isnot defined.

Figure 3.5.8

DEFINITION Let G beagraph. If uisavertex of G, the component
containing u isthe subgraph C(u) whose vertex set consists of all vertices
reachable from u and whose edge set is all the edges of G that are incident
with those vertices.

The graph in Figure 3.5.8 has three components. The component C(a) =
C(b) = C(f) hasvertex set {a, b, f} and 3 edges. Theverticesc, g, h, j, k, and q al
have the same component that has 7 edges, and C(e) = C(i) has vertex set {e, i}
and one edge.

If we think of the vertices of the graph G in Figure 3.5.8 as representing cities
and the edges representing roads, the figure might represent cities and roads on
three islands. The vertices of G are partitioned into three components (“islands’).
Since every partition of aset isassociated with an equivalencerelation, it isnot sur-
prising that reachability determines an equivalence relation.

Theorem 3.5.3 Let G be agraph with vertex set V and let R be the relation on V defined by u Rv iff

v is reachable from u. Then R is an equivalence relation on V and the equivalence
classesfor R are the vertex sets of the components.
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Proof. By our definition, every vertex isreachable fromitself. Thus, Risreflexive
onV.

If visreachable from u, then there is a path from u to v. By reversing the order
of the edges of this path, we have a path from v to u. Thus, u is reachable from v.
Thus, Ris symmetric.

Let v be reachable from u and w reachable from v. By following the path from
u to v then the path from v to w, we have a walk from u to w. By Theorem 3.5.2(a)
thereis a path from uto w. Thus, the relation Ris transitive.

Therefore, Ris an equivalence relation on V. For each u € V, the equivalence
class determined by u is al the vertices reachable from u, which is precisely the
vertex set of C(u). u

DEFINITIONS A graph G is connected if and only if every vertex
is reachable from every other vertex. G is disconnected iff G is not
connected.

When a graph is pictured as in Figure 3.5.8 it is easy to determine the compo-
nents of G and that G is disconnected. The null graph is disconnected as long as the
graph has at least two vertices. The complete graph K, is connected for every n € N.

Choose any of the three components of the graph G shown in Figure 3.5.8, say
the component C(a) with vertices a, b, and f. Notice that if we were to take any
subgraph of G that included the vertices of the component and at least one more
vertex, that subgraph would not be connected. We say the component is a maxi-
mally connected subgraph of G.

DEFINITION Let G=(V,E) beagraph and G’ = (V’/, E’) be a sub-
graph of G. Then G’ isamaximally connected subgraph of G iff

(i) G’isconnected and
(if) for every subgraph G” of G whose vertex set properly includes V',
G” isdisconnected.

The three components of the graph G in Figure 3.5.8 are the only maximally
connected subgraphs. For example, the subgraph H = ({c, g, h},{ch, gh}) is con-
nected but not maximally connected, because there exist subgraphs, such as the
component C(h), that are connected and have a vertex set that properly includes

{c.g,h}.
The properties of components are collected in the next theorem.

Theorem 3.5.4 For each vertex vin agraph G, let C(v) be the component of vin G. Then

(@ C(v) = C(w) iff wisreachablefromv.
(b)  C(v) # C(w) iff novertex isin both C(v) and C(w).
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(c) foreachv, C(v) isconnected.
(d)  for eachv, C(v) isamaximally connected subgraph of G.

Proof. Parts(a) and (b) follow from the fact that the vertex set of each component

C(v) isthe equivalence class of v under the reachability relation. See Exercise 14.

(¢ Letxandybeany two verticesin C(v). Then both x and y are reachablein G
fromv, soy isreachable fromv, and v is reachable from x. Since all the edges
needed to reach x and y from v areaso in C(v), y isreachable from xin C(v).
Therefore, C (V) is connected.

(d)  We must show that if G’ = (V’, E’) isa subgraph of G, and V' properly con-
tains the vertices of any component C(v), then G’ is disconnected. Suppose
uisavertex in V' that isnot in C(v). Then uisnot reachable fromvin G, so
there can be no path fromvtouin G'. Thus G’ is disconnected. |

Theorem 3.5.4 tellsusthat every vertex bel ongs to exactly one component, and
that the collection of components is pairwise digoint. Further, components are
maximally connected subgraphs. It follows that every isolated point forms a com-
ponent, and that a graph is connected iff it has exactly one component.

Exercises 3.5

1. List the degrees of the vertices of each of these graphs. Verify both parts of
Theorem 3.5.1 in each case.

c

o
(o

(€Y (b) (©

2. If possible, give an example of a graph with order 6 such that
(@) theverticeshavedegrees1,1,1,1,1,5.
(b) theverticeshavedegrees, 1, 1, 1,
(c) thevertices have degrees 2, 2, 2, 2,
* (d) theverticeshavedegreesl, 2, 2,2, 3, 3.
(e) exactly two vertices have even degree.
(f) exactly two vertices have odd degree.
3. If possible, give an example of agraph
(@) with order 6 and size 6.
(b) with order 4 and size 6.
* (c) withorder 3and size 4.
(d) with order 6 and size 3.
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4. For the graph at the right, find all subgraphs b
(@ withtwo vertices. d
(b) with three vertices. a
C
5. Thecomplement of agraph G = (V, E) isthe graph with

vertex set V in which two vertices are adjacent iff they are
not adjacent in G. Give the complements of the graphs below.

-

@ (b) (0) (d)
6. For the graph shown, give

b
(a) 4l paths of length 4 and initia vertex g. (There c
are eight.) a
h

(b) 4l cycles of length 6 and initial vertex c. (There
are eight.)

(c) apathof length 7.

(d) awalk of length 4 that is not a path.

7. Give an example of a graph with 6 vertices having e

degrees1, 1, 2, 2,2, 2thatis

(a) connected.

(b) disconnected.

8. Give an example of agraph with 6 vertices having

(a) onecomponent. (b) two components.
(c) three components. (d) six components.

9. Provethat in every graph of order n > 2 there are two vertices with the same
degree.

10. Give an example of agraph with order 6 such that
(a) two verticesu and v have distance 5.
(b) for any two verticesuandv, d(u, v) < 2.

11. Verify these propertiesfor the distance between verticesin aconnected graph:
(& d(u,v)=>0.
(b) d(u,v)=0iff u=w.
(© d(u,w) <d(u,v)+d(v, w).

12. Letuandr beverticesin agraph such that d(u, r) > 2. Show that there exists
avertex w such that d(u, w) + d(w, r) = d(u, r).
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13. An edge e of a connected graph is called a bridge iff, when e is removed
from the edge set, the resulting subgraph is disconnected. For example, the
edges in the graph below that are bridges are ab, bc, and fg. Give an example
of a connected graph of order 7
(@) with no bridges. (b) with one bridge. () with 6 bridges.

b (o) f
@ . ®

14. Proveparts(a) and (b) of Theorem 3.5.4. Keep in mind that C(v) and C(w) are
graphs; to be the same they must have the same vertices and the same edges.

Proofs to Grade 15. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.
Justify assignments of grades other than A.
(@ Claim. If vand w are vertices in a graph such that d(u, v) = 3 and
d(u, w) =4, thend(v,w) < 7.
“Proof” Suppose d(u, V) = 3 and d(u, w) = 4. Then there is a path
U, X3, X2, vV from u to v with length 3 and a path u, yy, Y2, y3, w from u
to w with length 4. Then v, Xo, X1, U, V1, Y2, Y3, W is a path from v to w
with length 7. The distance from v to w is the length of the shortest path
from vtow and thereisapath of length 7, sod (v, w) < 7. =
(b) Claim. Every connected graph G of order n hasaclosed path of order n.
“Proof” Let G be connected graph of order n with vertices xq, Xo,
X3, . - ., Xn. Since G is connected, each of the vertices x; is reachable from
X1 and X3 is reachable from x,. Thus connecting these paths thereis a
path from x; to X, to X, . .., t0 X, and back to x;. By Theorem 3.5.2(b)
the length of any closed path, including this one, is at most n. u
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CHAPTER 4

Functions

The notion of a function is familiar to you from previous study in algebra,
trigonometry, and calculus. The Preface to the Student reviews the concept of a
function as arule of correspondence and the basic properties of and notations for
functions. In this chapter, where we view functions as single-valued relations,
our goals are (1) to develop a deeper understanding of methods of constructing
functions and the properties of being one-to-one and onto, and (2) to write
proofs establishing that a relation is a function, or has (or does not have) these
properties. The techniques and results developed here are used throughout the
remainder of the text.

4.1 Functions as Relations

The concept of afunctionisvery old, but the word function was not explicitly used
until 1694 by G. W. Leibnitz.* Itisonly relatively recently that it has become stan-
dard practice to treat a function as we define it below—as a relation with special
properties. Thisis possible because the rule that makes an element in one set cor-
respond to an element from a second set may be viewed as forming a collection of
ordered pairs.

* Gottfried Wilhelm Leibnitz (1646—-1716) was a versatile German scholar, lawyer, and diplomat who
made major contributions to mathematics, philosophy, logic, technology, and physics. Although they
worked independently, both he and | saac Newton devel oped cal culus. Leibnitz devised the now standard
% andff (x)dx notations, referring to dy and dx as “infinitesimals.” His development of the binary
number system isthe basis of all modern computing devices.

185
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DEFINITIONS A function (or mapping) from A to B isarelation f
from A to B such that

(i) thedomainof fisA, and
@iy if(xy)yefad(x2 e f theny=2z

We write f: A— B and this is read “f is a function from A to B,” or
“f maps Ato B.” The set B is called the codomain of f. In the case where
B = A, wesay fisafunction on A.

No restriction is placed on the sets A and B. They may be sets of numbers, sets
of ordered pairs, or even sets of functions.

The conditionsfor f to beafunction from Ato B have alot to say about thefirst
coordinates of the ordered pairsin f: Condition (i) ensures that every element of A
isafirst coordinatein f, and condition (ii) says that each first coordinate appearsin
just one ordered pair in f. There are no corresponding requirements for second
coordinates: It may happen that some elements of B are not used as second coordi-
nates, or that some elements of B are used as second coordinatesin two or more dif-
ferent ordered pairs.

Examples. Let A={1, 2,3} andB ={4,5, 6}. All of the sets

Ri=1{(1,4),(2,5), (3 6), (2 6)}
Ro={(1,4),(2,6), (3,5}
Rs=1{(1,95),(2,9), (3,4}
Ri={(1,4),3,6)}

are relations from A to B. Since (2, 5) and (2, 6) are distinct ordered pairs with the
same first coordinate, R; is not afunction from A to B. Both R, and R; satisfy condi-
tions (i) and (ii) and are functions from A to B. The domain of R, isthe set {1, 3},
whichisnot equal to A, so R4 isnot afunction from A to B. However, R, satisfies con-
dition (ii), soit is correct to say that Ry isafunction from {1, 3} to B.

The codomain B for a function f: A — B isthe set of all objects available for
use as second coordinates (images). As with any relation, the range of fis

Rng(f) = {v e B: thereisu € A such that (u, v) € f},

which isthe set of objectsthat are actually used as second coordinates. The range of
f is always a subset of the codomain. In the examples above, the range of R; isthe
same asits codomain, but the range of Rz is{4, 5} # B. We say that Rz isafunction
from A to B, but we could also say that R; isalso afunction from Ato {4, 5}, and Rs
isafunction from A to {\fS, 7, 4,5, 8} or to any other set that contains both 4 and
5. A function has only one domain and one range, but many possible codomains,
because any set that includes the range may be considered to be a codomain.
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DEFINITIONS Let f: A— B. We write y= f(x) when (x,y) € f.
We say that y isthevalue of f at x (or theimage of f at x) and that xisa
pre-image of y under f.

Suppose f: A — B. It is condition (ii) of the definition that makes f a single-
valued correspondence, which means that for every x € A there corresponds a
unique (single) value in B. This condition alows us to refer to the image of x,
rather than an image and to write the familiar f(x) for the image of x.

Example. Let F={(x,y) € Z x Z:y=x?. Then F is a mapping with domain
Z and F(X) = x2 Theimage of 4is 16, F(—3) =9, F(t + 2) = (t + 2)?, and the
vaue of F at 10is100. Both 5 and —5 are pre-images of 25. Since 7 has no pre-image
inZ, 7isnotintherangeof F. TherangeisRng(F) ={0, 1,4, 9, 16...}.

Example. Provethat g={(x,y) € R x R: x=y% isafunction from R to R.

Proof. First, observethat gisarelation from R to R.

(i) (Showthat Dom(g) = R.) Suppose x € Dom(g). By definition of g, thefirst
coordinates of elements of g are real numbers, so x € R.
Let x e R. Then /X isareal number and x = (+/X)3. Thus there exists
ye R (namely y = «3&) for which (x, y) € g. Thusx € Dom(g).
(i) (Showthat fissingle-valued.) Suppose (x, u) € gand (X, V) € g. Then x = u®
and x = v3, Therefore u® = v3, from which we conclude that u = v.

By parts (i) and (ii), g isafunction from R to R. u

To prove that a given relation r from A to B is not a function from A to B, we
may either show that (i) some element of A is not afirst coordinate (that is, some
element of Aisnotin Dom(r)), or (ii) find some element x of A that isafirst coor-
dinate with two different second coordinates—thus showing the existence of some
(x,y)erand (x,2 erwithy #z

Therdation H = {(x, y) € R x R: x? + y? = 25} with domain [—5, 5] isnot a
functionfrom[—5, 5] to R because, for example, (3, 4) € Hand (3, —4) € H. (Seethe
graph in Figure 4.1.1 on the next page). Since we have the graph to view, an easy way
to tell that H is not a function is to apply the \ertical Line Test for arelation r on R:

r isafunction iff no vertical line intersects the graph of r more than once.

Visualizing the vertical line x = 3 helps us discover that H is not a function
because (3, 4) and (3, —4) are both in H.
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AR
N

Figure 4.1.1

The graph of g={(x,y) € R x R: x=y3} in the example above appears in
Figure 4.1.2. If we apply the Vertical Line Test to the graph of g, the relation g
appears to be a function. However, this observation does not constitute a proof
because the graph represents only a portion of the relation g and our representation
might not reveal small vertical segments of the graph.

v

I

Figure 4.1.2

Notethat arrow diagramsfor relations with small finite domains may be used to
determine whether the relation is a function. The diagram in Figure 4.1.3(a) repre-
sents a function with domain {a, b, ¢} but the diagram in Figure 4.1.3(b) does not.

a 1 a 1
b 2 b 2
c 3 c 3
4 .
(@) (b)
Figure 4.1.3

Functions whose domains and codomains are subsets of R are often referred to
as “real functions” The words “f is defined on the interval 1" mean that
| € Dom( f). The domain of a rea function is usually understood to be the
largest possible subset of R, so that, for example, the domain of the function

f(x)= j;(is(o, 00).
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Because functions are sets of ordered pairs, we may say that functions f and g are
equal if andonly f C gand g C f. For example, let f: { -2, 3} — {4, 9} begiven by

f(x) =x2
and g: { —2, 3} — [0, co) be given by
g(x) =x+ 6.

Although f and g have different rules and different codomains, the two functions
have the same domain { —2, 3} and both are equal to {(—2, 4), (3, 9)}. Therefore
f = g. A very natural and useful way to express the ideathat two functions are equal
isto assert that they have the same domain (so they act on the same objects) and that
for each object in the common domain the function images are the same.

Theorem 4.1.1 Two functions f and g are equal iff

(i) Dom(f)=Dom(g) and
(i) foral xe Dom(f), f(xX)=g(x).

Proof. (We provethat conditions (i) and (ii) hold when f = g. The converseis left
as Exercise 14.) Assumef = g.

(i) Supposex e Dom (f). Then (x,y) € f for somey and, sincef = g, we have
(%, y) € g. Therefore x € Dom(g). This shows Dom( f) € Dom(g). Similar
reasoning shows that Dom(g) € Dom( f). Therefore, Dom(g) = Dom( f).

(i)  Suppose x € Dom (f). Then for somey, (x,y) € f. Sincef =g, (X, y) € 0.
Therefore, f (x) =y = g(x). ]

Examples. Supposef, g, and harerea functionsgivenby f (x) = g g(x)=1,and
h(x) = % Then f # g because they have different domains: The number O isin
Dom(g) but not in Dom( f). The functions f and h are different because they have
different function values. For instance, f (—2) = 1and h(-2) = —1.

The remainder of this section describes several types of functions, some of
which will be familiar to you.

Let A be any set. The identity relation 14 is the identity function 1a: A — A
given by Ia(X) = x. If Aisasubset of B, we definetheinclusion functioni: A — A
by i (x) = x for all x € A. Since they both have domain A and 14(X) =i (X) = x for
al xe A, Ip =i by Theorem 4.1.1. Thereis no difference between these functions,
but it is customary to write | , when we think of the function from Ato Aand i when
we think of the function from A to B.

Assume that a universe U has been specified, and that A C U. Define
XA U— {0, 1} by

B 1 ifxeA
XA =10 ifxeu—A
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Then Xa(x) is cdled the characteristic function of A. For example, if A=[1, 4),
with the universe being the real numbers, then Xa(x) = 1 iff1 < x < 4. Figure4.1.4
isagraph of X{1, 4.

y
2
1 0

L1 F N B B
-3 -2 —1 L1 2 3 4 5
-1

Figure 4.1.4

One variation of the characteristic function isastep function. Suppose A € R,
€ ={Cs: 6 € A} isapartition of aset A, and for each § € A, bs isin the set B.
Definef: A— Bby f (X) = bs if x e Cs.

As an example, let A=[1, 5] with C; =[1, 2], C, = (2, 4), and C3 = [4, 5],
and let B =R with by = 3, b, = 4, b3 = 2. The graph of the corresponding step
function isgiven in Figure 4.1.5.

y
41— OO
3 e—e
2 - o—
1=
I N S R B
1 2 3 4 5

Figure 4.1.5

The greatest integer function isan example of a step function with domain R
and range Z. It assigns to each real number x the integer part of x, by which we mean
the largest integer n such that n < x. On graphing cal culators thisfunction is usually
denoted as“int.” For instance, int(5.9) =5, int(ﬁ) =1, andint(—x) = —4.

DEFINITION A function x with domain N is caled an infinite
sequence, or simply a sequence. The image of n is usually written as x,
instead of x(n) and is called the nth term of the sequence.

1
For sequence x given by x, = Py the 63rd term isxez = 6—14 Therangeof xis

)

——
NI
Wi

Bl
gl
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The terms of a sequence need not be distinct. The first ten terms of the
sequence x given by x, = ((—1)" + 1)n are 0, 8, 0, 32, 0, 72, 0, 128, 0, 200.

If Risan equivalencerelation on the set X, then the function from X to X/R that
maps each a € X to the equivalence class of a is called the canonical map for the
relation R. Recall that in Chapter 3 we used a to denote the equivalence class of a.
If f isthe canonical map for the relation of congruence modulo 5 on Z, the images
of —3and 9 are

f(-3)=—-3=2={...,-8,-3,2,7,12,.. .},
f(9=9=4=1{..,-6,-1,4,9,14,..}.

The equivalence classes under the family namerelation L on the set P of all peo-
ple with family names (see Section 3.1) are sets of people all having the same family
name. Under the canonical map f from P to P/L, every person corresponds to his
or her equivalence class. Thus f (Charlie Brown) isthe set of al people with family
name Brown and f (Charlie Brown) = f (Buster Brown). The canonical map is a
natural function to consider, and it plays an essential role in the development of
many mathematical structures.

Rules of correspondence between equivaence classes have interesting proper-
ties. Consider for example the classes 0, 1, 2, and 3 of Z4 and the rule that X in Z,4
corresponds to the equivalence class [2X] in Z10. (Note, for clarity, we use here the
bar notation for the equivalence classes of Z, and the bracket notation for equiva-
lence classesin Z19.) Under thisrule,

fO=[0, f)=[2, f@=[4, ad f(3)=[6].

However, 0 and 4 are in the same class in Z4, so by the rule f (4) = [8]. In Zyq,
however, [0] # [8], so the rule assigns two different values to the same element,
0 =4, of Z4. Thus, f isnot afunction. In cases where an object in the domain has
more than one representative (for instance, the object 0 can be represented by
on the representative, we say “the function is not well defined,” meaning that it is
not really afunction.

Exercises 4.1

1. Which of the following relations are functions? For those relations that are
functions, give the domain and two sets that could be a codomain.
* (@ {(0,2), (A, 0),0,n), (N U),(U,0)}
(b) {(12),(1,3),(14),(15), (1 6)}
© {12, (2D}
d) {xy)eRxR:x=sny}
e {xy)yeNxN:x<y}
M {xyeZxZy*=x}
@ {@.{9}). (<}, 9). (D, D), (S} {<})}
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(h) a 1
c 3
d

@i a 1
b\

2. Giveardationr fromA={5,6, 7} to B = {3, 4, 5} such that
(@ risnotafunction.
(b) risafunction, but not afunction from A to B.
() risafunctionfrom Ato B, with Rng(r) = B.
(d) risafunctionfrom Ato B, with Rng(r) # B.

3. ldentify the domain, range, and another possible codomain for each of the fol-
lowing mappings.
1
* () {(X,Y) € Rx R'y:)(—l-l}
(b {(xy) eR x R:y=x%+5}
© {xy)eNxN:y=x+5}
* (d) {x,y)eR xR:y=tanx}
€ {(xy)eRxRy=xnX)}
eX+ eX}

()] XyY)eRxRy= 5

2 _
@ {xyerxmy=2"2

(h) (X,y)erZ:yz);z__;}

4. Assuming that the domain of each of the following functions is the largest
possible subset of R, find the domain and range of

+ (@ f(x)=xz%xglz. (b) () =2x+5.
© f(x)= Xl+ . d f(x)=+5-x
v T

© f(X)=v5—-x+vx=3 () fX)=vx+2+V-2-x
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* 5. (a) Let Abetheset {1,2 3, 4} and let R be the relation on A given by
{(x, y): 2x + y is prime and not equal to 5}. Prove that R is a function
with domain A.
(b) Let A be the set {1,2,3} and let R be the relation on A given by
{(x, y): 3x+ yisprime}. Prove that Risafunction with domain A.
(c) LetRbetherelationonZ givenby {(x, y): x>+ y = 2}. Provethat Ris
afunction with domain Z.

6. Show that the following relations are not functions on R.
@ {(xy)eRxR:x*=y%}
) {xYeRxR:x2+y>’=1}
© {(xy) eR x R:x=cosy}
@) {xy)eRxRy?=x
7. Lettheuniverse be R and A = [1, 3). Sketch the graph of
@ Xa () Xa (© Xz (d) X
8. Let U betheuniverse and A € U with A # &, A # U. Let X be the charac-
teristic function of A.
* (@ Whatis{xeU: Xa(x)=17? (b) Whatis{xe U: Xa(x)=0}7?
(©) Whatis{xe U: Xa(x)=2}?
9. Give an example of a sequence x such that
*x (@) therange of x isthe negative integers.
(b) theterms of x are alternately positive and negative.
(c) dltermsof x are distinct and between 3 and 4.
(d) therange of x has exactly 3 elements.

10. For the canonical map f: Z — Zg, find
* (@) f(3). (b) theimage of 6.
(c) apre-imageof 3. (d) al pre-imagesof 1.

11. Which of the following are functions from the indicated domain to the indi-
cated codomain? In each case, we represent an element of the domain as an
equivalence class X, and use the notation [X] for equivalence classes in the
codomain. For those relations that are not functions, show that the function is
not well defined by naming an equivalence class in the domain that is
assigned two different values.

(@ f:Z3— Zggivenbyf(X)=[X]

* (b) f:Zs— Zggivenbyf(X)=[x+1]
(c) f:Z3— Zggivenby f(X)=[2X]
(d) f:Z4— Zegivenby f(X) =[2x+ 1]
* (e) f:Z3— Z4givenby f(X)=[X]
(f) f:Z4— Zygivenby f(X)=[3X]

2

99—
12. Explain why the functionsf (x) = x+);

13. (a) Provethat the empty set & isafunction with domain &.

and g(x) = 3 — x are not equal.
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(b) Provethatif f: A— Bandany oneof f, A, or Rng( f) isempty, then all
three are empty.

14. Complete the proof of Theorem 4.1.1. That is, prove that if (i) Dom(f) =
Dom (g) and (ii) for al x € Dom(f), f(x) = g(x),then f = g.

15. Let S be a relation from A to B. We define two projection functions
71: S— A and 7,: S— B as follows: For al (a, b) in S 71 (a, b) =a and
mo(a, b) = b. Interms of S find

* () Rng(my). (b) Rng(m2).
16. A metricon aset Xisafunction d: X x X — R such that for al a, b, c € X,
(i) d(a b)=>0.

(i) d(a,b)=0iff a=Dh.
(iii) d(a, b) =d(b, a).
(iv) d(a b)+d(b,c)>d(a c).
Prove that each of the following isametric for the indicated set.
* (@ X=N,d(xy)=[x-yY]|
0 ifx=y
(b) X=R d(xy)= {1 ifx 2y
© X=RxRd((xY),(zwW)=(x—2)2+(y—w)?
(d) X:RXR,d((X,y),(Z,W)):|X—Z|+|y—W|
17. Suppose that set A has m elements and set B has n elements. We have seen
that A x B has mn elements and that there are 2™ relations from A to B. Find
the number of relations from A to B that are
(a8 functionsfrom Ato B.
(b) functions with one element in the domain.
* () functionswith two elementsin the domain.
(d) functions whose domain is a subset of A.

18. (a) Let f be afunction from A to B. Define the relation Ton Aby x Ty
iff f(x)= f(y).Provethat Tisan equivalencerelation on A.
(b) Inthecasewhenf: R — R isgiven by f (x) = x2, describe the equiva-
lence class of O; of 2; of 4.
(¢) Inthecasewhenf: R — R isthe cosine function, describe the equiva-
lence class of 0; of 7/2; of /4.

Proofsto Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
(@ Claim. Thefunctionsfand g areequal, wherefand g are given by

X 1 ifx>=0
f(x)=|x|andg(x)={_1 fx =0
. - X X
“Proof” Let x be ared number. If X is positive, then X =X— 1, s
X X
f(x) =g(x). If x is negative, then ™= === -1, 0 f(X) = g(x).
Inevery case, f(x) =g(x),s0 f=g. ]
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1 1
(b) Claim. Thefunctions f(x)=1+ X and g(x) = % are equal.
“Proof” The domain of each function is assumed to be the largest
possible subset of R. Thus Dom(f) = Dom(g) = R — {0}. For every
x e R — {0} we have

1 _x+1
<=

1
F) =1+ = +; = ==9(x).

Therefore, by Theorem 4.1.1, f =g. [

(c) Claim. Therelation x? = y2 defines afunction from R to R.
“Proof” The graph of the relation x? = y2 is given here:

\4

Since no vertical line crosses the graph more than once, x2 = y2 defines
afunction. ]
(d) Clam. Ifh:A—-Bandg:C— D,thenhug:AUC— BUD.
“Proof.” Suppose (x,y) ehugand (x,z) e huUg. Then (x,y) € h
or (x,y)eg,and (x,z)ehor (x,2) eg. If (x,y)ehand (X z) €h,
then y=2z Otherwise, (x,y)eg and (Xx,z) €g; SO aganh y=z
Therefore, hu g is a function. Thus, we have that Dom(hU g) =
Dom(h) U Dom(g) =AUC,sochug:AuC — BUD. ]
(e) Claim. The rule that assigns to each equivalence class X in Z, the
class[x+ 1] in Z, isafunction.
“Proof” Suppose (X, [y]) and (X, [Z]) are two ordered pairsin the rela
tion determined by the rule. We must show that [ y] = [Z]. According to the
rule, [y] =[x+ 1] and [Z] = [x2 + 1] for some X3, X2 in the class X.
Since x; and x; are in the same equivalence class (mod 4), X1 — X, = 4k
for someinteger k. Then (xg + 1) — (X2 + 1) = 4k =2(2k), s0 x; + 1
and x,+ 1 are in the same equivalence class (mod 2). Therefore
[yl =[4. o

4.2 Constructions of Functions

This section discusses several methods for constructing new functions from given
ones. You have already seen the operations of composition and inversion of rela
tionsin Chapter 3. Since every functionisarelation, these operations are performed
on functionsin the same way.
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For afunction F: A — B, theinverse of F isthe relation from B to A:

Ft={(xy):(y.x) € F}.

We are careful to say F~* is arelation because the inverse of a function isarela-
tion, but might not be a function. Conditions on F to ensure that F~* is afunction
will be given in Section 4.4.

For functionsF: A— Band G: B — C the composite of F and Gistherela-
tion from A to C:

GoF={(x,2)e Ax C:(x,y) e Fand(y, z) € G, for somey € B}.

Here, too, we say therelation G o F, but we will soon seein Theorem 4.2.1 that the
composite of two functionsis afunction.

Examples. Let F={(xy):y=2x+1} and G={(x,y):y=x%. Then F and
G are mappings with domain and codomain R. The inverses of F and G are

F1={(xy) R x R: (y,x) € F}
={(xy) e R x R:x=2y + 1}

= {(x,y)eRxR:yzxgl}

and

Gl={(xy)eR xR:(y,x) e G}
={(xy)eR x R: x=y?%.

Theinverse of Fisafunction. Theinverse of G isnot afunction since, for instance,
4,2eGtand (4, -2) e G L.
The compositeof Fand G is

GoF={(x,2) eR x R: dy e Rsuchthat (x,y) € Fand (y, z) € G}
={(x,2)eR x R:dye Rsuchthaty=2x+ land z=y?}
={(x,2)eR xR:z=(2x+ 1)3}.

We can also compute other composites, such as
FoF={(xz2)eR xR:3dyeRsuchthaty=2x+1andz=2y + 1}

={(xz2)eRxR:z=2(2x+1) + 1}
={(x2) eR x R:z=4x + 3}

and

FoG ={(x,2)e R x R: 3ye Rsuchthaty = x?and z= 2y + 1}
={(x,2) eR x R: z=2x2 + 1}.
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These examples show that G o F and F o G are not always equal. Thus, com-
position of functionsis not commutative.

Theorem 4.2.1 Let A, B, and C be setsand F: A— B and G: B— C. Then G o F is a function
fromAtoCand Dom(Go F) = A

Proof. The relationships among mappings and their domains and codomains are
givenin Figure 4.2.1. In Section 3.1, we proved that G o F isarelation from A to
C. To show that Go F is a function from A to C, let (x,y)eGoF and
(x,z) e GoF. (We must show that y=2z) Since (x,y) € GoF, there exists
ue Bsuchthat (x,u) e Fand (u,y) € G. Likewise, there exists v € B such that
(x,v) e Fand (v,y) € G. Since F isafunction, (x,u) € F and (x, v) € F imply
that u=v. Since G is a function, (u,y) € G, (v,z) € G, and u=v imply that
y=2z

(We next show that Dom(Go F)=A.) In Section 3.1, we proved that
Dom(GoF) € Dom(F)=A. (We must now show that AC Dom(GoF).)
Suppose a€ A. Since A= Dom(F) there is be B such that (a, b) € F. Since
B = Dom(G) there is c € C such that (b, ¢) € G. Then (a, c) € G o F. Therefore
ac Dom(GoF). u

go f
Figure 4.2.1

We can take advantage of the fact that each element of the domain of a func-
tion has a unique image to simplify the notation for composition. Let H: A — B
and K: B — C. Since (x,¥) e H and (y, z) € K may be written in the form
y =H(x) and z= K(y), we can write z= K (H(x)); that is,

(Ko H)(x) = K(H(x)).

Notice that the first function applied in composition is the function on the right,
which is closer to the variable x.

Examples. For H(x) =sinx, K(x)=x?+6, and L(x)=e€* the composites
HoK,KolL,andLoH are

(HoK)(x) =H(K(X)) = H(X? + 6) = sin(x? + 6),
(KoL)(x) =K(L(x)) =K(e") = ()2 +6=e>+6,

and

(Lo H)(x) = L(H(x)) = L(sinx) = 3™,
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Example. Inthisexample, we consider functionsonthesets Zg = {0, 1, 2, 3, 4, 5}
and Z3={[0],[1],[2]}. (As usua, we use a different notation for an equiva-
lence class when the modulus is different.) Let H: Zgs — Z3 be given by
H(0) =[0], HQ) =[1], H(@ =[2], H(3) =[0], H(4) =[1], and H(5) =[2].
Let K: Z3 — Z3 be given by K([0]) = [0], K([1]) =[2], and K([2]) = [1]. Then

(Ko H)(0) = K(H(0)) = K([0]) = [0],
(Ko H)(4) = K(H(4) = K1) =[2],

and so on. In this example, K~ is a function. In fact, K2 = K. The composite
K-toK has images (K toK)([0])=K[0])=[0], (K™toK)(1]) =
K-1(2]) = [1], and (K~1o K)([2]) = K~ Y([1]) = [2]. Thus K~ o K isthe identity
functionon Zs.

Generally, when we use composite functions, the domain of the composite is
the domain of the first function applied. If it happens that Rng(F) is not a subset
of Dom(G), we need to be aware that if F(x) is not in the domain of G, then
(G o F)(x) isundefined.

For example, let F and G be the functions given by F(x)=x? and

1
G(X) = =4 Then 2 e Dom(F) but F(2) =4 ¢ Dom(G). In this example,
Dom (G o F) is not the same as Dom (F) because (G o F)(2) is not defined.

In Chapter 3 we proved that composition of relationsis associative. Asaresult,
composition of functionsis associative as well. Similarly, the result of forming the
composite of a function f with the appropriate identity function yields the same

function f. These properties are restated for functions here with proofs that take
advantage of functional notation.

Theorem 4.2.2. Let A, B, C, and D be sets and f:A— B, g:B— C, and h:C— D. Then
(hog)o f=ho (go f). That is, composition of functionsis associative.

Proof. (We must show that the domains of (hog)o f and ho (go f) are the
same and that ((ho g) o f)(x) = (ho (go f))(x).) By Theorem 4.2.1 the domain
of each function is A. Now let xe A. Then ((hog)o f)(x)=(hog)(f(x)) =

h(g(f(x)) =h((ge f)(x)) = (ho(ge f))(x). -

Therelationship (hog)o f=ho (go f)in Theorem 4.2.2 isrepresented in
the diagram in Figure 4.2.2. For any x € A, by following the diagram from Ato D
along the upper route the image of x is ((ho g) o f)(x), while along the lower
route, theimage of xis(ho (go f))(x). Theorem 4.2.2 saysthat theseimages are
always the same, and consequently the figure is called a commutative diagram.
This theorem allows us to avoid the use of parentheses for composition and to
simply say ho g o f isafunctionfrom Ato D and theimage of xis(ho go f)(x).
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C——bD

Figure 4.2.2

Theorem 4.2.3 Letf: A— B.Thenfoly=fandlgo f=H.

Proof. Dom(folp)=Dom(lp) =A=Dom(f). If xe A, then (folp)(x)=
f(Ia(x)) =f(x). Therefore fola= f. The proof that Igof = f is left as
Exercise 6. u

Theorem 4.2.4 Let f: A— B with Rng(f)=C. If f~1 is a function, then f~1o f=1, and
fof1= lc.

Proof. Suppose f:A— B and f~! is a function. Then Dom(f~lo f)=
Dom(f) (by Theorem 4.2.1). Thus Dom(f~tof)=A= Dom(l). Suppose
x e A. From the fact that (x, f(x)) e f, we have (f(x),x)ef~1 Therefore,
(f~rof)(x)= f=1(f (X)) =x=Ia(X). Thisprovesthat f 1 o f= I

Theproof that fo f~! = Icisleft asExercise7. n

Every subset of asingle-valued relation (i.e., afunction) is single-valued, so a
subset of afunction isaways afunction. Thus, removing some of the ordered pairs
from agiven function f: A — B isyet another way to create afunction. If g € f, we
say the function gisarestriction of f. A restriction is usually defined by specifying
what we want the new, smaller, domain to be.

DEFINITIONS Letf:A— BandletD C A. Therestriction of fto D
isthe function

flo={(xYy):y=f(x)andx e D}.

If g and h are functions and g is arestriction of h, we say h is an exten-
sion of g.

Examples. Let A={1,23,4}, B={ab,cd}, and g be the function
{(11 a)! (2! a), (3! d)! (41 C)} Then g|{l,4} = {(1! a)! (4! C)}1 g|{3} = {(3! d)}, and
gla=0.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



200 CHAPTER 4 Functions

y y
5~ 5+ °
41 4
3 Fra 8 e Fli-2-10,12
2 2
1- lo—
| | | | | | | X | | | | | | | X
-3 -2 -1 1 2 3 4 -3 -2 -1 1 2 3 4
-1+ o—1H
-2 -2
-3+ ° -3
Figure 4.2.3

Let F: R — R be given by F(x) = 2x + 1. Figure 4.2.3 shows the graphs of
Flir,zandFli_2 _1,0,1,2-

Example. Recall that restricting the trigonometric function sin: R — R to a
smaller domain isthe first step in defining the inverse of sine. When the domain of
sine is restricted to [—7, 7], the result is usually referred to as the Sine function
(with a capital S), abbreviated Sin, and is the principal branch of the sine func-
tion. The graphs of sine and Sine are shown in Figures 4.2.4(a) and 4.2.4(b),

respectively.Sin%:sin%:?and Sin0= sn 0=0, butSin%isnotdeﬁned
because 2 & [ 7 3]-

y y
1 1
sine Sine =sin| [;77 x
\ x x X L L 122
—Tr -7 ™ T - -7 T T
2 2 \ 2 2
-1 -1
(@) (b)
Figure 4.2.4

Because functions are sets (of ordered pairs), it is appropriate to ask about
unions and intersections of functions. If h and g are functions, ish N g afunction?
For the functions

H= {(1! 2)1 (2! 6)1 (3! _9)! (51 7)}!
G= {(1! 8)1 (21 6)1 (4! 8)1 (5! 7)1 (8! 3)}1

HN Gis{(2, 6), (5, 7)}, whichisafunction. Noticethat Dom(H N G) = {2, 5} is

a proper subset of Dom(H) N Dom(G) ={1, 2,5}. Thisis because 1 Dom(H)
and 1 € Dom(G), but H(1) # G(1).
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It turns out that if h and g are functions, then hN g is always a function (see
Exercise 10), but h N g canjust as easily be expressed as arestriction of either hor g.

The situation regarding h U g is much more interesting and useful. First, in gen-
eral, h U g need not beafunction. Inthe case of thefunctionsH and G above, theunion
isnot afunction because (1, 2) e HU Gand (1, 8) € H U G. However, if thedomains
of hand g are digoint sets, then h U g is afunction. The next theorem states that we
can put together functions with digoint domains to define afunction “ piecewise”

Theorem 4.2.5 Let h and g be functions with Dom(h) = A and Dom(G) =B. If ANB =,
then h U g isafunction with domain A U B. Furthermore,

h(x) ifxeA
(hug)(x)_{g(x) if x € B.
Proof. SeeExercise11. ]
Example. Leth(x)=x2and g(x) = 6 — x. Therestrictions h| (_cc 7 and g| 2, «)

have digioint domains. Their union f is an extension of each (but not an extension
of hor g). See Figure 4.2.5. The function f may be described in two pieces:

) .
X ifx<2
f(x)= -
() {6—x if x > 2.
y
4 f=hlw 2 Ude
37
27
17
L1 [ R R X
-3 -2 -1 1 2 3 4 5 6\
_17
Figure 4.2.5

Functions can be constructed piecewise from three or more functions, and
Theorem 4.2.5 may also be extended to the case where domains are not disjoint, pro-
vided that the functions agree on the intersection of the domains. See Exercise 13.
The characteristic and step functions discussed in Section 4.1 are examples of
piecewise defined functions.

We conclude this section with examples of proofs about increasing and decreas-
ing functions. Recalling the definitions of these properties from previous study:

DEFINITIONS Let f be a function from a set of reas to R whose
domain includes an interval |. We say f is increasing on | iff for all
x, Yy el if x <y, then f(x) < f(y). Similarly, f isdecreasingon | iff for
alx,yel,if x<y,then f(x)>f(y).
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The graph of the function f in Figure 4.2.5 isincreasing on the interval [0, 2]
and decreasing on the intervals (—oo, 0] and [2, co). This seems clear from the
graph, but remember that looking at its graph does not constitute a proof because
we cannot see the entire graph or all the details of its behavior. We give two exam-
ples of proofs of these properties.

Example. Provethat thefunction f of Figure4.2.5isincreasing ontheinterval [0, 2].

Proof. Letx,y e [0, 2] and suppose x < y. Then g(x) = x? and g(y) = y?. Since
X <yandx > 0, x? < xy. Sincex < yandy > 0, xy < y?. Therefore, x*> < y2. Thus
0(x) < g(y), sogisincreasingon [0, 2]. u

1
Example. Letf(x)=2+ X Provethat f is decreasing for x > 0.

1 1
Proof. Suppose 0 < x <y. Then f(x)=2+§and f(y)=2+y.8'ncexandy

1 1 1 1
arepositiveawdx<yweha/ey<§. Thu52+y<2+§; that is, f(x) > f(y).

Thereforef isdecreasing on (0, oo). ]

Exercises 4.2

1. Find fogandgof for each pair of functions f and g. Use the understood
domainsfor f and g.
* (@ f(x)=2x+5, g(x)=6-—7x
(b) f(X)=x2+2x, g(X)=2x+1
* (@ f(x)=snx, g(x)=2x2+1
(d) f(x)=tanx, g(x)= snx
* (e fO)={tr).(sr. D}, gx)={ks),(ts9),(s K}
6 1(x)={(173).(26),(35),(42),(5 2)},
g(x) ={(1, 51) (2.3),(3.7),(43), (54}
— X+ — yv2
@ f0= "% 90=x"+1
(h) f(x)=3x+2, g(x)=IX]
. x+1 ifx<O0 2 ifx < -1
= 0 f(X)={2x ifx > 0’ g(x):{—x ifx > -1
_ 2X+3 ifx<3 7—-2x ifx<2
0) f(x)={ 2 ifx>3 9 ):{x—i-l ifx > 2
2. Find the domain and range of each compositein Exercise 1.
3. Givetwo different examples of
* (a) apair of functions f and g such that (f o g)(x) = (3x + 7).
(b) apair of functions f and g such that (f o g)(x) = V2x% — 5.
(c) apair of functions f and g such that (f o g)(x) = sin|2x + 4].
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4. Let Zg={0,1,23,4,56,7} and Z;={[0],[1],[2],[3]}. Define
f: 79— 74, Q:74— 7, h:Zg— Zg, and k:Z4— 74, as follows:
f(X) =[x+ 2], 9([X]) = 2x, h(X) = 2x + 4, and k([x]) = [2x + 2]). By com-
paring images, verify the following equalities.
(@ (kok)(x)=[2] foral xinZ4.
(b) (gof)(x)=h(x)foralxinZs.
(©) (fog)(x) =k(x) foral xinZ,.
(d) (ho(hoh))(x)=4forall xinZs.
5. For which of the following functions f is the relation f 1 a function? When
f~Lisafunction, write an explicit expression for f ~1(x). Use the understood
domain for each function.

C@ =52 ©) 10=20+1 1@ =3
(d) f(x)=snx * (6) f(x)=et3 ) ()= 1_—XX
(9) f(x)=1flx (hy f(x)=—-—x+3 (i) f(x)zgx__x4

6. Provetheremaining part of Theorem 4.2.3: if f: A— B, thenlgof=".

7. Prove the remaining part of Theorem 4.2.4: if f: A— B with Rng(f) =C,
andif f~lisafunction, thenfof-1=Ic.

8. Letf(x) =4 — 3xwithdomain R and A ={1, 2, 3, 4}. Sketch the graphs of
the functions f |a, flj—13, Tl 4, and f |;g. What istherange of f |n?

9. Describe two extensions of f with domain R for the function

* (@ f={(xy)eNxN:y=x%.
(b) f={(xy)eNxN:y=3}.
© f={(xy)el-L1x[-L1:y=—x}.

10. Prove that, if f and g are functions, then f N g is a function by showing that
fng=g|lawhere A= {x:g(x) = f(x)}.

11. Prove Theorem 4.2.5.

12. Let f beafunction with domain D, and let g be an extension of f with domain
A. Then by definition, f =g|D and D € A. Let i be the inclusion mapping
fromDtoAgivenbyi(x) = xforal xe D. Provethat f=goi.

13. Leth:A— B, g: C— D and suppose E= AN C. Prove hU g is a function
fromAUCtoBUD ifandonlyif h|g = g|e.

14. For each pair of functions h and g, determine whether h U g isafunction. In
each case sketch agraph of hU g.

* (@ hi(-00,00 >R, h(x)=3x+4
g (0, 00) > R, g(¥) =
(b) hi[-1,00) =R, h(x)=x>+1
g (o0, -1] - R, g(X)=x+3
(© hi(=00,1] - R, h(x)=[x|
g:[0,00) > R, g(x)=3— |x—3|
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(d) hi(=o00,2] - R, h(x)=cosx
0:[2, 00) > R, g(x)=x?
(& hi(-00,3) >R, h(x)=3-x
g (Ov OO) - R, g(X) =X+1
15. Let f:A— Bandg: C — D.Definef x g={(a, c), (b, d)): (a,b) e fand
(c,d) eq}.
(@ Provethat f x gisafunctionfromA x CtoB x D.
(b) For (a,c) e Ax C,write (f x g)(a, c)intermsof f(a)and g(c).
16. Prove each of these statements.
* (@) fisincreasingon R, where f (x) =3x — 7.
(b) gisdecreasing on R, where g(x) = 2 — 5x.
() hisincreasing on [0, co), where h(x) = x2.
. . x—1
* (d) fisincreasingon (—3, o), where f (X) =313
17. Prove or give a counterexample:
(@) If fisalinear function with positive slope, f isincreasing on R.
(b) If f and g are decreasing functions on aninterval | and f o g isdefined on
[, thenfo gisdecreasingon|.
() If fand g are decreasing functionson | and f o g is defined on I, then
fogisincreasingon .
* (d) If Dom(f)= R and f isincreasing on theintervals[—2, —1] and [1, 2],
then f isincreasingon [—2, 2].
(e) If fisdecreasing on (—oo, 0) and decreasing on [0, o), then f is de-
creasing on R.

18. Let f:R— R and f;: R — R. Define the pointwise sum f; +f, and
pointwise product f; - f, asfollows:

(fr +f2)(X) = f1(X) + fo(x) fordl x e R and
(f1-f2)(X) = f1(x) - f2(x) for al x € R.

(8 Provethat f; + fp, and f; - f, are functions with domain R.

(b) Let f(x)=2x+5, g(x)=6— 7x, and h(x) = 3x?> — 7x + 2. Com-
pute (f+ 9)(x), (f-g)(x), (f+h)(x),and (g- h)(x).

(c) Proveor disprove: If f and g areincreasing on R, and h is decreasing on
R, then (f + g) + hisincreasing on R.

19. Letf: R — R andc e R. Definethe scalar product cf:
cf (x)=c-f(x)foralxeR.

Provethat cf is afunction with domain R.

Proofsto Grade 20. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.
Justify assignments of grades other than A.
* (a) Claim. Letf:A— B.If f~lisafunction, then f~1o f=Ia.
“Proof” Suppose (x,y)e f~tof. Then there is z such that
(x,2) e f and (zy)e f~1. But this means that (z x) e f~! and
(zy) e f~% Since f~1 is a function, x=y. Hence (x,y)e f~1of
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implies (x,y) € la; that is, f~to f C Ia. Now suppose (X,Y) € la.
Since A=Dom(f), there is we B such that (x,w)e f. Hence
(w,x) e =1, But (x,y) €l impliesx=y and s0 (w,y) € f~1. But
from (x, w)ef and (w,y)e f~1, we have (xy)eftof This
shows |5 C f 1o f. Therefore, Ia=f 1o f. u

(b) Claim. If fand f ~tarefunctionson A, and fof=f, then f=Ia.
“Proof” Suppose f:A— A and f"mA— A Since f=f of,
f~lof = f~to (fof).By assodiativity, wehave ftof= (f1of)of.
Thisgivesla = la0f. Sincelao f=f, by cancdlationwehavely=f. =

(¢) Claim. If f,g,and f~*arefunctionson A, theng="f-to (gof).
“Proof.” Using associativity and Theorems 4.2.3 and 4.2.4,

f—lo(gof):f—lo(fog)z(f—lof)ogzIAogzg_ u

(d) Claim. If f/(x) > 0on an openinterval (a, b), then f isincreasing
on (a, b).
“Proof” Assume that f’(x) > 0 on the interval (a, b). Suppose x1
and x; are in (a, b) and X3 < X. We must show that f (x1) < f (x2).
We know from calculus that since f is differentiable on (a, b), it is
continuous on [x;, Xo] € (a, b), and differentiable on (g, X2). By the
Mean Value Theorem, there exists cin (xg, X2) such that

f(x) —f(x)

e A

Therefore, f(x2) —f(x1) =f’(c)(x2 — X1). By hypothesis f’(c) > 0,
and x; — X1 > 0 since x; < Xp. Therefore, f (x2) — f (%) > 0. We con-
clude that f(x) < f(X). u

43 Functions That Are Onto; One-to-One Functions

The definition of a function f: A — B is stated in terms of conditions on the first
coordinates of f. Two important properties of functions are defined by requiring
additional conditions on the second coordinates of f.

DEFINITION A function f: A— Bisonto B (or isasurjection) iff

Rng(f) = B. When f isasurjection, we write f: A8 B

For f: A— B, itisawaysthecasethat Rng(f) C B, soafunction aways maps
to its codomain. We say f maps onto its codomain when the codomain is Rng( f).
From our discussion in Section 4.1, we know that the functions

f:N— R, where f(n) =2n
and g: N — E*, whereg(n) = 2n
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are equal because they are the same sets of ordered pairs. The range of this func-
tion is the set E* of even natural numbers. This range is the same as the given
codomain for g, sowe say g mapsonto E*. It would beincorrect to say f: N o R

Properly speaking, when we say afunction f is onto, we should finish the sen-
tence by saying what set it isthat f maps onto. However, when the codomain of a
surjection f is clear from the context, it is common practice, even if not perfectly
correct, to say simply that “f isonto.” If we are given a function f and we want to
say that f isonto, what we must do first is determine the range of f. We can then say
f isonto that range.

Since Rng(f) € B is aways true, f: A— B is a surjection if and only if
B C Rng(f); that is, iff every b e B has a pre-image. Therefore, to prove that
f: A— Bisontoitscodomain B, one must show that for every b € B, b = f (a), for
somea e A.

Example. Provethat F: R — R, where F(x) = x + 2, isonto R.

Proof. (We must show that for every we R, there exists te R such that
F(t) =w.) Letw e R. Wechooset = w — 2. (Sncewewantw = F(t) =t + 2, the
presimageweneedist =w — 2.) Then F(t) =t 4+ 2= w. Therefore, F: R — Ris
onto R. =

When f: A — B and the sets A and B are subsets of R, it is often helpful to look
at the graph of f and apply this Horizontal Line Test for onto functions:

f maps onto B iff for every b € B, the horizontal
liney = b intersects the graph of f.

A visua check is not the same as a proof, but can help us decide whether to attempt
aproof that f isonto, or else to identify an element of B that is not in the range.

Examples. Figure 4.3.1 shows the graphs of two functions, h and k, from [1, 3] to
[1, 4]. The function h can be shown to be onto [1, 4] because every horizontal line
with y-intercept b, where 1 < b < 4, intersectsthe graph. The function kis not onto
[1, 4]. Theliney = 1.5 does not intersect the graph.

y y
4 y=h(x) 4 y =k(x)
3 3
2 2
1L y=15-"p-—
L1 X L1 X
123 123
(@) (b)
Figure 4.3.1
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Example. Let p: R — R be the polynomial function p(x) = x3+ 3x? — 24x
(Figure 4.3.2). Prove that p is onto R.

|
|
|
|
|
| X
a

f(x) = x3 + 3x? — 24x

Figure 4.3.2

Proof. Let we R. (We must show that w = p(a) for some a € R.) The equation
p(x) —w =0 is a third degree polynomial equation in the variable x. Since the
degree of the equation is odd and since nonreal (complex) roots of al equationswith
coefficientsin R occur in conjugate pairs, the equation p(x) — w = 0 has at least one
real root a € R. Thusp(a) — w=0. Thereforep(a) = w. Hencepisonto R. =

Example. LetG: R — R bedefined by G(x) = x? + 1. Then Gisnot onto R. To
show this, we find an element y in the codomain R that has no pre-image in the
domain R. Lety be —2. Sincex? + 1 > 1 for every real number x, thereisnox € R
such that G(x) = —2. Hence G is not onto R.

Example. The function M: Z x Z — Z, where M(X, y) = Xy, is a surjection. For
any zeZ, (z1)eZ x Z and M(z, 1) =z- 1=z Even though some integers
have many pre-images (for example, 24 = M(3, 8) = M(12, 2) = M(4, 6)), to
prove that M maps onto Z we only need to show that there is at least one pre-image
foreachze Z.

When you prove that a given function f maps A onto B by showing that every
element of B has a pre-image, be sure to verify that each pre-image is in the
domain A. This very important step is the statement “Then x € (—oo, 0]” in the
following example.

Example. Lets: (—oo, 0] — [—4, o) bedefined by s(x) = x2 — 4. Provethat s
isonto [—4, o).

Proof. Let we[—4, 0c0). Then w> —4, so w+ 4> 0. Choose X = —+/W + 4.
(Note that we do not choose x = +/w + 4.) Then x € (—o0, 0]. It follows that

S() = (—VW T 42— 4= (Wt 4)—d=w

Therefore the function f maps onto [—4, co). u
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The next two theorems relate composition and the property of being a surjection.

Theorem 4.3.1 If f:A22 B, and g: B2 C, then gof: A2 C. That is, the composite of
surjective functionsis a surjection.
Proof. Exerciseb. u
Theorem 4.3.2 If f:A— B, gB— C, and gof: A2 C, then g is onto C. That is, when the

composite of two functions maps onto a set C, then the second function applied
must map onto C.

Proof. (We must show C € Rng(g).) Suppose ¢ € C. Since g o f maps onto C,
there is a€ A such that (gof)(a)=c. Let b= f(a), which is in B. Then
(go f)(a) =9g(f(a)) =g(b) =c. Thus there is b € B such that g(b) = c, and
g maps onto C. ]

For afunctionf: A— B, we said that f isonto B if every element of B is used
at least once as a second coordinate. For the property of being one-to-one, the con-
dition isthat every element of B is used as a second coordinate at most once.

DEFINITION A functionf: A — Bisone-to-one (or isan injection)
iff whenever f (x) = f (y), then x = y. When fisan injection, we write
f:AZS B,

A direct proof that f: A — B is one-to-one begins with the assumption that x
andy areelementsof Aandthat f (x) = f (y); therest of the proof showsthat x =y.
A proof by contraposition assumesthat x = y and showsthat f (x) # f (y). To show
that f is not one-to-one, it suffices to exhibit two different elements of A with the
same image.

Example. Show that the function F: R — R defined by F(X)=2x+ 1 is
one-to-one.

Proof. Supposexandzarereal numbersand F(x) = F(z). Then2x + 1=2z+ 1.
Therefore 2x=2z, so x=1z ]

Example. The function r (x) = |x| is not one-to-one because 2 +# —2 and
r(2 =r(-2).

Given the graph of afunction f: A— B where the sets A and B are subsets of
R, we can apply thisHorizontal Line Test for one-to-one functions:

f isone-to-one iff every horizontal line intersects the graph of f at most once.

From Figure 4.3.1(a) we see that the line y = 3 meets the graph of h twice.
Therefore 3 has two pre-images and so h is not one-to-one. The graph in Figure
4.3.1(b) suggests that the function k is one-to-one.
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The next example shows that we need to consider the domain when we deter-
mine whether afunction is one-to-one.

Example. Let f:[0, oo) — [0, oo) begiven by f (x) = x2 Show that f isone-to-
one.

Proof. Supposex,y € [0, oo) and f (x) = f (y). Then x2 = y?, so éither x=y or
X = —Yy.Sincex > 0andy > 0, weconcludethat x = y. Therefore f isone-to-one. =

1 .
Example. LetG: R — R begivenby G(x) =271. We attempt to show Gisan
X+
injection by assuming that G(x) = G(y). Then
11
x2+1  y24+1

Therefore, x? + 1 =y? + 1, so x?> = y2. It does not follow from this that x ='y.
This unsuccessful proof suggests a way to find distinct real numbers with equal
images. We note that 22 = (—2)?, and then compute G (2) = G(—2) = % ThusGis
not an injection.

The next two theorems relate composition with the property of being an injec-
tion. Compare these theorems with those above regarding surjections.

Theorem 4.3.3 If f:AX3B and g B3 C, then gof: A3 C. That is, the composite of
injective functionsis an injection.

Proof. Assume that (gof)(x)= (gof)(z). Thus g(f(x)) =9(f(z)). Then
f(x) = f(2) since g is one-to-one. Then x =z since f is one-to-one. Therefore,

go f isone-to-one. =
Theorem 4.3.4 If A—B,g:B—C, and gof: A3 C, then f: A3 B. That is, if the

composite of two functionsis one-to-one, then the first function applied must be

one-to-one.

Proof. Exercise®6. u

Mappings that are constructed by means of restrictions or unions may share
injective or surjective properties. These resultswill be used in the study of cardinal-
ity in Chapter 5.

Theorem 4.3.5 (@ A restriction of a one-to-one function is one-to-one.
b)) 1fhA™C gB™ D, and ANB={, then hug: AUB 2™ CUD.

© If hAX3c gBX3D, ANB=", ad CND=Q, then
hug:AuB12 cuD.
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210 CHAPTER 4 Functions

Proof. Parts(a) and (b) areleft as Exercise 7.

(© Supposeh:Al3cC gBLiD ANB=0, axd CND =. Then by
Theorem 4.2.5, h U g isafunction with domain AU B.
Suppose x, y € AU B. Assume (huU g)(x) = (hu g)(y).

(i) Ifx,yeAthenh(x)=(hug)(x)= (hug)(y)=h(y).Sincehis
one-to-one, X =Y.

(i) If x,y € B, then by asimilar argument, g(x) = g(y), and g is one-to-
one; so X =Y.

(iii) Suppose xe A and ye B. Then h(x) =g(y) and h(x) e C and
g(y) e D.ButCn D = . Thiscaseisimpossible.

(iv) Similarly,xe Bandy € Aisimpossible.

Inevery possible case, x = y. Therefore, h U g isone-to-one. u

Examples. LetH bethefunctionon{r, s, t, u} that sendsrto1, sto2,tto 3, and
u to 4. Then H is oneto-one and onto {1, 2, 3, 4}. The function
G ={(x 4), (y, 5)} maps{x, y} one-to-one and onto {4, 5}. Sincethe domains are
disoint, HUG is a function. By Theorem 435 (b), HUG is onto
{1,2,3,4 u{4,5} ={1,2,3,4,5}. Notice that we cannot apply part (c) of
Theorem 4.3.5, because the ranges of H and G are not disjoint. See Figure 4.3.3(a).

If welet K = {(w, 5), (z, 6)}, then the domains of H and K are disjoint and the
ranges of H and K are disjoint. In this case, HUK is a function that maps
{r,s t,u,w, zZ} one-to-oneand onto {1, 2, 3, 4,5, 6}. See Figure 4.3.3(h).

H

r 1

s \l ( 2

t 3

. L

Go—=>
K
(a) HUG (b)HUK
Figure 4.3.3

Exercises 4.3

1. Which of the following functions map onto their indicated codomains? Prove
each of your answers.

* (@ HR—>Rf(X)=3x+6
(b) f:Z— Z, f(x)=—x+ 1,000
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4.3 Functions That Are Onto; One-to-One Functions 211

* () f:N—=>NxN, f(x)=(xXx)
d f:R->R, f(x)=x3
©® f:R-R, f(X)=+/x°+5
f) f:R->R, f(x)=2%
(9 f:R—->R, f(x)=snx
(h) "RxR—->R, f(x,y)=x—-y
i) f:R—[-1,1], f(x)=cosx
() f:R—[100), f(x)=x>+1
X—2
* (k) f.[2,3)—>[0,oo),f(x)_3_x
X
0] f.(l,o<>)—>(1,oo),f(x)_X_1

2. Which of the functionsin Exercise 1 are one-to-one? Prove each of your answers.

3. For each function, determine whether the function maps onto the given codomain
and whether it is one-to-one. Prove your answers.
(@) Theidentity function I from Ato A.
(b) The canonical map from Z to Zs.
(c) Thegreatest integer functionint: R — Z.
(d) Thesequencea: N — N whose nth termisa, = 2".

4. Let A={1, 2,3, 4}. Describe a codomain B and a function f: A— B such
that f is

* (@) onto B but not one-to-one.
(b) one-to-one but not onto B.
(c) both one-to-one and onto B.

(d) neither one-to-one nor onto B.
onto onto

5. Provethatiff: A2™$ B, andg: B 2®S C,thengo f: A 2" C(Theorem4.3.1).
6. Prove that if f:A— B, g:B— C, and go ;A3 C, then A3 B
(Theorem 4.3.4).
7. Prove parts (a) and (b) of Theorem 4.3.5.
8. FindsetsA, B, C, and functions f: A— Band g: B— C such that
*x (@) fisontoB,butgo fisnotontoC.
(b) gisontoC, butgo fisnot onto C.
(¢) go fisontoC, but f isnot onto B.
(d) fisoneto-one, but go fisnot one-to-one.
*» (e) gisoneto-one, butgo fisnotone-to-one.
(fy geo fisoneto-one, but gisnot one-to-one.

9. Provethat

1 .
i ifx>1

2—x ifx<1
@ (X) = is one-to-one but not onto R.
X

X+4 ifx< -2
(b) f(x)=4—X if -2 <x<2 isontoR but not one-to-one.
Xx—4 ifx>2
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212 CHAPTER 4 Functions

X—2
* (0) f(X)= {x+4 ifxz —4 is one-to-one and onto R.
1 ifx=—-4
(d) f(x)= {|X| i_f x=2 is neither one-to-one nor onto R.
Xx—3 ifx>2
10. Provethat if the real-valued function f is increasing (or decreasing), then f is

one-to-one.
11.x(a) Letf:Z4— Zg be given by f(X) =[2x], for each X € Z4. Prove that

f is one-to-one but not onto Zs.

(b) Letf:Z4— Z, be given by f (X) =[3X], for each x € Z4. Prove that
fisonto Z,, but not one-to-one.

() Letf:Zs— Zgbegiven by f(X) =x+ 1, for each X € Ze. Prove that
fisabijection.

(d) Let f:Z4— Z4 be given by f (X) = 2x. Prove that f is not one-to-one
and not onto Z4.

12. Give two examples of a sequence x of natural numbers (i.e., a function with
domain N and range that is a subset of N) such that
(@) xisneither one-to-one nor onto N.
* (b) xisoneto-oneand onto N.
() xisone-to-oneand not onto N.
(d) xisonto N and not one-to-one.

13. Suppose the set A has m elements and the set B has n elements. By Exercise 17
in Section 4.1, there are 2™ relations from A to B and n™ functions from A to B.
(@ If m< n, find the number of one-to-one functions from A to B.
(b) If m=n, find the number of one-to-one functions from A to B.
() If m> n, find the number of one-to-one functions from A to B.
(d) If m< n, find the number of functions from A onto B.
() If m=n, find the number of functionsfrom A onto B.

* (f) If m=n+ 1, find the number of functions from A onto B.

(9) If m=n, find the number of one-to-one correspondencesfrom A onto B.

Proofsto Grade 14. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
* (@) Claim. Thefunctionf:R xR — R givenby f(x,y)=2x—3yisa
surjection.
“Proof” Suppose (x,y)€R x R. Then xe R, so 2xe R. Also,
yeR, so 3ye R. Therefore 2x — 3y e R. Thusf(x,y) e R, sofisa

surjection. [ |
(b) Claim. The function f: [1, co) — (0, oo) defined by f(x) =% maps
onto (0, o).
“Proof.”  Suppose w e (0, o). Choose x = v% Then f(x) = % =W.
w
Therefore the function f is onto (0, co). |
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4.4 One-to-One Correspondences and Inverse Functions 213

onto

(c) Claim. If f: A2 B and g:B— C, then gof: A— C maps onto
C. (Theorem 4.3.1)
“Proof” Supposea e A. Thenf (a) € B. Sincef (a) € B,g(f (a)) € C.
Therefore, (gof)(@) =g(f(a) eC, sogofisonto C ]
* (d) Claim. Thefunctionf: R — R givenby f (x) = 2x+ 7isonto R.
“Proof” Suppose f is not onto R. Then there existss be R with
b ¢ Rng(f). Thusfor all real numbersx, b # 2x + 7. Buta= %(b -7
isareal number and f (a) = b. Thisisacontradiction. Thusfisonto R.=
(e) Claim. Let | be theinterva (0, 1). The function f: | x | — | given
by f (%, y) = x¥ isasurjection.
“Proof” Let tel. Then O<t<1, s0o O<t?<t<1, o t?el.
Choose x=12 and y=2el. Then f(xy)=x'=()"?=t

Therefore, | € Rng(f), sothefunctionfisontoI. =
(f) Claim. If A3 B and g:B123 C, then go f: A2 C (Theo-
rem 4.3.3).

“Proof.”  We must show that if (X,y) and (z y) are elementsof g o f,
then x=z If (X,y) egof, then there is ue B such that (x,u) ef
and (u,y) € g. If (zy) e gof, then thereisv e B such that (z, v) € f
and (v, y) € g. However, (u,y) egand (v,y) € gimply u=v since g
is oneto-one. Then (x,u)ef and (z v) ef and u=v; therefore,
X =1z, since f is one-to-one. Hence (x,y) and (zy) in gof imply
X =z Therefore, g o f isone-to-one. ]
(g) Claim. Thefunctionf: R — R givenby f (x) = 2x + 7 isone-to-one.
“Proof” Suppose x; and x, are real numbers with f (x1) # f (x).
Then 2x;+ 7 # 2X; + 7 and thus 2x; #£ 2%,. Hence X; # Xp, which
shows that f is one-to-one. [ ]
(h) Claim. Thefunctionfin part (€) isan injection.
“Proof” Suppose (x,y) and (x,z) aeinl x | and f (x,y) =f (X, 2).
Then xY = x% Dividing by x? we have xY"2=x%=1. Since x# 1
and x¥¥7?=1, y—z must be 0. Therefore, y=2z This shows that
(X, y) = (%, 2, sofisaninjection. ]
(i) Claim. Thefunction f in part (€) isnot an injection.

“Proof” Both (% %) and (l 1) areinl x |. But

4%
G- - -G =G3)
flo2)=(=)=((Z) )=(Z)=f(22) =
4'4 4 2 2 2'2
44 One-to-One Correspondences and Inverse Functions

In this section we consider functions that have both the desirable properties of being
one-to-one and mapping onto their codomains. The key role played by these func-
tions in succeeding chapters suggests their importance in advanced mathematics.
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214 CHAPTER 4 Functions

DEFINITION A function f: A— B is a one-to-one correspondence
(or abijection) iff fisone-to-oneand onto B.

Example. Let A={a b,c} and B={p, q,r}. The function h: A— B, where
h(a) = p, h(b) =r, and h(c) = gisabijection from A onto B.

Example. Thefunctiond: N — E™ given by d(n) = 2nisaone-to-one correspon-
dence between the natural numbers and the set E* of positive even integers.

Example. Let F:N x N — N be defined by F(m,n)=2""%2n-1). For
example, F(1,3)=2%2-3-1)=5F3,1)=2%21-1)=4, and F(505) =
24(2-5 — 1) = 144. The function F is a one-to-one correspondence.

Proof.

(i)  To show that Fisonto N, let se N. We must show that s=F(m, n) for
some (m, n) in N x N. If sis even, then s may be written as 24, where
k>1andtisodd. Sincetisodd, t=2n— 1 for some n e N. Choosing
m=k+ 1, we have F(m, n) = 2" %2n - 1) = 2%t =s. If sis odd, then
s=2n—1 for some neN. For this n and m=1, we find
F(m, n) = 2°(2n — 1) = s. Therefore, F is onto N.

(i)  To show that F is one-to-one, suppose (m, n) and (r,s) are in N x N and
F(m, n) = F(r, s). Wefirst prove that m = r. Without loss of generdlity, we
may assume that m>r. (If m < r, we could relabel the arguments.) From
F(m,n) = F(r,s), we have 2" 1(2n — 1) = 2'~%(2s — 1), which implies
2M™=(2n — 1) = 2s — 1. Sincetheright side of the equdlity isodd, the left side
isodd. Thus 2™~ " = 1. Therefore, m — r = 0, and we conclude that m=r.

Dividing both sides of the equation 2™ 1(2n — 1) = 2'~1(2s — 1) by
2m-1om-1 — 2r-1y "we have 2n — 1 = 2s — 1, which implies 2n = 2s, or
n=s Thusm=r andn = s, which gives(m, n) = (r, s). Hencethefunction
F is one-to-one. u

The last theorem of the previous section is a useful tool for constructing bijec-
tions. Applying this theorem to the examples above, we can say that there exists a
one-to-one correspondence between (N x N) U {a, b, ¢} andtheset N U {p, q, r}.
Since the domains of F and h in the examples above are digoint, the union F U h
is a function that maps onto N U {p, g, r}. Since their ranges are digoint, the
function F U h is one-to-one. This observation is easier than actually defining a
correspondence.

Combining Theorems 4.3.1 and 4.3.3, we have the following theorem.

Theorem 4.4.1 Iff:A i%é Bandg: B % C,thengo f: A (1)7—;) C. That is, the composite of one-
to-one correspondences is a one-to-one correspondence.
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4.4 One-to-One Correspondences and Inverse Functions 215

Example. Let d and F be the bijections defined earlier in this section. Then
the function d o F is a bijection from N x N to E*. As a sample computation we
find that do F(1,1) =d(F (1, 1)) =d(2°(1)) = 2. In generad, do F((m, n)) =
2(2™1(2n — 1)) = 2"(2n — 1).

It was observed in Section 4.2 that the inverse of a function is not always a
function. The situation is clarified when we understand the connection between
inverses and one-to-one mappings.

Theorem 4.4.2 Let F be afunction from set A to set B.

(@ F~lisafunctionfrom Rng(F)to Aiff F isone-to-one.
(b) If F~tisafunction, then F~1isone-to-one.

Proof.

(@  Assumethat F~tisafunction from Rng(F) to A. To show that F isone-to-one,
assume that F(x) = F(y) = z (Now show that x=y). Then (X, z) € F and
(y,2) € F. Therefore, (z, x) e F~* and (z y) € F~1. Since F~1 is a func-
tion,x=y.
Now assume that F is one-to-one. To show that F~* is a function, let
(x,y) € Ftand (x, z) € F~L. Therefore, (y, X) € Fand (z x) € F. Since F
isone-to-one, y = z
(b) SeeExercise4. (]

Example. The trigonometric function sin: R — R is clearly not one-to-one be-
cause, for e<amp|e sin(0) = sin(27) =0. In Section 4.2 we defined the restriction
of sine, Sin: [~3,5] — R, to the domain [~%, 5. The Sine function has range
[—1, 1] and is one-to-one and onto [—1, 1]. By Theorem 4.4.2 Sine has an inverse
function Sin~%: [-1, 1] — [ %, 5]

We must be careful not to conclude that if F: A 1> B, then F~1: B 1 A,
since F may not be onto B. Recall that the domain and range of a relation and
its inverse are interchanged. Therefore if F: Al B, then al we can say by
Theorem 4.4.2(a) isF~% Rng(F) 13 A

Corollary 4.4.3 IfF:A —> B, thenF1 B —t> A. That is, the inverse of a one-to-one correspon-
denceisa oneto one correepondence

The next result relates the concepts of injection, surjection, composition, and
inversion. It gives asimple, practical method using composition to determine whether
agiven function isthe inverse of afunction F and, thereby, indirectly provesthat Fisa
bijection. Part (b) of the theorem isauseful shortcut when someone wantsto verify the
inverse of a one-to-one correspondence: It suffices to test only one of the composites.

Theorem 4.4.4 LetF: A— Band G: B — A. Then

(@ G=F1liff GoF=IlaandFoG=Ig.
(b) If Fisoneto-one and onto B, then G=F 1iff GoF=la0r Fo G =g
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Proof.

(@ IfG=F1 then GoF=I,and FoG=lg, by Theorem 4.2.3. (\e use
the fact that Rng(F) = Dom(F~1) = B.)

Assume now that GoF =15 and F o G = Ig. Then F is one-to-one by

Theorem 4.3.4 and F maps onto B by Theorem 4.3.2. Thus F ~* is a function

onBandF 1=F lolg=F lo(FoG)=(F 'oF)oG=I1p0G=G.

(b)  SeeExercise6. ]

Another way to read Theorem 4.4.4 isthat it explainswhat inverse functions do to
each other: Whatever a function F does to x, applying the inverse to F(x) takes you
right back to x. You know thisidea already from previous study. For instance, as prop-
erties of the natural logarithm and exponential functions, Theorem 4.4.4(a) says that

foralx>0, e™=x and fordlxeR, Ine*=x

x24+2 ifx<0

R to-
22 ifx=p MaPS one-to-one and

Example. The function H(X) ={
onto R. Prove that H =1 = K, where

K _{—«/x—z if x> 2
09 = VJ2=x ifx<2

Proof. There are two cases to consider. If x <0, (Ko H)(x)=K(H(x)) =
K(x2+ 2). Since x2+ 2> 2, the value of K is —v/(x2+2) — 2= — X% =
—|x] =x when x<0. If x>0, (KoH)(x)=K(H(x))=K(2—-x?. Since
2 — x? < 2, the value of K is +/2 — (2 —x? —\/7—X|fx>OIne|thercase

(KoH)(x)=x,50 K=H1%,

Example. Let F:R— R and G: R — R be functions where F(x) =2x+ 1
-1

and G(X) = T We can prove that F (and likewise G) is one-to-one and onto R

by showing that G and F are inverse functions.

Proof. We calculate the two composites:

Fordl xinR, (GoF)(x) = G(F(x)) =G(2x+ 1) = (2X+721)_1
% _x
2
For all xin R, (F © G)(x) = F(G(x)) = F(’(;l) _ 2()(; 1) +1
=X-1D+1=x
It follows that F and G are one-to-one and onto R. u

We conclude this section with the specia case of functions that are bijections
from a set to itself. These functions will appear again in Chapter 6 because they are
essentia to the understanding of the algebraic structures called groups.
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4.4 One-to-One Correspondences and Inverse Functions 217

DEFINITION Let Abeanonempty set. A permutation of A isone-to-
one correspondence from A onto A.

If f isapermutation of the set Aand a € A, then f (a) is another (perhaps differ-
ent) element of A. Thus f hasthe effect of arranging (or permuting) the elements of A.

Examples. Let Abetheset {1, 2, 3}. Theidentity function 14 on A, the function
t={(1, 2), (2,1), (3,3)} and the function s= {(1, 2), (2, 3), (3, 1)} are three dif-
ferent permutations of A. The resulting arrangements (or permutations) of the ele-
ments of A are obtained by listing the images of 1, 2, and 3 in order.

From | 5 we get the arrangement 1 2 3.
From t we get the arrangement 2 1 3.
From swe get the arrangement 2 3 1.

The word permutation can also be used to describe the result of arranging the
elements of A in some specified order; for example, the list dbac is a permutation
of abcd. (Thiswas the meaning we used in Section 2.6.) Thisuseisthe basisfor a
simplified notation for a permutation of afinite set. By listing theimagesin order,
we write the function s in the example above as [2 3 1], to indicate that 2 is the
image of 1, 3istheimage of 2, and 1 isthe image of 3. The permutation t is writ-
ten[213]and lais[123].

Examples. The function h=[426531] is a permutation of the set
B={1,234,56}.Itmapslto4, 2to2, 3t06,4t05 5t03,and 6to 1. The
identity permutationon Bis[123456].

Previous results about one-to-one correspondences and inverses can be com-
bined to yield thisimportant list of facts about permutations.

Theorem 4.4.5 Let A be anonempty set. Then

(a) theidentity mapping |5 is apermutation of A.

(b)  the composite of permutations of A isapermutation of A.
(c) theinverse of apermutation of A isapermutation of A.

(d) if fisapermutation of A, thenfoly=Ip0f =f.

(e iffisapermutationof A, thenfo f1=1f"1o f = |4

(f) if fand g are permutations of A, then (go f)"1=f"log™

Proof. These statements follow immediately from:

(@) Exercise3of Section4.3.

(b) Theorem 4.4.1.

(c) Cordllary 4.4.3.

(d) Theorem 4.2.4.

(e) Theorem 4.2.5.

(f)  Theorem 3.1.3(d). |
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Composites and inverses of permutations can be easily computed using the
notation described above. Remember to evaluate a composite from right to left,
because the function on the right is applied first.

Examples. For A={1, 2, 3, 4} and the functionst=[2431] and s=[23 1 4],
tosis[2431] o[2314] =[4321]. The thought process beginswith [2 3 1 4],
where“1 goesto 2" Thenweseethatin[24 1 3], “2 goesto 4.” Thusin the com-
posite “1 goesto 4.” We find the other images similarly. For example, s sends 2 to
3and t sends 3 to 3, so the composite sends 2 to 3.

To find the inverse of the permutation t = [2 4 3 1], we think of reversing its
action. The permutation t sends 1 to 2 so the inverse of t sends 2 to 1 Since t sends
2to4,t~!sends4to 2, etc. Inthisway wefind that t =1 = [4 1 3 2]. We can verify
that thisis correct by computing [24 3 1] o [4132] =[12 34], whichistheiden-
tity permutation.

Exercises 4.4

1. Show that each of these functionsis a one-to-one correspondence.

@ f:(2 00)— (—o0, —1) givenby f(x) = %

(b) g: (=00, —4) — (—o0, 0) given by g(x) = —|x + 4.

() h:8N — 10N, where 8N ={8k: ke N}, 10N ={10k: ke N}, and
h(x) = 1.25x.

(d) G:N x N — 8N given by G(m, n) = 2™2(2n — 1).

(& k:R— (3, 00)given by k(x) = 2e¥ + 3. You may use the fact that an
exponential function maps R one-to-one and onto (0, co).

2. Find a one-to-one correspondence between each of these pairs of sets. Prove
that your function is one-to-one and onto the given codomain.
(@ {ab,cdef}and{2 48,16, 32, 64}
(b) NandN — {1}
(©) (3, 00)and (5, o0)
(d) (—o0,1)and (-1, o0)
() 12N and 20N, where 12N = {12k: k € N} and 20N = {20k: k € N}
3. For each one-to-one-correspondence, find the inverse function. Verify your
answer by computing the composite of the function and itsinverse.

(@ f:(0, 00) — (0, co) givenby f (X) = %

* (b)) g: (=2 00) = (—00,4) givenby g(x) =

X4 2
(©) h:R— (0, o0) given by h(x) = e**3,

5(x — 1)
X—3 '
4. Prove part (b) of Theorem 4.4.2: If F: A— Band F~!isafunction, then F is
one-to-one.

d) G: (3, 00) — (5, o) given by G(x) =
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5. (a) Assume that F:AZ3B. Prove tha G=F~tiff GoF=I, or
F o G = lg (Theorem 4.4.4, part (b)).
(b) Give an example of sets A and B and functions F and G such that
F:A—-B,GB—A GoF=lpandG#F1

6. Let F:A— Band G: B — A Usethe results of this section to prove that if
GoF=lsadFoG=lg then F:A3 BandG: B> A

7. Usetheone-to-one correspondencesin: (0, co) — Rand f: (2, co) — (0, 00),
wheref(x) = x — 2, to describe a one-to-one correspondence
(@ from (0, oo) onto (2, c0).
(b) from (2, oo) onto R.
(¢) fromR onto (2, c0).
8. Provethatif f: A3 B, g: B% C, and h: C::)T_tc];) D,thenf~togloh!

X onto
is a one-to-one correspondence from D to A.

9. Use the notation of this section to write these permutations of the set
C={1,234,56,7}.
@ lc (b) u={(175),(67),(44),(51),(3 2),(26),(7.3)}

* (€ v={(1,2),(25),(34).(51),(46),(67),(73)}
d) w={(12),(21),(34),(43),(55).(67),(76)}

* (€ uov (f) vou (99 wow (h) uovow * (i) ut
() vt (K uew™ () vieul (m) utovt

Proofs to Grade 10. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.

Justify assignments of grades other than A.

(@) Claim. If fisaone-to-one correspondence from Ato B and g isaone-
to-one correspondence fromBto A, theng = f %
“Proof.”  Suppose f is a one-to-one correspondence from Ato B and g
is a one-to-one correspondence from B to A. Then by Theorem 4.4.1,
go f is a one-to-one correspondence from A to A. Likewise, fogisa
one-to-one correspondence from Ato A. Then f~1=f-to(gof) =
f~to(fog)=(f"tof)og=lacg=g. m
(b) Claim. If fisapermutation of A thenlpo f=1fola.
“Proof” Since |4 istheidentity, Ia o f = f. AlsO | is the identity, so
fola=f Thereforelpo f=fola. [
(c) Claim. Let r=[12435] and s=[42315] be permutations of
{1,2,3,4,5}. Thentheinverseof r o sis[32415].
“Proof” Letr=[12435] and s=[42315]. Thenr~1=r and
st=s Therefore(ros)t=rtosl=ros=[32415. m
(d) Claim. If f and g are permutations of A, then (f og)™*=gtof-1L
“Proof.”  Weknow by Theorem 4.4.5that f o g isapermutation of A, so
(fog)~tisapermutation of A. Also by Theorem 4.45 g tandfare
permutationsof A, sog~! o f~tisapermutation of A. By Theorem 4.4.4,
we can check whether g~ o f~!istheinverse of f o g by computing their
composite. Wefindthat (fog)o (gtof ) =fo(go (gtof 1Y) =
fo(gogHoft=folpof 1= (folp)oft=foft=|n There
fore(fogyt=gtofL m
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4.5 Images of Sets

Let f beafunction from Ato B. Up to this point we have considered the mapping of
individual elementsin A to their images in B or considered pre-images of individ-
ual elementsin B. The next step isto ask about collections of pointsin Aor in B and
what corresponds to them in the other set.

DEFINITIONS Letf:A— Bandlet X< AandY C B. Theimage of
X orimage set of X is

f(X) ={yeB:y=1(x)for somex e X}
and theinverseimage of Y is
f1(Y)={xeAf(x)eV}.

Example. Let A={0,1,2,3,-1,-2, -3}, B={0,1,2,4,6,9}, X={-1, 3},
Y = {4, 6}, and f: A— Bbegivenby f (x) = x2. Figure 4.5.1 shows that

f(X)=1({-1,3})={1,9
f({-3,3})={9
f(A) ={0,1,4,9
and

1Y) =f"1{4,6}) ={-2,2
f-1{6}) =
f-1(B) = A.

Figure 4.5.1
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Notethat f~1isnot afunction from Bto A, so it would not make sense to consider
f~1(1). However, f~1({1}) is meaningful and equal to {1, —1}.

Examples. Let f: N — N be given by f(x) =x+ 4. Then we have f (1) =5
and f(2)=6, 0 f({1,2})={56}. Also, f({10,11,12})={14, 15, 16}
and f({xeN:x>20})={xeN:x>24}. The image st of N is f(N)=
{5,6,7,...}, which is the range of f. There is no x in N such that f (x) =2
o f(x)=3, 0 f1{2,3})=0. Also, f}{5,6}) ={1,2} is the same as
f~1({1,2, 3,4,5,6}). The inverse image of N is Dom(f) =N, which is the
sameas f~1({xe N: x> 5}).

Examples. Let f: R — R be given by f (x) = x2 Then f ({ -2, 2}) = {4} since
both f (2) = 4 and f (—2) = 4. From Figure 4.5.2 we see that f ([1, 2]) = [1, 4].

y
57
4 ,,,,,,
|
3k _ /.
<f 14
2 - \
1. _ //\i
[ N B } L X
-4 -3 -2 -1 1 2 3 4
[1,2]
f([1.2)=[14]
Figure 4.5.2

In this example it is tempting to guess that f([—1,2]) =[(-1)% 23 =
[1, 4], but this is incorrect. By definition, f ([—1, 2]) is the set of all images of
elementsof [—1, 2]. Since—% ,0,and0.7arein[—1, 2], theirimages%, 0, and 0.49
must beinf ([—1, 2]). Figure 4.5.3 showsthat f ([—1, 2]) =[O, 4].

y
57
,,,,4 ,,,,,,
|
AN
[0,41< | 2 -
|
C\F
Lo b el Ly
-4 -3 -2 -1 1 2 3 4
N
[-1,2]
Figure 4.5.3
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We aso have f~1({16}) ={—4,4}, -1({1,4,9})={-3,-2,-1,1,2, 3},
and f~1([—4, —3]) = since al images of f are nonnegative. Even though
([0, 2]) = [0, 4], f ~X([0, 4]) = [—2, 2]. Figure 4.5.4 illustrates why f ~%([1, 4]) =

(=2, —1 U[L 2].
y
57
,,,,4 ,,,,,,
| |
\ 3 L
AN o {“"‘]
I [ I
XA
L Ly
4 -3-2 -1 1 2 3 4
[2-1 (2]
=11, 4) =[-2 -1 U[L,2]
Figure 4.5.4

Proofs involving set images take some specia care because of the interplay
between points, sets, and images of sets. Let f: A— B, D CA ECB,andac A
Here are some facts about images of sets that follow from the definitions:

(@ IfaeD,thenf(a)e f(D).

(b) Ifae f~YE), then f(a) e E.

(c) If f(a)eE, thenae f~YE).

(d) If f(a) e f(D), thenae D, provided that f is one-to-one.

For part (d) we note that it is not correct to say that f (a) € f (D) always implies
ae D. For the function f (x) = x2 and D = [1, 2], we see that f (1) € f (D),
but —1 ¢ D.

Examples. Let f: R — R be the function given by f (x) =x° Let A=[-3, 2]
and C=[1,5. Then f(AUC)=f([-3,5)=[0,25 and f(A)Uf(C)=
[0,9] U [1,25] =[0,25],s0f(AUC)=f(A)UT(C).

On the other hand, f(ANC)=f([1,2])=[1,4] and f (A) N f(C) =[1, 9],
sof(ANC)c f(A) N f(C),butitisnottruethatf (ANC)=f(A) N f(C).

Theorem 4.5.1 Letf: A— B, Cand D be subsets of A, and E and F be subsets of B. Then

(& f(CND)cf(C)n f(D).
(b) f(CUD)=f(C)uU f(D).
© fYENF)=fYE)n fYF).
d) fYEUF)=f"YE)U f-YF).
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Proof.

(8 Supposebe f(CND). Thenb=f(a) for someae CND. SinceaeC
and b= f(a), be f(C). Also, ae D and b= f(a), so be f(D). Thus,
be f(C)n f(D).
(0 aefYENF)
iff f(a)eENF
iff f(a)eEandf(a)eF
iff acf~}E)andae f~1(F)
iff aec f~YE) Nf-1(F).
The proofs of parts (b) and (d) are left as exercises. =

Finally, we note that if f: A— B, then every subset X of A has a correspon-
ding image set f (X) that is a subset of B. This correspondence is a function from
P(A) to P(B) caled theinduced function, f: #(A) — P(B). Note that the same
letter, f, isused for the function and the induced function. The appropriate interpre-
tation isusually clear from the context.

Likewise, every subset Y C B has a unique inverse image f~X(Y) that is a
subset of A. This correspondence is another induced function, f=% #(B) — P(A).

Exercises 4.5

1 LetA={1,23},B={4,56},andh={(1,4), (2 4), (3,5)}.
* (@) Findtheimage of each of the 8 subsets of A.
(b) Find the inverse image of each of the 8 subsets of B.

2. Let f(x)=x?+ 1 Find

* (@ f([1,3]). (b) f([—1,01U[2 4]).
* (o) f7X[-1,12)). d fX-23)].
e Y5, 10)). )  f-¥[—1, 5] U[17, 26]).

3. Letf(x)=1— 2 Find
(@ f(A) whereA={-1,0,123}. (b) f(N).

© fXR). (d) 42 5)).
(e f((1 4. ) FEHE(34).
4. Letf:R — {0} — Rbegivenbyf(x) =x+%. Find
@ f((0 2). * (b)  f([1,5]).
* (0 F7H(3 4. d %[0, 1)).
© f(fYR)). @ (3% 101]))

5. Let f:N x N — N begiven by f (m, n) = 2™3". Find
(@ f(AxB)whereA={1,2 3},B={3,4}.
(b) f~%{5,6,7,8,9,10}).

6. Let f:[R—>IRbegivenbyf(x):{2X ifxz1

o ox ifx<1 Give an example of
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(@ aeRandD < Rsuchthatf(a) e f(D)anda ¢ D.

(b) subsetsAand C of R suchthat f (ANC) # f(A) N f(C).
(c) asubset D of R suchthat D # f=(f(D)).

(d) asubset E of R such that E # f ( f ~Y(E)).

7. Prove parts (b) and (d) of Theorem 4.5.1.
8. Letf:A— B, andlet {D..a e A} and {Eg: B € I'} be families of subsets
of A and B, respectively. Prove that

* (a) f(aQADa> < N f(Pw).
(b) f(UDa>= U f(D.).

aEA aEA
©) f‘(ﬁDFEB> Bgrffl(EB).

(@) f (UEB) U ().

9. Give an example of afunction f:R — R, and afamily {D,: « € A} of sub-
sets of R such that f( N Da>;é M f(Dw).
aeA

aceA
10. Let f:A— B,D C A and E C B. Provethat
* (@ f(f{(E)CE
(b) A—fYE)cfYB-E).
(© fYB—-E)cA-fYE).
* (d) E=f(f"}E))iff E< Rng(f).
(6 D (f(D)).
(f) D=f"Y(f(D))iff f(A—-D)<B-f(D).
11. Letf:A—> BandletX;Y C Aand U,V C B. Provethat
(@ f(X)cuUiff X< f-1u). * (b)) f(X)=Ff(Y)Cf(X=-Y).
(© fYU)—fYVv)=Ff"YU-V).
12. Let f: A— B. Prove that if f is one-to-one, then f(X) N f(Y)=f(XNY)
for al X, Y C A. Isthe converse true? Explain.
13. Let f: A— B. Prove that if X A and f is one-to-one, then f (A — X) =
f(A) = f(X).
14. Let f: A— B. Prove that if XCA YCB, and f is a hijection, then
f(X) = Yiff f71(Y)=X
15. Letf:A— B.
* (@) What condition onfwill ensurethat theinduced functionf: P(A) — P(B)
isone-to-one?
(b) What condition onf will ensurethat theinduced functionf: (A) — P(B)
isonto %(B)?
16. Let f: A— Band K C B. Provethat f (f~}(K)) = KN Rng(f).
17. Let f: A— B. Let T be the relation on A defined by x Ty iff f(X) = f (y).
By Exercise 18 (a) of Section 4.1, T is an equivalence relation on A. Describe
the partition of A associated with T.
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Proofs to Grade 18. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
* (@) Claim. Iff: A— Band X C A, then f~1(f (X)) € X.
“Proof.” If xe f~1(f(X)), then by definition of =1, f(x) e f(X).
Thereforex € X. Thusf~1( f (X)) € X. ]
(b) Claim. Iff:A— Band X C A, then X C f~1(f (X)).
“Proof.” Suppose ze X. Then f (z) € f(X). Therefore we conclude

that z e f~1( f (X)), which proves the set inclusion. [
(c) Claim. Iff:A— Band{D,: a € A} isafamily of subsets of A, then

Nf(D.) < f( N Da>.

aceA aEA

“Proof” Suppose ye [ f(D,). Then ye f(D,) for al a. Thus
aEA

there exists x € D,, such that f (x) =, for al . Then xe [ D, and

aeA

f(X)=y, s0ye f( N Da). Therefore, (] f(D.) € f< N Da). =

aeA aeA aeA

4.6 Sequences

In calculus segquences play a central role in the representation of functions using
infinite series. Sequences are also important because of their usefulness in charac-
terizing a number of important properties of the real numbers. This section, which
is devoted to sequences of real numbers and the fundamentals of convergent and
divergent sequences, is a prerequisite for Section 7.4.

As defined in Section 4.1, a sequence is a function with domain N. If xisa
segquence and n € N, theimage of n, usually written x, instead of x(n), iscalled the
nth term of the sequence x.

Examples. The sequence x of odd positiveintegershasnthterm x,, = 2n — 1. The
first few termsof xare 1, 3,5, 7, . . . . The sequencey, wherey, = (—1)", hasrange
{—1, 1} sinceitsterms are alternately —1 and 1.

(-1"

The sequence x whose nth term is x, = 1 illustrates the convergence

n—+
- 11 11 1
property of sequences. The first few terms of x are ~> 3 45 g 8
showninFigure4.6.1. The 99%th termis —%0 and the 1000th term isﬁ. Evidently
_1 11 11
2 4 8 7 3
— 1 e e e | e e 1
-1 1 o0 1 1
6 5
(="
W =h
Figure 4.6.1
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Xn isnear O when nislarge, and the farther out we go in the sequence, the closer the
nth termisto 0. We say that the limit of this sequenceis 0, and make this notion pre-
cisein the following definition.

DEFINITIONS For aseguence x of real numbers and areal number L,
wesay X haslimit L (or x convergesto L) iff for every e > 0 there exists
anatural number N such that if n > N, then |x, — L| < &.

When x converges to the real number L, we write lim X, =L or x, — L.

n— oo

If no such number L exists we say x diverges or lim x, does not exist.
n— oo

In the definition of x, — L, we usualy think of ¢ as being a small positive
number, so the expression |x, — L| < ¢ means that the distance between x, and L
is small. What the definition guarantees is that no matter how small ¢ may be, all
terms beyond a certain point in the sequence are within ¢ distance of L. The point
where we can be sure this happens is the Nth term. When we work with a particu-
lar sequence, we need to be aware that if we were to make ¢ smaller, we would
probably need to go farther out in the sequence (choose a larger number for N) to
be sure the terms are close enough to L.

In symbols, we may write the definition of lim x, =L as
n— oo
(Ve > 0)(ANeN)(VneN)(n> N= |x, — L| < ¢).

Based on this form, a proof of the statement lim x, = L will usually have this
structure: oo

Proof. Let ¢ bearea number greater than O.
Choose N = (Specify some valuefor N, typically interms of ¢.)
Let n e N and suppose that n > N.

Therefore [x, — L| < &.
We concludethat lim x, =1L ]
n— oo

The intermediate steps are often discovered through some preliminary scratch
work, working backwards from |x, — L| < ¢ and continuing until we find a rela-
tionship between n and ¢ that will suggest a choice for N.

(="
n+1

Example. Earlier we claimed that the sequence x with nth term x, = con-

—1)n
( )1 = 0. Before proving this result, we first use the inequality

vergesand lim

n—oo N4
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| X, — 0] < ¢ to derive a relationship between x, and ¢. For any ¢ > 0, since
(1" 1

X, — 0] = = = ——, weneed

o= 0l=lxl = | 5| = "7

1
<
n+1

&,
1
n+1>—,
£
1
n>—-1
£

This last inequality tells us how large n must be (and hence tells us a value for N)
to ensurethat |x, — 0| < €. Here isthe proof:

Proof. Let ¢ be a positive real number. Let N be any integer greater than % -1

Supposen>N.Thenn>%—1,son+1>%and <e. Since |, — 0| =

n+1
(G 1 (="
= . |X» — 0] < &. Therefore, lim =0. m

The next theorem says that once we know that a sequence convergesto alimit
L, we know it cannot converge to any other number.

Theorem 4.6.1 If a sequence x converges, then its limit is unique.

Proof. Suppose X, — L and X, — M and L # M. Let ¢ = 1|L — M|. (The idea
of the proof isto suppose there are two different limits and select & so small that the
terms cannot simultaneously be within & of each limit.) See Figure 4.6.2.

Sincex, — L andx, — M, thereare natural numbersN; and N, suchthat n > Ny
implies | X, — L| < eandn > Npimplies | X, — M| < e. Let N bethelarger of Ny, Na.
Supposene N andn > N. Thenn > Ny andn > Ny, S0

IL=M]| = [(L —X) 4+ (X, — M)|
< |L =X 4 [X — M]|
= [Xp — L[+ [Xy — M|
<e+e¢

2
=ZIL—M|.
3

L — M
1
8—§|L—M\

Figure 4.6.2
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Thus the assumption L 4 M leadsto |[L — M| <%|L— M]. Since [L — M| > 0,
thisisimpossible. We conclude that the limit of x is unique. =

With some practice, you will be able to discern limits of some sequences.
Sometimes it helps to calculate several terms to see the trend. For example, for
sin %)

the sequence x, where x, = ———, you will be correct in guessing that lim x, =1
n— oo

by calculating severa va ugs such as x5 = 0.993346, x,g= 0.995833, and
Xe0 = 0.999954. Be careful with estimating limits, because appearances can be
deceiving.

It should be clear that the terms of a constant sequence c given by ¢, = K for
some real number K, are very close, in fact equal, to the number K. The proof that
¢ convergesto K is Exercise 4(a).

Sequences involving rational expressions can often be quickly evaluated. For

12n* +5n+ 1 .
example, let x, = #. For large values of n, the term 5n + 1 is rather
70n? — 18n*

small compared to 12n*. Likewise, —18n* overpowers 70n? for large values of n.
Thus, for large values of n, the sequence x, behaves much like the sequence

e — nt
" 18t
Here is another example of a proof that a sequence converges. We need two

preliminary steps in which we first estimate the limit and then find a relationship
between nand ¢.

—%. We claim (correctly) that lim x, = —%.
n— oo

. 3n?
Example. The sequence x given by x, = 21 converges.
n°+

Scratchwork. We make a guess that x converges to 3. Next we must show that
the limit is 3 by demonstrating that, for every ¢ > 0, there is a natura
2 2
-3

< ¢&. Since

number N such that n> N implies 5

N+ 1 2

n +1_

_3 B
m+1| 1

we require an integer N such that n> N implies

< g or, equivaently, > + 1 > g We know that n? + 1 > n, so by selecting

n?+1
N to be any natural number greater than g we have that n> N implies
"P+1>N> %
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This scratchwork leads to the formal proof that follows.

Proof. Lete > 0. Let N beanatural number greater than g Suppose n > N. Then

n>3 and since?+1>n, P+ 1> 3. Therefore, if n> N, then <e.
& & n2+ 1
3n? , n?
Thus — 3| <¢&. Therefore, lim =3 [ |
n2 +1 n— oo n2 + 1

The sequence y given by y, = (—1)" is an aternating sequence whose terms
ae —1,1,-1,1,.... You would expect that y diverges because if the
limit existed it would have to be close to both —1 and 1. To prove that y diverges,
we prove adenial of the definition of convergence. For this purpose we choose ¢
to be 1, because no number can be less than 1 away from both —1 and 1.

Example. Provethat the sequencey given by y, = (—1)" diverges.

Proof. Suppose that L is a real number. Let ¢ = 1. (\We will show that for all
Ne N, there exists ne N such that n>N and |y,—L|>1) Let NeN.
If L>0, let n be any odd integer greater than N; then y,= -1 and
[Ya—L|=|-1-L|=1+4L>e¢.IfL <0,letnbeany eveninteger greater than
N;theny,=1and |y, —L| =|1—L| =1—-L > 1=e¢. In both cases we have
shown that thereisan n € N such that n > N and |y, — L| > 1. Since for al rea
numbers L, y does not converge to L, the sequencey diverges. =

Example. Prove that the sequence x given by x, = 2n diverges.

Proof. Assumethat lim X, =L for somerea number L. Let ¢ = 1. Then for some
n— oo

NeN, |x,—L| <1foral n>N. Suppose n> N and n > %|L| + 1. Then
2n> |[L| +1,%0 |X — L| =]2n—L| > 1=¢. Thisisa contradiction. We con-
clude that x diverges. |

The next theorem is useful for determining and verifying limits without
directly using to the definition. Sometimes referred to as the Sandwich or Squeeze
Theorem, it states that if a sequence b has its nth term “sandwiched” below by a,
and above by c, for al n e N, and both a and ¢ converge to a number L, then b
must also convergeto L.

Theorem 4.6.2 Suppose a, b, and ¢ are sequences of real numbers such that a, < b, < ¢, for al
neN.Ifa,— Landc,— L, thenb,— L.

Proof. Suppose a, — L and ¢, — L. Let ¢ > 0. There are natural humbers N;
and N, such that n > N; implies |a, — L| < e and n> N implies |[c, — L| < e.
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Let N be the larger of Ny, No. Since a, <b,<cp, an—L<b,—L<c,—L.
Therefore, for n> N, —e <ap,—L<b,—L<ch—L<e Thus |bh—L| <¢
forall n> N, sob,— L. |

Example. To illustrate Theorem 4.6.2, consider the sequence whose nth term is

snn . . . 1 snn 1
Xn=—— Since sine is a function with range [—1, 1], < <w for al

1 1 sinn
n € N. Because both -5 0 andﬁ — 0, we concludethatT — 0.

Exercises 4.6

1. Listthefirst five terms of each sequence:

n+1 . (nm
© & r?, (d dy=1-2"
n!
© en=c;

2. Determine whether each sequence in Exercise 1 converges. If the sequence
converges, identify or estimate the limit.

3. For each sequence x, estimate lim x, or determine that it does not exist.
n— oo

10
* (@) X,=10n (b) o=
4n? +7n+ 12 6n®+5n°+3n+8
* (0 = (d) *n= 5
11 — n+5n 10n“+7n+5
8 +4n+1 6N +5n2+3n+8
* (€ = ) X=—7 5
11In°—-n+5 10n° + 7n“+5n— 8
1\2n 1\-n
© @ a=(1+) M xo=(1+)
n n
* (i) X =(-09)" () x=(=11"
1\n 2" 4 3N
0 =0 +(1+5) O =1
n! 1
(m) = (nN) Xa=(n)n

4. (a) LetKe R, and let c be the constant sequence given by c, = K. Prove
that ¢ converges.
(b) Describeall possible sequences x of natural numbers that converge with
limit 2.
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4.6 Sequences 231

5. For each sequence X, prove that x converges or diverges.

n+1
(8 X =2" (b) Xo=—
_ 2 ~_(=D"n
© X=n (d) =5
cosn
© Xa=— ) xo=+n+1-+n
701 —rd) 6
= 7 h -
© e () xo=
. 5,000 . . (N
() x="" Q) x=sin(")
n! n\n
0 =1 0 %=(3)
6. Provethatif x, > Landy,— Mandr € R, then
* (@ X+Yn— L+ M. (b) X —yn— L—M.
(c) —xp— —L. (d)  rx,— rL.
(&) Xnyn— LM. ) Xl = ILI.
7. (@) Provethat if x,— L and L # 0, then there is a number N such that if
n> N, then | x| >%.
(b) Prove that if x,— L, X, 0 for al n, L+#0, and if y, — M, then
Yn M

8. A sequence vy, is a subsequence of x, if and only if there is an increasing
function f:N — N such that y,= X n. For example, y,=Xxn is the
sequence whose terms are just the even-numbered term of the sequence x,.

n

(@) Letx,= (1)%1 Describe the subsequences xon, and Xon 1.

(b) Provethat if asequence x convergesto L then for every real ¢ > 0, there
exists a subsequencey of x such that |y, — L| < e foral ne N.

(c) Provethat if x, convergesto L and yj, is a subsequence of x, theny con-
vergesto L.

(d) Prove that if x contains two convergent subsequencesy and z, y, — M
and z, — L, and M # L, then x diverges.

9. A sequence x may be defined inductively by specifying avauefor thefirst term

and then specifying x, for n > 1 in terms of earlier valuesin the sequence.

(@ Letxy=10and,forn> 1,%,= % Xn—1. Find thefirst six terms of x and
determine whether x converges.

(b) Letx;=1 and, for n> 1, x,= 1 — X,_1. Find the first six terms of x
and determine whether x converges.

(c) Findthefirst ten terms of the Fibonnaci sequencef, wheref; = 1,f, =1,
and, forn> 2, f,=fao_1+ fr_o.
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232 CHAPTER 4 Functions
(d) If it exists, estimate the limit of the sequence x, where

3 ifn=1
Xp=14 2 '
{ ifn>2

Xn—1
(e) If it exists, estimate the limit of the sequence x, where

1 ifn=1
Xy = )

VX1 ifn>2
Proofsto Grade 10. Assign a grade of A (correct), C (partially correct), or F (failure) to each.

Justify assignments of grades other than A.
(@) Claim. If two sequencesx andy both diverge, then x + y diverges.

“Proof” Suppose lim (x,+ yn) = L. Since x diverges, there exists
n— oo

e1>0 such that for al NeN there exists n> N such that

Xn —%‘ > €1. Since y diverges, there exists 2 > 0 such that, for

all NeN, there exists n> N such that ‘yn—%‘zeg. Let
e =Jmin{ey, £2}. Thenfor all N e N, there exists n > N such that

L L
|(Xn+Yn) —-Ll = (Xn_z) +(Yn—2)’
- L n L
= | Xn > Yn >
>e1+ &
=3e+hs
= €.
Therefore, lim (X, + yn) # L. ]
n— oo
* (b) Claim. If the sequence x converges and the sequence y diverges, then
X + y diverges.

“Proof” Suppose X,+ y,— K for some real number K. Since
Xy — L for some number L, (X,+VYn) — X — K—L; that is
Yn — K — L. Thisisacontradiction. Thus x, + y,, diverges. |
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CHAPTER 5

Cardinality

How many elements are in the following set?
1
A= {n, 28, /2, 53X, a}.

After a short pause, you said “eight.” You probably looked at 7 and thought “1,”
then looked at 28 and thought “2,” and so on up through « and thought “8.” What
you have done is match up the set A and the known set of eight elements{1, 2, 3, 4,
5, 6, 7, 8} to conclude that A has eight elements. Counting the number of elements
inasetisessentially setting up a one-to-one correspondence between the set and a
known (standard) set of elements. Here is another example.

A shepherd has many dozens of sheep in hisflock, but he cannot count beyond
ten. Each day hetakesall his sheep out to graze, and each night he brings them back
into the fold. How can he be sure all his sheep have returned? The answer is that
he can count them with a one-to-one correspondence. He needs two containers, one
empty and one containing many pebbles, one pebble for each sheep. When the
sheep return in the evening, he transfers pebbles from one container to the other,
one at atime for each returning sheep. Whenever there are pebbles left over, he
knows that there are lost sheep. The solution to the shepherd’s problem illustrates
the point that even though we may not have counted the sheep, we know that the
set of missing sheep and the set of leftover pebbles have the same number of
elements—because there is a one-to-one correspondence between them.

In this chapter we will make precise theideainformally introduced in Chapter 2
about the number of elements in a set. We will discuss finite and infinite sets and
discover that there are different sizes of infinite sets.

5.1 Equivalent Sets; Finite Sets

To determine whether two sets have the same number of elements, we see whether it
is possible to match the elements of the setsin a one-to-one fashion. This idea may

233
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234 CHAPTER 5 Cardinality

be conveniently described in terms of a one-to-one correspondence (a bijection)
from one set to another.

DEFINITION Two sets A and B are equivalent iff there exists a one-
to-one function from A onto B. A and B are also said to be in one-to-one
correspondence, and we write A ~ B.

If A and B are not equivalent, we write A % B.

Example. Thesets A={5,8, ¢} and B={r, p, m} are equivalent. The function
f:A— Bgivenby f(5)=r, f(8) =p, and f (¢) = mis one of six possible bijec-
tionsthat verify this.

Example. The sets C={x,y} and D ={q,r, s} are not equivalent. There are
nine different functions from C to D. An examination of all nine will show that
none of them isonto D. Since there is no one-to-one correspondence from C to D,
the sets are not equivalent.

Example. The set E of even integersis equivalent to D, the set of odd integers.
To prove this, we let f: E— D be given by f (X) = x+ 1. The function is one-
to-one, because f (x) = f (y) implies x+ 1=y + 1, which yields x=y. Also, f
is onto D because if z is any odd integer, then w=z—1 is even and
fw=w+1=(z-1)+1=z

Example. For a, b, c,d e R, with a < b and ¢ < d, the open intervals (a, b) and
(c, d) areequivalent.

Proof. (There are many bijections from (a, b) to (c, d). We choose the simplest: a
linear function.) Let f: (a, b) — (c, d) be given by

C@—m+o

=92

See Figure 5.1.1. Exercise 3 asks you to prove that f is a bijection. u
y

di- y="fx)

Figure 5.1.1
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5.1 Equivalent Sets; Finite Sets 235

This last example shows that any two open intervals are equivalent, even when
the intervals have different lengths. It also says, for example, that the open interval
(5, 6) is equivaent to the open interva (1, 9), even though (1, 9) is alonger interval
and (5, 6) isaproper subset of (1, 9).

Example. Let & be the set of all functions from N to {0, 1}. ¥ is the set of all
binary sequences. We will show & ~ P (N), the power set of N.

Proof. (Thekey to thisproof isto think of & asthe set of all characteristic func-
tions with domain N. We associate each function with the appropriate subset
of N.) To show F ~ P (N), we define H: & — P (N) as follows:

forge &, H(Q) ={xeN:g(x)=1}.

(Note that under the function H, every function in & has animagein % (N)).

To show H is one-to-one, let g;, g, € & and g1 # go. (We must show that
H(g1) # H(go).) Since g; and g, are different functions with the same domain N,
there exists n e N such that gi(n) # g2(n). Without loss of generality, assume
01(n) =1 and gp(n) = 0. (The case where gi(n) = 0 and gp(n) = 1 is similar.)
Thenne {xe N:g1(X) =1} =H(g) andn ¢ {x € N: g2(X) = 1} = H(gp). Thus,
H(gy) # H().

To show that H is onto ?(N), let Ae P?(N). Then AC N and the char-
acteristic function xa: N — {0, 1} is an element of %. Furthermore, H(Xp) =
{xe N: Xa(X) = 1} = A. Therefore, H isonto % (N).

Because H isabijection, & ~ % (N). |

Theorem 5.1.1 Equivalence of setsis an equivalence relation on the class of all sets.

Proof. We must show that the relation ~ is reflexive on the class of all sets, and is
symmetric and transitive. (See Exercise 1.) u

The next lemma will be particularly useful for showing equivalences of sets.

Lemma 5.1.2 Suppose A, B, C, and D are setswith A~ C and B ~ D.
(@ If AandBaredigoint and C and D aredigoint, then AU B~ C U D.
() AxB=CxD.
Proof. Assume A~ C and B~ D. Then there exist one-to-one correspondences
h:A— Candg: B— D.

(@ By Theorem 4.3.5 hug: AUB — CU D is aone-to-one correspondence.
Therefore AUB~ CUD.

(b) Letf:Ax B— Cx D begivenby f(a b)= (h(a),g(b)). Weleaveit as
Exercise 4 to show that f is a one-to-one correspondence. Therefore
Ax B~ C xD. [
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236 CHAPTER 5 Cardinality

Examples. Theset{a, b} isequivalentto{1, 2} andtheset {3, 4, x} isequivaent to
{5, 6, x}. To apply Lemma5.1.2(a), we note that { a, b} and {3, 4, x} aredigoint and
that {1, 2} and {5, 6, X} aredigoint. Therefore, {a, b, 3,4, x} ~ {1, 2,5, 6, x}.

By Lemma 5.1.2(b) the product of {a, b} and {3, 4, x} is equivalent to the
product of {1, 2} and {5, 6, X}:

{(&3),(a4).(ax),(b,3),(b,4), (b, x)} ~{(1,5),(1,6),(1,X).(2,5),(2,6),(2,X)}.

DEFINITIONS For each natural number k, let Ny=1{1,2,3,...,k}.
A set Sisfiniteiff S= J or S~ Ny for somek € N.
A set Sisinfiniteiff Sisnot afinite set.

You should think of the set N as the standard finite set with k elements against
which the sizes of other sets may be compared. For example, N, = {1, 2, 3, 4} isthe
standard set with 4 elements. The set S={t, % ¢, 99} is finite because S~ N,.
The function f: S— N, where f (t)=1, f(})=2, f(c)=3, and f(99) =4, isa
bijection.

Sets such as N, R and {% % %, . } are examples of infinite sets. These and
other infinite setswill be discussed in the next section.

DEFINITIONS Let Sheafinite set. If S~ Ny for some natural number
k, Shas cardinal number k (or cardinality k) and we write S= k.

If S= we say S has cardinal number O (or cardinality 0) and
write & = 0.

1 ¢, 99} has cardinality 4, and we write S= 4, because Sis

equivaent to N4. The set A= {m, 28, V2, % —3, %, X, a} has cardinality 8. The

set B={8,7 3,7 2, 7, 8} isfinite and B=4 since B={8,7,3,2} ~ N,
Because the identity function Iy.: Ny — Ni is a one-to-one correspondence,
Nk%Nkande:k.i B

Our definition of A for afinite set A agrees with our intuitive notion that A is
the number of elements in A. We use the same symbol A for the cardinality of a
finite set A aswe used in Section 2.6 for the number of elementsin A.

Because the definition of finite has two parts, proofs that a set is finite usually
have two cases—the empty set case and the case in which the set is equivalent to
N for somek € N.

Theorem 5.1.3 If Aisfiniteand B ~ A, then B isfinite.
Proof. Suppose A isfiniteand B~ A. If A=, then B = (J (see Exercise 5). If

A~ N for some natural number k, then B ~ N by transitivity of ~. In either
case, Bisfinite. |
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5.1 Equivalent Sets; Finite Sets 237

Our next goal isto show that every subset of afinite setisfinite. The proof uses
the results of the following two lemmas.

Lemma 5.1.4 If Sisafinite set with cardinality k and x isany object notin S, then SU {x} isfinite
and has cardinality k + 1.

Proof. If S=J, then S has cardindity 0. Then SU{x} ={x} is finite
becauseit is equivalent to N. In thiscase SU {x} has cardinality 0 + 1 = 1.

If S+, then S~ Ny for some natural number k. Also, {x} ~ {k+ 1}.
Therefore, by Theorem 5.1.2(a), SU {x} ~ Ny U {k + 1} = N, 1. Thus, SU {x} is
finite and has cardinality k + 1. ]

Lemma 5.1.5 For every k € N, every subset of N isfinite.

Proof. Let k be a natural number. (\We prove by induction that every subset
of N isfinite.)

(i) Ifk=1andAC Ny then A= or A= Nj. Inboth cases, Aisfinite.
(i)  Suppose all subsets of N arefinite for some number k. Let A € N 1. Then
A — {k+ 1} isasubset of Ny and, by the induction hypothesis, is finite. If
A=A —{k+ 1} then Aisfinite. Otherwise, A= (A — {k + 1}) U {k + 1},
which isfinite by Lemma5.1.4. In both cases, A isfinite.
(iii) By the PMI, every subset of Ny isfinite for every k e N. u

Theorem 5.1.6 Every subset of afinite set isfinite.

Proof. Assume Sisafiniteand TC S If T=(, then T is finite. Thus we may
assume T # & and hence S J. Since S~ Ny for some k € N, there is a one-to-
one function f from Sonto Ny. Then therestriction of f|7 of f to T isaone-to-one
function from T onto Rng (f|7). Therefore, T is equivalent to Rng (f|y) (see
Figure 5.1.2). But Rng ( f|) is a subset of the finite set Ny and is finite by Lemma

5.1.5. Therefore, since T is equivalent to afinite set, Tisfinite. |
S f N
1-1, onto
Gl |
n
1-1, onto ol
Figure 5.1.2
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238 CHAPTER 5 Cardinality

At this point you may think that Lemmas 5.1.4 and 5.1.5 and Theorem 5.1.6
accomplish nothing more than a proof of the obvious result that a subset of a
finite set isfinite. However, the real value of these resultsliesin the reasoning and
in the use of functions to establish facts about cardinalities of finite sets. This
experience will be helpful when we deal with infinite sets, because there our intu-
ition may fail us.

The next main result is that the union of afinite number of finite setsis finite.
We first prove the case for two digjoint sets. Notice that the proof is a rigorous de-
velopment of the Sum Rule (Theorem 2.6.1) which says that if A has m elements, B
has n elements, and A and B are digoint, then A U B hasm + n elements.

Theorem 5.1.7 (@) If Aand B arefinitedigoint sets, then AU Bisfiniteand AUB = A + B.
(b) If Aand B arefinite sets, then AU BnisfiniteandAU B=A+B—-ANB.

(© IfAL A, ..., A arefinite sets, then | A isfinite.
i=1

Proof.

(@  Suppose A and B arefinitesetsand ANB=U. If A=, then AU B = B;
if B=(J, then AUB = A. In either case AU B is finite, and since & = 0,
AUB=A+B.

Now supposethat A # Jand B # . Let A~ Npand B ~ N, and sup-
pose that f: A— N, and g: B— N, are one-to-one correspondences. Let
H={m+ 1, m+ 2,..., m+ n}. Then h: N, — H given by h(x) = m+ x
is a one-to-one correspondence, and thus N~ H. See Figure 5.1.3.
Therefore, B~ H by transitivity. Finally, by Lemma 5.1.2,
AUB~NRpUH =Ny, which proves that AUB is finite and that

AUB=m+n.

1
; 2
Npd 3
m
Nm+n
1 m+1
2 m+ 2
g N, 3 h H m +3
n m+n
Figure 5.1.3
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5.1 Equivalent Sets; Finite Sets 239

(b) Assume that A and B are finite sets. Since B— AC B, B — A is finite.
Therefore, by part (a), AUB=AU (B — A) is finite. The proof that
AUB=A+B—-ANB isExercise7.

(c)  Theproof of this part uses mathematical induction. See Exercise 8. ]

Lemmab.1.4 showsthat adding one element to afinite set increasesits cardinal-
ity by one. It isalso true that removing one element from afinite set reduces the car-
dinality by one. The proof of Lemmab5.1.8 isleft as Exercise 13.

Lemma 5.1.8 Letr e Nwithr > 1. Foradl xe N, Ny — {x} ~ N;_1.

There is a property of finite sets popularly known as the Pigeon-
hole Principle. In itsinformal version it says: “If a flock of n pigeons comes to
roost in ahouse with r pigeonholesand n > r, then at |east one hole contains more
than one pigeon.” If we think of the set of pigeonsas N, and the set of pigeonholes
as N, then the Pigeonhol e Principle says any assignment of pigeonsto pigeonholes
(function from N, to N;) is not one-to-one.

Theorem 5.1.9 The Pigeonhole Principle
Letn,re Nand f: N, — N,.If n>r, then f is not one-to-one.

Proof. The proof proceeds by induction on the number n. Sincen > r andr isa
natural number, we beginwith n = 2.

(i) Ifn=2,thenr =1 Inthiscase f isaconstant function with f(1) = 1and
f(2) = 1. Thus, f isnot one-to-one.
(ii)  Suppose the Pigeonhole Principle holds for some integer n; that is, sup-
pose for al r < n, there is no one-to-one function from N, to N,. Let
r < n-+ 1. (The proof now proceeds by contradiction.) Suppose there is a
one-to-one function h: Nj; 1 — N,. The restriction h|y, of h to N, is
one-to-one. The range of this function does not contain h(n + 1). We may
assumethat r > 1, because otherwise h would be a constant function, which
is not one-to-one. Now by Lemma 5.1.8, there is a one-to-one function
g Ny —{h(n+ 1)} - N;_1. Let f=go (hly). Then f: N, — N; is one-
to-one because the composite of one-to-one functions is one-to-one. Thisis
a contradiction to the hypothesis of induction.
(ii) By the PMI, for every ne N if r < n there is no one-to-one function from
Nn+1 toN;. L]

The Pigeonhole Principle is surprisingly powerful. See the discussion and
referencesin Martin Gardner’s The Last Recreations (Springer-Verlag, 1997) and the
examplesin Exercise 21. It also provides the following useful result about finite sets.

Corollary 5.1.10 If Aisfinite, then Aisnot equivalent to any of its proper subsets.

Proof. We will show that Ny is not equivalent to any of its proper subsets and
leave the general case as Exercise 14.
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240 CHAPTER 5 Cardinality

If k=1, the only proper subset of N; = {1} isJ and {1} is not equivalent
to . Thus, we may assume that k > 1. Suppose A is a proper subset of Ny and
A~ N. Then there is a one-to-one function f: Ny — A that isonto A.

Casel. Supposek ¢ A. Then A € Ni_1. In this case the function f maps Ny to
Nk_1, and f is one-to-one. This contradicts the Pigeonhole Principle.

Cae2. Supposek € A. Since Aisaproper subset of Ny, theset Ny — Aisnonempty.
Choose an dement ye Ny — A Let A = (A—{K}) U{y}. Then Ax A
because thefunction |a_giy U {(k, y)} isaone-to-one correspondence. Thus
A ~ Ny, A isaproper subset of Ny, andk ¢ A’ Thisisthe situation of Case
1withNy and A' and again yields a contradiction. =

Corollary 5.1.10 tells us that our definition of cardinality for afinite set A cor-
responds to our informal understanding that A is the number of elementsin A: The
cardinality of afinite set isunique. That is, if A~ N, and A ~ N, thenn = m. See
Exercise 15.

Exercises 5.1

1. ProveTheorem5.1.1. That is, show that the relation ~ is reflexive, symmetric,
and transitive on the class of all sets.

Which of the following sets are finite?

(a) thesetof all grains of sand on Earth

(b) theset of all positive integer powers of 2

* (c) thesetof dl five-letter wordsin English

(d) the set of rational numbers

(e) theset of rationalsin (0, 1) with denominator 2 for somek € N
(f) {xeR:x?+4x+5<0}

(g) thesetof al starswithin 100 light years of Earth.

(h)y {xeR:x?+1=0}

(i) {135 x{2,4,6,8}

() @149-@23

(k) {xe N:xisaprime}

(I {xe N:xiscomposite}

(m) {xe N:x?+ xisprime}

(n) {xe R:xisasolutionto 4x® — 5x% 4 12x* — 18x3 4 x?> — x = 0}
(0) {xeN:x(10-x) > 0}

(p) theset of all complex numbersa + bi such that a® + b> =1

3. Completethe proof that any two openintervals (a, b) and (c, d) are equivalent

N

*

* Ot

by showing that f (x) = <%>(x — a) + ¢ mapsone-to-oneand onto (¢, d).

4. Complete the proof of Lemma 5.1.2(b) by showing that if h: A— C and
g: B— D are one-to-one correspondences, then f: Ax B— C x D given
by f (a, b) = (h(a), g(b)) is aone-to-one correspondence.
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5. Show that if A~ O, then A = . (See aso Exercise 13, Section 4.1.)

Let A and B be sets. Prove that
* (@) if Aisfinite, then AN Bisfinite.
(b) if Aisinfiniteand A C B, then Bisinfinite.
7. Using the methods of this section, prove that if A and B are finite sets, then
AUB=A+B— AN B. Thisfact is arestatement of Theorem 2.6.1.

8. Prove part (c) of Theorem 5.1.7.

9. (a) Showthat A=x A x {x}, for every set A and every object x.
(b) UseTheorem 5.1.7(c) to prove that if A and B arefinite, A x Bisfinite.

10. Define BA to be the set of dl functions from A to B. Show that if A and B are
finite, then BA isfinite.

11. If possible, give an example of each of the following:
(@) aninfinite subset of afinite set.
(b) acollection{A;:i € N} of finite sets whose union isfinite.
* (c) afinitecollection of finite sets whose union isinfinite.
(d) finitesets Aand B suchthat AU B # A + B.

12. Provethat if Aisfinite and Bisinfinite, then B — Aisinfinite.
13. Provethatifr > 1andx € N, then N, — {x} ~ N,_; (Lemma5.1.8).

14. Completethe proof of Corollary 5.1.10 by showing that if Aisfiniteand Bisa
proper subset of A, then B % A.

15. Let Abeafiniteset. Provethat if A~ N,and A~ N, thenn=m.

16. Prove or disprove:
(@ If Cisaninfinite set and C = AU B, then at least one of the sets A or B
isinfinite.
(b) SupposeAisasetand pisanobjectnotin A If A~ AU{p}, thenAis
infinite.
17. Proveby inductiononnthatif r < nand f: N; — Ny, then f isnot onto N.
18. Let Aand B befinite setswith A~ B. Supposef: A— B.
(a) If f isone-to-one, show that f isonto B.
(b) If fisontoB, provethat f isone-to-one.

19. Provethat if the domain of afunction isfinite, then the rangeisfinite.

% 20. Let Aand B befinitesetswith A= mand B = n, and let f be afunction from
Ato B. Provethat if m> n, then f is not one-to-one.

21. Giveaproof using the Pigeonhole Principle:

(8 The Italian village of Solomeo, near Perugia, has a population of
400. Prove that there are at least two village residents with the same
birthday.

(b) Let SC Nggsuchthat Scontainsexactly 10 elements. Provethat Shastwo
digoint subsets with identical sums. For example, if S contains 4, 12,
18, 27, 36, 50, 61, 62, 70, and 98, then the elements of the sets {4, 12,
27,36} and {18, 61} both add up to 79.

o
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Proofsto Grade 22. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.
Justify assignments of grades other than A.
(@ Claim. If AandB arefinite, then AU Bisfinite.
“Proof” If A and B are finite, then there exiss m,ne N such
that A~ Npand B~ Ny Let f:A=> Ny and h: B> N, Then
fuh: AUBZ> Npyn, which shows that AUB= Ny, Thus
AU Bisfinite. u
* (b) Claim. If Sisafinite, nonempty set, then SU {x} isfinite.
“Proof.”  Suppose Sis finite and nonempty. Then S~ Ny for some

integer k.

Casel. xeS Then SU{x} =S so SU{x} has k elements and is
finite.

Case2. xe¢ S Then SU{X} =~ NkxU {x} ~ NxUN;~ Ny;1. Thus
SU {x} isfinite. ]

(c) Claim. If A x Bisfinite, then Aisfinite.
“Proof” Choose any b*eB. Then A~xAx{b*}. But
A x {b*} ={(a, b*): ae A} C A x B. Since A x Bisfinite, A x {b*}
isfinite. Since A is equivalent to afinite set, Aisfinite. u
(d) Claim. Theset N isfinite.
“Proof” For every nin N, the set N, is finite, because N, ~ N,. By

Theorem 5.1.7, we know | J N, isfinite. Since | N, = N, we see that
N isfinite. n=1 n=1 n

5.2 Infinite Sets

In this section we will verify the not-at-all-surprising result that some familiar sets,
such asthe sets of natural numbers, integers, and real numbers, are infinite. The re-
sult that many people find surprising is that there are different sizes of infinite
sets. We will describe two infinite cardinal numbers and find that we can use them
to “count” all of the elements of certain infinite sets.

Recall that an infinite set is defined as a nonempty set that cannot be put into a
one-to-one correspondence with any of the sets Ny. To provethat aset isinfinite using
this definition, we assume that the set is finite and that such a correspondence exists
for some natural number k. We then find a contradiction. Another approach to prov-
ing that aset Aisinfiniteisto make use of the contrapositive of Corollary 5.1.10:

If Alisequivalent to one of its proper subsets, then A isinfinite.

We caninterpret this statement as atest for whether aset could befinite. To usethistest
we look for a suitable proper subset of A and a one-to-one correspondence between A
and the subset. If wefind such aset and correspondence, we concludethat Aisnot finite.
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To demonstrate the use of these methods, we give two different proofs that N
isinfinite. Notice that the first proof resembles Euclid's proof that there are infi-
nitely many primes (see Section 1.5).

Theorem 5.2.1 The set N of natural numbersisinfinite.

First Proof. Suppose N is finite. Since N # (J, there exists a natural number k
such that N ~ Ny. Therefore, there exists a one-to-one function f from Ny onto N.
(We will show that f is not onto N by constructing a number that is not an image.)
Letn=max{f (1), f(2),..., f(n)} + 1. Thennz f(i) for any i € Ny. Therefore
fisnot onto N, a contradiction. Hence N is an infinite set. ]

Second Proof. Let ET be the set of even positive integers. The function f: N — E*
definedby f (X) = 2x isaone-to-onecorrespondencefromN onto E™. Thus, N ~ E™.
Since E™ isaproper subset of N, we conclude that N isinfinite. ]

The set of natural numbersisour first example of aset with infinite cardinality.
The standard symbol for the cardinality of N uses the letter X, aeph, whichisthe
first letter of the Hebrew alphabet.

DEFINITIONS Let Sheaset. Sisdenumerableif andonly if S~ N. For
a denumerable set S we say Shas cardinal number Rq (or cardinality
Ng) andwrite S= Ry

Because N isequivalent toitsalf, N isdenumerable and the cardinality of N is X .
The subscript 0, varioudly read “naught” or “null,” indicates that X ¢ is the smallest
infinite cardinal number, just as the integer 0 is the smallest finite cardina number.
Theset N isour “standard” set for the cardinal number K.

We showed earlier that the set E™ of even positive integersis equivalent to N.
Therefore, E™ is denumerable. Even though E* isa proper subset of N, E* hasthe
same number (R o) of elements as N. Thus, although our intuition might tell us that
only half of the natural numbers are even, it would be misleading to say that N has
twice as many elements as E™, or even to say that N has more elements than E™.

Results like this may be surprising if you rely only on your knowledge of
finite cardinal numbers to guide your insight into infinite cardinals. We have seen
that if A and B arefinite digjoint sets, where A has m elements and B has n elements,
then AU B has m+ n elements. The situation is more complicated when either
A or B is infinite. We must rely on one-to-one correspondences to determine
cardinality.

In Section 5.5 we will see that every infinite set is equivalent to one of its
proper subsets. Together with Corollary 5.1.10, this will characterize infinite sets:

A setisinfinite iff it is equivalent to one of its proper subsets.

The next theorem will show that the set of all integers is denumerable. Our
proof constructs a bijection between N and Z.
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Theorem 5.2.2 The set Z is denumerable.

Proof. Definethefunctionf: N — Z by
X -
= if Xiseven
2
f(x) = 1_x .
—— ifxisodd

We see that f(1) =0, f(2)=1, f3)=-1, f(4 =2, f(5)=-2, f(6)=3,
f(7) = —3, and so on.

To show that f is one-to-one, assume f (x) = f (y) for some x, y € N. We first
observe that if one of x or y is even and the other is odd, then only one of f (x) or
f (y) is positive, so f (x) # f (y). Therefore, x and y must have the same parity. If
x and y are both even, f (x) =f (y) implies 3 = ¥, and therefore, x=y. If x and

1-x 1-y

y are both odd, then - = 5 and again, x =.

To show that f maps onto Z, suppose w e Z. If w > 0, then 2w is even and
2w
f(2w)=7=w. If w<0, then 1—2w is an odd natural number and
1-(1-2w) 2w
f(l—m):%:7:w.lnbothcas&;we Rng (). Thus, f mapsonto Z.
Therefore Z is equivalent to N. [

Example.
theset P as

Let P be the set of reciprocals of positive integer powers of 2. By writing

P= {1:keN},
2k

we see that there is a natural one-to-one 1corraspondence between N and P. Since
the function h: N — P given by h(n) = on isabijection, P is denumerable.

n
Example. Supposewewant to provethattheset K ={p, g, r} U{ne N: n#£5} is
denumerable. Then we need a bijection from N to K. Although there are many such
functions, we'd like to construct one that can easily be seen to be one-to-one and onto
K. Let g be the piecewise function from N to K given by
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p ifn=1

o} ifn=2
gn)=«r ifn=3

n—-3 ifd<n<7

n—2 ifn>8

See Figure 5.2.1, which illustrates how we constructed this function. Thengisa
bijection. Thus N ~ K and K is denumerable.
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N:. 1 2 3 4 5 6 7 8 9 .n.
N 2 \
Kip g r 1 2 3 4 6 7 . =2 ..
Figure 5.2.1
Theorem 5.2.3 (@ ThesetN x N isdenumerable.

(b) If Aand B are denumerable sets, then A x B is denumerable.

Proof.

(8  (Weneedto show that thereisa bijection F: N x N — N.) The function F
in Section 4.4 given by F(m, n) = 2™ 1(2n — 1) is one such function.
Therefore, N x N is denumerable.

(b) SinceAxNandB~ N, A x B~ N x N by Theorem 5.1.2(a). By part (a),
N x N~ N. Therefore, A x B~ N. Hence, A x B is denumerable. ]

DEFINITIONS A set Sis countable if and only if S is finite or
denumerable. Sisuncountableif and only if it is not countable.

Sets that are finite or denumerable are called countable because their elements
can be “counted” using some or al of the natural numbers. “Counting” elementsin a
nonempty countable set S means setting up a one-to-one correspondence between S
and N (when Sisfinite) or between Sand the entire set N (when Sis denumerable).

Figure 5.2.2 shows the rel ationship between finite, infinite, denumerabl e, count-
able, and uncountable sets. We see that every finite set is countable and every
uncountable set is infinite. Since denumerable sets are those sets that are both
infinite and countable, denumerable sets are sometimes referred to as countably
infinite sets.

Denumerable Uncountable
Sets Sets

Countable Sets Infinite Sets

Figure 5.2.2

Examples. Some sets that are both infinite and countable (that is, denumerable)
are N, Z, and the set of even positive integers. Some countable finite sets include
Nk, &, {11, 7, 77, 3, 15, 79} and{x € R: x® 4 12x® — 21x? + 3x + 11 = 0}. There
areinfinite setsthat are uncountable, such asR and (0, 1), aswe will now see.
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Before showing that the open interval (0, 1) is uncountable, we need to review
decima expressions for rea numbers. In its decima form, any real number in (0, 1)
may be written as 0.a;aa384. . ., Where each a; is an integer, 0 < a < 9. In this
form, % = 0.583333..., which is abbreviated to 0.583 to indicate that the 3 is
repeated. The number x = 0.a&pa3. .. is said to be in normalized form iff thereis
no k such that for all n > k, a, = 9. For example, 0.82142857 and % =0.40 are in
normalized form, but 0.49 is not. Every real number can be expressed uniquely in nor-
malized form. Both 0.49 and 0.50 represent the same real number % but only 0.50
isnormalized. Theimportance of normalizing decimalsisthat two decimal numbersin
normalized form are equal iff they have identical digitsin each decimal position.

Theorem 5.2.4 The openinterval (0, 1) is uncountable.

Proof. (We must show that (0, 1) is neither finite nor denumerable.) The interval
. 1 o
(0, 1) includes the subset {?: ke N}, which isinfinite. Thus, by Theorem 5.1.6,

(0, 1) isinfinite.

(We now assume that (0O, 1) is denumerable and reach a contradiction.) Sup-
pose (0O, 1) is denumerable. Then thereis afunction f: N — (0, 1) that is one-to-
one and onto (0, 1). (The contradiction arises when we construct a number in (0, 1)
that isnot in Rng (f).). Write theimages of f, for each n € N, in normalized form:

(1) = O.a1aa13a14815 . . .
f(2) = 0.az180a23824805 . . .
f (3) = 0.a31830833834835 . . .
f (4) = 0.a41842843800805 - - -

f (n) = O.an1@n28n38n4a0s5 . . .

Now let b be the number b = 0.b;bobsbsbs. . ., where

5 ifa#5 ) .

b = . Thech f 3and5 bitrary.
| {3 if 4 — 5 (Thechoicesof 3and5are arbitrary.)
Then b € (0, 1) because of the way it has been constructed. However, for each
natural number n, b differs from f (n) in the nth decimal place. Thus, b = f (n) for
any n e N, which meansb ¢ Rng (f). Thus, f isnot onto (0, 1). This contradicts
our assumption that f isonto (0, 1). Therefore, (0, 1) is not denumerable. u

Theinterval (0, 1) is our first example of an uncountable set. We add it to our
list of standard sets for defining cardinalities, which now consists of:

), Ny for every ke N, N, and (0, 1).
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DEFINITION Let Sbe aset. Shas cardinal number ciff Sis equi-
valent to (0, 1). We write S= ¢ (which stands for continuum).

The cardinal number c is the only infinite cardinal other than R gthat will be
identified by name. Implicit in this statement is that there are other infinite cardi-
nals—an issue that will be addressed in Section 5.4.

There are many sets with cardinality c. In Section 5.1 we showed that any two
open intervals are equivalent. Therefore every open interval (a, b) for real numbers
aand b witha < b, isequivalent to (0, 1). Consequently:

Every open interval (a, b) has cardinality c.
We see next that the set of all real numbers also has cardinality c.
Theorem 5.2.5 The set R is uncountable and has cardinal number c.

Proof. Definef: (0,1) - R by f(x) = tan(nx — %) See Figure 5.2.3. The func-
tion f is a contraction and translation of one branch of the tangent function and is

one-to-one and onto R. Thus (0, 1) = R. ]

Figure 5.2.3

The proof of Theorem 5.2.5 used a trigonometric function for the one-to-one
correspondence from (0, 1) onto R. Exercise 10 asksyou to use adifferent function
to show that R ~ (0, 1).

Example. Let C be the circle of radius% with center <0, %) and the point (0, 1)
removed, as shown in Figure 5.2.4 on the next page. For any point p in C, the line
determined by (0O, 1) and p will intersect the x-axis in exactly one point. We define a
functionf: C — R asfollows. For eachpin Clet f (p) bethe x-coordinate of the point
of intersection of the line determined by (0, 1) and p. We see that different points p;
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1)

NI~

f(p)

Figure 5.2.4

and p, will generate nonparallel lines and hence different values for f (p1) and f (py).
Thusf isone-to-one. Any point m € R aong the x-axis will determine aline through
(0, 1) that will intersect C in exactly one point q. For this point g, f(g) =m.
Therefore, fisonto R. Hence, f isabijection and the set Cisequivaent to R.

Example. The set A= (0, 2) U [5, 6) also has cardinal number c. The function
f:(0,1) — A, given by

1

4x if0<x<§

()= .
X+ 4 if§§x<1

isaone-to-one correspondence between (0, 1) and A. See Figure 5.2.5. We note that
(0, 1) isaproper subset of A, and A isaproper subset of R, but all three sets have
the same infinite cardinality.

y

7L

|/

5L

41

3L

2,

1
11 2 X
2

Figure 5.2.5
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Exercises 5.2

1. Provethatif Aisaninfinite set and A ~ B, then B is an infinite set.

2. Provethat each of these setsisinfinite.
@ A={115%. ..}
(b) N —Nis
() (0,0.001)
(d) (0, 00)
3. Provethat the following sets are denumerable.
* (a) DT, theodd positive integers
(b) 3N, the positive integer multiples of 3
(c) 37, theinteger multiples of 3
(d) {nnneN and n> 6}
(e {xxeZandx< —12}
(fy) N-{56}
@ {(xy)eNxR:xy=1}
(h) {xe Z:x=1(mod 5)}
4. Provethat the following sets have cardinality c.
@ (1, 00)
(b) (a, o), for any real number a
(©) (—o0,b), for any real number b
d) [L2U(6)
(&) (3,6)U[10,20)
) (0,1JuU(231U(4,5)
@ R-{0}
5. State whether each of the following istrue or false.
() If aset Aiscountable, then Aisinfinite.
(b) If aset Aisdenumerable, then Ais countable.
(c) If aset Aisfinite, then A isdenumerable.
(d) If aset Aisuncountable, then Ais not denumerable.
(e) If aset Aisuncountable, then Aisnot finite.
(f) If aset Aisnot denumerable, then A is uncountable.
6.% (@) Givean example of ahijection g from N to the set E* of positive even
integers such that g(1) = 20.
(b) Give an example of a bijection h from N to E* such that h(1) = 16,
h(2) =12, and h(3) = 2.
7. Which sets have cardinal number KX y? c?
* (8 R-[0,1
(b) (5; 00)
* (C) {ﬁ ‘ne N}
(d) {2txeN}
* () {(phdeRxRip+g=1}
® {(pg)eR xR:q=+/1-p?andq> 0}
9 {xyyeRxR:xyeZ}
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8. Give an example of denumerable sets A and B, neither of which is a subset of
the other, such that
(@ AN Bisdenumerable.
(b) AN Bisfinite.
(c) A — Bisdenumerable.
(d) A — Bisfinite and nonempty.

9. It can be shown that the sets [0, 1] and (0, 1) U N have cardinality c. Usethese
facts to show that there are sets A and B such that A=B=c and

ANBis
(a) empty. (b) finite and nonempty.
(c) denumerable. (d) uncountable.
10. Give another proof of Theorem 5.25 by showing that f(X)=
2x—1
x_ 1) is a one-to-one correspondence from (0, 1) onto R.
X(x —

11. Itcanbeshownthat R x R hascardinality c. Usethisfact to provethat the set
C of complex numbers has cardinality c.

Proofsto Grade 12. Assignagrade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
* (a) Claim. LetWbethesetof al natural numberswith tensdigit 3 and let
D™ be the set of odd natural numbers. Then W and D are equivalent.
“Proof” W contains 30, 130, 230, 330,...and many other natural
numbers, so W is an infinite subset of N. Therefore W is denumerable.
DT is aso denumerable, by Exercise 3(a). Therefore, W~ D™. u
(b) Claim. If Aisinfiniteand x ¢ A, then AU {x} isinfinite.
“Proof.” Let A be infinite. Then A~ N. Let f: N — A be a one-to-
one correspondence. Then g: N — A U {x}, defined by

X ift=1
g(t)={f(t—1) ift>1

is one-to-one and onto AU {x}. Thus N~ AU{x}, so AU{x} is
infinite. =
* (c) Claim. If AUBisinfinite then Aand B areinfinite.
“Proof” Assume that A and B are finite. Then by Theorem 5.1.7,
AU B isfinite. Therefore if AU B isinfinite, A and B are infinite. =
* (d) Claim. If aset Aisinfinite, then Aisequivalent to a proper subset of A.
“Proof” Let A={Xq, Xp,...}. Choose B={x,, X3,...}. ThenBisa
proper subset of A. The function f: A — B defined by f (x) = X1 is
clearly one-to-one and onto B. Thus A~ B. |
(e) Claim. Theset T={ne Z:n=2(mod6)} isdenumerable.
“Proof” Define a function F on the integers by setting
F(z)=6z+20. F is oneto-one because if F(u)=F(v) then
6u + 20 = 6v + 20, so u = v. Every element t of T has the form 6k + 2
for someinteger k, andt = F (k — 3), so F mapsonto T. Therefore T is
equivalent toZ, which is denumerable. |
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(f) Claim. Theset N isinfinite.
“Proof” The function given by f(n) =n+ 1 is a one-to-one corre-
spondence between N and N — {1}, so N is equivalent to a proper subset
of N. Therefore, by Corollary 5.1.10, N isinfinite. ]
(g) Claim. Theset 5N = {5n: n € N} isinfinite.
“Proof” 5N isasubset of N and N is infinite. Then 5N is infinite,
because every subset of aninfinite set isinfinite. ]
(h) Claim. If Aand B are denumerable, then A U B is denumerable.
“Proof.” Assume A and B are denumerable. Then there exist bijections
handgsuchthath: A— Nandg: B— N.Thenhug: (AUB) — Nis
abijection, so AU B isdenumerable. =

5.3 Countable Sets

The first two sections of this chapter have presented several examples of countable
sets—all of the finite sets in Section 5.1 and several denumerable setssuch as N, Z,
and N x N in Section 5.2. This section presents the essential facts needed by anyone
who works with countable sets.

Because countable sets are those that are finite or denumerable, proofs of results
about countable setswill often consider two cases.

Since there are X natural numbers and ¢ real numbers, and N C Q C R,
we may suspect that the cardinality of Q is X or ¢, or possibly some infinite
cardinal number between them. We know that there are infinitely many ratio-
nals between any two rational numbers, so you might also suspect that Q is
not denumerable. This is not the case. Georg Cantor* first showed that Q™
(the positive rationals) is indeed denumerable through a clever rearrangement
of Q.

Every elementin @™ may be expressed asg for somep, q € N. Thustheelements
of this set can be presented asin Figure 5.3.1 on the next page, where the nth row con-
tains all the positive fractions with denominator n.

To show that @ isdenumerable, Cantor listed the elementsof Q* inthe order
indicated by the arrows in Figure 5.3.1. First are al fractions in which the sum of
the numerator and denominator is 2 (only %) then those whose sum is 3 (% and %)
32
12
multiple times: For example, % and% are repetitions of the fraction % Disregard all

then those whose sum is 4 < and %) and so on. Some rational numbers appear

fractionsthat are not in lowest terms: S A Theremaining fractions have

no repetitions and are circled in Figure 5.3.1.

* Georg Cantor (1845-1918) was a German mathematician who created set theory, primarily in papers
that appeared in 1895 and 1897. Thiswork can be seen as arevolution in mathematics, because he made
it possibleto think of actual infinite quantities, rather than the infinite as unattainable. He was thefirst to
use one-to-one correspondences to describe set size, the first to show the rational numbers are counta-
ble, and the first to show that the reals are not countable. Several of his contemporaries did not accept
some parts of his work.
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Figure 5.3.1

Starting at the top left corner of the array, traverse the array from upper right to

lower left along each diagonal, assigning the natural numbers to the circled frac-
tions, starting with % then the diagonal % % and so forth. This pattern defines

a one-to-one correspondence f from N to @* shown in Figure 5.3.2, where
f1)=11@=2@ =3 f@=31(5 =23 et. This correspondence can be
used to establish the following theorem.* We omit the details of the proof.

N={1, 2, 3, 4, 5 6, 7, 8 9 10, 11,12, 13,14, .. }
Q* {l, 2131 43 2 15 1 6 5 4 }
117 2173123 4151 2 3"
Figure 5.3.2
Theorem 5.3.1 The set @+ of positive rational numbersis denumerable.

The two principal results of this section are that (1) every subset of a
countable set is countable and (2) the union of countably many countable sets
is countable. These two theorems are two of the most useful facts about

cardinalities.

* Many different one-to-one correspondences are possible. For another interesting example, see
N. Clakin and H. S. Wilf’s article “ Recounting the Rationals’ in the American Mathematical Monthly,

April 2000, pp. 360-363.
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Theorem 5.3.2 Every subset of a countable set is countable.

Proof. Let Abeacountableset. AssumeB C A. If Bisfinite, then B is countable.
Otherwise Bisinfinite, so Aisinfinite. Since Aisinfinite and countable, A isdenu-
merable. Let f be abijection from Ato N. The restriction of a one-to-one function
is one-to-one, so f |g isabijection from B to C = Rng ( f|g). Therefore B~ C.

We now define a function g: N — C by induction. (\We also make use of the
Well-Ordering Principle.)

Let g(1) bethe smallest integer in C. Theset C — {g(1)} isnonempty because
Cisinfinite. For each n > 1, define g(n + 1) to be the smallest element in the non-
empty set C — {g(1), 9(2), ..., g(n)}.

Ifr,se Nandr < s, theng(r)isandementof theset{g(1), g(2),...,g9(s— 1)}
but g(s) isnot. Thereforeg(r) # g(s). Thusgisaninjection. Also, if t € Candthereare
k naturd numberslessthantin C, then g(k 4+ 1) = t. Thereforegisonto C. Thusgisa
bijectionfrom N to C.

Therefore, N ~ C ~ B and so B is denumerable. ]

We have seen that the set @ is denumerable and therefore countable. Thus
the subsets {% neN } @n(0,1),and {g g, %} are countable sets.
Corollary 5.3.3 A set Aiscountableiff A isequivalent to some subset of N.

Proof. If Ais countable, then A is either finite or denumerable. Thus A = J, or
A~ Ny for some ke N, or A~ N. In each case, A is equivalent to some subset
of N.

If Aisequivalent to some subset of N, then A is equivalent to a countable set,
since all subsets of (countable) N are countable. Therefore, A is countable. u

We have seen (Theorem 5.1.7) that adding one or any finite number of ele-
mentsto afinite set yields afinite set with larger cardinality. In the next three theo-
rems, we consider adding elements to a denumerable set and find an important
distinction between finite and denumerable sets. Adding finitely many or denumer-
ably many elements does not change the cardinality of a denumerable set.

Theorem 5.3.4 If Aisdenumerable, then AU {x} is denumerable.

Proof. If xe A, then AU {x} = A, which is denumerable. Suppose that x ¢ A.
Since N &~ A, there is a one-to-one function f: N — A that is onto A. Define
g N — AuU{x} by

X ifn=1
g(n) = {f(n_ 1) ifn>1

It is straightforward to verify that g is a one-to-one correspondence between N and
AU {x}, which proves that AU {x} is denumerable. ]
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Theorem 5.3.4 may beloosely restated as R + 1 = Ro. Itsproof isillustrated by
the story of the Infinite Hotel ,* attributed to the mathematician David Hilbert.” The
Infinite Hotel has & g rooms numbered 1, 2, 3, 4, ..., and isfull to capacity with one
person in each room. You approach the desk clerk and ask for aroom. When the clerk
explainsthat each room is aready occupied, you say, “ Thereisroom for me! For each
n, let the person in room n move to room n + 1. Then | will move into room 1, and
everyone will have aroom as before” There are X + 1 people and they fit exactly
into the 8 ¢ rooms. See Figure 5.3.3.

X

Figure 5.3.3

Rooms in the Infinite Hotel can also be found for any finite number k of addi-
tional people by asking each guest to move to room n + k (Theorem 5.3.5). In the
event of afire darm at the Grand Infinity Hotel across the street, the Infinite Hotel
could even accommodate denumerably many additiona guests by sending the cur-
rent guest in room n to room 2n and assigning new guests to the odd numbered
rooms (Theorem 5.3.6). Later we shall see that the clerk could find rooms if a
denumerable number of additional people arrive a finite number of times (Corollary
5.3.9(c)) or even adenumerable number of times (Corollary 5.3.9(d)).

* The Infinite Hotel is one of the topics discussed in Aha! Gotcha: Paradoxes to Puzze and Delight by
Martin Gardner (Freeman, New York, 1981).

" David Hilbert (1862-1943) was a German mathematician who spent most of his career at the
University of Gottingen. He is considered the most influential and creative mathematician of histime
and was a staunch supporter of Cantor and his set theory. At the International Congress of
Mathematicians in Paris in 1900 he proposed 23 open problems (the first one being the continuum
hypothesis—see Section 5.5), which set the stage for much research in the twentieth century. Some of
the 23 problems remain unsolved.
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Theorem 5.3.5 If Aisdenumerable and B isfinite, then A U B is denumerable.
Proof. See Exercise3. [
Theorem 5.3.6 If A and B are digoint denumerable sets, then A U B is denumerable.

Proof. Letf:N 13 A and g: N 11 B. Defineh: N — AU B via
onto onto
f(”;1> if nis odd

h(n) = .
g(Z) if niseven

(The effect of histo map the odd natural numbersto elements of A and the even natu-
ral numbersto B.) Itisleft asExercise 4 to show that h isaone-to-one correspondence
fromN onto AU B. Therefore, N ~ AU B. ]

We may apply the three previous theorems to produce many new examples of
denumerable sets. We know from previous examples and exercises that the sets E*
(the positive even integers) and 3N (the integer multiples of 3) are denumerable.
Thereforethe sets E*T U {5}, 3N U {1, 2, 4,5} and E* U 3N are denumerable.

For a more interesting example, we use the fact that Q% is denumerable. By
Theorem 5.3.4, @ U {0} is denumerable. Clearly the set @~ of negative rational
numbers is denumerable, so by Theorem 5.3.6, (Q+ U {0}) U @~ is denumerable.
This gives us the following result.

Theorem 5.3.7 The set @ of al rational numbers is denumerable.

The second major theorem of this section is presented here because of its
importance in dealing with countable sets. Because the proof requires the use of a
new property of sets (the Axiom of Choice) that will be introduced in Section 5.5,
the proof will appear in that section.

Theorem 5.3.8 Let s4 be a countable collection of countable sets. Then | J Ais countable.
Aed

We have already seen some theorems that are in fact specia cases of Theorem
5.3.8: The union of finitely many finite setsis finite, and the union of a denumerable
set with afinite set or of two digoint denumerable sets is denumerable. Some other
statements that are also immediate consequences of Theorem 5.3.8 are gathered
together in the following corollary. Their placement here does not mean that each of
these results requires the Axiom of Choicefor aproof. Infact thefirst three of the four
parts can be proved by methods we have already used. (See Exercises 6, 7, and 8.) If
we do not refer to Theorem 5.3.8, a proof of part (d) requires the use of the Axiom of
Choice.
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Corollary 5.3.9 (@ If of isafinite pairwise disoint family of denumerable sets, then | A is
countable. Aest
(b) If Aand B are countable sets, then A U B is countable.

() If sdisafinite collection of countable sets, then | J A iscountable.
Aedd

(d) If o isadenumerable family of countable sets, then | J A is countable.
Aedd

Theorem 5.3.8 provides another means to prove that the set @* of positive
rationals is denumerable. @+ may be written as | A,, where A, = {%‘: aeN }

neN

For each n € N, A, isdenumerable. By Theorem 5.3.8, Q@+ iscountable. Since Q"
isinfinite and countable, Q@+ is denumerable.

Example. For each k € N, the set N is afinite set and therefore countable. Their

union, | N, = N, isof course countable.
keN

Example. Foreachne N, let B, = {—n, n}. The countable union _J B, of these
countable setsis Z — {0}, which is countable. neN

Wewill give one more example of adenumerable set, significant for anyone with
aninterest in the theory of computation. A computer program iswritten in agiven pro-
gramming language and consists of a finite sequence of symbols. These symbols are
selected from a finite set called an “aphabet” (typically all 26 upper and lowercase
letters, the 10 digits, a blank space, certain punctuation marks, arithmetic operations,
etc.). Recall, for example, that most calculators are not pre-programmed with loga-
rithm functions other than logarithms for base 10 and base e. Here is a caculator pro-
gram consisting of 80 charactersto find log, X for any base a, wherea > Oand a # 1:

PROGRAM:LOGBASEA (16 symbols)
ClrHome (7 symbols)
Input “LOG BASE?’, A (20 symbols)
Input “LOG OF?", B (18 symbols)
In(B)/In(A) — C (13 symbols)
DispC (6 symbols)

Foreachn € N, let P, bethe set of all programswith precisely n symbols. In most
programming languages the first few P; are empty sets. Our logarithm program above
isan element of Pgy.

Because there are only afinite number of symbolsin our alphabet, there can be
only afinite number of programs of length n. Therefore P, is finite (and therefore
countable) for all ne N. Also, since any computer program is finite in length,
every program isan element of P, for some n. Thus, the set of all possible programs

is U P

neN
By Theorem 5.3.8, this countable union of countable sets is countable. Hence

only a countable number of programs could ever be written in a given language.
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However, we saw in Section 5.1 that the set of dl functions from N to {0, 1} is
equivalent to % (N), and we shall see in the next section that % (N) is uncountable.
For a given programming language and its finite al phabet, this means that there are
many functions from N to {0, 1} for which there can be no computer programs to
compute them. Put a different way, there are not enough solutions (programs) for al
the possible problems (functions).

Exercises 5.3

1. What is the 28th term in the sequence of positive rationals produced by the
counting process described in the discussion of Theorem 5.3.1?

2. Useacounting process similar to that described in the discussion of Theorem
X

2
5.3.1 to show that {3;/: X,y €E N} is denumerable.

3. Prove Theorem 5.3.5 by induction on the number of elementsin thefinite set B.

4. Completethe proof of Theorem 5.3.6 by showing that the function h as defined
is one-to-one and onto A U B.

5. Thelnfinite Hotel is undergoing some remodeling, and consequently some of
the rooms will be taken out of service. Show that, in a sense, this does not
matter aslong as only a“few” rooms are removed. That is,

(a8) provethatif Aisdenumerableand x € A, then A — {x} isdenumerable.
(b) provethat if Aisdenumerable and B is afinite subset of A, then A— B
is denumerable.

6. Without referring to Theorem 5.3.8, prove part () of Corollary 5.3.9: If A =
{Ai:i=1,23,...n}isafinite pairwise digoint family of denumerable sets,
then | Aiscountable.

Aesdd
7. Without referring to Theorem 5.3.8, prove part (b) of Corollary 5.3.9: If Aand

B are countable sets, then A U B is countable.

8. Without referring to Theorem 5.3.8, prove part (¢) of Corollary 5.3.9. If A =
{A:i=1,273,...n} isafinite collection of countable sets, then |J A is
countable. Acd

9. Usethe theorems of this section to prove that
(@) aninfinite subset of adenumerable set is denumerable.
(b) if Ais a countable subset of an uncountable set B, then B — A is
uncountable.
(c) Q@nN(1,2) isdenumerable.

(d) E(J) (@ N (n, n + 1)) isdenumerable.
n=1

©® U@n®nn+ 1) isdenumerable.

neN

n
" U {k: ke N} is denumerable.
neN 2
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10. Proveor disprove:

(@) If AC BandB isdenumerable, then A isdenumerable.

(b) If AC BandAisdenumerable, then B is denumerable.

(¢) J UK isdenumerable, where J is the set of all linear functions with
slope 1 and rational y-intercept, and K is the set of al linear functions
with slope 2 and integer y-intercept.

(d) @ — Zisdenumerable.

(e) If Aand B are denumerable, then A — B is denumerable.

11. Provethatif {B;: i € N} isadenumerable family of pairwise digoint distinct
finite sets, then | B; is denumerable.
ieN
12. Give an example, if possible, of afamily Aq, Ay, Ag, ... of sets such that

(@) eachset A isfiniteand | A isdenumerable.

n=1
(b) eachset A isfiniteand | A isfinite.
=1
(c) eachset A isfinite, thenfamily {Ai:1 e N} isparwise digoint, A # A
whenever i  j, and | A isfinite.
n=1
13. (@) Let S be the set of al sequences of 0's and 1's. For example,
1010101..., 1001101001..., and 011111... arein S. Using a proof
similar to that for Theorem 5.2.4, show that Sis uncountable.

(b) Foreachne N, let T, bethe set of al sequencesin Swith exactly n1's.
Prove tha})toTn is denumerable for all ne N,

() Let T= |J T« Usea counting process similar to that described in the

k=1
discussion of Theorem 5.3.1 to show that T is denumerable.

14. Let A be adenumerable set. Prove that

(@ the set {B:BC Aand B=1} of al 1-element subsets of A is
denumerable. B

(b) the set {B:BC Aand B=2} of al 2-element subsets of A is
denumerable. B

(c) foreverykeN,{B:BC A and B =k} isdenumerable.

(d) theset{B:BC A and B isfinite} of al finite subsets of A is denumer-
able. (Hint: Use Theorem 5.3.8.)

Proofsto Grade 15. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
* (a) Claim. If Aisdenumerable, then A — {x} isdenumerable.
“Proof.” Assume A isdenumerable.
Casel. If xg A then A—{x} =A, which is denumerable by
hypothesis.
Case2. Assume xe A. Since A is denumerable, there exists
f: N %é A. Define g by setting g(n)=f(n+1). Then

o N -1 (A—{x}), so N~ A — {x}. Therefore, A — {x} is

onto
denumerable. ]
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(b) Claim. If Aand B aredenumerable, then A x B isdenumerable.
“Proof” Assume A and B are denumerable, but that A x B is not
denumerable. Then A x Bisfinite. Since A and B are denumerable, they
are not empty, so we can chooseae Aand b e B. Then, A~ A x {b}
and B~ {a} x B. Since A x B is finite, the subsets A x {b} and
{a} x B are finite. Therefore, A and B are finite. This contradicts the
statement that A and B are denumerable. We conclude that A x B is
denumerable. =

(c) Claim. Theset Q7 of positive rationals is denumerable.

“Proof.” Consider the positive rationals in the array in Figure 5.3.1.
Order this set by listing all the rationals in the first row, then the second
row, and so forth. Omitting fractions that are not in lowest terms, we
have an ordering of Q@ in which every positive rational appears. There-
fore, @+ isdenumerable. L

(d) Claim. If AandB areinfinite, then A~ B.

“Proof.” Suppose A and B are infinite sets. Let A={aj, ay, as, ...}
and B = {by, by, bs,...}. Definef: A — B as shown:

{a1, &, as, a4, ...}
VoLl
{b].! b2| b3, b4,...}.

Then, since we never run out of elements in either set, f is one-to-one
and onto B, so A~ B. |
(e) Claim. R — @ isuncountable.

“Proof” Risuncountableand R — Q isasubset of R. Every subset of
an uncountable set is uncountable, so R — @ is uncountable. |

54 The Ordering of Cardinal Numbers

When Georg Cantor developed set theory, he described a cardinal number of a set
M as “the general concept which, with the aid of our intelligence, results from M
when we abstract from the nature of its various elements and from the order of their
being given.” This definition was criticized as being less precise and more mystical
than a definition in mathematics ought to be. Other definitions were given, and
eventually the concept of cardinal number was made precise.

One way to define cardinal numbers is by choosing one fixed set from each
equivalence class of sets under the relation =, and then calling this set the cardinal
number of each set in the class. Under such a procedure we would think of the num-
ber 0 as being the empty set and the number 1 as being the set whose only element
isthe number 0. That is, 1 ={0}; 2={0, 1}; 3={0, 1, 2}; and so on. The two
infinite cardinal numbers given so far have been described by specifying a standard
set, either N or (0, 1), as the standard example for that particular cardinal.

We will not be concerned with further details of formulating a precise defi-
nition of a cardinal number. For our purposes, the essential point is that the
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cardinal number Sof a set Sis an object associated with all sets equivalent to S
and no other set. The double overbar on Sis suggestive of the double abstraction
referred to by Cantor.

Intuitively, you should still think of the cardinality of a set Sas the “number”
of elementsin S or the“size” of the set S. So that we can compare the sizes of two
sets, we make the following definitions:

DEFINITIONS Let Aand B be sets. Then

= Bif and only if A~ B; otherwise A # B.
< Bif and only if there exists a one-to-one function f: A — B.
< Bifandonly if A< Band A+ B.

>I>1>

Weread A < B as*“the cardindlity of Aisstrictly lessthan the cardinality of B
while < is read “less than or equal to.” In addition, we use A # B and A £ B to
denote the denials of A < B and A < B, respectively.

A proof of A < B will usually involve constructing a one-to-one function from
A to B, while a proof of A < B will have a proof of A < B together with a proof,
often by contradiction, that A+ B. Once we have developed some properties
of cardinal inequalities, those facts can be used to prove statements of the form
A < B without resorting to the construction of functions.

Since 1, 2, 3,... are cardinal numbers, the natural numbers may be viewed as
a subset of the collection of al cardinal numbers. In this sense the properties of <
and < that wewill prove for cardinal numbersin the next theorem may be viewed as
extensions of those same properties of < and < that hold for N. Proofs of parts (a),
(b), (d), and () are left as Exercise 6.

Theorem 5.4.1 For sets A, B, and C,
@ A=<A (Reflexivity)

(b) IfA=BandB=_C,then

(© IfA<BandB<C,then

(d) A<BiffA

(e IfACB, thenA<B.
A<B

()

Proof.

(Transitivity of =)
(Transitivity of <)

() Suppose A < B and B < C. Then there exist functions f: A2=3 B and
gB -1 . Sincethe composite g o f: A— C is one-to-one, we conclude

A<C.
(e Let AC B. Wenotethat theinclusonmapi: A— B, givenbyi(a) =a, is
one-to-one, and therefore A < B. [ |
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Examples. We can show that every finite cardina islessthan X asfollows. For
every finite cardinal number k, N € N. Thus by Theorem 5.4.1(e), k < Rq. Since
Nk isnot equivalent to N, k £ Rq. Therefore, k < Ro.

A similar argument showsthat 8¢ < c. First, g < cfollowsfromN C R and,
second, Rg £ ¢ because N isnot equivalent to R.

We can easily show that for natural numbers m and n, if m < n (in the usua
sense), then m < n by the definition of < for cardinals. We use the inclusion map
from Npyto N, to show that m= N, < N, = n. We know that N, # N,, by the
Pigeonhole Principle (Theorem 5.1.9).

Theorem 5.4.2 Cantor’s Theorem
For every set A, A < 2 (A).

Proof. To show A < % (A), we must show that (i) A < P (A), and (ii) A # P (A).
Part (i) follows from the fact that F: A— P (A) defined by F(x)={x} is
one-to-one. -

To prove (ii), suppose A = P (A); that is, assume A ~ % (A). Then there exists
g AiT_é P(A). Lee B={ye A yeg(y)}. Since BC A Be P(A), and since
gisonto ?(A), B=g(z) for some ze A. Now either ze B or z¢ B. If ze B,
then z¢ g(2 = B, a contradiction. Similarly, z¢ B implies z¢ g(2), which
implies ze B, again a contradiction. We conclude that A is not equivalent to
% (A) and henceA < P (A). [

Cantor’s Theorem has some interesting consequences. First, there are infi-
nitely many infinite cardinal numbers. We know one, R, which corresponds
to N. By Cantor's Theorem, Xo < P (N). Since ?(N) is a set, its power set
P (P (N)) has a strictly greater cardinality than that of % (N). In this fashion
we may generate a denumerable set of cardinal numbers, each greater than its
predecessor:

Ro<P(N) <P(P(N) < P(PP(N)) < ---

Exactly where ¢, continuum, fits within this string of inequalities will be taken up
later in this section. It is aso an immediate consegquence of Cantor’s Theorem that
there can be no largest cardinal number (see Exercise 7).

In Section 5.1 we showed that the set & of all functions from N to {0, 1} is
equivalent to % (N). Since N < 2 (N), we know there are uncountably many
functions from N to {0, 1}. Since a function from N to {0, 1} is a sequence of
0's and 1's, Cantor’'s Theorem provides another proof for Exercise 13(a) of
Section 5.3.
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It appears to be obvious that if B has at least as many elements as A(A < B),
and A has at least as many elements as B (B < A), then A and B are equivalent
(A = B). The proof, however, is not obvious. The situation may be represented as
in Figure 5.4.1. From A < B and B < A, there are functions F: A 23 B and
G:B X3 A The problem isto construct H: A — B, which is both one-to-one and
onto B. Cantor solved this problem in 1895, but his result was not immediately
accepted because his proof used the Axiom of Choice (Section 5.5). Proofs not
depending on the Axiom of Choice were given by Ernst Schroder* in 1896 and two
years later by Felix Bernstein.*

A B
F
_—
D = Rng(F)
C = Rng(G) G
Figure 5.4.1
Theorem 5.4.3 Cantor-Schroder-Bernstein Theorem

IfA<BandB < A, then A= B.

Proof. We may assume that A and B are digoint, for otherwise we could replace
A and B with the equivalent disjoint sets A x {0} and B x {1}, respectively. Let
F:ALX3B withD=Rng(F)andletG: B =3 A withC=Rng(G).1f B =D
we already have A~ B, so assume B — D # .

Define astring to be afunction f: N — A U B such that

f(1) eB—D,
f(n) e Bimpliesf (n+ 1) = G(f (n)), and
f(n) e Aimpliesf(n+ 1) = F (f(n)).

We think of a string as a sequence of elements of A U B with first termin B — D,
and such that thereafter the terms are alternately in C and in D. Each element of
B — D isthefirst term of some string. See Figure 5.4.2.

* Ernst Schroder (1841-1902) was a German mathematician known mostly for hiswork in logic and its
applications to other areas of mathematics. He advanced the methodical use of quantifiers. The design
of Schroder’s proof of Theorem 5.4.3 was correct but his proof contained an error. Felix Bernstein
(1878-1956), while he was still a student under Cantor, corrected the error. Bernstein made contribu-
tionsin many fields, including applied mathematics, statistics and especially genetics.
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String f: f (1), f(2), f(3), f(4), f(5), f(6),...
Figure 5.4.2

Let W= {x e A: xisaterm of some string}. We note that W € Rng(G) and
that x e W iff x = f (2n) for some string f and natural number n. Let H: A— B
be given by

H {F(x) if xe W
W=161x ifxew

See Figure 5.4.3. We will show that H is aone-to-one correspondence from A onto B.

H
A — 7 B
F -
D =Rng(F)
B—-D

C=Rng(G)

Figure 5.4.3

Suppose x, y € A and H(x) = H (y). We will first show that x and y must both
bein W or both in A — W. For a proof by contradiction, assume thisis not the case.
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Without loss of generality, we may assumethat x e A — Wandy € W. (Otherwise,
we could rename the elements x and y.) Then from H(X) = H(y) we have
F(X) =G (y), so y=G(F(x)). Since ye W, y = f (2n) for some string f and
some natural number n. Therefore, f (2n — 1) = F(X) (because G(f (2n — 1)) =
f(2n) =y=G(F(x)) and G is one-to-one). If n=1, then f (1) = F(X), which
implies f (1) € Rng(F), a contradiction to the definition of string f. Thus n > 2.
But then f (2n — 2) = x, since f (2n — 1) = F(X). Thisimplies that x isaterm in
the string f, a contradiction to x € A — W. Therefore, we know that x and y are
either both in Wor both in A — W.

If xandy are both in W, then H(x) = H(y) implies that G=1(x) = G~ (y).
Therefore, x = y since G~ is one-to-one. Likewise, if x and y are both in A — W,
then F(X) = F(y) and x =y because F is one-to-one. In either case, we conclude
X =y and H is one-to-one.

Next we show that H is onto B. Let b € B. We must show that b = H(x) for
some X € A. There are two cases:

Casel. If G(b)eW, let x=G(b). Then H(x) = H(G(b)) = G YG(b)) = b.

Case2. If G(b)e¢ W, then be Rng(F). (If be¢ Rng(F), then be B - D.
Therefore, b isthe first element of some string and G(b) is the second ele-
ment of that string, a contradiction to G(b) ¢ W.) Since b € Rng(F),
there exists x € A such that F(x) = b. Furthermore, x ¢ W. (If xe W,
then x is a term in some string and therefore F(x) and G(F (X)) are the
next two terms of the same string. But this is a contradiction, since
G(F (X)) = G(b) and we have assumed that G(b) is not on any string.)
Fromx e A — WweconcludeH (x) = F(X) = b.

In both cases, H (X) = b, so H isonto B. =

The Cantor—Schroder—Bernstein Theorem may be used to prove equivalence
between setsin cases where it would be difficult to explicitly exhibit aone-to-one
correspondence.

Example. We will show that (0, 1) ~ [0, 1]. First, note that (0, 1) < [0, 1], so
(0,1) <0, 1]. Likewise, since [0, 1] € (-1, 2), wehave [0, 1] € (-1, 2). But we

know (0,1)~(—1,2) and thus (0,1) =(—1,2). Therefore, we may write

[0, 1] < (0,1). We conclude (0,1) =[O0, 1] by the Cantor—Schroder—Bernstein
Theorem and thus (0, 1) = [0, 1].

Example. We can use the Cantor—Schroder—Bernstein Theorem to show that
R x R~ R. (See Exercise 15.) Thismeansthat there are just as many points on the
real line asthere are in the entire Cartesian plane.

Example. The Cantor—Schroder—Bernstein Theorem can be used to determine the
relationship of c, the cardinal number of the open interval (0O, 1), to the increasing
sequence of cardinal numbers

N<PWN) <P(PN) <P (PPN < ---.
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We will show that % (N) = c.

Proof. First, recall that any real number in the interval (0, 1) may be expressed in a
base 2 (binary) expansion 0.b;bobsby, . . ., whereeach by iseither O or 1. If weexclude
sequences that terminate with infinitely many 1's, such as 0.0101111111. .. (which
has the same value as 0.01100000. . .), then the representation is unique. Thus we
may define a function f:(0,1) — ?(N) such that for each xe (0,1),

f(X) ={n e N: b, =1inthebinary representation of x}.

The uniqueness of binary representations ensures that the function isdefined and is
one-to-one. Since f isone-to-one, (0, 1) < % (N).
Next, define g: P(N) — (0, 1) by g(A) = O.a1a0aza4. . . , Where

_{2 ifne A
=15 ifnea

For any set AC N, g(A) isareal number in (0, 1) with decimal expansion consist-
ing of 2’sand 5's. (Any pair of digits not including 9 will do.) The function g isone-
to-one but certainly not onto (0, 1). Therefore, ? (N) < (0, 1).

By the Cantor—Schroder—Bernstein Theorem, % (N) = (0, 1). Therefore

P(N) = c. u

We can now identify the first two terms of the sequence N < 2 (N) <
P(P(N)) <P (P(P(N)) <... asheing Rpandc.

The Cantor-Schroder—Bernstein Theorem is another result in the extension of
the familiar ordering properties of N to properties for al cardinal numbers. It, in
turn, leads to others. In the following, parts (a) and (c) are proved; (b) and (d) are
given as Exercise 13.

Corollary 5.4.4 For sets A, B, and C,
(@ ifA<B, thenB#£A

(b) ifA<BandB<C, thenA<
(© ifE<EandE§§,thenE<

(d)

Proof.

>
A
vs)
)
o
vs)
A
e
=
8
>
A
ol oI Ol

(@ Suppose B < A. Then A# B and B < A. Combining this with the hypothe-
s that A < B, we conclude by the Cantor—Schroder—Bernstein Theorem
that A = B, which isa contradiction. Therefore, B # A. o
(©) Suppose A<Band B < C. Then A < B; so by Theorem 5.4.1(c), A < C.
Suppose A # C. Then A=C, which implies C <A But B<C and
C < A implies B < A. Combining this with A < B, we conclude by the
Cantor—Schréder—Bernstein Theorem that A= B. Since this contradicts
A < B, we have A< C. L]

It is tempting to extend our results even further to include the converse of Corol-

lary 5.4.4(a): “If B # A, then A < B.” (As far as we know now, for two given sets
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266 CHAPTER 5 Cardinality

A and B, both A < B and B < A may be fase) The Cantor-Schroder—Bernstein
Theorem turned out to be more difficult to prove than one would have guessed from
its simple statement, but the situation regarding the converse of Corollary 5.4.4(&)
is even more remarkable. This is discussed in Section 5.5, where “If B £ A, then
A < B” isrephrased as“Either A< B,or A=B,or B<A”

Exercises 5.4

Prove that for any natural number n, n < c.
Provethat ? (N) < 2 (R).
Provethat if A < Band B =C, thenA < C.

ProvethatlfA< BandA=C, thenC< B.

State whether each of the following is true or false. For each false statement,

give a counter example.

(@ A<B impliesthat A C B.

~» (b) ANB<B.

(© A< Blmph%@)( A) < ?(B).

(d) A=BimpliesA < B. B

(e If B— Aisnonempty, then A < AU B.

Prove the remaining parts of Theorem 5.4.1.

Prove that there is no largest cardinal number.

Arrange the following cardinal numbersin order:

@ (1,01 {0,1, {0}, ?(R), 0,5, R—N, 2(P(R)), R

(b) {01 5}1 [0, 5]1 {01 3! 5}! R - {3}! gj)({o! 5})! gj)((o! 5))! (Ov 5) - {3}1
R—N

© QU{r},R—{x},2({0,1}).[0.2, (0, ) Z R-7Z P(R)

9. Apply the proof of the Cantor—Schroder—Bernstein Theorem to this situation:

1
A={2345..},B={.11 .} FA- BwhereF(x) = g

1
G: B — Awhere G(X) =§+5. Notethat§ and % zaein B—Rng(F). Let

f bethe string that begins at % and let g be the string that begins at %.
(& Findf(2),f(2),f(3),f(4).
(b) Findg(1), 9(2), 9(3), 9(4).
(c) Define H as in the proof of the Cantor—Schroder—Bernstein Theorem
and find H (2), H(8), H(13), and H (20).

10. Suppose there exist three functions f: A 1B, g:B 1c ad
h:C 13 A. Prove A~ B~ C. Do not assume that the functions map onto
their codomains.

11. If possible, give an example of
() functions f and g such that f: Q N, g: N -1 @, but neither f nor
gisanonto map.
* (b) afunctionf: R N

o ~ w DR

* 0 N O
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5.5 Comparability of Cardinal Numbers and the Axiom of Choice 267

(© afunctionf: P (N) =3 N
(d) afunctionf: R 13 Q.

12. Prove that if there is a function f: A— N that is one-to-one, then A is
countable.

13. Prove parts (b) and (d) of Corollary 5.4.4.
14. Use a cardinality argument to prove that there is no universal set of all sets.

15. Usethe Cantor—Schrdder—Bernstein Theorem to prove the following.
(@) Thesetof al integers whose digitsare 6, 7, or 8 is denumerable.
(b) RxR=~R.
(c) If AC R and there exists an open interval (a, b) such that (a, b) C A,
thenA=c.

16. Consider the family & = {f: f isafunction from [0, 1] to [0, 1]}.
(@) Provethat thereis no hijection from [0, 1] to %.
(b) Show that % is uncountable by showing that & has a subset equivalent
to [0, 1]. -
(c) What isthe relationship between [0, 1] and %?

Proofs to Grade Assign a grade of A (correct), C (partially correct), or F (failure) to each. Justify
assignments of grades other than A. -
17. (@) Claim. IfA<BandA=C, thenC <B.
“Proof” Assume A<BadA=C. Th there exists a function f
suchthat f: AX=3 B. SinceA=C, f:C— % B.Therefore, C<B. =
*x (b) Claim. IfBCCandB=C,thenB=C.
“Proof.” Suppose B+# C. Then B is a proper subset of C. Thus
C—B#. This implies C—B B>0. But C=BU(C—-B) and,
since B and C — B are digjoint, C= B+(C B). By hypothesis,
B=C. Thus s (C — B) = 0, acontradiction. ]
(¢ Claim. IfA< BandB<C thenA<C
“Proof” AssumeA<BandB<C.
Casel. A=B.Thenby substitutioninB <C, A<
Case2. A < B. Then by transitivity, A < C. n
* (d) Claim. If A% and A < B, then there exists a function f: B ﬂ% A
“Proof” Assume A < B. Then there exists a function o Al B
Since g is one-to-one, every b in B has exactly one pre-image in A. Thus
the set f={(b,y): yis the pre-image of b under g} is a function. This
functionisonto A, becausefor eachainA, g(a) € B,andsof (g(a)) = a.
Thusf: B I8 A,

OH

55 Comparability of Cardinal Numbers and the Axiom of Choice

One of the most useful ordering properties of N isthe trichotomy property: if m
and n are any two natural numbers, thenm > n, m=n, or m < n. The analog for
cardinal numbersis stated in the Comparability Theorem.
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Theorem 5.5.1 The Comparability Theorem
If Aand B are any two sets, then A < B, A=B, or B < A.

Surprisingly, it is impossible to prove the Comparability Theorem from the
axioms and other theorems of Zermelo—Fraenkel set theory (see Section 2.1). In a
formal study of set theory one can build up, starting with afew axioms specifying
that certain collections are sets, to the study of the natural, rational, real, and com-
plex numbers, polynomial, transcendental, and differentiable functions, and all the
rest of mathematics. Still, comparability cannot be proved. On the other hand, it is
impossible to prove in Zermelo—Fraenkel set theory that comparability is false.
Theorem 5.5.1 is undecidable in our set theory; no proof of it and no proof of its
negation could ever be constructed in our theory.

At this point we could choose either to assume that Theorem 5.5.1 istrue (or as-
sume true some other statement from which comparability can be proved) or else
assume the truth of some statement from which we can show comparability isfalse.
Of course, we have revealed the fact that we want comparability to be true by la-
beling the statement as a theorem. It has become standard practice by most mathe-
maticians to assume the Comparability Theorem istrue by assuming the truth of the
following statement:

The Axiom of Choice

If o is any collection of nonempty sets, then there exists a function F (called a

choice function) from s{ to |_J A such that for every A e o4, F (A) € A.
Aesl

The Axiom of Choice at first appearsto havelittle significance: From a collec-
tion of nonempty sets, we can choose an element from each set. If the collectionis
finite, then this axiom is not needed to prove the existence of a choice function. It
isonly for infinite collections of setsthat the result is not obvious and for which the
Axiom of Choice isindependent of other axioms of set theory.

Many examples and uses of the Axiom of Choice require more advanced
knowledge of mathematics. Thefirst examplewe present is not mathemeatical in content
but it has become part of mathematical folklore.

A shoe store’s stockroom has an infinite number of pairs of shoes and an
infinite number of pairs of socks. A customer asks to see one shoe from each pair.
When the clerk has an explicit rule for making a choice, he does not need to
invoke the Axiom of Choice to know there is a choice function. His rule may be
to choose the | eft shoe from each pair. If the socks in each of the infinitely many
pairs are indistinguishable, and a customer asks to see one sock from each pair,
then the clerk has no rule for making a choice. Without the Axiom of Choice we
can't say there is afunction that chooses one sock from each pair.

Example. Letsd ={A:ACRandA# J}. If we are to select one element from
each set Ain o, then we will need to use the Axiom of Choice. However, if we
let B={AACR,A#J, and A is finite}, then we do not need the Axiom of
Choiceto select one element from each set in Z. Our choice rule might be: For each
B € %, choose the greatest element in B. Since B is finite, such an element exists
for each B € &.
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5.5 Comparability of Cardinal Numbers and the Axiom of Choice 269

Now that we have the Axiom of Choice available to use, we could prove the
Comparability Theorem. However, we choose instead* to give a proof of Theorem
5.3.8, which was postponed in Section 5.3. We need one more preliminary result
before we give that proof.

Lemma 5.5.2 Let {Ai:ie N} be a denumerable family of sets. For each i e N, let By =
i—1
A — (U Ak). Then {B;: i € N} is adenumerable family of pairwise digoint sets
k=1
suchthat | A = | B.

ieN ieN

Proof. Letxe Aandj and k be natural numbers. If j < k and x € B;, then x & By.
Thus B; and By are digjoint. Thus{B;: i € N} is pairwise digjoint.

By definition of the B;, | J B, € |J A, If x e A for somei € N then thereisa

neN neN
smallest natural number k such that x € A, and so x € By. Thus |J A, € [ By
neN neN
Therefore | J A, = | B.. [
neN neN
Theorem 5.3.8 Let 54 be acountable collection of countable sets. Then | J A is countable.
(restated) Acdt

Proof. Let o be a countable collection of countable sets. We may assume that
A={Ag, As ... An ...} isdenumerable, because if there were only k setsin «{ we
could extend < by defining A1 = Axy2 = --- = . By Lemma5.5.2 we may aso
assume that the setsin o are pairwise digoint. From the fact that each set Ay, is count-
able, weknow that An,isequivalent to asubset of N: either to N, for somen € N, to J,
or to N itsalf. Thusfor each Ay, thereisabijection fy, from Ay, to asubset of N.

We now define a function g from [ J Ato N. Let xe |J A. Then xe A,

for exactly one natura number m. Lef\ Eﬁfn be the mth priﬁfeﬁnumber. Define
g(x) = (pm) . (See the example below.) We claim that g is one-to-one: Suppose
g(@) =g(b) for some a,be |JA where ac A and be A. Then (p)"@ =
Aedd

(p)® so by the Fundamental Theorem of Arithmetic, i =j and f; (a) = f; (b).
Since fjisone-to-one, a = b.

sinceg: A3 N, | Aisequivalent to a subset of N. Since every subset of

Aed Aed
N iscountable, | J Aiscountable. n
Aed

As an example of how the function g in the proof above works, suppose
As={r,s t} and fs={(r, 1), (s 3), (t, 2)}. Since 11 is the fifth prime, ps = 11.
We compute g(r) = 11%, g(s) = 113, and g(t) = 112. Elements of the set Ag would
be mapped to distinct powers of 13, and so forth. If Ag happensto be denumerable,
then every power of 13 will bein Rng(g).

* For a proof of the Comparability Theorem, see Paul R. Halmos, Naive Set Theory (Undergraduate
Texts in Mathematics), Springer-Verlag, 1998.
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Where was the Axiom of Choice used in the proof of Theorem 5.3.8? For
each me N, A, is countable, and there are generally many bijections from A, to
asubset of N. In our proof, we select one such hijection and call it f.,. We do this
infinitely many times, once for each me N. Our collection consisted of sets of
bijections, and we needed one hijection from each set of bijections. There is no
way to select the f,, without the Axiom of Choice.

Many other important theorems, in many areas of mathematics, cannot be
proved without the use of the Axiom of Choice. In fact, severa crucia results
are equivalent to it.* Some of the consequences of the axiom are not as natural as
the Comparahility Theorem, however, and some of them are extremely difficult to
believe. One of these is that the real numbers can be rearranged in such a way that
every nonempty subset of R has a smallest element—in other words, that the reals
can be well ordered. Ancther, called the Banach-Tarski paradox, states that a ball
can be cut into afinite number of piecesthat can be rearranged to form two ballsthe
same size as the origina ball. Actualy, this “paradox” is hardly more surprising
than theresult in Section 5.4 that R x R ~ R, athough that theorem can be proved
without the Axiom of Choice.

The Axiom of Choice has been objected to because of such consequences, and
also because of alack of precision in the statement of the axiom, which does not
provide any hint of arule for constructing the choice function F. Because of these
objections, it is common practice to call attention to the fact that the Axiom of
Choice has been used in aproof, so that anyone who isinterested can attempt to find
an alternate proof that does not use the axiom.

We conclude this chapter with three more results whose proofs rely on
the Axiom of Choice. The first theorem says that if there is a function from a
set A onto a set B, then A must have at least as many elements as B. The proof
uses the Axiom of Choice to choose, for every be B, an a€ A such that
f(a)=h.

Theorem 5.5.3 If there exists a function from a set A onto aset B, then B < A.

Proof. If B=(J, then B C A. Therefore, in this case B < A. Suppose B # J,
and supposef: A — Bisonto B. (To showthat B < A, we must construct a function
h: B— A that is one-to-one.) Let be B. Since f is onto B, b is in Rng (f).
Therefore the set C, ={ac A: f(a) = b} is nonempty. See Figure 5.5.1. Thus
A = {Cp: b € B} isanonempty collection of nonempty sets.

By the Axiom of Choice, thereisafunctiong: s¢ — | J Cyp suchthat g(Cp) € Cy

beB
for every b e B. (Since f is a function with domain A, | JC, = A. Therefore g
isafunction from s to A.) beB

Define h: B— A by h(b) = g(Cy) for every b € B. We will show that h is
one-to-one. Let r and s be elements of B and suppose that h(r) = h(s). Then

* Paul Howard and Jean E. Rubin, Conseguences of the Axiom of Choice, American Mathematical Society,
Mathematical Surveys and Monographs, v. 59, 1998.
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A

Figure 5.5.1

9(Cr) = g(Cy). Cdll this abject x. By definition of g, xe C; and x € Cs. Then
f(x) =r and f(x) =s But fis afunction, so r = s. Therefore h is one-to-one.
We conclude that B < A. =

Theorem 5.5.4 Every infinite set A has a denumerable subset.

Proof. Suppose Aisinfinite. Weinductively define adenumerable subset of A. First,
since A is infinite, A # (J. Choose a; € A. Then A — {&;} is infinite, hence non-
empty. Choosea, € A — {&;} . Notethat a, ## a; and a; € A. Continuing in thisfash-
ion, supposeay, . . ., ax have been defined. Then A — {ay, . .., a} # &, so select any
a1 from this set. By the Axiom of Choice, a, isdefined for al n € N. The a, have
been constructed so that each a, € Aand &; # g; fori # j. ThusB = {an: ne N} isa
subset of A, and the function f given by f (n) = a, is a one-to-one correspondence
from N to B. Thus B isdenumerable. ]

Theorem 5.5.4 can be used to prove that every infinite set is equivalent to one
of itsproper subsets. (See Exercise8.) Thisresult characterizesinfinite setsbecause, as
we saw in Section 5.1, no finite set is equivalent to any of its proper subsets.

Theorem 5.5.4 also confirms that N is the smallest infinite cardinal number.
For any set A with infinite cardinality, there is a denumerable subset B of A. There-
fore, Ng=B < A

onto

Corollary 5.5.5 A nonempty set A is countableiff there existsafunctionf: N — A.

Proof. Exercise9. u

We have seenthat Ro=N <c=P(N) < (P (N)) < P(P(P?(N))) <....
The fact that R and ¢ are the first two cardinal numbers in this sequence does not
necessarily mean that c is the next largest cardinal number after & o. Cantor conjec-
tured that thisis so: That is, no set X exists such that 8¢ < X < c. This conjecture,
called the continuum hypothesis, is one of the most famous problems in modern
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mathematics. The combined work of Kurt Godel* in the 1930s and Paul
Cohen' in 1963 shows that the continuum hypothesis can neither be proved nor dis-
proved in Zermelo—Fraenkel set theory. Like the Axiom of Choice, the continuum
hypothesisis undecidable.

Exercises 5.5

1. Indicate whether the Axiom of Choice must be employed to select one ele-
ment from each set in the following collections.
(@ aninfinite collection of sets, each set containing one odd and one even
integer
* (b) afinite collection of sets such that each set is uncountable
() aninfinite collection of sets, each set containing exactly one integer
(d) adenumerable collection of uncountable sets
(e {(a x):aeR}
(f) {A AcC N andboth Aand N — A areinfinite}
(9) {A-ACRandboth Aand R — A areinfinite}
(h) {AACRandAisdenumerable}

2. (a) Provethispartial converseof Theorem 5.5.3 without using the Axiom of
Choice. Let A and B be sets with B # . If B < A then there exists
0: A — Bthat isonto B.

(b) Usethe Axiom of Choice to prove that if there exists f: A 98 B then
. . 1-1

thereexistsafunctiong: B — A.

3. Let Aand B be any two nonempty sets. Use the results of this section to prove

that there exists f: A — B that has at least one of these properties:

(i) fisoneto-one or

(i) fisontoB.

Provethat if f: A— B, then Rng (f) < A.

Suppose A is adenumerable set and B is an infinite subset of A. Prove A ~ B.

Suppose B < Cand B # A. Provethat A < C.

Let {A:i e N} be a collection of distinct pairwise disoint nonempty sets.

Thatis, ifiandj areinN and i # j, then A; £ Ay and A N Aj = . Prove that

\UJ A includes a denumerable subset.

ieN

8. Let Abeaninfinite set. Provethat A is equivalent to a proper subset of A.

9. Prove Corollary 5.5.5: A nonempty set A is countableiff there is a function

f: N— Athat isonto A.

*
N o g A

* Kurt Godel (1906-1978) was an Austrian—American logician best known for his Incompleteness
Theorem, which says (roughly) that in any logical system rich enough to include the theory of the natu-
ral numbers, there will always be true statements that are unprovable.

T Paul Cohen (1934-2007), an American logician, created a method of proof that he used to show that
neither the Axiom of Choice nor the continuum hypothesis can be proved in the set theory based on the
Zermelo—Fraenkel axioms.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



5.5 Comparability of Cardinal Numbers and the Axiom of Choice 273

Proofs to Grade 10. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.
Justify assignments of grades other than A.
*x (@) Claim. Thereisadenumerable set B of irrational numbers such that
any two elements of the set differ by an integer.
“Proof.” Define the sequence s by setting the nth term to be
sy = m + n. Then sis afunction with domain N. Let B be the range of
this function. By Theorem 5.3.3, B < N. Since B isinfinite, B is denu-
merable. The difference between any two elements 7 + mand 7 + n of
Bism — n, aninteger. |
(b) Claim. Every infinite set A has a denumerable subset.
“Proof.”  Suppose no subset of A is denumerable. Then all subsets of
A must be finite. In particular A C A. Thus A isfinite, contradicting the
assumption. |
* (c) Claim. Every infinite set A has adenumerable subset B.
“Proof” If Aisdenumerable, let B = A, and we are done. Otherwise,
A is uncountable. Choose x; € A. If A —{x;} is denumerable, let B =
A — {X1}. Otherwise, choose x; € A — {xi}. If A—{xy, X2} is denu-
merable, let B= A — {Xy, Xo}. Continuing in this manner, using the
Axiom of Choice, we obtain a subset C={xy, X,..} such that
B = A — Cisdenumerable. ]
(d) Claim. Every infinite set has two disjoint denumerable subsets.
“Proof.” Let A beaninfinite set. By Theorem 5.5.4, A has a denumer-
able subset B. Then A — B is infinite, because A is infinite, and is
digoint from B. By Theorem 5.5.4, A — B has a denumerable subset C.
Then B and C are disjoint denumerable subsets of A. =
(6 Claim. If A% and A < B, then there exists a function f: B 23 A.
“Proof” Assume A < B. Then there exigts a function g: A 2=3 B.
Then g~ is a function that maps Rng(g) onto A. Let a* be some fixed
element of A and define f=g U {(b,a*):be B — Rng(g)}. Then
f:B 28 A .
(f) Claim. Every infinite set has two disjoint denumerable subsets.
“Proof” Let Abeaninfinite set. By Theorem 5.5.4, A has a denumer-
able subset B. Since B is denumerable, there is a function f: N % B.
Let C={f(2n):neN} ad D={f(2n—1:neN}. Then
C={f(2),f@),f(6),..} andD ={f(2), f(3), f(5),...} aredigoint
denumerable subsets of A. u
(g) Claim. Every subset of acountable set is countable.
“Proof” Let A be acountable set and let B C A. If B isfinite, then B
is countable by definition. If B is infinite, since B C A, A is infinite.
Thus A is denumerable. By Theorem 5.5.4, B has a denumerable subset

C. Thus CC B C A, which implies 8o=C and C<B<A= R,
Therefore A = B = Ry. Thus B is denumerable and hence countable. =
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CHAPTER 6

Concepts of Algebra

The broad meaning of algebra refers to systems of computation and the study of
properties of such systems. In this chapter we make precise the idea of an algebraic
system and introduce several different types of systems. The goal is to make avail-
able additional opportunities to sharpen your proof writing skills while providing a
first experience with some of the topics in this important field.

6.1 Algebraic Structures

We start with the notion of a computation. For example, the natural number system
includes the operation of addition, which provides a structure to compute sums. We
write the familiar 5 4+ 3 = 8, which means: Given 5 and 3, the result is 8. Thus,
addition of natural numbers is a function that acts on a pair of elements of N to pro-
duce another element of N.

DEFINITION Let A be a nonempty set. A binary operation on A is a
function from A x Ato A.

We will usually denote an operation by one of the symbols +, -, o, or *,

If o is an operation on A and (X, y) is in the domain of o, we usually write
x oy in place of the standard function notation o (x, y) for the image of (x, y).
This notation is familiar from the operations of addition and multiplication
on the real numbers, where we write 5+3=8 and 8-3=24 instead
of +(5,3) =8 and - (8, 3) = 24, respectively. For some operations we omit the
operation symbol completely and write xy=12z as is done with
multiplication.

The images xoy, x=y, and xy are called products, regardless of whether
the operations have anything to do with multiplication. Similarly, x + y is referred

275
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to as the sum of x and y, even when the operation + does not involve adding
numbers.

In addition to the usual arithmetic operations on sets of numbers, you are already
familiar with many other binary operations. Matrix multiplication, for example, is
a binary operation on the set of all 2 x 2 matrices. For a set A, the operations of
union U and intersection N are binary operations on % (A), the power set of A.

There are operations other than binary operations. Ternary operations map
A x Ax Ato A and unary operations map A to A. “Inverse,” for example, is a
unary operation on Z that assigns to each integer x its additive inverse —x. In this
chapter, when we say “operation” we mean a binary operation.

DEFINITION An algebraic system or algebraic structure is a non-
empty set A with a collection of one or more operations on A and a (possibly
empty) collection of relations on A.

The system R of real numbers together with operations of addition and multi-
plication and the relation “less than” make up a familiar algebraic system. The
rational numbers with the operation of multiplication make up a different algebraic
system, as does the set of natural numbers with addition and “less than.”

Except for the last section of this chapter, algebraic systemwill refer to a struc-
ture with one binary operation and no relations. The notation for the algebraic sys-
tem A with operation = is (A, *).

DEFINITION Let (A, =) be an algebraic system. Let B be a subset of A.
We say B is closed under the operation = iff for all x, ye B, x*y € B.

For an algebraic system (A, =) the set A is of course closed under = (because
the operation = is a function that maps to A). For any proper subset B of A that is
closed under =, we use the same operation symbol, *, to denote the restriction of the
operation to B x B. The three statements “B is closed under =,” “ is an operation
on B,” and “(B, *) is an algebraic system” are all equivalent.

The algebraic system (R, - ) of real numbers with the usual multiplication has
many subsets that are closed under multiplication. The set Q of rational numbers is
closed under multiplication because the product of any two rational numbers is
rational. The set of even integers, the open interval (0, 1), and the set {—1, 1} are
all subsets of R that are closed under multiplication. When we consider the alge-
braic system consisting of the real numbers with the addition operation instead of
multiplication, we find that (2 and the set of even integers are closed under +, but
the set {—1, 1} is not. The interval (0, 1) is not closed under addition because
0.59 4+ 0.43isnot in (0, 1).

If Ais a finite set, the order of the algebraic system (A, *) is the number of
elements in A. When A is infinite, we simply say (A, *) has infinite order.
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A convenient way to display information about a binary operation, at least for
a system of small finite order, is by means of its operation table, or Cayley' table.
An operation table for a system (A, =) of order nis an n x narray of products such
that x = y appears in row x and column y. Table 1 represents a system (A, *) with
A={1, 2, 3} in which, for example, 2 » 1 = 3. As an example of computation in
this system of order 3, notice that 3+ 2) * (1 *3) =3 % 1= 2.

Table 1

*‘1 2 3

1 3 2 1
2 3 1 3
3 2 3 3

Cayley tables are impractical for algebraic systems of large order and impossi-
ble to construct for infinite algebraic systems. In these cases, the operation must be
described by a rule or algorithm.

We add more structure to an algebraic system by imposing additional proper-
ties on the operation.

DEFINITIONS Let (A, *) be an algebraic system. Then

(i) *iscommutativeon Aiff forallx,ye A, x*xy=y=*Xx
(i) = is associative on Aiff for all X, y, ze A, (X*y) * Z=Xx* (y * 2).
(iii) an element e of A is an identity element for * iff for all x € A,
X*e=e* X=X
(iv) if Ahas an identity element e, and aand bare in A, then biis an inverse
of aiff a* b =Db=*a=e Inthis case awould also be an inverse of b.

You are familiar with the fact that the system (Z, - ), with the usual multiplica-
tion of integers, is commutative and associative. In this system, 1 is the identity ele-
ment, and only the elements 1 and —1 have inverses. For the system consisting of
the real numbers with addition, the operation is commutative and associative, 0 is
the identity, and every element has an inverse (its negative).

When the group operation is defined by a Cayley table, it is easy to see whether
the operation is commutative—the table is symmetric about its main diagonal, from
the upper left to the lower right. A Cayley table will have an identity element e
if the row labeled e s identical to the row header and the column labeled e s identi-
cal to the column header. Elements x and y will be inverses iff eis the entry in both
row x, column y and row y, column x.

The operation = of Table 1 is not commutative because the table is not symmet-
ric about the main diagonal. We see, for example, 1 * 3 = 1 but 3 = 1 = 2. Because
T Arthur Cayley (1821-1895) was the leader of the British school of pure mathematics in the 19th cen-
tury. To earn a living, Cayley was a lawyer the first 14 years of his adult life, specializing in property law.

During that time he wrote nearly 300 mathematical papers. His work included many contributions to the
algebra of matrices, non-Euclidean geometry, and n-dimensional geometry.
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Table 2 Table 3 Table 4

o ‘ 1 2 3 . ‘ 1 2 3 + ‘ 1 2 3
1 1 2 3 1 3 1 2 1 3 3 1
2 1 2 3 2 1 2 3 2 1 1 2
3 1 2 3 3 2 3 1 3 1 2 3

no row duplicates the row header there is no identity element for Table 1. As a
result, the question of inverses does not arise.

Three different operations on A = {1, 2, 3} are shown in Tables 2, 3, and 4.
The operation of Table 3 is commutative (note the symmetry about the main diag-
onal), but the operations of Tables 2 and 4 are not.

The element 2 is an identity for - of Table 3 and in this system every element
has an inverse: 3 is an inverse of 1, 2 is an inverse of 2, and 1 is an inverse of 3.
Table 2 has no identity element. In Table 4, where 3 is the identity element, only
1 and 3 have inverses.

It is not easy to tell by looking at a table whether an operation is associative.
For a system of order n, verification of associativity may require checking n® prod-
ucts of three elements, each grouped two ways. The operation in Table 1 is not asso-
ciative because (1 *1) =2 # 1« (1*2). The operations in Tables 2 and 3 are
associative, but + (Table 4) is not associative on A. You should find elements a, b,
and c, not necessarily distinct, for which (a+ b) + cs#£ a+ (b + c).

The associative property is a great convenience in computing products. First, it
means that so long as factors appear in the same order, we need no parentheses. For
both x(yz) and (xy)zwe can write xyz This can be extended inductively to products of
four or more factors: (xy) (zZw) = (x(yz))w = (xy(zw)), and so forth. Second, for an
associative operation, we can define powers. Without associativity, (xx)x might be dif-
ferent from x(xx), but with associativity they are equal, and both can be denoted by x3.

Theorem 6.1.1 Let (A, o) be an algebraic structure.

(@ (A o) has at most one identity element.
(b)  Suppose o is associative with identity e. If a € A has an inverse, then a has
only one inverse.

Proof.

(8  (Weneed to show that if e and f are both identities for o, then e = f.) Sup-
pose that eand f are both identities for o. Then since eis an identity, the prod-
uct ef = f. Likewise, since f is an identity, ef = e. Therefore, e=f.

(b)  See Exercise 9. =

Other important algebraic structures are based on the equivalence relation =,
of congruence modulo mon the set of integers. We saw in Section 3.2 that for each
natural number m there are exactly m equivalence classes, which are denoted by

0,1,2,3,..., m— 1. It seems natural to define operations of addition and multipli-
cation on the set Z,, of equivalence classes as follows:
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DEFINITION Foraandbin Zp,

a+mb=a+b and a-n,b=a-b.

That is, the sum of two equivalence classes is the class of the sum, and the product
of two equivalence classes is the class of the product.

Before we can say that (Zy, +m) and (Zn, -m) are algebraic systems, we need
to make certain that 4+, and -, defined in this way are truly operations on Z,, that
is, to verify that both are functions from 7, x Zmto Z,. Take for example Zs, with
a=1and b=3. Then a+ bis 1+ 3 = 4. But there are other ways to represent
each of these classes. Because 31 is the same as 1 and —12 is the same as 3, a+ b
must be 31 + (—12). Fortunately, this answer is 19 = 4, the same result as our first
computation. In order for +nand -, to be binary operations, we need to know that
a+b=c+danda-b=c-dwhenevera=candb=d.

Theorem 6.1.2 Let a b, ¢, and d be integers. If a = ¢ (mod m) and b = d (mod m), then

(i) a+b=c+ d(modm).
(i) a-b=c-d(modm).

Proof. See Exercise 12. u

Examples. (Z10, +1») is an algebraic system with 12 elements, 0, 1, 2, 3, ...,
We have

34,4=3+4=7,and
94+, 8=5 because 9 + 8 =17 and 17 =

(Z15, +1) is associative and commutative. 0 is the identity in (Z10, +1) and 1 every
element has an inverse: The inverse of ais —a. For example, the inverse of 2 is 10
because —2 = 10.

For (Z1, -12) we have

3.952=3-2=8,
4.,,5=28, because 4 - 5 =20 and 20 = 8, and
3.1,8=0.

(Z15, -15) is associative and commutative. 1 is the identity in (Zy, -12) and
some elements have an inverse. We note that 7 is its own inverse because
7 -1, 7 =49 = 1. The element 3, however, has no inverse in (Z1, -12).
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Theorem 6.1.3 For every natural number m,

(@  (Zm +m) is an algebraic system that is associative and commutative with
identity element 0. Every element has an inverse.

(b)  (Zm -m) is an algebraic system that is associative and commutative. If m > 1,
the system has identity element 1.

Proof. See Exercise 13. [

The notation for computations in Z, is usually simplified by writing a instead
of a for the elements of Z, and omitting the subscript from the operation symbols
+mand -, Operation tables are given below for (Z,, +), (Ze, +), and (Zs, -).

(Z2, +) (Ze, +) (Zs, -)

+ 10 1 +/10 1 2 3 4 5 0 1 2 3 4 5

0 0 1 0/0 1 2 3 4 5 0/0 0O O O O O

1 1 0 1171 2 3 4 5 0 110 1 2 3 4 5
212 3 4 5 0 1 210 2 4 0 2 4
3/3 4 5 0 1 2 3/0 3 0 3 0 3
414 5 0 1 2 3 410 4 2 0 4 2
5/5 01 2 3 4 5/0 5 4 3 2 1

Multiplication in Z,, can produce a result that we never find with multiplication
of integers, or any real numbers. For real numbers aand b, if ab =0, thena= 0 or
b = 0. In the table above for Zg, we see that 3 - 4 = 0. Another way to say this is
that 3 and 4 divide 0.

DEFINITION In Zy, if a#0 is an element such that a-b=0 for
some b # 0, we say that ais a divisor of O.

In Z1,, the divisors of 0 are 2, 3, 4, 6, 8, 9, and 10. In Z, and Z3, there are no
divisors of 0. The only divisor of 0 in Z4 is 2.

Solving equations requires special care when Z, has divisors of zero. For
example, in Z3, a simple linear equation such as 2x = 10 has two solutions, x =5
and x =11, because 2 - 11 = 22 = 10(mod 12). Other equations such as 6x = 2
have no solutions in Z;.

Exercises 6.1

1. Which of the following are algebraic structures? (The operation symbols have
their usual meanings.)

* @ (Z,-) (b) (Z, =) © ®-)
@ (R, +) * (8 (N -) ) (@ =)
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(@ (@ —{0} +) (h) (@(A),N) i) (P(A),U)
i @A-{}-) K ({01} ) 0 (0.1} +)
2. Which of the operations in Exercise 1 are commutative?
3. Which of the operations in Exercise 1 are associative?
* 4. Consider the set A = {a, b, ¢, d} with operation o given by the Cayley table at
the right.
(@) Name the identity element of this system.

- . ° ‘ a b c d
(b) Isthe operation o associative on A?
(c) Isthe operation o commutative on A? al a b c¢c d
(d) For each element of A that has an inverse, 0/ b a2 d ¢
name the inverse. 8 g 2 g g
(e) IsBy={a, b, c}closed under o?
(fy 1s B, ={a, c} closed under o?
(@) Name all subsets of A that are closed under o.
(h) TrueorFalse? Forall x, ye A, xox=yoy.
5. Repeat Exercise 4 with the operation = given by the
table on the right. *|a b ¢ d
a |c d a b
b d a b c
c a b ¢ d
d b c d a
6. The Cayley tables for operations o, *, +, and x are listed below.
ola b *|la b c + ‘ a b X ‘ a b c
ala b ala a ajla c b
bl b a bla a blc b a
clb a c¢

(8 Which of the operations are commutative?

(b) Which of the operations are associative?

() Which systems have an identity? What is the identity element?

(d) For those systems that have an identity, which elements have inverses?

7. Letm,ne Nand .l = {A: Aisan m x nmatrix with real number entries}.
(& Let - be matrix multiplication. Under what conditions on mand nis (M, -)
an algebraic system?
(b) Let + be matrix addition. Under what conditions on m and n is
(A, +) an algebraic system?

8. Let - be an associative operation on nonempty set A with identity e. Suppose
a, b, ¢, and d are elements of A, b is the inverse of a, and d is the inverse of c.
Prove that db is the inverse of ac.

9. Let (A o) be an algebraic structure, a € A, and e the identity for o.
(@) Prove that if o is associative, and x and y are inverses of a, then x =y.
(b) Give an example of a nonassociative structure in which inverses are not
unique.
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10. Suppose (A, *) is an algebraic system and = is associative on A.
(@) Prove thatif a;, ay, ag, a4 are in A, then

(A * @) * (a3 *ay) = &y * ((az* ag) * ay).

(b) Use complete induction to prove that any product of n factors ay,
a, as, ..., &, in that order is equal to the left-associated product
(...((ag*a) * a&z)...) * an. Thus the product of n factors is always the
same, no matter how they are grouped by parentheses, as long as the
order of the factors is not changed.
11. Let (A o) be an algebra structure. An element | € A is a left identity for
oiff loa=aforeveryaecA
(@) Give an example of a structure of order 3 with exactly two left identities.
(b) Define aright identity for (A, o).
(c) Provethatif (A, o) hasaright identity r and left identity |, thenr = |, and
that r = | is an identity for o.
12. Prove Theorem 6.1.2.
13. Prove Theorem 6.1.3.

14. Construct the operation table for each of the following:

(@ (Zs +) (b) (Zs, +)
© (Zs ) d) (Zs )
15. Find all the divisors of zero

* (@) inZg
(b) inZi

* (C) in Z7.
(d) inZy,

Proofs to Grade 16. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-

tify assignments of grades other than A.

(@) Claim. Let (A, o)beanalgebraic structure. If eis an identity for o, and
if xand y are both inverses of a, then x =y.
“Proof.” Since xand y are inverses of a, xoa=eand yo a=e. Thus
X o a=yo a. By cancellation, x=y. |

* (b) Claim. If every element of a structure (A, ©) has an inverse, then o is

commutative.
“Proof.” Letxandy beinA. The element y has an inverse, which we
will call y’. Then yoy’ =g, so y is the inverse of y’. Now x = x and
multiplying both sides of the equation by the inverse of y’, we have

y o X = Xxoy. Therefore, o is commutative. |
(c) Claim. If a and b are zero divisors in (Zp, -), then ab is a zero

divisor.

“Proof.” If aand b are zero divisors, then ab = 0. Thus (ab)(ab) =

0-0=0and ab is a zero divisor. u
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* (d) Claim. Ifaand bare zero divisors in (Zp, -) and ab #£ 0, then ab is a
zero divisor.
“Proof.” Since a is a zero divisor, ax=0 for some x#0 in Zn
Likewise, by=0 for some y#0 in Zn Therefore, (ab)(xy)=
(ax)(by) =0 -0 =0. Thus ab is a zero divisor. =

6.2 Groups

In this section, we focus on one particularly important algebraic structure, the
group. It was the work of Evariste Galois* on polynomial equations that led to
the study of groups as an aid to solving equations. The concept of a group has
influenced and enriched many other areas of mathematics. In geometry, for
example, the ideas of Euclidean and non-Euclidean geometries are unified by
the notion of a group. Group theory has applications outside of mathematics,
too, in fields such as nuclear physics and crystallography.

The properties of associativity, the existence of an identity, and the existence of
an inverse for each element are just the properties needed to define a group. Our
approach to defining a group is axiomatic, in the sense that we shall list the desired
properties (axioms) of a structure, and any system satisfying these properties is
called a group.

DEFINITION (G, o) is a group iff (G, o) is an algebraic system such
that

(i) the operation o is associative on G.
(if) there is an identity element e in G for o.
(iii) every x € G has an inverse x* in G.

The systems (R, +), (Q, +), and (Z, +) are all groups with identity 0. The
algebraic system (R, -) is not a group because 0 has no multiplicative inverse. The
system (R, -), where R denotes the positive real numbers, is a group with identity
1. The system ({0}, +) is the smallest group.

The system (N, +) is not a group because it fails to satisfy group axioms
(ii) and (iii). There is no identity and, therefore, it makes no sense to discuss
inverses. The algebraic structure (Z — {0}, -) is not a group because although
multiplication is associative and the number 1 is an identity, only the elements
1 and —1 have multiplicative inverses in Z.

" Evariste Galois (1811-1832) was a French mathematician who discovered elegant necessary and sufficient
conditions for a polynomial equation to be solvable by radicals. He introduced the concept of a finite field,
and was the first to use the word “group,” in reference to a group of permutations. He died at age 20 as the
result of a duel, but his work led to the development of an area of algebra that is known as Galois Theory.
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When we refer to “the group G” without specifying the operation, we call the result
of the group operation on x and y the product of x and y, and write the product as xy.

Example. Let G = {e, a, b, c, d} with operation given by the Cayley table shown
below. Then G is a group of order 5.

‘ e a b [ d
e e a b [ d
a a b [ d e
b b [ d e a
c c d e a b
d d e a b c

Proof. To show that G is a group of order 5, we first note that G has five elements
and is therefore nonempty. The table defines an operation on G because the product
of every pair of elements of G is specified by the table.

The verification that G satisfies (xy)z = x(yz) may be done by considering all
53 = 125 possible assignments of values to X, y, and z This work can be shortened
considerably by noting that the equation is clearly true when any of x, y, or zis the
identity. As for the remaining 64 cases, we see that, for example, (bd)a = b(da)
because both expressions have value b, and (ca)b = c(ab) because both expres-
sions have value a.

We see that e is the identity for G because ex = e (examine the first row of the
table) and xe = x (examine the first column) for all x € G.

Finally, every element of G has an inverse. The inverse of ais d because ad = e
and da = e. These equations also prove that a is the inverse of d. The elements b and
c are inverses because bc = cb = e, and eis its own inverse because ee = e.

Therefore G is a group. =

In Section 6.1 we defined the operation + on the set Z,, and proved that
(Zm, +) is an algebraic system that is associative and has identity element 0. Every
element of Z,, has an additive inverse. Thus we may restate Theorem 6.1.3(a) as
follows:

Theorem 6.2.1 For every natural number m, (Zp, +) is a group of order m.

The algebra for multiplication in Z, is more complicated. For m= 1, (Z, -) is
the group ({0}, -). By Theorem 6.1.3(b), for every m > 1, the system (Zy,, -) is asso-
ciative and has identity 1. However, 0 has no multiplicative inverse because there is no
Xin Zmysuch that x - 0 = 1. Therefore (Zy, -) is nota group when m > 1.

If we remove the element 0, then (Z,, — {0}, -) may not be an algebraic sys-
tem, because the set may not be closed under the operation -. For example, the
product 3 - 4 =0 is not in the set Z;, — {0}. When m s prime, (Zm — {0}, -) has
not only the closure and associative properties, but 1 is the identity element, and
every element has an inverse.
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Theorem 6.2.2 The system (Zyn — {0}, -) is a group iff mis prime.
Proof. See Exercise 18. ]

You may have noticed that the commutative property is not included among
the group axioms. All of the groups considered so far in this section, including
(R, +), (Q, +), (R — {0}, -), and (Zm, +) have operations that are commutative,
but not all groups have commutative operations. Commutative groups are called
abelian groups, and are so hamed in honor of Niels Abel.*

DEFINITION A group G is abelian iff the group operation is
commutative.

The abelian property is independent of the group axioms; that is, it cannot be
proved from those axioms. It could have been considered as another axiom for
defining a group. Because there are many important algebraic structures that are
groups but do not satisfy the commutative property, mathematicians choose to not
include commutativity in the definition of a group.

Our work with one-to-one correspondences revealed algebraic properties that
we can now use to form groups whose elements are functions. In this way we
encounter our first examples of nonabelian groups.

A permutation on a nonempty set A was defined in Section 4.4 as a function
f: A— Athat is both one-to-one and onto A. If the elements of Aare listed in order,
the effect of the permutation is rearranging (or permuting) the elements of A.

We use a simplified notation (see Section 4.4) to describe a permutation f on
the set Ny = {1, 2, 3, ..., k} by listing the images of 1, 2, 3, ..., kin order within
brackets, as follows:

[F)f2)fEA)...fK].

For example, the permutation g ={(1, 3), (2, 1), (3, 4), (4, 5), (5, 2)} on the set
A={1,2,3, 4,5} is written as g =[3 145 2]. The identity permutation on A is
Ia=1[12 3 4 5] because it maps 1 to 1, 2 to 2, and so on. The permutation
h=1[54312] is the function given by h(1) =5, h(2) =4, h(3) =3, h(4) =1,
and h(5) = 2.

From Theorem 4.4.5 (b) we know that the composite of two permutations on a set
Alis again a permutation of A. Therefore, the set of all permutations on A, with compo-
sition as the operation, is an algebraic structure. We know by Theorem 4.2.1 that com-
position is associative. Theorem 4.4.5 goes on to say that | 5 is an identity (parts (a) and

* Niels Abel (1802-1829) was a Norwegian mathematician who made fundamental contributions to the
theory of functions and proved that no general solution involving radicals exists for 5th degree polyno-
mial equations. Tuberculosis ended his brilliant career at age 26.
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(d) of the theorem) and every permutation has an inverse (parts (c) and (€)). Combin-
ing these results, we have established:

Theorem 6.2.3 Let A be a nonempty set. The set of all permutations on A with the operation of
function composition is a group, called the group of permutations of A.

The group of permutations on the set {1, 2, 3,..., n} is given a special name.

DEFINITION  Let nbe anatural number. The group of all permutations
of N, ={1, 2, 3,..., n}is called the symmetric group on nh symbolsand
is designated by S,.

There are exactly n! arrangements of the elements of a set A with n elements,
so the order of S, is n!

Example. For the set N3 = {1, 2, 3}, there are six permutations in S: I =[1 2 3],
f=0132], ,=[321], 3=[213], g=[23 1], and h=[312]. Remember
that we compute products as function composites. For example, [32 1][132] =
f, o fi = h=[312] because

(fao f)(1) = f2(f1(1)) = (1) =3,
(fo0 f)(2) = f2(f1(2)) = f,(3) = 1, and
(fa0 f1)(3) = f2 (11(3)) =f(2) = 2.

Likewise, [312][231] =hog=[123]=1a The complete Cayley table
for S is

Ia fi f fa g h
123] [132] [321] [213] [231] [312]

H%ﬂ [123] [132] [321] [213] [231] [312]

ahy | 0820 (23 @31 [B12] (21 [213]

[3f221] [321] [312] [123] [231] [213] [132]
[2ff3] [213] [231] [312] [123] [132] [321]

L3y | 231 213 (132 @21 [312] (123

B1g | 12 21 [213] [132] [123 [231]

It is important to note that the two products [2 1 3][3 1 2]and [3 1 2][2 1 3] are dif-
ferent. Since [2 1 3][312]=[321]#[132]=[312][21 3], the group S is
not abelian.

Groups whose elements are some (but not necessarily all) permutations of a set
are called per mutation groups. The reason for the importance of permutation groups
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is that, for every group of elements of any kind (numbers, sets, functions, .. .), there
is a corresponding permutation group with the same number of elements and the
same structure. This fact is known as Cayley’s Theorem, and appears in Section 6.4.

The next results are consequences of the group axioms and facilitate calcula-
tions involving elements of a group. Notice that proving a statement like x =y~ is
not like proving, say, a trigonometric identity. The statement x =y~ is read “x is
the inverse of y,” and is proved by showing that x plays the role of an inverse fory,
i.e., that the product of x and y is the identity.

Theorem 6.2.4 Let G be a group with identity e. For all a, b, and c in G,
@ @h't=a
(b) (ab)t=b"tal
(¢ Ifac=hc,thena=b (Right Cancellation Law).
(d) Ifca=ch,thena=b (Left Cancellation Law).

Proof.

(@ Because a~! is the inverse of a, a—'a=aa ! = e. Therefore, a acts as the
(unique) inverseof a1, so (aH)~1 = a.

(b)  We know (ab)~! is the unique element x of G such that (ab)x = x(ab) = e.
We see that b~'a~! meets this criterion by computing

(@a)(bla ) =abbHa'l=al®a'l=aa'l=e
Similarly, (b—ta=1)(ab) = e, so b~ta~! is the inverse of ab.
(€)  Suppose ac = bc in the group G. Then ¢! is in G and (ac)c~! = (bc)c~2.

Using the associative, inverse, and identity properties, we see that

(ac)c'=a(lccHh)=ae=a and
(bc)ct=b(cch) =be=h.

Therefore a=bh.

(d)  Exercise 10. |
Theorem 6.2.5 Let G be a finite group with identity e. For every a € G,
(@  The function Az: G — G, where A,(X) = ax for each x € G, is a permutation
of G.
(b)  The function pa; G — G, where p,(X) = xa for each x € G, is a permutation
of G.

Proof.

(@)  Toshow that A, is one-to-one, let X, y € G and suppose Aa(X) = Aa(y). Then
ax = ay, so by the Left Cancellation Law, x =y.
To show that Az isonto G, letb € G. (Weneedtofind xin G sothat A(X) = b.)
Choose x = a~th. Then A,(X) = Aa(a~th) = a(a~'h) = (aa b = eb=b.
(b)  The proof of part (b) is similar and is Exercise 11. =
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Lambda (A,) is the function that performs left multiplication by a, while rho
(pa) is the function that performs right multiplication by a. For a finite group G,
Theorem 6.2.4 says that for any row (specified by a € G) in the Cayley table, the
row is a permutation of the list of elements in G in the order presented by the
table’s row heading. The same is true for every element column in the table.
Therefore,

If G isafinite group, then every element of G occurs exactly oncein every
row and exactly once every column of the Cayley table.

The converse of this statement is false. It is possible to have each element
occur exactly once in every row and once in every column of an operation table for
a structure that is not a group. See Exercise 5.

If Gis a group, it is convenient to have notation for powers of elements of G.
Letae Gand ne N. We define

a’=eand a™! =a"a
Thus a" is defined inductively for all n > 0. Define a" for n < 0 by
a"=(@?hm
For all integers mand n, these familiar laws of exponents hold in a group:

aman — am+n
(@M" =a™, and
@)t=a" forn>0.

When the group operation is +, we use different words for the concepts we
have termed “product,” ab, a~?1, a?, a”and a="

The operation is called addition, and a + b is the sum of aand b;

the additive inverse of ais —a, called the negative of g;

a — b is an abbreviation for a + (—b), the difference of aand b;

a+ais2a a+2ais3a andforne N, a+a+---+ a(ntimes) is na, the
nth multiple of a; and

(—=nyais —(na).

Example. Prove that for every natural number t, the set tZ of all integer multiples
of t is an additive group.

Proof.

(i) Ifx yetZ, then x=ktandy = kyt for some integers k; and k,. The set tZ
is closed under addition because the sum X + y = (k; + ko)t € tZ.
(if)  Addition is associative in Z and therefore in tZ.
(iii)  The additive identity element in tZ is 0.
(iv)  The additive inverse (negative) of an element x = kt in tZ is (—K)t. u
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Examples. In the group (5Z, +), the third multiples of the elements 20 and —35
are 3(20) =60 and 3(—35) = —105. The negative of the element (6)-5
is (—(6)) - 5= —30.

We close this section with some important observations about the axiomatic
approach used to define a group. First, a small set of axioms is advantageous,
although challenging to produce, because a small set means that fewer properties
need to be checked to be sure a given structure satisfies the axioms. The definition
of a group uses just three axioms.

Second, it may be best to leave a desired property out of the axioms if it can be
deduced from the remaining axioms. Theorem 6.1.1 tells us that the identity and
inverses of elements in a group are unique. In the definition of a group, we could
have said “there is a unique identity element e in G for o.” Verifying this property
requires showing the existence and uniqueness of the identity rather than only the
existence. We stated the definition of a group as we did to make it easier to verify
that a structure is a group.

Finally, the fact that axioms may be altered by adding or deleting specific
axioms does not mean that the axioms are chosen at random, or that all of the axioms
are equally worthy of study. The group axioms are chosen because the structures
they describe are so important to mathematics and its applications. Treating an addi-
tional property, such as commutativity, as a property that holds for many but not all
groups, allows us to keep the basic axioms for a group minimal.

Exercises 6.2

1. Show that each of the following algebraic structures is a group.
(@ ({1,—1}, ) where - is multiplication of integers.

~1+i+/3 —1-i3
;' B=

2

(b) ({1, «, B}, -)wherea =
number multiplication.
* () ({1, —1,i, —i}, ) where - is complex number multiplication.
(d) (2 (X), A)where Xisanonempty setand A is the symmetric difference
operation AAB=(A—-B)U(B— A).
* 2. Given that G={e u,Vv,w} is a group of order 4 with identity e and
u? = v, V2 = e, construct the operation table for G.

3. Given that G={e u,v,w} is a group of order 4 with identity e and
u? = v? = W? = g, construct the operation table for G.

4. Which of the groups of Exercise 1 are abelian?

5. Give an example of an algebraic system (G, o) that is not a group such that in
the operation table for o, every element of G appears exactly once in every row
and once in every column. This can be done with as few as three elements in G.

6. Construct the operation table for each of the following groups.
@ (Ze +) (b) (Z7,+)
(© (Zs—A{0} ) (d (Z7—{0}. )

,and - is complex
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7. Construct the operation table for S, the symmetric group on 2 elements. Is S
abelian?

8. (a) Whatis the order of S;, the symmetric group on 4 elements?
* (b) Compute these products in $:[1243][4213],[4321][4321],
and [2 14 3][1324].
(c) Compute these products in $:[3124][3214],[4321][3124],
and[1432][1432].
(d) Show that S, is not abelian.

9. LetGbeagroup, and a € Gforallne N.
(@) Prove that (ayapag) ~* = azta;tar .
(b) State and prove aresult similar to part (a) for nelements of G, foralln € N.

10. Prove part (d) of Theorem 6.2.4. That is, prove that if G is a group, a, b, and ¢
are elements of G, and ca = cb, thena=h.

11. Prove part (b) of Theorem 6.2.5.
12. Let G be a group. Prove that if g = efor all g € G, then G is abelian.

13. Give an example of an algebraic structure of order 4 that has both right and
left cancellation but that is not a group.

14. Let G be a group. Prove that
(@) Gis abelian iff a?h? = (ab)?forall a, b e G.
(b) Gis abelian iff a"b" = (ab)" forallne N and a, b e G.

15. Show that the structure (R — {1}, o), with operation o defined by ac b=
a+ b — ab, is an abelian group. You should first show that (R — {1}, o) isa
structure.

16.* (a) In the group G of Exercise 2, find x such that vo x=€; x such that
v o X = u; xsuch that vo x = v; and x such that vo x = w.
(b) Let (G, *) be a group and a, b € G. Show that there exist unique ele-
ments xand y in Gsuch thata*x=bandy+*a=nb.

17. Show that (Z, #), with operation # defined by a##tb=a+ b + 1, is a group.
Find x such that 50 # x = 100.

18. (a) Prove that if mis composite, then the set Z,, — {0} is not closed under

multiplication.

(b) Let p be a prime natural number. Prove that (Z, — {0}, -) is an associa-
tive algebraic system with identity 1. Hint: Use Euclid’s Lemma.

(c) Prove that if p is prime, then every element of (Z, — {0}, -) has an
inverse. Hint: Suppose x € Z, — {0}. Then x and p are relatively prime,
so there exist integers r and ssuch that rx + sp = 1.

(d) Conclude that Z,, — {0} with multiplication is a group iff mis prime.

*» 19. Let p be a prime natural number. Show that (p—1)"'=p—1 in

(Zp — {0}, -).
20. Find all solutions in (Zx, -) for the following equations.
* (@ 5x=0 (b) 3x=0
(© x*=0 d x2=9
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21. In (Zs, +), find all solutions for the following equations.
@ 4+x=6 (b) x+7=3 * () 3+x=1
(d) 2x=4 * (6) 2x=3 (f) 2x+3=1

22. Galois discovered a connection between certain groups and the solutions to
polynomial equations. Refer to the finite sets in Exercises 1(a), (b) and (c).
Each of these sets forms a group (although these groups do not represent the
general case of Galois” work). Find a polynomial equation, and verify that
your equation has integer coefficients, such that

* (@) the equation has degree 2 and {1, —1} is the solution set.
(b) the equation has degree 3 and {1, «, B} is the solution set.
(c) the equation has degree 4 and {1, —1, i, —i} is the solution set.
Proofs to Grade 23. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(@) Claim. If Gisagroup with identity e, then G is abelian.
“Proof.” Letaand b be elements of G. Then

ab =aeb
— a(ab)(ab)~'b
— a(ab)(b~taL)b
= (aa)(bb—Hab
= (aa)ab
= (aa)(b~ta)~*
=a(a(b~'a)™)
= a((b~ta)~ta)
= a((a~'b)a)
= (aa~!)(ba)
= e(ba)
= ba.

Therefore ab = ba and G is abelian. [

* (b) Claim. If Gisa group with elements X, y, and z and if xz=yz, then
X=Y.
“Proof.” If z= e thenxz=yzimpliesthat xe=ye, sox=y.Ifz#£ g,
then the inverse of z exists, and xz=yz implies %% = % and x=y.
Hence in all cases, if xz=yz then x=. u

* (c) Claim. The set @* of positive rationals with the operation of multi-
plication is a group.
“Proof.”  The product of two positive rationals is a positive rational,
so QT is closed under multiplication. Since 1 - r =r =r - 1 for every
req, 1is the |dent|ty The inverse of the positive rational = a is the
positive ratlonal =. The rationals are associative under multlpllcatlon
because the reals are associative under multiplication. u
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(d) Claim. If mis prime, then (Zn, — {0}, -) has no divisors of zero.
“Proof.”  Suppose ais a divisor of zero in (Z,, — {0}, ). Thena =0,
and there exists b £ 0 in Z, such that ab = 0. Then ab = m(mod m), so
ab = m. This contradicts the assumption that mis prime. u

(e) Claim. If mis prime, then (Z,, — {0}, -) has no divisors of zero.
“Proof.” Suppose ais a divisor of zero in (Z,, — {0}, -). Then a0,
and there exists b # 0 in Z, such that ab = 0. Then ab = 0(mod m), so
mdivides ab. Since mis prime, mdivides a or mdivides b. But since a
and b are elements of Z,,,, both are less than m. This is impossible. =

(f) Claim. For every natural number m, (Z,, — {0}, -) is a group.
“Proof.” We know that (Z, -) is associative with identity element 1.
Therefore, (Zn— {0}, -) is associative with identity element 1. It
remains to show every element has an inverse. For x € Z,, — {0}, x# 0.
Therefore, 1/x € Z, — {0} and x - 1/x = x(1/X) = 1. Therefore, every
element of Z,, — {0} has an inverse. |

(g9 Claim. |If (Zn— {0}, ) is agroup, then mis prime.

“Proof.” Assume that (Z,, — {0}, -) is a group. Suppose m is not
prime. Let m= rs, where r and sare integers greater than 1 and less than
m. Then r-s=m=0(modm). Since r has an inverse t in
Zom—A{0}t-r=1. Then s=1.s=(t-r)-s=t-(r-s5)=t-0=0.
That is, s= 0 (mod m). This is impossible, because 1 <s < m. |

6.3 Subgroups

A substructure of an algebraic system (A, =) consists of a subset of A together
with all the operations and relations in the original structure, provided that this
is an algebraic structure. This proviso is necessary, for it may happen that a sub-
set of A'is not closed under an operation. For example, the subset of R consist-
ing of the irrationals is not closed under multiplication. The idea of substructures
is a natural one, and we can’t fully understand a group until we understand its
subgroups.

DEFINITION Let (G, o) be a group and H a subset of G. Then (H, o)
is a subgroup of G iff (H, o) is a group.

It is understood that the operation © on H agrees with the operation o on G.
That is, the operation on H is the function o restricted to H x H.

Suppose H is a nonempty subset of G and (G, o) is a group. What must we
do to prove that H is a subgroup of G? The first answer that comes to mind is to
prove that H is closed under o and to verify all three of the group properties. As
a first step in shortening this process, we observe that it is not necessary to check
associativity: this property is “inherited” from the group.
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Theorem 6.3.1 Let G be a group and H be a nonempty subset of G. Then H is a subgroup of G if

(i) Hisclosed under o,
(if)  the identity eof Gisin H,
(iii) every x € H has an inverse x ! in H.

Proof. Suppose H is a nonempty subset of the group G that satisfies conditions (i),
(ii), and (iii). Let X, y, and zbe in H. Then x, y, and zare in G, so by associativity for
G, (xy)z= Xx(y2). Thus H is a subgroup of G. =

The set E of even numbers is a subgroup of (Z, +) because E is nonempty, E
is closed under addition, the identity 0 € E and the negative of an even integer is
even. We note that E is the set of all multiples of 2. In general, for every integer t
the set tZ of all multiplies of t is a subgroup of (Z, +).

Two subsets of Zg that are closed under + can be seen in the following tables.
It is easy to check that both H = {0, 3} and K= {0, 2, 4} are subgroups of

(Zs, +).
(Zs,+) +/0 1 2 3 4 5 (Ze,+) + |0 1 2 3 4 5
0 1 2 3 4 5 00 1 2 3 4 5
1/1 2 3 4 5 0 1 /1 2 3 4 5 0
212 3 4 5 0 1 212 3 4 5 0 1
3/3 4 5 0 1 2 3 /3 4 5 0 1 2
414 5 0 1 2 3 4 |4 5 0 1 2 3
5/5 0 1 2 3 4 515 0 1 2 3 4
H+) +1]0 3 K+) + 10 2 4
010 00 2 4
313 0 2 12 4 0
4 14 0 2

For every group (G, o) with identity e, ({€}, ©) is a group called the identity
subgroup, or trivial subgroup of G. Also, every group is a subgroup of itself. All
subgroups of G other than G are called proper subgroups.

The symmetric group S with 6 elements has six subgroups, two of which are
the trivial subgroup {[1 2 3]} and Sy itself. Let J= {[1 2 3], [2 1 3]}. Then J con-
tains the identity element [1 2 3] of S;. By computing

[213][213]=[123]
[213][123]=[213]
[123][213]=[213]
[123][123]=[123]

we see that the inverse of [2 1 3] is [2 1 3] and J is closed under composition, so J
satisfies the conditions of Theorem 6.3.1. Therefore, J is a subgroup of S;. Similar
computations show that K={[123],[32 1]} and L = {[1 2 3], [1 3 2]} are also
subgroups of Ss. The only subgroup of S; of order three is M = {[1 2 3], [2 3 1],
[312]3.
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Important questions to be answered are whether the identity element in a sub-
group can be different from the identity element of the original group, and whether
the inverse of an element in H could be different from its inverse in G. The answers
are “no” and “no.”

Lemma 6.3.2 Let H be a subgroup of G. Then

(@  The identity of H is the identity e of G.
(b) If x e H, the inverse of x in H is its inverse in G.

Proof.

(@ Ifiis the identity element of H, then ii =i. Butin G, ie=1, so ii = ie and,
by cancellation, i = e.

(b)  See Exercise 3. (]

The next theorem makes it easier to prove that a subset of a group is a subgroup.
It is given in “iff” form for completeness, but the important result is that only two
properties must be checked to show that H is a subgroup of G. The first is that H is non-
empty. This is usually done by showing that the identity e of G is in H. The other is to
show that ab—! € H whenever a and b are in H. This is usually less work than show-
ing both that H is closed under the group operation and that b € H implies b~ € H.

Theorem 6.3.3 Let G be a group. A subset H of G is a group iff H is nonempty and for all a, b € H,
ab~leH.

Proof. First, suppose H is a subgroup of G. Then H is a group, so by Lemma 6.3.2 (a)
H contains the identity e. Therefore H # J. Also, if aand bare in H, then b~ & H (by
the inverse property) and ab~! e H (by the closure property).

Now suppose H # @ and for all a, b € H, ab~! € H. (We show that H is a sub-
group by showing that H satisfies the conditions of Theorem 6.3.1. It is best to pro-
ceed in the order that follows.)

(i) H#J,sothereissomeaec H. Thenaa ! =eecH.
(i)  Suppose x € H. Then e and x are in H, so by hypothesis, ex ! =x~1 e H.
(iii) Let xand y be in H. Then by (ii), y* € H. Then x and y~* are in H, so by
hypothesis, x(y™1) ! = xy € H. N

If ais a member of G, then by the closure property, all powers of aare in G.
The next theorem shows that the set {..., a2, a %, a’= e a,a? ...} is a sub-
group of G.

Theorem 6.3.4 If Gisagroup and a € G, then the set of all powers of a is an abelian subgroup of G.

Proof. Since a = ais a power of a, the set of all powers of a is nonempty. Suppose x
and y are powers of a. Then x = a™and y = a" for some integers mand n. Thus xy~* =
am(@m-! = ama" = a™ "is a power of a. Therefore, by Theorem 6.3.3, {a™: n € Z}
is a subgroup of G. The subgroup is abelian because a™a"=a™ =a"m=a"am™ =
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DEFINITIONS LetGbeagroupandae G.Then(a) ={a" ne Z}is
called the cyclic subgroup generated by a.

The order of the element a is the order of (number of elements in)
the group (a). If (@) is an infinite set, we say a has infinite order.

Examples. For the group (R — {0}, -), the element 2 generates the infinite cyclic

subgroup (2)={2":ne Z} = { —%, —%, —%, 1,2,3,4,8,... } Thus 2 has
1

infinite order. We note that (2) is the same subgroup as (2).
The element —1 generates the cyclic subgroup {—1, 1}. Since this subgroup
has 2 elements, we say —1 has order 2.

Examples. The group (Z; — {0}, -) has 6 elements: 1, 2, 3, 4, 5, 6. The cyclic
subgroup generated by 1 is {1}, so the order of 1 is 1.

The cyclic subgroup (2) ={1,2,4} since 2°=1,2'=2,22=4, and
23 = 8 = 1 again. The order of 2 is 3.

Computing modulo 7, we have 32=9=2,32=27=6,3"=81=4,3=
243 =5, and 3% = 729 = 1, so the nonnegative powers of 3 are, in order, 1, 3, 2, 6,
4,5, and then 1 again. The element 3 has order 6 because (3) has 6 elements. We can
also show that 4 has order 3; 5 has order 6; and 6 has order 2.

DEFINITIONS Let Gbeagroup. If there is an element a € G such that
(@) = G, then we say G is a cyclic group. Any element a of G such that
(@) = Gis called a generator for G.

In the Z; — {0} example above, Z; — {0} = (3), so the element 3 is a genera-
tor. Since 5 has order 6, (5) = Z7 — {0} and 5 is another generator. The elements 3
and 5 are the only generators of Z; — {0}.

When the group operation is addition, the cyclic subgroup generated by the
element a is the set of all multiples of a. For example, (Z, +) is cyclic with gener-
ators 1 and —1. For m > 1, every group (Zm, +) is cyclic with generators 1 and
m — 1. See Exercise 16.

The cyclic group (Z4, +) has only two generators, 1 and 3. This is because the
multiples of 1 and 3 are:

1.1=1 and 1.3=3
2-1=1+1=2 2-3=3+3=
3:-1=2+1=3 3-3=2+3=
4.1=34+1=0 4.3=1+3=0.

The element 2 does not generate Z,; it has order 2 and generates the subgroup

{0, 2}.
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Theorem 6.3.5

Example. The group S is not cyclic because none of its elements generates the
entire group. For example, for the element [312]

[312]'=[312]
[3122=[231]
[312=[123], theidentity

[3121*=[312]'=[312]
[312]5=[312]?=[231]
[3121°=[312]*=[123], and so forth.

All other powers of [3 1 2] are equal to one of these three elements, so the cyclic
subgroup generated by [3 1 2] is {[1 2 3], [3 1 2], [2 3 1]}. Similar calculations
show that none of the other elements of S; generate S; (Exercises 9(a) and 10(a)).
Of course, the fact that S; is not abelian is sufficient to conclude that Sz is not cyclic,
because every cyclic group is abelian.

Let G be a group and a be an element of G with order r. Then r is the smallest pos-
itive integer such that a" = e, the identity, and (a) = {e, a, a%,...,a" " '}.

Proof. Since the order of a is finite, the powers of a are not all distinct. Let
am™=a"with0 < m < n. Thena"™ ™= ewithn — m > 0. Therefore, the set of pos-
itive integers p such that aP = e is nonempty. Let k be the smallest such integer.
(Thisk exists by the Well-Ordering Principle.) We prove that k = r by showing that
the elements of (a) are exactly a’ = e, al, @, ..., a< L

First, we show that the elements e, a%, a2, ..., a~* are distinct. If a* = a! with
0 <s<t<kthena~S=eand0 <t — s < k, contradicting the definition of k.

Second, we show that every element of (a) is one of e, al, a2, . .., ak~1. Consider
a' for te Z. By the Division Algorithm, t=mk+s with 0 <s<k Thus
al = a™*s = a"kgs = (ak)Ma® = @Ma® = ea® = &%, so that a' = a° with 0 < s< k.

We have shown that the elements a® for 0 < s < k are all distinct and that
every power of a is equal to one of these. Since (a) has exactly r elements, r = k
anda'=e u

If a € G has infinite order, then all the powers of a are distinct and

—ZalaO_ealaZ }

@=A1-.

Exercises 6.3
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1. By looking for subsets closed under the group operation, then checking the
group axioms, find all subgroups of

* (@) (Zs +). (b) (Z7 —{0}, ).
© (Zs +).
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(d) (J,*),withdJ={a b, cd e f} *=|la b ¢ d e f
and the table for = shown at the

. a | a b c d e f

right. b'b a f e d c

c c e a f b d

d d f e a [ b

e e c d b f a

f f d b c a e

2. Inthe group S,
(@) find two different subgroups that have 3 elements.
(b) find two different subgroups that have 4 elements.
(©) [2314][3124]=1[1234]. Is there a subgroup of & that contains
[2314]butnot[3 12 4]? Explain.
(d) find the smallest subgroup that contains [4 2 1 3] and [3 2 4 1]. (Hint:
Use Theorem 6.3.1.)

3. Prove that if G is a group and H is a subgroup of G, then the inverse of an ele-
ment x € H is the same as its inverse in G (Theorem 6.3.2).

4. Prove that if H and K are subgroups of a group G, then H N K is a subgroup

of G.
5. Prove that if {H,: « € A} is a family of subgroups of a group G, then (] H,
is a subgroup of G. acA

6. Give an example of a group G and subgroups H and K of G such that H U K
is not a subgroup of G.

7. Let G be agroup and H be a subgroup of G.

* (@) If Gis abelian, must H be abelian? Explain.
(b) If His abelian, must G be abelian? Explain.

8. LetGbeagroup. If His asubgroup of G and K is a subgroup of H, prove that
K is a subgroup of G.

9. Find the order of each element of the group
@ S (b)  (Z7, +).
* () (Zs +). d)  (Zu—{0} ).
10. List all generators of each cyclic group in Exercise 9.

* 11. Let G be a group with identity e and let ae G. Prove that the set
Ca={x e G: xa = ax}, called the centralizer of ain G, is a subgroup of G.

12. Let G be a group and let C= {x e G: forall y € G, xy = yx}. Prove that C,
the center of G, is a subgroup of G.

13. Prove that if Gisagroup and a € G, then the center of G is a subgroup of the
centralizer of aiin G.

» 14. Let Gbe agroup and let H be a subgroup of G. Let a be a fixed element of G.
Prove that K = {a—tha: h € H} is a subgroup of G.
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15. Let (C — {0}, -) be the group of nonzero complex numbers with complex
1+iv/3

number multiplication. Let o« = >

(@ Find ().
(b) Find a generator of («) other than «.

16. Prove that for every natural number m greater than 1, the group (Zn, +) is
cyclic with generators 1 and m — 1.

17. Prove that every subgroup of a cyclic group is cyclic.
18. Let G = (a) be a cyclic group of order 30.

(@) What is the order of a®? (b) Listall elements of order 2.
* (c) Listall elements of order 3. (d) Listall elements of order 10.
Proofsto Grade 19. Assign a grade of A (correct), C (partially correct), or F (failure) to each. Jus-

tify assignments of grades other than A.
* (a) Claim. If Hand K are subgroups of a group G, then H N K is a sub-

group of G.
“Proof.” Leta,beHNK. Thena, beHanda, be K. Since H and
K are subgroups, ab~! € Hand ab~! € K. Therefore,ab* e HN K. =

(b) Claim. If H is a subgroup of a group G and xe H, then xH =
{xh: h € H} is a subgroup of G.
“Proof.” First, the identity e H. Thus, x= xee xH. Therefore,
xH #£ . Second, let a, b e xH. Then a=xh and b= xk, for some
h,keH. Then we have ab~!= (xh)(xk)~!= (xh)(k})(x?1) =
x(hk~1x~1) € xH. Therefore, xH is a subgroup of G. m

6.4 Operation Preserving Maps

One of the most important concepts in algebra involves mappings between systems.
In particular, we are interested in those functions from one algebraic system (A, o)
to another (B, *) that preserves structure; that is, functions that align the structure of
A with that of B. For example, we will see that under an operation preserving map
the identity element for A corresponds to the identity for B, and if x has an inverse
in A, then the image of x has an inverse in B.

DEFINITION Let (A o) and (B, *) be algebraic systems and f be a
function from A to B. Then f is operation preserving (OP) iff for all
X,y eEA,

f(xoy) =10 *f(y).

Because f (x o y) and f (x) = f (y) are elements in B, the definition of operation
preserving is a statement about equality of elements in B. Calculating each of
f (xoy)andf (x) = f (y) requires two steps: performing an operation and applying
the function. If f is an OP map, the equation f (x o y) = f (x) = f (y) means that the
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result is the same whether the operation x o y is performed first or the images f (x)
and f (y) are determined first. Another way to say a mapping is operation preserv-
ing is “the image of the product is the product of the images.”

You have already encountered OP mappings in previous courses. For example,
the familiar equation log (x - y) = log x + log y tells us that the logarithm function
from ((0, 00), -) to (R, +) is operation preserving.

Examples. Let (R[X], +) be the set of all polynomials with real coefficients with the
operation of polynomial addition. Let D be the differentiation mapping
D: (R[¥], +) — (R[X], +), where for each f € R[x], D(f) = %, the first derivative
of the polynomial f. The function D is an OP map because we know that

d d d
D(f+9) = &(f+g): ol

g
& =D(f)+ D(g).

If we change the operation on R[X] to polynomial multiplication, then
D: (R[], -) — (R[X], -) is not operation preserving because the derivative of a prod-
uct is not always equal to the product of the derivatives.

Example. Let the operation o on R x R be defined by setting (a, b) o (¢, d) =
(@+ c,b+d) and let - be the usual multiplication on R. Then the function
f: (R x R, o) — (R, -)given by f (a, b) = 223 is operation preserving.

Proof. Let (X, y) and (u, v) be elements of R x R. Then
f(xy)o(u V) ="f(Xx+uy+v)=2xu. v+
Also
f(xy) - fuv) = (2% 3Y.(24.3") =2xtu. ¥y,
Therefore, f is operation preserving. [ ]

The next three theorems explain in more detail what we mean by saying that an
OP map f: (A, o) — (B, *) preserves the structure of (A, o).

Theorem 6.4.1 Let f be an OP map from (A, o) to (B, *). Then (Rng ( f), =) is an algebraic structure.

Proof. (What we must show isthat Rng (f) isclosed under the operation *; that
is,ifu,ve Rng (f), thenu= v e Rng (f).)

First, note that because A is nonempty, Rng (f) is nonempty. Assume that
u, ve Rng (f). Then there exist elements x and y of A such that f (x) = u and
f(yy=v.Thenuxv="F(x)*f(y)="f(xoy),sou=visthe image of x oy, which
isin A. Therefore, u* v e Rng (f). ]
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Theorem 6.4.2 Let f be an OP map from (A, o) onto (B, ). If o is commutative on A, then = is
commutative on B.

Proof. Assume that f is OP, f is onto B, and o is commutative on A. Let u and v be
elements of B. Then there are xand y in A such that u=f (x) and v=f (y). Then

uxv="F(x)*f(y)
=f(xoy)
=f(yox)
=f(y)~f(x
=V=*U.

Therefore u*v=v=*u. ]

The properties of associativity, existence of identities, and existence of
inverses are all preserved by an OP mapping.

Theorem 6.4.3 Let f be an OP map from (A, o) onto (B, *).

(@) If oisassociative on A, then * is associative on B.
(b) If eis the identity for A, then f (€) is the identity for B.
() Ifx~tisthe inverse for xin A, then f (x~1) is the inverse for f (x) in B.

Proof. See Exercise 9. [

Example. For each natural number m, the canonical map is an important operation
preserving map from (Z, +) onto (Zm, +). We define H: Z — Z, by setting
H(X) = X, the equivalence class determined by x. The canonical map is operation
preserving because, by Theorem 6.1.2(a),

foralla,be Z, H(a+ b) =a+b=a+ b= H(a) + H(b).

The canonical map H is a surjection because for every ke Z,, ke Z and
H(KK) = k.

We note that operation preserving mappings need not be limited to an algebraic
structure with a single operation. Since

H(ab) = ab=a - b= H(a) - H(b),

the canonical map H also preserves multiplication. Thus, H: (Z, + ) = (Zm, +, -) is
OP for both multiplication and addition.

Special terminology is used for operation preserving mappings where the alge-
braic structures involved are groups.

DEFINITIONS Let (G,©°) and (H, *) be groups. An OP mapping
h: (G, o) — (H, *) is called a homomor phism from (G, ©) to (H, *). The
range of h is called the homomor phic image of (G, ©) under h.
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The function f: (Z, +) — 57, +) where 57 is the set of all integer multiples of
5and f (X) = 5x, is an example of a homomorphism. To verify this, we note that for
all x,ye Z, f(x+y) =5X+Yy) =5x+ 5y = f(X) + f (y). The homomorphism f
maps onto 57, because for each w € 57, w = 5k for some integer k and therefore,
f (K) = 5k = w. Thus (5Z, +) is the homomorphic image of (Z, +) under f.

Example. LetZ¢={0,1,2,3,4,5}and Zs = {[0], [1], [2]}. Define T: Zs — Z;
by T(0) = T(3) = [0], T(1) = T(4)= [1], and T(2) = T(5) = [2]. See Figure 6.4.1.
It can be verified by checking all cases that T: (Zs, +) — (Z3, +) is a homomor-
phism onto (Z3, +).

0
1
2
3
4
5

Zg VA
Figure 6.4.1

Theorem 6.4.4 Let (G, -) and (K, =) be groups. If f: (G, -) — (K, =) is a homomorphism, then
(Rng (), *) is a subgroup of (K, *). Furthermore, if the operation - is commuta-
tive, then * is a commutative operation on (Rng (). In other words,

(8 the homomorphic image of a group is a group, and
(b)  the homomorphic image of an abelian group is an abelian group.

Proof. This theorem is a restatement of previous results using our new terminology.
The image of a group under a homomorphism is an algebraic system (Theorem 6.4.1);
the image is associative, has an identity element, and every element has an inverse
(Theorem 6.4.3); and, if a group is abelian, then its image is abelian (Theorem 6.4.2). =

Example. Let (G, o) be any group with identity e. The mapping F: G — G given
by F(x) = e for all x e G is a homomorphism, called the trivial homomor phism.
We can verify this by observing that for x,ye G, both F(xoy)=e and
F(X) o F(y) = eo e= e Therefore, F(x o y) = F(X) o F (y). In this case the homo-
morphic image of (G, o) is ({e}, ©).

Example. The function T: Z3 — Zg given by T([x]) = 2x is a homomorphism
since for all [X] and [y] in Z3,

T([X] + [yD) = T([x + yD
=2X+ 2y
=2X+2y
= T(Ix]) + T(LyD.
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However, Rng (T) = {0, 2, 4}, so T is not onto Zg. We note that ({0, 2, 4}, + ) isa
subgroup of Zg, in agreement with Theorem 6.4.4.

DEFINITIONS Let (G, o) and (H, =) be groups. A homomorphism
h: (G, o) — (H, ) that is one-to-one and onto H is called an isomor-
phism. If h is an isomorphism, we say (G, ©) and (H, *) are isomor phic.

The word isomorphic comes from the Greek words isos (equal) and morphe
(form), literally meaning “equal form” because two isomorphic groups will differ
only in the names or nature of their elements. All their algebraic properties are
identical. Inverses and composites of isomorphisms are also isomorphisms. Thus,
the relation of being isomorphic is an equivalence relation on the class of all
groups. (See Exercise 19.)

The three groups (Z,, +), {1, —1}, -), and ({&, A}, A) of order 2 are iso-
morphic, where A is a nonempty set and A is the symmetric difference opera-
tion defined by XAY=(X—=Y)U (Y — X). The Cayley tables for the three

groups are
+ 0 1 . 1 -1 A %) A
0 1 1 1 -1 @ @ A
1 0 -1 -1 1 A A @

In fact, any two groups of order two are isomorphic (see Exercise 10(a)).

= O

Example. LetK ={2*:x e Z} and - be multiplication. Then (K, -) is a group iso-
morphic to (Z, +). The one-to-one correspondence f: Z — K, where f (X) = 2% is
OP because f (x4 y) = 2X7Y = 2X2¥ = f (x) f ().

Example. The groups (Z4, +) and (Zs — {0}, -), are isomorphic. We define an
isomorphism h: (Z4, +) — (Zs — {0}, -) as follows, keeping in mind that ele-
ments of Z, are equivalence classes mod 4, while elements of Zs are equivalence
classes mod 5:

h(0) =1,
h(l) =2,
h(2) =4, and
h(3) =3.

The Cayley tables for the groups are shown next. The elements of Z5 — {0} are
listed in the order determined by their preimages. This makes it easier to see that the
two groups have the same structure.
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+ 0 1 2 3 . 1 2 4 3
0 0 1 2 3 1 1 2 4 3
1 1 2 3 0 2 2 4 3 1
2 2 3 0 1 4 4 3 1 2
3 3 0] 1 2 3 3 1 2 4
(Z4r +) (Z5 - {O}r )

We claimed in Section 6.2 that for every group there is a permutation group with
the same structure. This result, due to Arthur Cayley, is proved in the next theorem.

Theorem 6.4.5 Cayley's Theorem
Every group G is isomorphic to a permutation group.

Proof. We choose the set G itself to be the set of objects to be permuted. By The-
orem 6.2.5(a) for every ain G the function A;: G — G, where A4(X) = ax for each
X € G, is a permutation of G. Let 7 = {A,: a € G}. By Theorem 6.2.3, the set 4 of
all permutations of the elements of G is a group with the operation of function com-
position. We claim that ¥ is the image of a one-to-one homomorphism from G to
%, and conclude that G is isomorphic to the permutation group #.

Let f: G — G be given by f (a) = A\, Let a, b e G. (We will prove that fisa
homomor phism by showing that f (ab) = f (a) o f (b).) Let x € G. Then,

f (ab)(x) = Aan(X)
= (ab)x
= a(bx)
= /\a()\b(x))
= (Aa© Ap)(X)
= (f(a) o f(b)(x).

Thus f (ab) = f (a) o f (b) for all a, b € G. Therefore, f is a homomorphism.

To show that f is one-to-one, suppose that f (&) = f (b). Then A5 = Ap. Therefore,
ax = bx for every x € G. In particular, if e is the identity for G, ae = be, so a=h.

By definition, every permutation in 7€ is A, for some a € G. Therefore, f maps
onto #.

We have shown that 7€ is the homomorphic image of G, so by Theorem 6.4.4,
d€ is a group. Since f is one-to-one, f is an isomorphism. Therefore G and 7€ are
isomorphic groups. |

Example. Let (G, -) be the group {1, —1, i, —i} of four complex numbers, where -
is the usual multiplication of complex numbers. The corresponding group # of per-
mutations, as described above, consists of the four left translations by the elements of
G. For example, A; is the mapping that multiplies each element of G on the left by i:

AQ) =i-1=i,

A=) =i-(=1) =i,
A@)=i-i=—1 and

A=) =i-(=i)=1.
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Thus, Aj =[i —i —11]. The other three permutations are Ay =[1 —1i —i],
A1=[-11—ii],and A_j=[—ii1—1]. The tables for G and # show that they
have the same structure.

(Gv ) (%v O)
1 -1 i —i o A1 Aq Aj A
1 1 -1 i —i A1 A1 A Aj A
-1 -1 1 —i i A A A1 A Aj
i i —i -1 1 Aj A A A A1
—i —i i 1 -1 A A Aj A Aq

Finally, we note that G (and therefore 7€) is isomorphic to (Z4, +). (See Exer-
cise 17.) This fact suggests the possibility that all groups of order 4 are isomorphic
to (Z4, +). See Exercise 10(c) for a counterexample to this conjecture.

Exercises 6.4

1. Define SQRT: R+ — R* by SQRT (X) = v/X.
(@) Is QRT: (R, +) — (R, +) operation preserving?
(b) 1s ORT: (RT, -) — (R, - ) operation preserving?
2. Define QR R — R by SQR (x) = x2.

(@ Is VR (R, +) — (R, +) operation preserving?

(b) IsVR: (R, -) — (R, -) operation preserving?

3. Define ® on R x R by setting (a, b) ® (¢, d) = (ac — bd, ad + bc).

(@ Show that (R x R, ®) is an algebraic system.

(b) Show that the function h from the system (C, -) to (R x R, ®) given by
h(a + bi) = (a, b) is a one-to-one function from the set of complex
numbers that is onto R x R and is operation preserving.

4. Let % be the set of all real-valued integrable functions defined on the interval
[a, b]. Then (%, +) is an algebraic structure, where + is the addition of
functions. Define I|: (¥, +) — (R, +) by I(f)= fabf (X)dx. Use your
knowledge of calculus to verify that | is an OP map.

5. Letf: (A ) — (B,*)and g: (B, *) — (C, x) be OP maps.

(@) Provethat g o fisan OP map.

(b) Prove that if f =1 is a function, then f 1 is an OP map.

6. Let .l be the setof all 2 x 2 matrices with real entries. Define Det: Ml — R by

Det {a b} = ad — bc.
c d
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(@) Prove that Det: (M, -) — (R, -) is operation preserving, where (A, -)
denotes . with matrix multiplication.

(b) Prove that Det: (M, +) — (R, +) is not operation preserving, where
(M, +) denotes .t with matrix addition.

7. Let Conj: C — C be the conjugate mapping for complex numbers given by
Conj (a + bi) =a — hi.
(&) Prove that Conj: (C, +) — (C, +) is operation preserving, where
(C, +) denotes the complex numbers with addition.
(b) Prove that Conj: (C, -) — (C, -) is operation preserving, where (C, -)
denotes the complex numbers with multiplication.
8. Let fbe afunction from set Ato set B. Let f and f~* be the induced functions
on % (A) as defined in Section 4.5.
* (a) Prove that the induced function f: (% (A), U) — (% (B), U) is an OP

map.

(b) Prove that the induced function =1 (% (B), N) — (P (A), N) is an OP
map.

(c) Prove that the induced function f~%: (2 (B), U) — (2 (A), U) is an OP
map.

9. Prove Theorem 6.4.3.

10. - (a) Show that any two groups of order 2 are isomorphic.
(b) Show that any two groups of order 3 are isomorphic.
(c) Prove that there exist two groups of order 4 that are not isomorphic.

11. Let 37 and 67 be the sets of integer multiples of 3 and 6, respectively. Let f
be the function from (3Z, +) to (6Z, +) given by f (x) = 4x.
(@) Prove that f is a homomorphism.
(b) What group is the homomorphic image of (37, +) under f?

12. Let (3Z, +) and (6Z, +) be the groups in Exercise 12 and let g be the func-
tion from 3Z to 6Z given by g(x) = x + 3. Is g a homomorphism? Explain.

13. Let ({a, b, ¢}, o) be the group with the operation table shown here.

o ‘ a b c
a a b c
b b c a
c c a b

Verify that the mapping 0:(Zs +) — ({a b, c},©) defined by
0(0) =g(3) =&, 9(1) =g(4) = b, and g(2) = g(5) = c is a homomorphism.
14. Let{0,1,...,17} = Zigand {[0], [1],..., [23]} = Z2a.
*» (@) Prove that the function f: Z13 — Z,4 given by f (X) = [4x] is well
defined and is a homomorphism from (Zg, +) to (Z24, +).
» (b) Find Rng (f) and give the operation table for the subgroup Rng (f) of
4.
15. Let {6, I, e ,ﬂ} = 215 and {[O], [1], ey [11]} = le. Define f: Zl5 — le
by f (X) = [4X].
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(@) Prove that f is a well-defined function and a homomorphism from
(Z15, +) t0 (Z12, +).
(b) Find Rng (f) and give the operation table for this subgroup of Z;5.

16. Let (G,©o) and (H,*) be groups, i be the identity element for H, and
h: (G, o) — (H, *) be a homomorphism. The kernel of f is ker(f) =
{xe G: f(x) =i}. ker (f) is all the elements of G that map to the identity in
H. Show that ker () is a subgroup of G.

17. Show that (Z4, +) and ({1, —1, i, —i}, -) are isomorphic.
18. Is S isomorphic to (Zg, +)? Explain.

19. Prove that the relation of isomorphism is an equivalence relation. That is,
prove that
(@) if (G, -)isagroup, then (G, -) is isomorphic to (G, -).
(b) if (G, -) is isomorphic to (H, =), then (H, ) is isomorphic to (G, -).
(c) if (G, -) is isomorphic to (H, =) and (H, =) is isomorphic to (K, ®),
then (G, -) is isomorphic to (K, ®).
20. Use the method of proof of Cayley’s Theorem to find a group of permutations
isomorphic to
@ (Zs +).
(b) (Zs, +).
© (R, +).
Proofsto Grade 21. Assign a grade of A (correct), C (partially correct), or F (failure). Justify
assignments of grades other than A.
(@ Claim. Let o be the operation on R x R defined by setting
(a, b)o(c,d)=(a+ c, b+ d)and let — be the usual subtraction on R.
Then the function f given by f(a,b) =a— 3b is an OP map from
(R x R, o) to (R, —).
“Proof.” (4, 2) and (3, 1) are in R x R. Then f((4,2) 0 (3,1)) =
f(7,3)=7—-3-3=-2, whereas f(4,2) —f(3,1)=-2-0= -2,
so f is operation preserving. =
(b) Claim. Let f:(G,*)— (H,-) and g: (H, -) — (K, ®) be OP maps.
Then the composite g o f: (G, *) — (K, ®) is an OP map.
“Proof.” go f(ab)=g(f(ab))=g(f(a)f(b))=g(f(a))g(f(b) =
(9o f(a)(go f(h)). .

6.5 Rings and Fields

Thus far we have considered algebraic structures with exactly one binary operation,
and in this setting we have explored the derivation of structural properties (such as
uniqueness of the identity element and cancellation) and the concepts of substruc-
ture and isomorphism. We have considered systems such as (N, +) and (N, -) as
distinct algebraic systems, ignoring any interaction between the two operations. In
this section we extend our study of algebraic structures by investigating systems
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with two binary operations (addition and multiplication). We will identify those
algebraic properties of Z, Q, and R that distinguish them from the natural numbers
and from one another.

The two common properties of all these systems that describe the interaction
between addition and multiplication are the distributive laws. Thus we begin by
making the distributive laws part of the definition for the algebraic structure called a
ring.

DEFINITION Aring (R +, -) is a set R together with two binary
operations + and - that satisfy the following axioms:

(1) (R +)isanabelian group. Thus forall a, b,ce R,
(a) thereisan identity element0 € Rsuchthata+0=0+a=a.
(b) for every a e R, there is an additive inverse —a e R such that
at+(-a)=(—a+a=0.
(0 a+(b+c)=(a+b)+c
(d a+b=b+a
(2) The operation - is associative. Thus forall a, b, c e R,
a-(b-c)=(-bh)-c

(3) The multiplication operation is distributive over addition. Thus for all
abceR

a-(b+c=(@-b)+(@a-c and
(@a+b)-c=(a-c)+(b-c).

The definition of a ring says a great deal about addition but does not
require that multiplication satisfy any of the properties for a group operation
except associativity, nor that the multiplication operation be commutative. As
we did for groups, we often write ab instead of a- b, and we write a — b for
a+ (—b).

Examples. The real number system (R, +, -) with addition and multiplication is a
ring. The systems (Z, +, -) and (Q, +, -) of integers and rational numbers also form
rings. If E is the set of even integers, then (E, + -) is aring.

The number system (N U {0}, +, -) is not a ring because (N U {0}, +) is not
a group—only the element 0 has an additive inverse.

Example. Let Jl, be the set of all 2 by 2 matrices with real number entries.
Then (M, +, -) is a ring because matrix addition is associative and commuta-
tive, matrix multiplication is associative, and multiplication distributes over
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0 0
addition. The additive identity is the zero matrix {0 0} and the additive inverse

a bj. . a b —a -b o
of [c d} is the matrix _{c d] = [—c —d}' Multiplication in this ring is not
commutative.

Example. Let %(R) be the set of all functions from R to R. Then (F(R), +, -) is
aring. (See Exercise 5.)

Theorem 6.5.1 Foreveryme N, (Zy, +, -) isaring.

Proof. We know by Theorem 6.1.3(a) that for every natural number m, (Zp, +) is
an abelian group, and the operation - is associative on Z, by Theorem 6.1.3(b).
We need only verify the distributive axioms to show that (Z, +, -) is a ring.
Let a, b, c be integers. Then

a-(b+C)=a-(b+c (by definition of addition in Z,,)
=ab+c) (by definition of multiplication in Z,)
=(ab+ac) (by distributivity of + and - in Z)
=ab+ac (by definition of addition in Z,)
=a-b+a-c (by definition of multiplication in Zy).

The proof of the other distributive axiom is an exercise. Therefore, (Zn, +, -) isa
ring. =

We next consider properties that are shared by every ring (R, +, -). As a first
step, we note that since (R, +) is an abelian group, properties that hold for every
abelian group certainly hold for (R, +).

Theorem 6.5.2 Let (R, +, -) bearing,and a, b,c € R Then

(@) the additive identity (zero) of Ris unique.
(b) additive inverses (negatives) of elements of Rare unique.
(c) left and right cancellation hold in R That is,

ifa+b=a+c thenb=c, and
ifb+a=c+athenb=c.

(d —(—a)=aand —(a+ b)=(—a)+ (—h).

(e) for all integers m and n, m(a+ b) = ma+ mb, (m+ n)a= ma + na, and
m(na) = (mn)a.
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Proof. All the above are restatements of properties of abelian groups developed in
Sections 6.2 and 6.3. ]

The operations in property (e) of Theorem 6.5.2 must be interpreted carefully.
Addition in the expression m(a+ b) = ma+ mb involves the ring addition
operation + for both sides of the equation. The terms ma, mb and m(a + b) do not rep-
resent multiplication of ring elements, but instead are expressions for multiples of a, b,
and a+ b. The expression (m-+ n)a= ma + na, however, involves two different
addition operations. The term m+ n adds two integers, but the + sign in the term
ma + mb means the (ring) addition of two ring elements. Likewise, in the equation
m(na) = (mn)a, mn refers to multiplication of integers, whereas m(na) and (mn)a rep-
resent the ring sums na+ na + - -- + na(mtimes) and a4+ a + - - - + a (mn times),
respectively.

The distributive axioms allow us to derive properties that relate multiplication
to the zero and negatives in a ring.

Theorem 6.5.3 Let (R +, -) be a ring with zero element 0. Then, forall a, b, ce R,

(@ O0-a=a-0=0.

(b) a-(-b)=(-a)-b=—(a-b).

© (-a-(-b=a-h

(d a-(b—c)=a-b—a-cand(a—b)-c=a-c—b-c.

Proof.

(@ Let ae R (We use the fact that 0 is the additive identity in two different
ways) Then (0-a)+0=0-a=(0+0)-a=(0-a) + (0-a). By the left
cancellation property, 0 = 0 - a. The proof that a - 0 = 0 is an exercise.

(b) Leta,beR (Toshowthata- (—b) = —(a- b), we must show that a - (—b)
plays the role of the inverse of a-b.) Then a-(—b)+ (a-b)=
a-(—b+b)=a-0=0. Since a- (—b) is a negative of (a- b) and nega-
tives are unique, a- (—b) = —(a - b). The proof that (—a) - b= —(a- b) is
an exercise.

(c) Let a,beR Then —a and b are in R, so by part (b), (—a) - (—b) =
—[(—a) - b] = —[—(a- b)]. By Theorem 6.5.2(d), —[—(a-b)]=a- b, so
(—a)-(—-b)=a-hb.

(d Let abceR Then a-(b—c)=a-[b+(-c)]=a-b+a-(-c)
a-b+[—-(a-c)J]=a-b—a-c. The proof that (a—b)-c=a-c—b-
iS an exercise.

H o

In Section 6.4 we discussed operation preserving maps and defined a group
homomorphism as a function that preserves the operation. A ring homomorphism
must be operation preserving for both addition and multiplication.
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DEFINITIONS Let (R +,-) and (S &, ®) be rings. A function
h: R— Sis aring homomorphism iff forall a, b, € R,

h(a+ b) =h(a) & h(b) and
h(a- b) = h(a) ® h(b).

If his one-to-one and onto S then h is a ring isomor phism.

Example. Let h:(Z, 4+, -) — (Zm +, -) be the canonical function given by
h(x) =x. We have seen in Section 6.4 that h:(Z, +)— (Zn +) and
h: (Z, -) > (Zn, -) are both operation preserving. Therefore h is a ring
homomorphism.

Example. The function g: Z¢ — Z¢ defined by g(x) = 3x s a ring homomorphism.

Proof. Let x,yeZs Then g(Xx+y)=3X+Yy)=3x+3y=9X +a(y).
Also, g(xy) =3xy=9xy=3x-3y=9g(X) -g(y). (We used the fact that
3 =9(mod 6).) u

The ring (Z, +, -) of integers has several properties beyond those required to
be a ring. For example, the element 1 is a multiplicative identity, also called the
unity element. Multiplication in the integers is commutative. The integers also have
the property that for any two integers a and b, whenever ab = 0, either a = 0 or
b = 0. That is, in the ring of integers there are no divisors of zero. These properties
are collected in the next definitions.

DEFINITIONS Let (R +, -) be aring.

(R, +, -) is aring with unity iff there is an element 1 € R such that for
alaeRa-1=1-a=a

(R, +, -) isacommutativering iff foralla,b,e R a-b=b-a

(R, +, -) is an integral domain iff R is a commutative ring with unity
element 1, 1 # 0, and R has no divisors of zero.

Examples. All three of (Z, +, -), (R, +, -), and (Q, +, -) are integral domains. For

every natural number m, the system (Z, +, -) is a commutative ring with unity. The

next theorem reveals which of the modular arithmetic rings are integral domains.
Theorem 6.5.4 For me N, the ring (Zm, +, -) has no zero divisiors iff mis a prime.

Proof. See Exercise 13. n

Examples. The ring of even integers is a commutative ring with no divisors of zero,
but it is not an integral domain because it has no unity element. The ring of 2 by 2

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



6.5 Rings and Fields 311

. . . . . o . 1 0.
matrices is a ring with unity because the identity matrix | = 0 1 is the
multiplicative identity, but it is not an integral domain because matrix multiplication

. . . L . 2 1
is not commutative and the ring has zero divisors. The matrices A = {6 3} and

1 1 . 0 O
B= {_2 _2} are zero divisors because AB = {0 0}.

The ring (#(R), +, -) of functions from R to R is a commutative ring with unity
but is also not an integral domain. The constant function C;, with range {1}, is the
multiplicative identity. To construct a pair of zero divisors in the ring % (RR), we let
A =10, 00), B=(—00, 0), and XA and Xg be the characteristic functions of the sets
Aand B, respectively. Then Xa - Xg = 0 because Xa - Xg(X) = Xa(X) - Xg(X) = 0 for
allxe R.

In an integral domain we can apply cancellation laws to simplify products with
a nonzero common factor.

Theorem 6.5.5 Let (R, +, -) be an integral domain, and a, b, ce Rwitha=£0.Ifa-b=a- c, then
b=candifb-a=c-athenb=c

Proof. Assume a#0and a-b=a-c. Thena-b—a-c=0, so by Theorem
6.5.4(d), a- (b — c) = 0. Since there are no divisors of zero in R and a # 0,
b — c=0. Therefore, b=c. The proof that b-a=c-a implies b=c is an
exercise. u

Let (R, +, -) be an integral domain. One might hope that (R, -) would be an
abelian group, since - is associative and commutative and 1 is the multiplicative
identity. On second thought this is impossible, because 0 cannot have a multiplica-
tive inverse. (See Exercise 12.) It is possible, however, that the nonzero elements of
R all have inverses. An integral domain with this property is called a field.

DEFINITION The ring (R, 4, -) is a field iff (R, +, -) is an integral
domain and (R — {0}, -) is an abelian group.

Examples. The rings of rational numbers and real numbers are fields. The ring
of integers is not a field, because no element of Z (other than 1 and —1) has a
multiplicative inverse in Z. Sets with only finitely many elements can
also be fields: the ring (Zm, +, -) is a field if and only if m is prime. (See
Exercise 15.)

A field can also be described as an algebraic structure (R, +, -) such that:

(i) (R +) isan abelian group with identity 0.
(i) (R— {0}, -) is an abelian group with identity 1.
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(i) Foralla,b,ceR a-(b+c)=(a-b)+ (a-c).
(iv) 0#1

The proof of this fact is an exercise. All that is required is to verify that the second
distributive axiom holds and that R has no divisors of zero.

Rings, rings with unity, commutative rings, integral domains, and fields are all
objects of important study in mathematics. In Chapter 7 we will consider properties
that distinguish the field R from all other fields.

Exercises 6.5

1. Which of the following is a ring with the usual operations of addition and
multiplication? For each structure that is not a ring, list the ring axioms that
are not satisfied.

@ N

* (b) the closed interval [—1, 1]

(© {a+bi:a beZ}, wherei?= -1
(d) {bi:be Z}, wherei?= -1

2. Let Z[+/2] be the set {a+by/2:a be Z}. Z[/2] is called “Z adjoin

V/2.” Define addition and multiplication on Z [ﬁ] in the usual way. That is,

(@a+bv2) + (c+dv2)=(a+0)+ (b+d+2 and
(@a+b+v/2) - (c+dv/2) = ac + adv/2 + bcy/2 + bd(v/2)?
= ac + 2bd + (ad + bc) v/2.

Prove that (Z [+/2], +, -) is a ring.

3. Complete the proof that for every me N, (Z, +, -) isaring (Theorem 6.5.1)
by showing that (b + c)a = ba + ca(mod m) for all integers a, b, and c.

4. Define addition & and multiplication ® on the set Z x Z as follows.
For a,b,c,de”Z, (a,b)®(c,d)=(a+c b+d) and (a b)® (c,d) =
(ac, bd). Prove that (Z x Z, &, ®) is aring.

5. Let &% (R) be the set of all functions from R to R and define addition
and multiplication operations on & (R) as follows. For f, g € #(R) and
xeR, (f+9)X)=Ff(x)+gX and (f-g)(X) =f(x)-g(x). Prove that
(F (R), +, -) isaring.

6. Let(R +, -)bearingand a, b € R Prove that b + (—a) is the unique solution
to the equation x + a=h.

7. Prove the remaining parts of Theorem 6.5.3: for all a, b, c € R,

(@ a-0=0.
(b) (-a)-b= —(a-h)
(c0 (@a—by-c=(a-c)—(b-c).
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8. We define a subring of a ring in the same way we defined a subgroup of a
group: (S +, ) isasubring of (R, +, -) ifand only if (R, +, -) isaring, SC R,
and (S +, -) is aring with the same operations. For example, the ring of even
integers is a subring of the ring of integers, and both are subrings of the ring
of rational numbers.

(a) Prove that the ring ({0}, +, ) is a subring of any ring (R, +, -) (called
the trivial subring).

(b) (Subring Test) Prove that if (R, +, -) is aring, T is a nonempty subset of
R, and T is closed under subtraction and multiplication, then (T, +, -) is
a subring.

9. Let 3Z = {3k ke Z}. Apply the Subring Test (Exercise 8(b)) to show that
(37, +, -) isasubring of (Z, +, -).
10. (a) Show that the function h: Z — Z defined by h(x) = 3x is not a ring
homomorphism.
(b) Show that the function h: Zg — Zg defined by h(x) = 2x is not a ring
homomorphism.
(c) Let Z[X] be the set of all polynomials p(X) in the variable x with integer
coefficients. Show that the function g: Z[X] — Z defined by g(p(x)) =
p(0) is a ring homomorphism.
11. Suppose P is a set of ordered pairs of integers, and that (P, ®, ®) is a ring,
where

(ab)®(c,d)=(ad+ bc,bd) and (a b)® (c,d) = (ac, bd).

Suppose f: (Q, +, -) — (P, ®, ®) is given by f (p/q) = (p, q). Prove that f
is a ring homomorphism.

12. Let(R, +, -) be an integral domain. Prove that 0 has no multiplicative inverse.

13. Letme N.
(@) Prove that mis prime iff (Zy, +, -) has no zero divisors. (Theorem
6.5.4).
(b) Deduce that (Zm, +, -) is a field iff mis prime.

14. Complete the proof of Theorem 6.5.5. That is, prove that if (R, 4, -) is an
integral domain, a, b,ce Randa#0,thenb.a=c.aimpliessb=c.

15. Let (R +, -) be an algebraic structure such that
(i) (R, +) is an abelian group with identity 0.

(i) (R— {0}, -) is an abelian group with identity 1.
(iii) Foralla,b,ceR a-(b+c)=(a-b)+(a-c).
(iv) 0=#1.

Prove that (R, +, -) is a field by showing that

(a8 foralla,b,ceR (a+b)-c=(a-c)+ (b-c).

(b) Rhas no divisors of zero.
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Proofsto Grade 16. Assign a grade of A (correct), C (partially correct), or F (failure). Justify
assignments of grades other than A.

(@ Clam. If (R +,-) is aring, a be Rand a0, then the equation
ax = b has a unique solution.

“Proof.” Suppose p and g are two solutions to ax="h. Then ap="b

and ag = h. Therefore, ap = aqg. Therefore, p=q. |

(b) Claim. If (R, +, -) is afinite integral domain, then (R, +, -) is a field.

“Proof.” Suppose Rhas nelements. Let x € R Then the n + 1 powers

of x: e=x9 x, x?, x3,..., x" are not all distinct. Therefore, x! = x" for

integers t, r, where we may assume that t < r. Then x~'x! = x~'x" and

therefore, e = x"~'. Thus, e= x - x"~'=1. Therefore, x has an inverse.

Hence, Ris a field. =
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CHAPTER 7

Concepts of Analysis

In this chapter we give an introduction to the analyst’s point of view of the real
numbers. We consider the reals as a field (a set of numbers with operations of
addition and multiplication) that is ordered (so that all the real numbers may
be thought of as forming aline) and complete (so that there are no missing num-
bers anywhere along the line). We examine in depth just what we mean when we
say that there are no missing numbers along the real line; each section of this
chapter addresses the concept of completeness from a different perspective.

In Section 7.1 we begin with the ideathat there are enough real numbers so that
thereisawaysa“best” bound for every bounded set. Section 7.2 considers“ open,”
“closed,” and “compact” subsets of the reals and establishes an important relation-
ship among these concepts: the Heine-Borel Theorem, whose proof is based on the
completeness of the reals. The Bolzano—Weierstrass Theorem of Section 7.3 says
that in sets meeting certain conditions, there will always be some element or ele-
ments of the set for which there areinfinitely many other nearby elements. Thisfact
is proved using the Heine-Borel Theorem. The Bounded Monotone Sequence
Theorem of Section 7.4 is derived from the Bolzano—Weierstrass Theorem. It says
that if a sequenceisincreasing (or decreasing) and bounded, then there are enough
real numbers so that the limit of the sequence exists. Finally, Section 7.5 shows how
the Bounded Monotone Sequence Theorem implies that the real number system is
complete.

The sequence of deductions outlined here is circular—we start by assuming
completeness of therealsin Section 7.1 and eventually (in Section 7.5) return to the
fact that the real numbers are complete. While we will not have proved compl ete-
ness, we will have seen different ways of understanding completeness and we will
have proved that completeness is equivalent to each of the three theorems named.
For the purposes of this text, that is sufficient. A separate proof that the reals are
complete involves amore careful definition of the real numbers. More will be said
about this at the conclusion of Section 7.5.

315
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71 Completeness of the Real Numbers

This section assumes a general knowledge of the properties of the rational and real
number systems commonly obtained in a calculus class. You should think of the set
R asthe set of all decima numbers along the number line, and the set Q of ratio-
nals as the subset of R consisting of the repeating or terminating decimals.

Both R and QQ have algebraic properties of addition and multiplication (listed
at the end of this section for reference) that make them fields.

Algebraic structures are studied in Chapter 6 but it is not necessary for you to
have studied the material on fields before reading this chapter.

Both R and @ also have ordering properties for the relation “less than” that
make them ordered fields. For convenience, the ordering concepts of bounded sets,
supremum and infimum from Section 3.4 are repeated at the end of this section, but
again it is not necessary to have studied that section. You will need to have studied
Section 4.6 on sequences before starting Section 7.4.

It follows from the properties of an ordered field that

Between any two distinct elements thereis a third element.

That is, if a < b, then there is athird element ¢ such that a < ¢ < b. We reason as
follows: if a < b, then

at+a<a+b<b+b
1+Da<a+b<(@+1)b
2a<a+b<2b
a<z(a+b)<b.

(Herewe have used 2 for theelement 1 + 1 and % asthe symbol for the multiplicative

inverse of 2—see field property 2(b).) Therefore, ¢c = % (a+ b) is an element of
the field that is between the elements a and b. We can repeat this strategy to pro-
duce a different element between a and c, and another element between ¢ and b.
In fact, by similar reasoning we can produce infinitely many elements between
any two elements of an ordered field. The important observation about any
ordered field is that

There are never any empty spaces between el ements.

Another way to think of this property isthat—unlike the integers, where every
integer is followed by the next (successor) integer—nowhere on the number lineis
there a number that is followed by “ the next rational number” or “the next real
number.” In particular, there is no positive real number that is the “next” number
after 0 because in between 0 and any given positive real number, there are always
infinitely many real numbers.

The property of having no empty spaces between numbers is a property that
holds for both the rational number system and the real number system, because
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both are ordered fields. Our focus throughout this chapter will be on a different
property—a property of the reals that is not shared by the rational numbers.

Although the rational number system has no empty spaces between numbers,
it is missing some numbersthat in some sense ought to be there. For example, every
rational number in the set B ={x e Q: x?> < 2} is less than V2. There are many
rational numbers that are larger than any number in B: the rational number 1.5 is
larger than every element of B; the rational number 1.42 is larger than every ele-
ment of B, and sois 1.415, and 1.4143, and 1.41422, and 1.414214. We could con-
tinue this list by finding smaller and smaller rational numbers each of which is
larger than every element of B. Ideally, we'd like to find the smallest rational num-
ber that is larger than every element of B. We will soon prove that there is no such
rational number. Because the field of rational numbers is missing numbers like
these, we say that Q is not complete.

The goals of this section are to gain a clear understanding of what it means for
an ordered field to be complete and to prove that the field of rationals is not com-
plete. We begin with the idea of bounds for a set.

DEFINITIONS Let Abeasubset of an ordered field F. Then

u € Fisanupper bound for A iff a < ufor every ae A. If Ahasan
upper bound, we say A isbounded above.

| € F isalower bound for Aiff | < afor every ae A If Ahasa
lower bound, we say A isbounded below.

If A has an upper bound and a lower bound, we say A is bounded.

In R, the half-open interval [0, 3) has 3 as an upper bound. In fact, =, 18,
and 206 are also upper bounds for [0, 3). Both —0.5 and O are lower bounds for
[0, 3). We note that some bounds for sets are elements of the set while other
bounds are not.

Any finite nonempty subset A = {xy, X2, X3, ..., xn} Of R is both bounded
above and below:

u=max{x :x € A} isan upper bound for A and
| = min{x :x € A} isalower bound for A.

In R, the subset N is bounded below but not above, while the sets @ and Z are

neither bounded above nor bounded bel ow.

In Q, the set {1 1111 } of negative integer powers of 2 is bounded

above by% and below by 0. The set A = {x € Q: x3 < 4} has many upper bounds:

8,1.6,159, and so on. However, A has no lower bounds. The set
B ={xe Q: x? < 2} isbounded above by 3 and below by —3.

The best (smallest) possible upper bound for aset A is called the supremum
of A.
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DEFINITIONS Let Abeasubset of an ordered field F. Thense Fisa
least upper bound for A (or supremum for A) iff

(i) sisanupper bound for A and
(ii) s < xfor every upper bound x for A.

i € Fisagreatest lower bound for A (or infimum for A) iff

(i) iisalower bound for A and
(i) x <ifor every lower bound x for A.

We write sup (A) to denote a supremum of A. An infimum of A is denoted
inf (A).

While a set A may have many upper bounds, when sup(A) existsit is unique.
Likewise, inf (A) isunique if it exists. See Exercise 8.

Examples. Intheordered field R,

inf ([0, 3)) = 0and sup ([0, 3)) = 3.

inf (N) = 1, but sup (N) does not exist because N is not bounded above.
For A={2"* ke N}, inf (A) = Oand sup (A) = .

For B={xe Q:x2 < 2}, inf (B) = —+/2 and sup (B) = +/2.

In the ordered field Q,

For A={2"% ke N}, inf(A) = 0and sup (A) = 3.

For B={xe Q: x? < 2}, B is bounded, but as we shall see, inf(B) and
sup (B) do not exist in the field Q.

The following theorem provides a characterization of the supremum of a set.
Its interpretation, which depends on taking the view that ¢ may be a very small
positive number, isthat every element of A is strictly lessthan every number that
is larger than sup (A), and every number that is smaller than sup (A) is exceeded
by some element of A. Thus every number larger than sup (A) is an upper bound
for A, and every number smaller than sup (A) is hot an upper bound for A.

Theorem 7.1.1 Let A be asubset of an ordered field F. Then s = sup (A) iff

(i) foradle>D0,ifxeAthenx<s+e.
(i) forale > 0,thereexistsy e Asuchthaty > s— .

Proof. First, suppose s=sup (A). Let ¢ > O begiven. Thenx < s< s+ ¢ for dll
x € A, which establishes property (i).
To verify property (ii), suppose ¢ > 0 and thereisnoy e Asuchtha y > s — &.
Then's — ¢ isan upper bound for A lessthan theleast upper bound of A, acontradiction.
Suppose how that sis anumber that satisfies conditions (i) and (ii). To show that
s=sup (A), we must first show that s is an upper bound for A. Suppose there is
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y

ye A such that y > s. See Figure 7.1.1(a). If we let ¢ :%S, then y > s+ e,

which violates condition (i). (Theidea hereisthat ¢ is only half the distance from sto

the larger number vy, so s+ ¢ must till be less than y. To verify this algebraically,
2 — —

Ser y_ s+2y S_ S+ y—s 5 S_ s+ ¢.) Weconclude

thaty < sfordl ye A, sosisan upper bound for A.

wehave2y > s+ Yy, s0y >

To show sisthe least of al upper bounds, suppose that there is another upper
bound t such that t < s. (We will show that t cannot be an upper bound.) If we let
¢ = s—t, then by condition (ii), there is a number ze A such that z> s — ¢. See
Figure 7.1.1(b). Thusz > s — ¢ = s— (s — t) = t. This contradicts the assumption
that t is an upper bound for A. Therefore sisindeed the least upper bound for A. =

A S S+e¢ y
(a) Couldy be an element of A?
A t=s—¢ z s

(b) Could t be an upper bound for A?
Figure 7.1.1

For example, inthefield R, the supremum of the set (2, 4) is4. Evenif wetake
¢ to avery small positive number, say ¢ = 0.0001, every element of (2, 4) is less
than 4 + ¢ = 4.0001. Furthermore, 4 — ¢ = 3.9999 is not quite big enough to be
the supremum, because 3.99995 is an element of (2, 4) and is greater than 4 — ¢.

We said earlier that the ordered field (2 is missing some humbers. To be pre-
cise, there are subsets of Q) that have upper boundsin @, but for which there is no
least upper bound in @—the suprema for these sets are missing from Q. As an
example, we prove that the subset B = {x € Q: x? < 2} is one such subset. The
proof uses a version of the Archimedean Principle (see Theorem 2.4.2) for the red
numbers, which states that for every positive real number r thereis anatural num-
ber K that is so Iargethat% <T.

Example. Theset B={x e Q: x? < 2} isbounded above in the field Q but has no
supremum in Q.

Proof. Thereare many rational numbers, such asg and 1.44, that are upper bounds
for B, so B is bounded abovein Q.

Now suppose there is arational number s such that s= sup (B). We will first
show that both s < /2 and s > +/2 are false.

If s< /2, then +/2 — s is positive. Choose a natural number K such that

% < ﬁ— s. Thens+ % < ﬁand s+% isrationa (becausebothsand% are
rational). Thus s + % is an element of B, which contradicts s being an upper bound
for B.
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If s> +/2, then s— +/2 is positive. Choose a natural number M such that

%< S— ﬁ Then s—%>«/§ and s—% is rational. Then for al x in B,
X< A2< s—% <S, S0 s—% is an upper bound for B that is less than s. This
contradicts the assumption that sis the least upper bound for Bin Q.

Becauise both s < v/2 and s> /2 are false, we conclude that s= /2. But
thisisimpossible, because sis arational number. Therefore sup (B) does not exist

intheordered field Q. ]

Remember that the field (Q, +) has no gaps—between any two rational hum-
bersthereisawaysanother rational number. Neverthel ess, this example shows that
Q has*“pinholes’ (points missing from () where the suprema (and infima) of some
bounded subsets of Q@ “ought to be” but are not. (Exercise 18 shows that Q has
many missing points.) We have identified a property that we can use to distinguish
the real number system from Q.

DEFINITION Anorderedfield F iscomplete iff every nonempty subset
of F that has an upper bound in F has a supremum that is an element of F.

The fact that the bounded set B = {x € Q: x? < 2} has no supremum in Q
means that the field Q is not complete. Note, however, that when B is considered a
subset of R, it does have aleast upper bound in R: sup(B) = V2. Infact, every set
of real numbersthat is bounded above has a supremum in R.

Theorem 7.1.2 Thefield (R, +, -) isacomplete ordered field.

We state this fact without proof. A proof requires considerable preliminary
study of the nature of the real number system and is beyond the goals of this text.
Section 7.5 includes a brief description of how the real numbers may be built up
from the rationals to achieve this result.

For everything that has been said about upper bounds and suprema there is a
corresponding statement about lower bounds and infima. In particular, the defini-
tion of completeness could have been stated in terms of lower bounds and infima.
That is, an ordered field F is complete iff every nonempty subset of F that has a
lower bound in F has an infimum in F. See Exercise 19.

Aspromised early inthis section, we present here for your reference the formal
definitions of “field” and “ordered”. First are the algebraic properties.

DEFINITION Afield (F, +, -) isaset F with two operations + and -
such that
(1) + isanoperationonF suchthat foral x,y,ze F,

@ X+y)+z=x+(y+2).

(b) thereisan additiveidentity O suchthat x + 0=0+ x = x.

(c) forevery x € F, thereisan additive inverse —x € F such

that X + (—x) = (—x) + x= 0.
(d) x+y=y+x
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(2) -isanoperationonF sothat foral x,y,ze F,
@ (x-y)-z=x-(y-2.
(b) thereisamultiplicativeidentity 1suchthatx-1=1.-x=X.
(c) forevery xe F — {0}, there existsamultiplicative inverse
xleF—{0}suchthatx-xt=x"1.x=1

(d x-y=y-x
(3) Fordlx,y,zinF,x-(y+2=x-y+x-z
(4 0#1.

If you are familiar with the terminology of Chapter 6, part (1) of the defini-
tion says that (F, +) is an abelian group, part (2) says that (F — {0}, -) isan
abelian group, and part (3) is one of the distributive laws. Each of the rationals,
the reals, and the complex numbers with the familiar operations of addition and
multiplication is afield. Another result from Chapter 6 isthat if pisaprime, then
the modular arithmetic structure (Z, +, -) isafield with p elements.

The definition of an ordered field is:

DEFINITION Afield (F, 4, -) isordered iff thereisarelation < on
F such that for al x,y,ze F,

(1) x £ x(irreflexivity).

(2) ifx<yandy < z then X < z (transitivity).
(3) eitherx <y, x =Y, ory < X (trichotomy).
(4 ifx<ythenx+z<y+z

(5) ifx<yandO<zthenx-z<y-z

Taken together, these properties ensure that the field elements are linearly
arranged, and that the ordering is compatible with the operations of addition and
multiplication.

All the order properties of R and (2 can be derived from these definitions. For
example, we can show that 0 < 1, —1 < 0, and —y < —x whenever x < y. We can
also provethat if x <yandz < O, thenx - z> y - z See Exercise 20.

Not all fieldsare ordered. Thefields(C, +, -) and (Zp, +, -) wherepisaprime
are not ordered.

Exercises 7.1

1. Find four upper bounds (if any exist) for each of the following sets.
(@ {xeR:x%<10}

* () [%ZXEN]
(c) [xeR:x+%<5}
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(d) {xeR:7x>+ 14x + 2 < 23}
(e {xeR:x<Oandx—x?>< -2}
(f) {2*xeR}
(90 {xeR:x—10<logx}
2. Find alower boundin R (if one exists) for each of the setsin Exercise 1.
3. Find the supremum and infimum, if they exist, of each of the following

sets.
« (@ %:neN] (b) {n—gl:neN}
v (© {2xe7} d) {(—1)”<1+i):neN}
« (0 n+2:neN} ®  {xeQ:x < 10}
* (9 [-L1u{s} (h)y [-1,1]-{0}
(i) %1 X,y € N] () {xIxl >2

4. Let Aand B be subsets of R. Prove that
(a) if Aisbounded aboveand B C A, then B is bounded above.
(b) if Aisbounded below and B C A, then B is bounded below.
(c) if Aand B are bounded above, then AU B is bounded above.
(d) if Aand B are bounded below, then A U B is bounded below.

5. Let x be an upper bound for A € R. Prove that
(@ if X<y, thenyisan upper bound for A.
(b) if xe A, thenx=sup(A).
6. Let AcC R. Provethat
(@ if Aisbounded above, then A®is not bounded above.
(b) if Aisbounded below, then A®is not bounded bel ow.

7. Giveanexampleof aset A C R for which both A and A® are unbounded above
and below.
8. Let AC R. Provethat
* (@) if sup (A) exists, thenitisunique. That is, if x and y are both least upper
boundsfor A, then x =y.
(b) if inf (A) exists, then it isunique.
9. Let AC BC R. Provethat
(@) if sup (A) and sup (B) both exist, then sup (A) < sup (B).
(b) ifinf (A) andinf (B) both exist, then inf (A) > inf (B).
10. Formulate and prove a characterization of greatest lower bounds similar to
that in Theorem 7.1.1 for least upper bounds.
11. If possible, give an example of
(@) aset ACRsuchthatsup(A)=4and4 ¢ A.
(b) aset AC @ suchthat sup (A)=4and4 ¢ A
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(c) asetAC Nsuchthat sup(A)=4and4 ¢ A
(d) aset AC Nsuchthat sup(A) > 4and 4 ¢ A

12. Give an example of aset of rational numbers that has arational lower bound
but no rational greatest lower bound.

13. Let AC R. Provethat
* (@) if sup (A) exists, then sup (A) = inf{u: uisan upper bound of A}.
(b) ifinf (A) exists, theninf (A) = sup{l: | isalower bound of A}.
14. Let Aand B be subsets of R.
* (@) Prove that if sup(A) and sup (B) exist, then sup (AU B) exists and
sup (AU B) = max{sup (A), sup (B)}.
(b) State and prove asimilar result for inf (AU B).
15. (@) Givean example of sets A and B of real numbers such that A N B # J,
sup (AN B) < sup (A), and sup (AN B) < sup (B).
(b) For sets A and B such that AN B # (J, state and prove a relationship
between sup (A), sup (B), and sup (AN B).

16. (a) Givean example of sets A and B of real numbers such that AN B £ &,
inf (AN B) > inf (A), and inf (AN B) > inf (B).
(b) For sets A and B such that AN B # J, state and prove a relationship
between inf (A), inf (B), and inf (AN B).
17. Usethe completeness property of R to prove the Archimedean Principle for
the real numbers: For every positive real number r thereisan integer K such
that % < r. Hint: Suppose the assertion is false for some rea number r.
Verify that the set W= {nr: n e N} is nonempty and bounded above by 1.
Let t be the supremum of W. Observethatt —r <t, sot — r isnot an upper
bound for W. Then, by Theorem 7.1.1, there is anatural number m such that
t—r < mr. It follows that t < (m+ 1)r, contradicting the fact that t is an
upper bound for W.

18. This exercise shows that every irrational number is“missing” from Q. Let X
be anirrational number. Find asubset A of Q such that A is bounded abovein
@ and sup (A) does not exist in @, but when A is considered a subset of R,
sup (A) = x.

19. Provethat an ordered field F is complete iff every nonempty subset of F that
has alower bound in F has an infimum in F.

20. LetF beanordered field and %, y, z€ F. Prove that
(a) exactlyoneof x <y, x=y,ory<Xxistrue.
(b) ifx<0,then —x > 0.
(o0 0<1
(d -1<0.
(&) ifx<y,then—y < —x
(f) ifx<yandz<Othenx-z>y-z
@ H-(-H=1
(h) 0.-x=0.
i (-1 -x=-—x
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Proofsto Grade 21. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.
Justify assignments of grades other than A.
* (@ Clam. Let ACR.Ifi=inf(A)ande > 0, thenthereisy e A such

thaty < i + e.
“Proof.” Lety=i+ % Then i <y so ye A. By construction of vy,
y<i+e. ]

(b) Claim. Let AC R. If Aisbounded above, then A®is bounded below.
“Proof.” If A is bounded above, then sup (A) exists (because R is
complete). Since sup (A) = inf (A®) (see the figure), inf (A°) exists.
Thus A° is bounded below. ]

A AC

1
1
sup (A) = inf (AS) —

(cp Clam. If ACBCR, and sup(A) and sup(B) both exist, then
sup (A) < sup (B).
“Proof.” Assume ACB and sup(A) > sup(B). We choose ¢ =
%(sup(A) —sup (B)). Thene > 0and sup (B) < sup (A) — ¢ < sup (A).
By part (ii) of Theorem 7.1.1, thereisy € A such that y > sup (A) — .
Then yeB and y>sup(B). This is impossible. Therefore,

sup (A) < sup (B). .
(d) Claim. Iff: R — R and Aisabounded subset of R, then Rng (A) is
bounded.

“Proof.” Let m be an upper bound for A. Then a < mfor dl ae A
Therefore, f (a) < f (m) for al ae A. Thusf (m) is an upper bound for

Rng (A). |
(e) Claim. Let (F, +, ) be an ordered field and x € F. If —x < O, then
x> 0.
“Proof.” Suppose —x < 0. Then by property (4) of ordered fields
0=-—X+X<0+Xx=x90<x Thusx> 0. u
72 The Heine-Borel Theorem

In this section we begin by introducing some concepts used to describe sets of real
numbers and then use the completeness of R to establish our first major result, the
Heine-Borel Theorem. We state these results in terms of the real numbers, but the
results apply more generally to any complete ordered field.

DEFINITION Letaand é berea numberswithé > 0. The
6-neighborhood of aisthe set

N, 8)={xe R: [x—a| <é}.
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The 8-neighborhood of a consists of all points x whose distance from a
islessthan 8. Since |[Xx —a| < d isequivadentto a— 6 < x<a+ 3§, N(a d) is
the open interval (a— 8,a+8). For example, N(3,0.4) =(2.6,3.4) and
N(1,0.01) = (0.99, 1.01). Both the 1-neighborhood of 0.7 and the 0.2 neighbor-
hood of 0.7 are shown in Figure 7.2.1. Your intuition is best served by thinking
of 6 asasmall positive number and N(a, §) as asmall open interval of radius é
centered about a.

(J_,) N(0.7,0.2)
NOT.D |

)
)
|
T

|
|
-2 ~1 0 07 1 2

N(0.7,1) = (—0.3,1.7) and N(0.7, 0.2) = (0.5, 0.9).

Figure 7.2.1

Many concepts in mathematics may be expressed using neighborhood ter-
minology. Recall that a function f: R — R is continuous at a point a in its
domain iff

for al ¢ > O, thereexists 6 > Osuchthat if |[x — a| < &,then |f(x) —f(a)| < e.

This means that whenever x is close to a, then f (x) must be closeto f (a). In terms
of neighborhoods, the definition is:

for al ¢ > O, thereexists > 0 such that if x € N(a, 8), thenf (x) € N(f(a), &).

This version of the definition has the advantage of specifying “closeness’ in
terms of sets (neighborhoods) instead of distances. Because there are systems
other than the real numbers for which the concept of neighborhood may be intro-
duced, the neighborhood version of the definition is away to define continuity for
those systems.

DEFINITION Foraset AC R, apoint xisaninterior point of A iff
there exists 6 > 0 such that N'(x, ) C A.

If xisan interior point of A, then not only isx contained in A, but all elements
of some neighborhood around x are also contained in A.
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For the interval [2, 5), 3 is an interior point since N'(3,0.5) C [2, 5). Also,
4.9998 isan interior point because N(4.9998, 0.0001) C [2, 5). SeeFigure 7.2.2. In
fact, every point in (2, 5) is an interior point of [2, 5). The point 2 is not interior
to [2, 5), since every 6-neighborhood of 2 contains points that are less than 2 and
hencenotin[2, 5).

N2, ) N(3,0.5)
— —

: 3 4 \y/

L

N(4.9998,0.0001)
———
| | |
49997 4.9998 4.9999

Figure 7.2.2

DEFINITIONS Theset AC R isopen iff every point of Aisan interior
point of A. Theset Aisclosed iff its complement A®is open.

Theinterval (2, 5) is open because every point in (2, 5) is an interior point of
(2, 5). Thusits complement, (—oo, 2] U [5, 00), isaclosed set. On the other hand,
2 isnot aninterior point of [2, 5). Therefore, [2, 5) is not open.

The interval [2, 5) is not closed either, since its complement [2, 5)¢ =
(=00, 2) U[5, o0) contains 5, but 5 is not an interior point of (—oo, 2) U [5, o).
In ordinary conversation, with references to objects like doors and eyes, the con-
cepts of open and closed are opposites, but theinterval [2, 5) isan example of asub-
set of R that is neither open nor closed.

Examples. Theset R isopensincefor every x € R, N(x, 1) € R. Theempty set &
is also open since the statement “for al x, if x € J, x is an interior point of &” is
true because the antecedent is false. Since R and (J are complements, they are also
closed sets. It can be shown that there are no other subsets of the reals that are both
open and closed.

A setisopenif about each element in the set there is a 5-neighborhood that lies
entirely within the set. This means no point of the set can be on the “boundary” or
outer edges of the set (see Exercise 11). The next two theorems will help you rec-
ognize open sets.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



72 The Heine-Borel Theorem 327
Theorem 7.2.1 Every open interval of real numbersisan open set.

Proof. Let (a, b) bean openinterval andlet x € (a, b). (To show (a, b) is open, we
show that x isan interior point of (a, b). That is, we show N'(x, 8) C (a, b) for some
6 > 0.) We choose 6 = min{x — a, b — x}. (This minimum is the largest possible
& we can use. See Figure 7.2.3.) Then 6 > 0. To show that N(x, 8) C (a, b), let
ye N(x 8). Then a=x—(X—a) <x—8<y<X+d=<x+(b—x)=b; and so

y € (a, b). u
N(x, 8)
( \ )
1y Y
[«—x—a } b—x }
( \ )
1y Y
a X b

N(x, 8) inthecases=min{x—a,b—x} =x—a

Figure 72.3
Theorem 7.2.2 Let 4 be anonempty collection of open subsets of R. Then
(@ |J Aisanopen set.
Aedd
(b) If sd isfinite, then [ Aisan open set.

Aedd
Proof. Let s{ be anonempty collection of open sets.

(@ Supposexe |JA. (Wemust showthat xisaninterior point of | A.) Since
Aedd Aedd

X is in the union over the collection, there exists Be o such that
X € B. Since B isin the collection &, B is open. Thus X is an interior point
of B. Therefore there exists 6 >0 such that N(x,6) CB. Since
Bc UA N(x 8) c | A Thereforexisan interior point of | A.

Aed Aedd Aedd

(b)  Suppose s is finite and x e [ ) A. Then x € A for all Ae s, and so for
Acdl

each open set A e o there corresponds 65 > O such that N'(X, 6a) C A.
Let 6 =min{éa: Ac }. (Note that the minimum of a finite set of
positive numbers must be positive.) Then 6 > 0and N (X, §) C N'(X, 6a) C A
for all Ae . Thus N'(x 8) C () A Therefore x is an interior point
of (A Acd n
Aed

For the proof of part (b) we chose 6 = min{éa: A € s} and relied on the fact
that it is aways possible to find the minimum of a finite set of real numbers.
However, if the set {6a: A€ A} is infinite, we can not be sure of finding a
minimum. The set [% neN } for example, does not have a minimum element.

The statement of Theorem 7.2.2 (b) isfalseif we omit the word “finite.”
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1
Example. The family o = [(2 — ﬁ,5): ne Nt isan infinite collection of open

intervals. The intersection is

ﬂ(Z—i,S):[z,S),

neN

which we have seen is not an open set.

Theorems 7.2.1 and 7.2.2 can be used to produce many examples of open sub-
sets of R. For example, the following are open sets:

(5,7) U (=3, 4) U (10, 20)

(2, 00) = |JA wherest = {(2, X): x> 2}
Aed

(—00,2)= |JA wheresd ={(x, 2): x < 2}
Aed

(—5,0) U (2, o0)
R—{2} = (~00,2) U (2, 00).

Corresponding to Theorem 7.2.1, it can be shown that every closed interval of
real numbers is a closed set. See Exercise 7(b). The analog of Theorem 7.2.2 for
closed setsis Exercise 8.

Every finite subset of R is closed because the complement of afinite set isthe
union of two open rays and a number of open intervals. Finite sets are good exam-
ples of sets that are both closed and bounded. We shall see that infinite closed and
bounded sets have other propertiesin common with finite sets. For example, if Ais
afinite set, then the infimum and supremum of A exist and are elements of A. The
next theorem showsthisistrue for all closed and bounded sets.

Theorem 7.2.3 If A is a nonempty closed and bounded subset of R, then sup(A) € A and
inf (A) € A.

Proof. Suppose A is a nonempty closed and bounded set. Let s= sup (A) and
supposes ¢ A. Then s e A%, which isopen since Aisclosed. Thus N'(s, §) € A®for
some positive 8. This implies s— 6 is an upper bound for A, since the interval
(s— 8, s+ 8) isasubset of A®. (No element of Aisgreater than s, or equal to s, or
between s — 6 and s.) This contradicts Theorem 7.1.1. Therefore, s € A. The proof
that inf (A) € Ais similar. u

Examples. LetA=]2,5],
B=[-2, 2] U[4,10] U {12} and
C={2™ne N} uU{0}.

Each of these setsis closed and bounded, so by Theorem 7.2.3 each containsits supre-
mum and infimum: inf (A) = 2 and sup (A) = 5 are elements of A; inf (B) = —2
and sup (B) = 12 are elements of B; and inf (C) = 0and sup (C) = % are elements
of C.
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The bounded set [0, 1) does not contain its supremum; it does not satisfy the
conditions of Theorem 7.2.3 becauseit isnot closed. The closed set [2, co) does hot
have a supremum; it does not satisfy the conditions of Theorem 7.2.3 because it is
not bounded.

To understand how the completeness property of R is related to properties
of closed and bounded sets, we need the concept of a cover for aset. A cover for
aset Aisacollection of open sets whose union includes A.

DEFINITIONS Let A beaset of real numbers. A collection ¢ of open

subsets of R isacover for Aiff Ac | C.
Ceé

If B C 6 and B isaso acover for A, we say 9B isasubcover of €.

Example. Fortheset A={2, 4,5, 6,8, 9}, the collection of open intervals

%={(-1,2),(1,4),(25),(36),(4,7),(59), (6, 10), (7, 11)}

is a cover for A because ¢ consists of open setsand AC | C= (-1, 11). The
collection Cett

B ={(1,4),(3,6),(47), (6 10}

is asubset of ¢ and is also cover of Asince | C = (1, 10). Thus % is a subcover
of ¢ for A. Ced

1 1 .
Example. Let AH=<n—n,n+n) for each neN. The collection o =

{An: ne N} isacover for N that has no subcover other than itself (Figure 7.2.4).

Al A2 A3 A4 AS A6
( | \ A (1N (1 (1
\ U \ 7 \ 7 \ 7 )
0 1 2 3 4 5 6
Figure 7.2.4

Example. Since |J(—o0,n)=R, the collection %= {(—o0,n):ne N} is a

n=1
cover for R. The collection 3 = {(—o0, n): n € 2N}, where 2N is the set of even
natural numbers, is a subcover of 7€ for R. We note that there are many subcovers
of ¥ for R, but there is no finite subset of # that isacover for R.
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A cover ¢ of aset A may be imagined by thinking of the covering sets of € as
providing shade for the set A. In Figure 7.2.5 we have the sun directly over the set
A. The covering sets C,, Cg, Cs, ... are drawn slightly above A. For this analogy,
think of the sun’sraysas parallel beams of light. As the sun shines straight down, €
is a cover for Aiff A is within the region shaded by the sets in €—that

is, iff Ac |JC.
Ceé
Sun
Sun’s rays
Cs
C — Co
a —

I .

| |

| A |

' e ——

| \

Figure 7.2.5

Let A={xyg, X2, X3,...%,} be anonempty finite set of real numbers and let
% ={0,: a € A} beacover for A. We may not need all the setsin € to make a
cover for A, so we look for asubcover. Foreachi = 1,2, 3,..., nthereisq; in A
such that x; € O,,. Thenthecollection 8 = {O,,:1 =1, 2, 3,...n} isafinite subset
of ‘6 whose union includes A. In other words, given any cover for the finite set A,
we can aways construct afinite subcover for A. Sets of real numbers that have this
property are called compact sets.

DEFINITION A subset Aof R iscompact iff for every cover 6 for A,
thereis afinite subcover of € for A.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



72 The Heine-Borel Theorem 331

By the discussion above, every nonempty finite set is compact. Next is an infi-
nite set that is compact.

n+1

Example. Theset A= { ‘neN } U {1} is compact.

Proof. Let{O,: « € A} beany cover for A. One of the covering sets, call it O+,
containsthe element 1. Since O~ is open, thereis ad-neighborhood N (1, 8) € O,x.
See Figure 7.2.6. (We will show that all but a finite number of elements of Aarein

N(1, 6) and thereforein O,+.) Choose N such that N > %. If n>N, then:SL < nand

T . n+1
so 1 < né. Thisimpliesn+ 1 < n+ né, which means + < 1+ 8. Therefore,

1 1
if n> N, then = eN(l,S)andn:]_ € Oy

Now choose Ogy, Ouys Ou - - -+ Oay SUCH thet 2 € Opy, 3 € Opy 5 € Oy -
N+ 1 .
and % € Oy Then AC Opx U Oy, U Oy, U Oy, U... U Q,,. (Thefirst N ele-
ments of Aarein O,,, ..., Oy, and everything elseisin O,+.) We have succeeded
in finding a finite subcover of N + 1 sets for the cover {O,: « € A}. Therefore, A

is compact. (]
Oy
4
I
Oa3
Oy I 0., O,
I EE—— I
E 3 }
176 5 4 3 2
5 4 3 2
Figure 7.2.6

We have seen that # = {(—o0, n): n € N} isacover for R with no finite sub-
cover. Thus R is not compact. Neither isthe openinterval (0, 1) compact because the
collection ¢ = [(% 1) i xe (1, o) } isacover for (0, 1) that has no finite subcover.

You may have noticed that all of our examples of compact sets have been
closed and bounded sets and the two non-compact examples are either not closed
or not bounded. Thisis no coincidence. The next theorem is a beautiful charac-

terization of compact sets based on the work of Edward Heine* and Emile

* Edward Heine (1821-1881) was a German mathematician at the University of Halle (the same univer-
sity where Georg Cantor spent his entire career) who made several contributions to analysis, especialy
to the descriptions and solutions of equationsinvolving infinite series. Asa senior professor, Heine gave
the young Cantor a problem in analysis whose solution and generalization demonstrated the need to
define the term “set” precisely.
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Borel.* The proof uses the following lemma. Watch for the places where the
proof of the Heine-Borel Theorem depends on the completeness of R.

Lemma 7.2.4 Let Abeaclosedsetand x € R. If AN N(x,8) £ D foral § > 0, thenx € A.
Proof. Exercise12. n
Theorem 7.2.5 The Heine-Borel Theorem

A subset A of R is compact iff Ais closed and bounded.

Proof.

(i) Suppose A is compact. We first show that A is bounded. We note that
ACR = [J(—n, n). Therefore, % = {(—n, n): n € N} isacover for A. By

eN
compactnés, 7€ has a finite subcover {(—n, n): ne {ny, Ny, ..., n}}. If
k

we choose N=max{ny,ny,...,n¢, then AcC |J(—n;, n)= (=N, N).
i=1

i=
Therefore, A isbounded above by N and below by —N.

We next show that A is closed by proving A® is open. Suppose y € A°.
(We must show y is an interior point of A®.) For each x € A, x #£ y and thus

Ox =% |X —y] isa positive number. The collection {N'(X, 6x): x € A} isa
family of open setsthat covers A. Hence by the compactness of A,

AC N (X, 8) UN (X2, 8) U ... UNK, 8

for some xi, Xz, ..., X« € A. By choosing 6 = min{éx, x, ..., 0x}, we
haved > 0and N'(y, ) C A®. SeeFigure 7.2.7. (If ze A, then |z — x| < &

for some i. Thus if zeN(y,8), then |z—y|<d<édx and
[X—Y| < [Xi—2z| + |z—y| <26 = |%—Y|.) Thus A®isopen. Hence Ais
closed.
e
( | Oxg )
\ ]
( e
( S S
( R
I \ 4 \ 4 \ 4 \ 4 \ 4 I &
X4 Xq Xs X3 Xy yeAC
A
Figure 7.2.7

* Emile Borel (1871-1956) was a French mathematician and politician who contributed substantially to
probability and game theory and the creation of the branch of mathematics called measure theory. He
stated and proved the Heine-Borel Theorem for countable sets. He served many yearsin French politics
and was amember of the French resistance in World War I1.
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(ii)  Conversely, suppose A is a closed and bounded set and 6 is a cover for A.
For each xe R, let Ax={ac A a<x}. Also, let D={xe R: A is
included in aunion of finitely many sets from 6} .

Since A is bounded, inf (A) exists (by the completeness of R). Thus if
x < inf (A), Ay = @ andit followsthat x € D. Therefore (—oo, inf (A)) € D
and so D is nonempty.

We claim D has no upper bound. (Thefollowing proof of thisfact involves
showing that if D is bounded above, then sup (D) isin A, and then using the
nature of D to build a contradiction.) Suppose D is bounded above. Then
Xo = sup (D) exists (by the completeness of R). Let 6 > 0 and chooset € D
such that Xo — 8 <t < %o (applying Theorem 7.1.1). If AN N(xo, 8) = I,

then A={aeA a<t}= [aeA: ac< xo+g] = Ag+(s/2. But tis in

D, so xo + g isin D. Thisis a contradiction to X, = sup (D). Therefore, for
al 6 > 0, we have AN N'(xo, 8) # . By Lemma 7.2.4, X isin the closed
set A

Let C* be an element of € such that xo € C*. Since C* is open, there
exists ¢ >0 such that N(Xg &) CC*. Choose x;€D such that
Xo — & < X1 < Xo. Since x; € D, there are open sets Cy, C,, ..., C,,in 6 such
that A, CCiUCU---UC, Now let X=X +5 Then xeC*
and A, CCiUCU---UC,UC*. Thus x; € D, a contradiction, since
X2 > Xg and xg = sup (D). We conclude that D has no upper bound.

Finaly, since D has no upper bound, choose x € D such that X > sup (A)
(sup (A) exists because R is complete). Thus Ax= A and since xe D, A
isincluded in aunion of finitely many setsfrom . Therefore, Aiscompact. =

Exercises 7.2

1. Findxandé € R such that
@ N(x8)=(7,12). * (b)) N(x 8) =(3.8,3.85).
() N(x, 8)=(6.023, 6.024).
2. Forx;, % eR,d;>0andd, > 0, describe
(@ N (x, 61) NN (xq, 82). (b)  N(X1, 81) N N'(X, 81).
(©  N(x,81) NN (X, 82).
* 3. Writethedefinition of lim f (x) = L in terms of neighborhoods.

4. Find the set of interior );(:);iZts for each of these subsets of R.
@ (-1,1) (b) (-1,1]
(0 Q (d R-Q

* (o) {Slk:keN} (f) {%(:keN}U{O}
(@ R-N (h) R—{Sik:keN}

* (i) U®m+01,n402)

nelN
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5.

10.

12.
13.

Classify each of the following subsets of R as open, closed, or neither open
nor closed.

@ (—o0,—3) * (b) N(a d) —{a} foraes Randé >0
© (G8u{9 d Q

() R-N (f) {xIx=5=7

(@ {xIx=5>T7} (h) {x |x—5]#T7}

(i) {xIx=5=7 () {x0<|x=5=7

Let a € R. Prove that every open ray, either (a, co) or (—o0, @), isan open
Set.

Let a, b e R. Provethat

(@) every closed ray, either [a, oo) or (—o0, @], isaclosed set.
(b) every closed interval [a, b] isaclosed set.

Let o be anonempty collection of closed subsets of R.

(@) Provethat [ ) Aisaclosed set.

Aed

(b) If A isafinite collection, provethat | J Aisaclosed set.
Aed
() Show by example that part (b) is falsee if we do not assume that o is

finite.
Let A and B be subsets of R and x € R. Prove that
(&) if Aisopen,then A — {x} isopen.
(b) if AisopenandBisclosed, then A — B isopen.
(c) if AisopenandBisclosed, then B — Ais closed.

Let A be asubset of R. Prove that the set of al interior points of A isan open
Set.

A point xisaboundary point of theset Aiff foral 6 > 0, N(x,8) NA#£

and N (X, 8) N A® £ .

(8) Findall boundary points of (2, 5], (0, 1), [3, 5] U {6}, and Q.

(b) Provethat x is aboundary point of A iff X isnot an interior point of A
and not an interior point of AS.

(c) Provethat Aisopeniff A containsnone of its boundary points.

(d) Provethat Aisclosed iff A containsall of its boundary points.

Prove Lemma7.2.4.
Which of the following subsets of R are compact?

@ Z (b) [0, 10] U [20, 30]
© [r, +/10] * (d) R — A whereAisfinite set
(e {1,2 34,09 12,18} () {O}U[%:neN’

(@ (=379 (h) [0,11NnQ
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14. Givean example of
(a) abounded subset of R and a cover of that set that has no finite sub-
cover.
(b) aclosed subset of R and a cover of that set that has no finite sub-
cover.
(c) SetsA, B, C,andD of real numberssuchthat AC B C C C D, Aisopen,
B isclosed, Cisneither open nor closed, and D is compact.
15. Let A and B be compact subsets of R.
(@) Usethe definition of compact to prove that A U B is compact.
(b) Apply the Heine—Borel Theorem to prove that A N B is compact.
(c) Apply the Heine—Borel Theorem to prove that A U B is compact.
2
n+ 2(1’”)): ne N].

2n

16. LetS=(0,1] and let€ = [(

(@) Provethat ¢ isacover for S
(b) Isthereafinite subcover of 6 for S?
() What doesthe Heine-Borel Theorem say about S?
17. Usethe Heine—Borel Theorem to prove that if { A,: « € A} isacollection of
compact sets, then (1] A, is compact.

aeA

18. Give an example of a collection {A,: @« € A} of compact sets such that
| A, is not compact.

aeA

Proofsto Grade 19. Assign agrade of A (correct), C (partially correct), or F (failure) to each. Jus-
tify assignments of grades other than A.
(@) Claim. Letae R.Theopenray (a, co) isan open set.
“Proof.” Let xe(a 00). Let 6=a—x If yeN(x ), then
y > X — 4. Therefore,y > aand soy € (a, o0). Thus N'(x, 6) C (a, 00).
Thisprovesxisan interior point of (a, co). Since every point of (a, co)
isan interior point, (a, co) isopen. =
(b) Claim. If AandB are compact, then AU B is compact.
“Proof.” If Aand B are compact, thenfor any cover {O,: @ € A} for A,
there exists a finite subcover O,,, Oy, ..., O,,, and for any open cover
{Ug: B € I'} for B, there exists afinite subcover Ug,, Ug,, . .., Ug,. Thus
AC O, UOQ,,U---UQ,, and BC Ug UUgU---UUg,. Therefore,
AUBC 0O, UQ,U--UOQ,UUg UUgU---UUg, a union of a
finite number of open sets. Thus A U B is compact. ]
* (c) Claim. If Aiscompact, B C A, and B isclosed, then B is compact.
“Proof.” Let{O,: a« € A} beacoverforB.If {O,: « € A} isacover
for A, then there is afinite subcover of {O,: « € A} that covers A and
hence coversB. If {O,: « € A} isnot acover for A, add one more open
set O* = R — B to the collection to obtain acover for A. This cover for
A has afinite subcover of Athat isacover for B. In either case B is cov-
ered by afinite number of open sets. Therefore B is compact. u

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



336 CHAPTER 7 (Concepts of Analysis

(d) Claim. If Aiscompact, B C A, and B is closed, then B is compact.
“Proof.” Bisclosed by assumption. Since Aiscompact, A isbounded.
Since BC A, B is aso bounded. Thus B is closed and bounded.
Therefore, B is compact. |

(e) Claim. Theset (5, co) iscompact.

“Proof.” Theset 6 ={(4, 12), (10, c0)} isacover for (5, o). Then
% isafinite subcover of € for (5, c0), so0 (5, o©) is compact.

73 The Bolzano-Weierstrass Theorem

In the previous section we used the completeness of R to prove the Heine-Borel
Theorem. In this section we use the Heine-Borel Theorem to prove another classi-
cal result of analysis, the Bolzano—Weierstrass* Theorem.

Let's begin with aclosed interval [a, b] and imagine that we must build a sub-
set A of [a, b] by selecting elements for A, one at a time, from [a, b]. Since
A C [a, b], A will necessarily be abounded set. If Aisfinite, we could choose ele-
mentsthat are spread out acrosstheinterval. In other words, if Aisfinite, there need
not be any point in the interval where the elements of A pile up or “accumulate.”
What the Bolzano-Weierstrass Theorem says is that if a set A is infinite and
bounded, there must be at least one point in [a, b] around which an infinite number
of elements of A will be congregated. Before we get to that result, we give an exam-
ple and define carefully what it means for elements of a set to accumulate around a
point.

Example. For the bounded infinite set A= [1, —%, % —%, % ... I each element

of Aiscontained in the interval [—1, 1]. Figure 7.3.1 shows that the number O isa

N ) ] e e ---| - o @ ) ]
-1 _1 2111 0 11 1 1
2 4 6 8 75 3
Figure 7.3.1

* Bernard Bolzano (1781-1848) was a Bohemian mathematician, philosopher, and logician. He pio-
neered several modern mathematics concepts (such as the rigorous definition of limit) but because of his
strong antimilitary beliefs most of hiswork appeared in obscure publications. The Bolzano-Weierstrass
Theorem wasfor several years called simply the Weierstrass Theorem until Bolzano’sindependent proof
was discovered many years after his death.

Karl Weierstrass (1815-1897) was a German mathematician and the foremost Ieader in the 1800s
in developing highly rigorous definitions and theorems that characterize much of modern mathematics.
He was the first to develop rigorous proofs for the Intermediate Value Theorem, the Heine-Borel
Theorem and several theorems whose titles now bear his name.
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point around which the elements of A gather. We say 0 is an accumulation point for
the set A.

DEFINITION Let Abeaset of real numbers. The number x is an accu-
mulation point for A iff forall 5 > 0, N'(x, 8) contains at |east one point
of Adistinct from x.

The definition says that for x to be an accumulation point for set A, it must be
that for every 8 > 0, (N (x, 8) — {x}) N A J. To verify that O satisfies the defini-

tion of an accumulation point for the set A = {1, —%, % —%, % e } we start by

choosing some §-neighborhood N (0, 8) about 0. By the Archimedean Principle,
there exists an odd natural number k such that k > %. Then %< 8. Therefore

% € N'(0, ) and since k is odd, % € A. Thus every neighborhood of 0 contains a
point of A that is distinct from O.

Example. Let A=[3, 7). Provethat the set of accumulation pointsfor Ais[3, 7].
Proof. We consider cases. elements of (3, 7), the endpoints, other numbers.

(i) Letxe(3,7). Suppose s > 0. The set (3, 7) is open so there exists B > 0

such that N(x, B) € (3,7). Let v be the smaler of 6 and B. Then
N vy)<S(@3,7) and x+% isapoint in N'(x,vy) that isin A and distinct
from x. Thusif xisin (3, 7), xis an accumulation point for A.

(ii) Letx=3andd > 0.If 6 > 4, then5isapoint of N'(x, §) thatisin[3, 7) and
distinct from 3. If 6 <4, then 3+ g is a point of N(x,8) that is in
[3, 7) and distinct from 3. Thus 3 is an accumulation point for A.

(i) Letx=7.Byanargument very similar to part (ii), 7 isalso an accumulation
point for A. (See Exercise 1.)

(iv) Letx<3andd=3-—x Then N(x, 6) and A are digoint, so X is not an
accumulation point for A.

(v) Letx> 7.Using reasoning similar to that in part (iv), X is not an accumula-
tion point for A.

We conclude that the set of all accumulation pointsfor [3, 7) is[3, 7]. u

Example. Let B= (2, 6) U{9}. The number 9 is not an accumulation point for
B because, for example, N (9, 0.5) contains no points of B other than 9. The
accumulation points of B are all the elements of [2, 6].
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We see from our examples that an accumulation point of a set is not necessar-
ily an element of the set, and, conversely, an element of a set is not necessarily an
accumulation point of the set.

We also see that for x to be an accumulation point of the set A, much more is
required than just that there is an element of A distinct from x that iswithin & of x.
The next theorem shows that there must be infinitely many points of A that are
within & of x.

Theorem 7.3.1 A number x is an accumulation point for aset A iff for all 5 > 0, N'(x, 8) contains
an infinite number of points of A.

Proof. If every neighborhood of x contains an infinite number of points of A, then
each neighborhood certainly contains at least one point of A distinct from x.
Therefore, x is an accumulation point.

Now suppose that x is an accumulation point for A. Suppose that N (x, §) N A
is finite for some 8 > 0. Let 5 =min{|x—y|:ye N(x,8) N A, x#Vy}. (Our
choice of 8; is so small that N (x, 81) will have no points of A other than perhaps x
itself.) Then N (%, 61) N A= {x}, which contradicts the initial assumption that x is
an accumulation point for A. Therefore, every neighborhood of x must contain an
infinite number of points of A. |

From Theorem 7.3.1 it followsthat no finite set can have any accumulation points.

Examples. There are rational numbers between any two distinct real numbers, so
it followsthat for real number xand § > 0, theinterval (x — &, X + 8) containsinfi-
nitely many rationals. Therefore, every real number isan accumulation point for Q.
Using similar reasoning, we can conclude that every real number is an accumula-
tion point for the set of irrationals.

DEFINITION Let A be aset of real numbers. The set of accumulation
points for Aiscalled the derived set of A, and is denoted by A'.

Let B={1.4,1.41,1.414,1.4142, 1.41421, .. } bethe set of successive deci-
mal approximations to v/2. Then B’ = {4/2}. Other examples of derived sets of
subsets of R are:

(3,5 =[3,5'=(3,5'=[35]'=[3 5]
(1,61 U (7,8) =[-1,6]U[7,8]
(16U (68) =[-18

Q=R

N =g.

The following theorem relates derived sets and closed sets.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



73 The Bolzano-Weierstrass Theorem 339
Theorem 7.3.2 A set Aisclosed iff A C A.

Proof. Suppose A is closed and x € Al. If x ¢ A, then x € A°, an open set. Thus
N(x, 8) C A® for some positive 6. But then N'(X, 8) can contain no points of A.
Thus x is not an accumulation point of A and so x ¢ A’, a contradiction. We con-
clude that x € A. Therefore A' C A.

Now suppose A' C A. To show that A is closed, we show AC is open. If A®isnot
open, there is at least one x € A° that is not an interior point of A®. Therefore, no
8-neighborhood of x is a subset of AS; that is, each §-neighborhood of x contains
a point of A. This point must be different from x, since x € A%. Thus x € A.. But
A C A sox € A. Thisisacontradiction. We conclude that A is closed. [

At the beginning of this section we suggested that every bounded infinite set

of real numbers, such as A= {1, —%% —%% ] must have at least one
accumulation point in R. We are now in a position to prove thisis so. The proof

uses the Heine-Borel Theorem.

Theorem 7.3.3 The Bolzano-Weierstrass Theorem
Every bounded infinite set of real numbers has an accumulation point in R.

Proof. Suppose the set A is bounded and infinite but has no accumulation points.
Then A =. Since ACA, A is closed (by Theorem 7.3.2). Then by the
Heine-Borel Theorem, A is compact.

Since A has no accumulation points, for each x € A there exists ¢ > 0 such
that N (X, 6x) NA={x}. Thus if ye A and x#Y, then y ¢ N(X, 8x). But this
meansthe family {N'(X, 6x): x € A} isaninfinite collection of open setsthat covers
A and has no subcover other than itself. Hence A has no finite subcover. This con-
tradictsthefact that A is compact. Therefore, A must have an accumulation point. =

Exercises 7.3

1. Provethat
(@) 7isanaccumulation point for [3, 7).

1+ (="
(b) 0Oisan accumulation point for {# ne N}.

n
(c) eisanaccumulation point for {<1+ %) ‘ne N}.

2. Find an example of an infinite subset of R that has
(@) noaccumulation points.
(b) exactly one accumulation point.
(c) exactly two accumulation points.
(d) denumerably many accumulation points.
(e) an uncountable number of accumulation points.
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3.

*

10.

12.

Find the derived set of each of the following sets.

@ {n;l:nef\l} b) {2"neN}
(c) {6n:ne N} (d) {%:neN}
© (0 1] ) (3, 7)U{46 8
(=D)"n
(9) {1+ ] .neN} (h)y 7z 2
() Q@n(o 1) i) 1+n(1n+(_1)):neN}

9

(k) [sin X X € (_7”

)} 0) ?:xe(o,n)]

X
(n) 5: X, Y€ Z}

—_— N

(m) {k+%: k,neN

Let S= (0, 1]. Find S N (S°)".
Provethat if ACR, z=sup (A), and z ¢ A, then zis an accumulation point
of A.

(@) Provethatif ACBCR,then A CPB.
(b) Isthe converse of part (a) true? Explain.

Let A and B be subsets of R.

(@ Provethat (AU B) = A U B'. (The operation of finding the derived set
preserves unions.)

(b) Provethat (ANB) CANB.

(¢) Findacounterexamplefor (AN B) =A'NB’.

Let A and B be sets of real numbers. Prove that

(@) ifBisclosedand A C B, then A’ C B.

(b) AU A isclosed.

(@) Provethat if xisan interior point of the set A, then x is an accumulation
point for A.

(b) Isthe converse of part (a) true? Explain.

() Provethat if SC R is open, then every point of Sis an accumulation
point of S.

(d) Isthe converse of part (c) true? Explain.

Which of the following must have at least one accumulation point?

(&) aninfinite subset of N (b) aninfinite subset of (—10, 10)
(c) aninfinite subset of [0, 100] (d) aninfinite subset of

1 p.
© {?.keN} ) |qPdeN.p<q

(9) aninfinite subset of @ N[0, 1]
Let A be aset of real numbers. Prove that (A")¢ C (A°)".

Let A and F be sets of real numbers and let F be finite. Prove that if x isan
accumulation point of A, then x is an accumlation point of A — F.
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Proofs to Grade 13. Assign a grade of A (correct), C (partially correct), or F (failure) to each.
Justify assignments of grades other than A.
(@ Clam. ForAABCR,(AUB)Y=AUB.
“Proof.”
(i) Since ACAUB, AC(AUB) by exercise 6(a). Likewise,
B’ € (AU B)’. Therefore, A UB’ C (AU B)".
(i) To show that (AUB) C A UB/, let xe (AUB)’. Then for all
6 > 0, N(x, 8) contains apoint of AU B distinct from x. Restating
this, we have, for all 6 > 0, that N(x, 8) contains a point of A dis-
tinct from x or a point of B distinct from x. Thus for al 6 > 0,
N(x, 8) contains a point of A distinct from x, or, for al 6 > 0,
N(x, 8) contains apoint of B distinct from x. But thismeansx € A
or x e B’. Therefore, xe AUB'. ]

(b) Claim. For AC R, (A% = (A)S
“Proof.” xe (A)Ciff xe A
iff xisnot an accumulation point for A
iff xisan accumulation point for A
iff xe (A°). ]
* (c) Clam. ForABCR,(A—B)CA -—B.
“Proof.” (A—B) =(ANB°%’ (definition of A — B)
CAN(B®) (Exercise7(b))
CAN(B)° (since(BY) < (B))
=A-B ]
(d) Claim. If Aisclosed, then A C A
“Proof.” SupposeAisclosed. Then ACisopen. Let x € A®. Thenxisan
interior point of A®. Therefore, there exists 6 > 0 so that N'(x, §) C AC.
Hence N(x,8) NA=J. Thus x is not an accumulation point for A.
Sincex € A°impliesx ¢ A, weconclude A’ C A. u
(e) Claim. If Aisasetwith an accumulation point, B C A, and B is infi-
nite, then B has an accumulation point.
“Proof.” First, Aisinfinite because B C A and B isinfinite. Since A
has an accumulation point, by the Bolzano—Weierstrass Theorem A
must be bounded. Since B C A, this means B is bounded. Hence by the
Bolzano-Weierstrass Theorem again, B has an accumulation point. =

74 The Bounded Monotone Sequence Theorem

Recall that a sequence of real numbersisafunction x from N to R and the notation
Xn IS used to represent the nth term of the sequence. We showed in Section 4.6 that
when a sequence converges (has alimit) then the limit is unique. For instance, the

111

first few terms of the sequencea given by a, = —ae 17 36 This sequence
n

. 1 . .
converges to 0 and we write lim — =0 In this section we prove that the
n— oo n
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Bolzano-Weierstrass Theorem implies that certain kinds of sequences of real
numbers (bounded monotone sequences) must converge. We begin by defining
bounded sequences and monotone sequences.

DEFINITIONS For a sequence x of real numbers, if there exists ared
number B such that x, < Bforal n e N, we say xisbounded above (by B).
Similarly, if there exists a real number B such that x, > B for all
n e N, we say xisbounded below (by B).
The sequence x isbounded iff xisbounded above and bounded below.

A sequence is bounded iff the terms of the sequence are never larger
than some fixed number and never less than some other (smaller) fixed number.
Thisis equivalent to saying that the set {x,: n € N} is abounded set—that is, the
range of the function x is a bounded subset of R. Boundedness may also be
described by the absolute values of the terms of the sequences.

Theorem 7.4.1 A sequence x of real numbersis bounded iff there exists areal number B such that
[X,| < Bforall ne N.

Proof. Exercise4. [

The sequencey given by y, = 2" is unbounded. Intuitively it seemsthat y must
diverge because its terms never approach any possible limit L. Our next theorem
confirms that every unbounded sequence diverges.

Theorem 7.4.2 If a sequence of real numbers converges, then it is bounded.

Proof. Suppose X is a sequence convergent to the real number L. For ¢ =1,
there is a natural number N such that if n> N, then |x,—L| <1 Since
[1%] — IL|] < |¥% — L|,wehavefordln> N, |[xy] — |L| < 1. Thusforaln> N,
[Xn] < |L|+ 1. (All but the first N terms are bounded by |L| + 1. e now find an

upper bound for those terms aswell.) Let B = max{ |xy|, |X2|,-.., [Xnl, L] + 1}.
Then | x| < Bforal ne N, and xisbounded above. A similar argument provesthat x
is bounded below. Therefore x is bounded. =

The proof shows that after the first few terms (that is, after N terms), the
remaining terms of the sequence must be close to the limit. Let x be the sequence

(=2)" 1 <n< 1000
Xn=19 15n
+1
This sequence converges to 15 and therefore must be bounded. In this case the first

“few” (1000) terms jump around before the terms settle in close to 15. The
sequence is bounded above by 219%° and below by —29%,

n > 1000
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DEFINITIONS Let x be asequence of real numbers. The sequence X is
increasing iff for al n,me N, if n < mthen x, < X

We say x is decreasingiff for al n,meN, if n<m then
Xn > Xm.

The sequence x is monotone iff x is either increasing or decreasing.

The sequence y given by y, = 2" isincreasing since n < mimplies 2" < 2™,
The sequence whose terms are z, = ™" is decreasing since the value of e™" gets
smaller as n gets larger. A constant sequence k, such that every term k;, is the num-
ber ¢ for some ¢ € R, is both increasing and decreasing. The aternating sequence
1,-1,1,-1,1,... is not monotone, because its terms are neither in increasing
order nor in decreasing order.

A proof that a given sequence X is increasing (or decreasing) is similar to the
proof that areal valued function isincreasing (or decreasing) on an interval 1. (See
Section 4.2.)

. n .. .
Example. Provethat the sequence x given by x, = N1 isincreasing.

Proof. Supposethat mand n are natural numbers and n < m. Then

mn 4+ n < mn+ m,
n(m+ 1) < m(n+ 1),

n
——— (sincen+ 1and m+ 1 are positive).
n+1 = m+ 1 { + + P )

Therefore, X, < Xm. Hence the sequence x isincreasing. |

The next theorem relates all the concepts of this section: A sequence of real
numbers that is both bounded and monotone must converge. The proof makes use
of the Bolzano—Weierstrass Theorem.

Theorem 7.4.3 The Bounded Monotone Sequence Theorem
For every bounded monotone sequence X, there is a real number L such that
lim x,=L.

n— oo

Proof. Assume x is a bounded and increasing sequence. (The proof in the case
where x is decreasing is similar.)
If {x,:neN} is finite, then let L =max{x,:ne N}. For some Ne N,
Xy = L and, since x is increasing, x, =L for all n > N. Therefore, nIim Xn = L.
— 00

Suppose {xn: N € N} is infinite. Then by the Bolzano-\Weierstrass Theorem,
the bounded infinite set {x,: N € N} must have at |east one accumulation point. Let
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L be an accumulation point. We claim x, < L for al n e N. If there exists N such
that xy > L, then x, > L for al n>N. Since L is an accumulation point of
{xn: ne N}, and {xn: n < N} isfinite, L is an accumulation point of {Xn: n > N},
by Exercise 12 of Section 7.3. Let 6 = |xy — L|. Then N'(L, 6) contains no points
of {x,: N> N}. Thisisacontradiction. Thus x, < L for al n.

We claim that the sequence x converges to L. Let ¢ > 0. Since L is an
accumulation point of {x,: n € N}, there exists M € N such that xy € N (L, &).
ThusL — & < Xy, andso,forn> M,L — & < Xy < X, < L < L + . Therefore, for
n>M,|xn—L|<s.ThusnIim Xn = L. ]

— 00

The Bounded M onotone Sequence Theorem can be used to prove the existence

of several important real numbers. For example, the constant e, the base of the nat-
ural logarithm function, can be defined as

1\n
=lim|1+—-]).
€ n%oo( +n>

n
To show that the sequence whose nthtermisx, = (1 + %) hasalimit, wewill
show that the sequence is bounded above and increasing.

By the Binomia Expansion Theorem (Theorem 2.6.9), for any n,

n
1 nl nn—-1)1 nh-2)Nn-2) 1 1
X”_(1+n>_1+1!n+ T T P
—_ — — |
i1 LN0-Y in0-bm-2) 1w
2! n? 3! n3 n! n"
1 1 1
Slldgtgt o+
PN WL
- 2 4 on-1
2n—-1
2nfl
<1+2

=3.

n
Thus the sequence X, = <1 + %) is bounded above by 3.

We next show that x is an increasing sequence. We again use the Binomial
Theorem to compare X, and Xn 1:

1 n

I1nn—-1 1nh-—2Nn-2 1n
=ttty Tty e Tt
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and

1 n+1
=1
*ot+1 ( oy 1)

1(n+Yn 1 (+Hm(n-1

:1+1+5(n+1)2 T (s 1)
i(n+l)(n)(n—1)-----3.2 1 (n+ 1)!
nl (n+ 1" (n+ 1! (n4 pn+t’

We leave it as Exercise 7 to show that each term in the expansion of x, isless
than or equa to the corresponding term in the expansion of x,.1. Additionally, the
1 (n+ !
" (n+1)! (n+ DY
the binomial expansion of X,. Thus x, < X1 foral ne N.
Because x is increasing, it is bounded below by its first term x; =

binomial expansion of X, 1 has one more positive term

1 1
(1 + I)l = 2. Thus x is bounded. By the Bounded Monotone Sequence Theorem, x

must converge. The limit of the sequence x is, by definition, the number e.

Exercises 7.4

1. For each segquence x, determine whether x is bounded, bounded above, or

bounded below.
© @ =10 ®) 0=t
* (0 X% =10" (d) x,= loggpon
CI T 0 x=""
© @ m=ntn () () %= (-1
© ) Xa=(-09)" () %= (-12)"
et (Y- D+ D

(k)  *n —n () n

2. Givean example of
(@) abounded sequence that is not convergent.
(b) anincreasing sequence that is not convergent.
(c) aconvergent sequence that is not monotone.
(d) adivergent sequence x such that the sequence whose nth term is | X;|
converges.
(e) anincreasing sequence that converges to %

3. Provethat if x, — 0 and y is abounded sequence, then x,y, — O.
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4. Prove Theorem 7.4.1.

5. For each sequence, determine whether the sequenceisincreasing, decreasing,
or neither. Prove your answer.

@ x="12 (0) yo=27
(© Xn=(n—2)(n-5)? d) yo= 2

2n—5 n!
(€ Xn= nt3 () Ynzﬁ
@ x=+n+1

6. Give a proof of the Bounded Monotone Sequence Theorem for the case in
which the sequence x is bounded and decreasing.

n
7. Complete the proof that x, = (l + %) is an increasing sequence by showing
Inn—-2)(n—-2)-...-[n— (k—1)]

that for all k < n, W " is less than or
: n
1 (N+)(M(n=2) - [n— (k-2
equal to — .
K (n+ 1k

8. Letxbeabounded increasing sequence. Use the compl eteness property of the
reals and properties of supremaand limitsto prove directly (without reference
to the Bolzano-Weierstrass Theorem) that x converges. (Hint: Consider the
supremum of the set of terms of x.)

9. Recall from Exercise 8 of Section 4.6 that the sequence y,, is a subsequence
of x, if and only if there is an increasing function f: N — N such that
Yn = X¢(n). Provethat if xisbounded, then every subsequence of x isbounded.

10. A sequence x of real numbers is a Cauchy* sequence iff for every ¢ > 0,
there exists an integer M such that if m, n > M, then |x, — Xn| < &. That is,
termsin the sequence are arbitrarily close together if the terms are chosen far
enough along the sequence.

(@) Provethat if x isa Cauchy sequence, then x is bounded. (It can also be
shown that every Cauchy sequence converges.)
(b) Provethat if x is a convergent sequence, then x is a Cauchy sequence.

11. Let x and y be positive real numbers with x >y. Let al=¥ and

b1 = +/Xy. The numbers a; and b; are called the arithmetic and geometric
b
means, respectively. In generd, for n>1, let a,. = 8 + bn

2
bn-&-l =V anbn-

(@ Useinductionto show that forall ne N, a, > an1 > by 1 > b

and

* Augustin Louis Cauchy (1789-1857) was a creative French mathematician and pioneer in the efforts
to bring rigor to the infinitesimal calculus. He was the first to define complex numbers as a pair of real
numbers. Cauchy’s name is associated with concepts and results in many fields of mathematics, includ-
ing geometry, analysis, and mathematical physics.
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75 Equivalents of Completeness 347

(b) Let a and b be the sequences whose terms are a, and b, respectively.
Show that both sequences a and b converge.
() Show that lim a,= lim b, This number is caled the arithmetic-
n—oo n—oo
geometric mean.

Proofs to Grade 12. Assign a grade of A (correct), C (partialy correct), or F (failure) to each.
Justify assignments of grades other than A.
(@) Claim. Every bounded decreasing sequence converges.
“Proof.” Let x be a bounded decreasing sequence. Then y, = —X,
defines a bounded increasing sequence. By the proof of Theorem 7.4.3,
lim y, =L forsomeL. Thus lim x,= —L. ]

n—oo n— oo

_Inn

(b) Claim. The sequence x, where x, = ~» converges.

. Inn
“Proof.” Since Inn = n for al natural numbers n, - < 1. There-

Inn, 1—1Inn
fore, X is abounded sequence. The derivative of . isiz, which
n
is less than O for every natural number n greater than e. Therefore,
except for the first two terms, X is a decreasing seguence. Since X is
bounded and decreasing, x converges. ]

75 Equivalents of Completeness

We began the chapter by stating without proof that the real numbers are a complete
ordered field. In subsequent sections we (1) used completeness to prove that a set
of real numbersis compact iff it isclosed and bounded, then (2) used that property
to provethat every bounded infinite set of reals has an accumulation point, and then
(3) used that property to prove that every bounded monotone sequence of real num-
bers converges. In this section we use the bounded monotone sequence property to
prove that R is complete. This result completes a cycle of implications about the
real numbers. See Figure 7.5.1.

When we finish this section, we will not have proved that the real numbers
have any of the four properties we have studied. Rather, we will have shown that
the completeness of R is equivalent to each of the other properties, so that we have
a deeper understanding of the meaning and importance of completeness.

Compl eteness

Bounded Monotone Heine-Borel
Sequence Theorem Theorem

- -

Bolzano—\Weierstrass
Theorem

Figure 7.5.1
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Before we get to the main theorem we need two lemmas about the convergence
of sequences. Their proofs are Exercises 1 and 2.

Lemma 75.1 If x and y are two sequences such that lim y,=s and lim (x,—y,) =0,
then lim x,=s. n—oe n—oe
n— oo
Lemma 7.5.2 If x is a sequence with lim x,=s and t is a real number such that t < s, then

i n— 00
thereexists N € N such that x, > t for all n > N.

Theorem 7.5.3 Suppose R hasthe property that every bounded monotone sequence must converge.
Then R is complete.

Proof. Let A be anonempty subset of R that is bounded above by areal number
b. To prove completeness, we must show sup (A) exists and isareal number. Since
A # J, we may choose a € A. If aisan upper bound for A, then a = sup (A) (see
Exercise 5(b) of Section 7.1) and we are done. Assume that ais not an upper bound
for A. If (a+ b)/2isan upper bound for A, let x; = aandy; = (a + b)/2; if not, let
X1 = (a+b)/2 and y; = b. In either case y; — X3 = (b — @)/2, X is not an upper
bound, and y; is an upper bound for A.

Now if (X1 4 y1)/2 isan upper bound for A, let X, = x; and y» = (X1 + Y1)/2;
otherwise, let xp = (X +y1)/2 and y,=Vi. In either case the result is that
Yo — %o = (b — @) /4, X2 > X1, X2 iS N0t an upper bound for A, whiley, < y;, and y,
isan upper bound for A.

Continuing in this manner, we inductively define an increasing sequence
X such that no x, is an upper bound for A, and a decreasing sequence y such
that every y, is an upper bound for A. By the hypothesis, since y is bounded
below, y converges to a point se R. In addition y,— x,=(b—a)/2", s0
nli)rrgo(yn —Xn) = nIi)rr;o(b — a)/2" = 0. Therefore by Lemma7.5.1,nll>ngoxn =s.

We claim that sis an upper bound for A. If z> sfor some ze A, then z > yy
for some N (because lim y,=s). This contradicts the fact that yy is an upper
bound for A. e

Finally, if tisareal number andt < s, thent < xy for some N € N by Lemma
7.5.2. Since xy is not an upper bound for A, t is not an upper bound.

Thus sisarea number that isan upper bound for A, and no number less than
sisan upper bound; that is, s = sup (A). Therefore, R is complete. =

We saw in Section 7.1 that (Q, +, -) is an ordered field that is not complete.
Thus, all the properties described by the main theorems of this chapter must fail for
the rational numbers. We give examples:

Example. The set A={xe Q: x? < 2} is a closed and bounded subset of Q.
A is not compact because {(—x, X): xe Aand x # 0} is a cover for A with no
finite subcover. This example shows that the Heine-Borel Theorem fails
for Q.
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Example. The set B={14,141,1414,14142,..} of (rationa) decimal
approximations of /2 is abounded and infinite subset of @ with no accumulation
point in Q. Thus the Bolzano—Welerstrass Theorem failsin Q.

Example. A counterexample to the Bounded Monotone Sequence Theorem in Q@
is the sequence whose terms are the successive decimal expansions of V2. This
bounded and increasing sequence fails to converge to any rational number.

Why is completeness such a crucia property of the real number system? In
n
Section 7.4 we saw that the sequence whose nth term is x, = (1 + %) is bounded

and increasing, so by the completeness of R (via the Bounded Monotone Sequence
Theorem), the terms x, must approach a unique real number, which is the number e.
The fact that important constants such as e must exist in R is a consequence of
compl eteness.

Not only must the limit of a bounded monotone sequence of rational numbers
bein R, but the same is true for a bounded monotone sequence of irrational num-
bers, or of rationals and irrationals. The completeness property and its equivalents
assure us that every number that is a limit of a sequence of realsisin fact a real
number.

A proof that R isacomplete ordered field requires a much more rigorous defi-
nition of areal number than we gavein the Preface to the Student. Such adefinition
requires construction of the reals from the rationals in such a fashion that the com-
pleteness property holds. What this means is that we must identify some set of
objects based on the rational numbers, tell how to add, multiply, and order these
objects, and then show that all the properties of a complete ordered field hold for
these objects.

One approach considers Cauchy sequences of rational numbers (see Exercise
10 of Section 7.4). Two Cauchy sequences {x,} and {y,} are equivalent iff the
seguence | X, — Yn| convergesto zero. In this approach, R isthe set of equivalence
classes of Cauchy sequences. For example, the real number J2is represented by
the eguivalence class containing the rational sequence 1, 1.4, 1.41, 1.414, 1.4142,
1.41421, 1.414213, 1.4142135, ... and all other Cauchy sequences equivalent to
this one. After carefully crafting the definitions of addition, multiplication, and the
order properties for equivalence classes of Cauchy sequences, one can show that
the resulting system is a complete ordered field. See Charles Chapman Pugh’s Real
Mathematical Analysis (Springer, 2002) for an explanation of how to define addi-
tion and multiplication and for why this system forms a complete ordered field.

A different approach to constructing the reals from the rationals sets up two-
element partitions of (D, called Dedekind* cuts as a method for defining irrational
numbers. For example, the pair {A;, As}, where A; ={xe Q:x < 0orx?> < 2}

* Richard Dedekind (1831-1916) was Gauss last graduate student at the University of Géttingen. A
strong supporter of Cantor, he was noted for hiswork with infinite sets and axiomatic definitions of num-
ber systems. He was the first to show that a set isinfinite iff it is equivalent to one of its proper subsets
and among the first to point out the importance of groupsin agebra.
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and A, = {xe Q: x> 0and x? > 2}, isacut that partitions Q into two sets: A; is
all rational numberslessthan +/2 and A isall rational numbers greater than +/2. The
cut { Ag, Ay} represents the real number V2. Again, one must carefully define addi-
tion and multiplication of cuts and the ordering of the set of all cuts. It can be shown
that the set of Dedekind cuts forms a complete ordered field. See Walter Rudin’s
Principles of Mathematical Analysis, 3rd ed. (McGraw-Hill, New York, 1976).

With much work we could show that R is essentially the only complete ordered
field. In Chapter 6 we discussed the concept of isomorphisms of algebraic structures:
one-to-one correspondences that preserve the algebraic structure. We could apply this
concept to ordered fields, and the end result would be that every complete ordered
field isisomorphic to the field of real numbers.

Equivalence classes of Cauchy sequences and Dedekind cuts give us vastly
different mental images of the real numbers, but the study of these approachesisthe
means to explain why the real numbers possess the powerful properties described
in this chapter.

Exercises 7.5

1. ProveLemma7.5.1.
2. ProveLemma7.5.2.

3. Givean example of
() aclosed subset A of (@ suchthat A C [7, 8] and A is not compact.
(b) abounded infinite subset of @ N [7, 8] that has no accumulation point
in Q.
(c) a bounded increasing sequence x of rational numbers such that
{xn: ne N} [7, 8] and x hasno limitin Q.
4. Fortheset R — @ of irrational numbers, give an example of
(@) aclosed subset A of R — @ such that A C [3, 4] and A is not compact.
(b) abounded infinite subset of R — @ N [3, 4] that has no accumulation
pointin R — Q.
(c) a bounded increasing sequence x of irrational numbers such that
{¥:neN} C[3,4] andxhasnolimitin R — Q.
5. (@) Find [ Aywhereforall ne N, A,isdefined as follows:

neN
0] Anz{—%,%} (i) %:{2—;,4—}-;}
(i) A=, o0) ™ A=(07)

(b) (The Nested Interval Theorem) Show that if A,=[a, by is a
sequence of closed intervals such that A, 1 C A, for al ne N, then

N A #£D.

neN
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Proofsto Grade 6. Assignagrade of A (correct), C (partialy correct), or F (failure) to each. Justify
assignments of grades other than A.

(@ Claim. If every bounded monotone sequence in the reals is conver-
gent, then the reals are compl ete.

“Proof.”  Suppose the reals are not complete. Then there is a bounded

infinite subset A of R such that A has no supremum in R. Let x; € A,

Then x; is not an upper bound for A, or else x; would be the least upper

bound (sincex; € A). Thus there is an x, € A such that X; < xo.

Likewise, x, € Aand x; isnot an upper bound, so there exists x; € Awith

X2 < X3. Continuing in this fashion, we build an increasing sequence

X1, X2, X3, . . . . This sequence is bounded since it is a subset of A. There-

fore, L= lim x, exists. SinceL > x, for all ne N, L isthe supremum

of A Ther}gf)gr)e sup (A) exists, which is a contradiction. Thus R is
complete. =
* (b) Claim. The Bolzano—Weierstrass Theorem implies the completeness
of R.
“Proof.”  Suppose that every bounded infinite subset of the reals has
an accumulation point. Let A be an infinite subset of R with an upper
bound ag. Then B = [0, ag] N Aisabounded set. If Bisfinite, then B has
aleast upper bound, which is aleast upper bound for A. If Bisinfinite,
then by the Bolzano—\Weierstrass Theorem, B has an accumul ation point
a; which, by construction, is the least upper bound of A. u
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Answers to Selected Exercises

Exercises 1.1

1. (b)

©)
2. (0

(f)
3. (a)

(©

()

false

true

not a proposition; the symbol x acts as a variable
a true proposition

P ~P PA~P

T F F

F T F

P Q ~Q PAQ

T T F F

F T F F

T F T T

F F T F

P Q ~Q PAQ (PAQV~Q
T T F T T
F T F F F
T F T F T
F F T F T
P Q R QVR PAQVR
T T T T T
F T T T F
T F T T T
F F T T F
T T F T T
F T F T F
T F F F F
F F F F F

353
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4. (a) false
(c) true
(f) false
(g) true
6. (a) equivalent
(c) equivalent
(e) not equivalent
(g) notequivalent
8. (a) Since Pisequivalentto Q, P has the same truth table as Q. Therefore, Q
has the same truth table as P, so Q is equivalent to P.
9. (c) tautology

P Q PAQ ~Pv ~Q PAQV(~PV~Q)
T T T F T
F T F T T
T F F T T
F F F T T

10. (a) contradiction

(c) tautology
11. (a) xisnot positive.

(0 5<3

(e) Roses are not red or violets are not blue.
13. (8 () P Q POQ

mH4TH
i |
mHAT

Exercises 1.2

1. (a) Antecedent: squares have three sides.
Consequent: triangles have four sides.
(d) Antecedent: f is differentiable.
Consequent: f is continuous.
(f) Antecedent: f is integrable.
Consequent: f is bounded.
(i)  Antecedent: An athlete qualifies for the Olympic team.
Consequent: The athlete has a time of 3 minutes, 48 seconds or less.
2. (a) Converse: If triangles have four sides, then squares have three sides.
Contrapositive: If triangles do not have four sides, then squares do not
have three sides.
(d) Converse: If fis continuous, then f is differentiable.
Contrapositive: If f is not continuous, then f is not differentiable.
(f) Converse: If fis bounded, then f is integrable.
Contrapositive: If f is not bounded, then f is not integrable.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Answers to Selected Exercises 355

(j) Converse: Atime of 3 minutes, 48 seconds or less is sufficient to qualify
for the Olympic team.
Contrapositive: If an athlete records a time that is not 3 minutes and 48
seconds or less, then that athlete does not qualify for the Olympic team.

5. (@) true
(c) true
(e) true
6. (a) true
(c) true
7. (b) P Q ~P ~P=0Q Qs P ~P=Q Vv Q&P
T T F T T T
F T T T F T
T F F T F T
F F T F T T
© P Q ~Q Q&P (~Q=Q+<P)
T T F T T
F T F F T
T F T F F
F F T T T

10. (a) fhas a relative minimum at xg A f is differentiable at xo = f’(x) = 0.
(d x=1vx=-1=|x| =1
() xgisacritical point for f < f’(xg) =0 Vv f’(Xp) does not exist.

11. (b) There are three nonequivalent ways to translate the sentence, using the
symbols D “The Dolphins make the playoffs” and B “The Bears win all
the rest of their games.”

D= B or (~B) = (~D)

B= D or (~D) = (~B)

D < B or (~B) & (~D)
The conditional meaning of unless (the first translation) is preferred, but
the speaker may have intended any of the three.

12. ) P Q R PAQ PAQ=R ~R ~Q PA~R (PA~R=~Q

MAT AT AT
i e e e e R |
i B e s R B R |
M4 TmA
44T A4+
A4 44T TmTm
44T 44TT
MH4THdTTTTm
44T A4+

Since the fifth and ninth columns are the same, the propositions
PA Q= Rand (P A ~R) = ~Q are equivalent.
13. (a) If 6isaneven integer, then 7 is an odd integer.
(c) not possible
16. (a) tautology
(d) neither
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Exercises 1.3

1. (@ ~(VYX)(xisprecious = X is beautiful).
Or, (3IX)(x is precious and x is not beautiful).

(b) Hint: This exercise is not the same as 1(a).

(hy (WWxeZ=x>—-4vx<b)or(VxeZ)(x> -4 Vv x<6)

() ~@(vy)(x=y)or (VX)) (x<y)

(I (Ix)(xis apositive integer and x is smaller than all other positive integers).
Or, (IX)(x is a positive integer and (Vy)(y is a positive integer =
X <))

(m) (VX)(~(Vy)(x loves y)). Or,~(IX)(Vy)(x loves y).

2. (8 (VvX)(xis precious = x is beautiful). All precious stones are beautiful.

(h) (Ixe Z)(x < —4 A x < 6) There is an integer that is both less than or
equal to —4 and greater than or equal to 6.

() (3 (VYY)(x =y) There is an integer that is greater than or equal to every
integer.

() (vX)(xis a positive integer = (3y)(y is a positive integer) A X >)).
For every positive integer there is a smaller positive integer. Or,
~(3IX)(x is a positive integer A (Vy)(y is a positive integer = x <)).
There is no smallest positive integer.

(m) (IX)(Vy)(x lovesy) Someone loves everyone.

5. The first interpretation may be translated as
(VX)[x is a person = (Vy)(y is a tax = xdislikesy)].
(& T,U,V,and W
7. (b) Hint: Every sentence of the form P(x) is equivalent to ~~P(x). Use
this fact to rewrite (YX)(~A(X)) and then simplify by using part (a).
8. (b) true
(e) false
(h) true
9. (b) Only one real number is both nonnegative and nonpositive.
(d) There is exactly one real number whose natural logarithm is 1.
10. (a) true
(d) false
(f) false
(i) false
11. (a) Hint: Begin by supposing that U is any universe and A(X) is an open
sentence.
(b) Hint: You must name a specific universe and a specific open sentence
such that the converse is false.
€  (VI)(~AKX) v 3YE)AY) A AR Ay F#2)
13. (d) This statement is not a denial. It implies the negation of (3! x) P(x), but
if (¥X) ~P(x), then both the statement and (3!x) P (x) are false.
14. For every backwards E, there exists an upside down Al

o
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Exercises 1.4

1 (@ Sgppose (G, *) is a cyclic group.

Thus, (G, *) is abelian.
Therefore, if (G, *) is a cyclic group, then (G, *) is abelian.

4. (a) The crime took place in the library, not the kitchen. By fact (i), if the
crime did not take place in the kitchen, then Professor Plum is guilty.
Therefore, Professor Plum is guilty.

5. (h) Proof. Suppose x is even and y is odd. Then x = 2k for some integer k,
and y = 2] + 1 for some integer j. Therefore, x + y=2k+ (2 + 1) =
2(k +j) + 1, which is odd. (We use the fact that k + j is an integer.)

6. (d) Hint: The four cases to consider are: case 1, in which a > 0and b > 0; case
2, inwhich a < 0and b < 0; case 3, in which a > 0 and b < 0; and case
4,inwhicha < 0and b > 0. In case 3 it is worthwhile to consider two sub-
cases: In subcase (i), a+ b > 0, so that |a+ b| = a + b; in subcase (ii),
a+b<0, sothat |[a+ b| = —(a+ b). Now in subcase (i) we have
la+bj=a+b<a (from b <0) and a<a+ (—b) (from 0 < —h).
Thus, |a+ b| <a+ (—b) = |a| + |b|. Subcase (ii) is similar. Case 4 is
the same as case 3 except for the names of the variables a and b.

7. (b) Proof. Letabe an integer. Assume that a is even. Then a = 2k for some
integer k. Therefore, a+ 1 =2k + 1, soa+ 1 is odd.

(d) Proof. Hint: Let a be an integer. Use the fact that a is either even or odd
to give a proof by cases. It is acceptable, but not necessary, to use the
definitions of even and odd in proving these cases: previous exercises
have laid the foundations we need. For the case when a is even, use
Exercise 7(c) and 5(i). For the case when a is odd, we may use Exercise
5 (e), and then use Exercise 5(i) again.

(g) Proof. Suppose a and b are positive integers and a divides b. Then for
some integer k, b = ka. (WWe must show that a < b, which isthe same as
a < ka. To show a < ka, we could multiply both sides of 1 < k by a,
using the fact that a is positive. To do that, we must first show 1 < k.)
Since b and a are positive, k must also be positive. Since k is also an inte-
ger,1 <k Therefore,a=a-1<a-k=Db,soa<h.

(i) Proof. Suppose a and b are positive integers and ab=1. Then a
divides 1 and b divides 1. By part (g) a< l1and b < 1. Butaand b are
positive integers,soa=1and b= 1.

10. (a) Proof. Suppose A > C > B > 0. Multiplying by the positive numbers
C and B we have AC > C2 > BC and BC > B?, so AC > B? AC is
positive, so 4AC > AC. Therefore, 4AC > B?, so B? — 4AC < 0. Thus,
the graph must be an ellipse.

11. (a) F. This proof, while it appears to have the essence of the correct reason-
ing, has too many gaps. The first “sentence” is incomplete and the steps

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



358 Answers to Selected Exercises

are not justified. The steps could be justified either by using the defini-
tions or by referring to previous examples and exercises.
() C.The order in which the steps are written makes it look as if the author

1
of this “proof” assumed that x + x = 2. The proof could be fixed by
beginning with the (true) statement that (x — 1) > 0 and ending with

. 1
the conclusion that x + X > 2.

(d) F Thisis not a proof of the statement. It is a proof of the converse of the
statement.

Exercises 1.5

1. (a) Suppose (G, *) is not abelian.

Thus (G, *) is not a cyclic group.
Therefore, if (G, %) is a cyclic group, then (G, *) is abelian.
(c) Suppose the set of natural numbers is finite.

Therefore statement Q.

Therefore statement ~Q.
This is a contradiction.
Therefore the set of natural numbers is not finite.
(e) (i) Suppose that the inverse of the function f from Ato B is a function
from Bto A.

Therefore f is one-to-one.

Therefore fis onto B.
Therefore f is one-to-one and onto B.
(if) Suppose that f is one-to-one and onto B.

Therefore, the inverse of the function f from A to B is a function
from B to A
3. (a) Proof. Suppose that the integer x 4+ 1 is not odd. Then x + 1 is an even
integer. Thus, there exists an integer k such that x4+ 1 = 2k. Then
Xx=2k—1=2(k—1)+ 1, so x is not even. We have shown that if
X + 1 is not odd, then x is not even. Therefore, if x is even, then x + 1 is
odd.

(e) Hint: The contrapositive statement for “if X + y is even, then either x and
yare odd or xand y are even” is “if it is not the case that either xand y are
odd or x and y are even then x 4 y is not even.” This is equivalent to “if
either x is even and y is odd or x is odd and y is even, then x + y is odd.”

4. (b) Proof. Suppose it is not true that 2 < x < 3. Then either x < 2 or
x>3. Ifx<2 thenx—2<0and x—3 <0 (sncex—3 <Xx—2).
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Because the product of two nonpositive numbers is nonnegative,
(Xx—2)(x—3)=x?>—5x+6>0. In the other case, if x> 3, then
X—3>0 and x — 2> 0. Therefore (x—2)(x—3) =x? — 5x+ 6 > 0.
In either case x? — 5x + 6 > 0. We have shown that if x < 2 or x > 3,
then x? — 5x + 6 > 0. Therefore, if x> —5x+6 < 0 then 2 < x < 3.

6. (b) Proof. Suppose aand b are positive integers. Suppose ab is odd and sup-
pose a and b are not both odd. Then either a is even or b is even. If ais
even, then a = 2k for some integer k. Thus ab = (2k)b = 2(kb) is even.
Likewise, if b is even, then b =2m for some integer m and, again,
ab = a(2m) = 2(am) is even. Either case leads to a contradiction to the
hypothesis that ab is odd. Therefore, if ab is odd then both a and b are
odd.

12. (b) A

Exercises 1.6

1. (@ Choose m= —3andn=1. Then2m+ 7n=1.
(c) Suppose mand n are integers and 2m+ 4n = 7. Then 2 divides 2mand
2 divides 4n, so 2 divides their sum 2m + 4n. But 2 does not divide 7,
so this is impossible.
(f)  Hint: See the statement of part (d). Can you prove that mand n are both
negative whenever the antecedent is true?
2. (b) Proof. Assume adivides b — 1 and ¢ — 1. (The proof involves writing
bc — 1 asa sum of multiples of a, using the fact that if a divides a num-
ber, it divides any multiple of that number (Exercise 7(h) of Section 1.4)
or, more generally, the fact that if a divides two numbers, it divides any
sum of multiples of the two numbers (Exercise 2(a)).) Then adivides the
product (b — 1)(c — 1) = bc — b — ¢ + 1. By Exercise 2(a), a divides
(bc—b—c+ 1)+ (b—1)=bc—c. Then also by Exercise 2(a), a
divides the sum (bc — ¢) + (c — 1) =bc — 1.
4. (h) Hint: For a counterexample, choose x = 1. Explain.
(i) Hint: For a proof, choose y = x. For a different proof, choose y = 1.
6. (c) Proof. Letnbe anatural number. Then both 2n and 2n + 1 are natural
numbers. Let M = 2n+ 1. Then M is a natural number greater than 2n.
(g) Proof. Lete > 0 be areal number. Then % is a positive real number and
so has a decimal expression as an integer part plus a decimal part. Let M
be the integer part of % plus 1. Then M is an integer and M > % To

prove for all natural numbers n> M that %< e, let n be a natural
number and n > M. Since M > % we have n > % Thus% < ¢. Therefore,
for every real number ¢ > 0, there is a natural number M such that for
all natural numbers n > M, % <eé.

(h) Hint: Because mis positive, the statement £ — £ < ¢ follows from £ < e.
7. (@) F. The false statement referred to is not the opposite (denial) of the
claim.
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(b) C. The “proof” shows that there is a polynomial with the required prop-
erties, but must also show that there is no other polynomial with these
properties.

(d) A.

(i) Hint: The grade should be C. What error must be corrected?

Exercises 1.7

1. (a) Proof. (We work both forwards and backwards. From the hypothesis
that 3n 4 1 is odd we can deduce that 3n is even, from which we can
deduce that n is even. We could reach the conclusion that 2n + 8 is
divisible by 4 if we knew that 4 divides 2n (since 8 isdivisible by 4). In
turn, the statement 2n isdivisible by 4 may be derived fromthe statement
that n is divisible by 2. We combine these steps in the proper order to
create the proof.)

Suppose n is an integer and 3n+ 1 is odd. Therefore 3n is even,
which implies that nis even. (\We are now using properties of even and odd
integers that we proved earlier, without referencing specific examples or
exercises.) Since nis even, nis divisible by 2. Therefore 2n is divisible by
4. Finally since 8 is also divisible by 4, 2n 4+ 8 is divisible by 4. =

(b) Proof. Letabe areal number, a 3. (The key to the proof isto use the
idea of “ solution” and then work with the resulting equation.)
Assume that a is a solution to x? — x — 6 = 0.
Then a makes the equation true (by the definition of a solution to an
equation).
Thusa®? —a—6=(a—3)(a+2)=0.
Thena+ 2 =0, because a — 3 # 0.
Then (@®+ 1)(a+2)=a%+2a°+a+3=0.
Therefore ais a solution tox® + 2x? + x4 3 = 0. m
() Proof. Assume that a # 3. (Observe that in the proof above, each step
implies its predecessor. Thus we can modify the given proof to
create an iff proof.
aisasolutionto x> —x—6=0
iffa>—a—6=(a—3)a+2)=0.

iffa+2=0. (Becausea — 3£ 0.)
iff (@°+1)(a+2)=a’+2a’+a+3=0. (Becausea? 4+ 1 #0.)
iff ais a solution to x® 4+ 2x? + x4+ 3 =0. u

(d) Proof. Suppose x?=2x+15 and x> 2. Then (x—5)(x+3)=0.
Since x> 2, x must be 5. Then x —4 and x— 3 are positive, so
(x—4)/(x—13) > 0. u

(e) Proof. Let x and y be real numbers. (The statement has the form
P = (Q Vv R), soit might be proved by assuming P and ~Q and deduc-
ing R. In this case a proof by contrapositive works well.) Assume that
neither x nor y is irrational. Then botrh xand y are rational, so they can be

written in the form x=g and y = @ where p, g, r, and s are integers,
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p r_ps+rq

q ST
and gs are integers and gs# 0, X+ Yy is a rational number. We have
shown that if x and y are rational, then x + y is rational. We conclude
that if X + y is irrational, then either x or y is irrational. ]

(fy Proof. (If welet Sbethe set of all nonvertical linesin the xy-plane, we
can simplify the symbolic form of the theorem as follows:

(VL3 € S)(VL; € SYL; and L, are perpendicular =

(slope of L) - (slope of L) = —1).)

Let L; and L, be nonvertical lines. Suppose L; and L, are perpendicu-
lar. (We now use the fact that the slope of a nonvertical line is tan(«),
where « is the angle of inclination of the line.) Let «; and a; be the
angles of inclinations of L; and L, respectively. See the figure. We may
assume that a3 > ap. (We can make this assumption because the two
linesarearbitrary; if oy < ap Simply interchange thelabels of thelines.)
Since Lj and L, are perpendicular, oy = ap + % Therefore,

1
tan (ay)
(We use trigonometric identities to rewrite tan(aj).) Thus,
tan (ay) - tan (ap) = —1. Since tan («y) is the slope of L; and tan (ay)
is the slope of L, the product of the slopes is —1. ]

q#0, and s~ 0. Therefore, X +y=

. Since ps+rq

tan (1) = tan (a2 + 5 ) = —cot(az) = —

y
Ly L,

— o2 ‘?1 N
(g) Proof. (Thisisa"“ non-existence” proof. We could restate the result as
“ Every point inside the circleisnot on theling” and begin a direct proof
by assuming that (X, y) is a point inside the circle. e would then have

to prove that (x, y) is not on the line. In thisinstance, a better approach
isto use a proof by contradiction. The statement has the form

~(3X)(FY)((x,y) isinside the circle A (X, y) is on the line).)

Suppose there is a point (a, b) that is inside the circle and on the line.
Then (a— 3)? + b?> < 6 and b= a + 1. (\We now have two expressions
to use.) Therefore,

(a—3)2+@+1)%<6
2a° —4a+10 <6

a®—2a+5<3
a?—2a+1<-1
(a—1)?<-1.
This is a contradiction since (a — 1)? > 0. Thus, no point inside the cir-
cle is on the line. [ ]
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(h) Proof. (Proofsthat verify equalities or inequalities containing absolute
value expressions usually involve cases, because of the two-part
definition of |x|. Thetwo casesarex — 2 > 0 and X — 2 < 0. The proof
in each case is discovered by working backwards from the desired con-
clusion. The key steps are to note that, in the first case, if x > 2, then
—6 < X, and, in the second case, that if x > 1, theng <X)

Let x be a real number greater than 1.
Case 1. Suppose X — 2 > 0. Then |x — 2| =x — 2. Since x > 2,
—6 <x
3X — 6 < 4x
3(x—2)
X

< 4. (Remember that x is positive.)

3|x—2|

Therefore, <4,

Case 2. Suppose X — 2 < 0. Then |x — 2| = —(x — 2). By hypothesis,
x> 1. Therefore,

7=
6 < 7x
6 — 3x < 4x
3[—(x—2)] < 4x
3[-(x—2
w < 4. (Remember that x is positive.)
Therefore, M < 4. [

2. (e) Hint: Write n® — nas the product of 3 consecutive integers.
4. (b) Hint: Is it possible that for all irrational numbers x and y, x + vy is irra-
tional? Or could X 4+ y = 0?
8. (&) Proof. Suppose (x, y) is inside the circle. Then from the distance formula,
(X —3)?+ (y— 2)? < 4. Therefore, |x—3|°<4 and |y—2|?><A4.
It follows that [x — 3| <2 and |[y—2] <2,50 -2 <X —3<2and
—2<y—2<2Thusl <x<5and0 <y < 4. Therefore, x? < 25 and
y? < 16, s0 x> + y? < 41.
9. (d) —36=(—8)5+ 4. The quotient is —8 and remainder is 4.
14. (a) Hint: Use Theorem 1.7.3 and then Theorem 1.7.1.
() Hint: Assume that d = gcd(a, b) = 1 and a divides bc. Write 1 as a lin-
ear combination of a and b, and then multiply by c.
16. (a) Proof. Suppose pis prime and ais any natural number. The only divisors
of pare 1 and p, and gcd (p, a) divides p, so gcd (p, &) = 1 or p. (i) Assume
gced(p, @) = p. Then p divides a by definition of ged. (ii) Suppose p
divides a. Then pisacommon divisor of pand a. Since pis the largest divi-
sor of pit is the largest common divisor of p and &, so gcd(p, a) = p.
20. 42
21. (&) Hint: Use a two-part proof. For the part of the proof that assumes a
divides b, show both conditions (i) and (ii) for the Icm are satisfied by b.
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(¢) Hint: Assume that gcd (a, b) = 1. Since b divides m= Icm(a, b), m= kb
for some integer k. Use part (b) to show that k < a. Then use part
(c) of Exercise 14 to show that a divides k. Conclude that a=k, so
m= kb = ab.
(f) Hint: By Exercise 14(d), gcd(%‘, g) = 1. Use part (c) to find an expression
ab
dd
Icm(g, g). Equate the two expressions and simplify.
23. (b) A

for Icm( ) Then use part (e) to obtain another expression for

Exercises 2.1

1. (@ {xeN:x<6}or{xxeNandx< 6}.

() {xeR:2<x<6}or{xxeRand2 < x < 6}.
3. (a) Suppose that X is a set. If X € X then X is not an ordinary set, so X ¢ X.
On the other hand, if X ¢ X, then X is an ordinary set, so X € X. Both
X e Xand X ¢ X lead to a contradiction. We conclude that the collection
of ordinary sets is not a set.

4. (a) true
(c) true
(e) false
(g) true
(i) false

5 (& true
(c) true
(e) false
(g) false
(i) false
(k) true

6. (@ A={1,2},B={1,2,4},C={1,25}

(o0 A={1,2,3},B={1,4},C={1,2,3,5}

8. Hint: To prove that if AC B and B C C, then A C C, begin by assuming
that AC B and B € C. To show that A € C, we recall that A< C means
(VX)(x e A= x e C). The first steps are: Let x be any object. Suppose x € A.
Now use the fact that AC Band B C C.

9. Hint: To prove A = B, use the hypothesis A € B and show B C A by using
Theorem 2.1.1(c).

14. (@ {0} {2}, {00} {0, A}{0, 00} {A, 00}, X, &}
(© {2} {ah} (b} {{a b} {D. {a}}.{D. {b}}.{<.{a, b}}, {{a}. {b}},
{{a}. {a b}}, {{b}. {a, b}}, {J, {a}, {b}}. {<, {a}. {a b}},
{©. {b}, {a b}}. {{a}, {b}. {a b}}, X, I}
15. (a) false
(e) false

(g) true
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16. (a) no proper subsets

(b) <, {1}, {2}

17. (@) true

(c) true

(e) true

(g) true

(i) true

(k) true

19. (c) C.The “proof” asserts that x € C, but fails to justify this assertion with
a definite statement that x € A or that x € B. This problem could be
corrected by inserting a second sentence “Suppose x € A” and a fourth
sentence “Then x € B.”

(e) F. The error repeatedly committed in this proof is to say A C B means
x € A and x € B. The correct meaning of A C B is that for every X, if
X € A, then x € B.

(h) C. The proof could be considered correct, but it lacks a statement of the
hypothesis, helpful explanations and connecting words. How much
explanation you include depends on the presumed level of the reader’s
knowledge. We prefer the use of words, not just symbols.

(i) F. The claim is false. (For example, let A={1,2}, B={1, 2,4},
C={1, 2,5, 6, 7}.) The statement “Since x € B, xe A...,” would be
correct if we knew that BC A.

Exercises 2.2

1L (@ {
© {
(e {3
(9 {157}
i {1,5 7}
2. (b) (1,8
(d) [2,4)
(h) (=00,3)U[8, )
3. (@ {0, -2, -4,-6,-8,-10,...}
(d) Z~u{0}
(99 {0,2,4,6,8,...}
4. Aand B are disjoint.
6. (a) A \enn diagram is helpful.

5,6,7,8,9}

A B
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Since C € AU B, every element of C is either in A or B. In the diagram,
the shaded area must be empty. Since AN B is not a subset of C, there
is some element x that is in A N B, but not in C. To ensure that C is non-
empty, we must place an element y in any one of the three available
regions of C. Our solution is A= {x}, B={x, y}, C = {y}. For other
correct examples, we could place other elements anywhere in the
diagram (except in the shaded region).

9. (@) Hint: To prove that AC B implies A— B=(J, assume that ACB
and show that x € A — B is false for every object x. To prove the con-
verse, assume A — B = (J and there is some object xin A.

(c) Proof.
(i) Assume CC ANB. Suppose xe C. Then xe ANB, so xe A
and x € B. Since x € C implies xe A, C C A. Similarly, C C B.
(i) Assume CC A and C C B. Suppose xe C. Then from CC A
we have xe A and from CC B we have xe B. Therefore,
x € AN B. We conclude that C C AN B.

10. (c) Proof. Suppose C < Aand D C B. Assume that C and D are not dis-
joint. Then there is an object xe CN D. But then xe C and x € D.
Since CC Aand D C B, xe Aand x € B. Therefore, xe AN B, so A
and B are not disjoint.

1. (@ A={1,2},B={1,3},C={23, 4}

o0 A={1,2}B={1,3},C=4{2,3}
e A={1,2},B={13}, C={1}
12. (a) Proof. SeP(ANB)
iff SCANB
iff (by Exercise9(c)) SCAand SCB
iff Se #(A) and Se ¥ (B)
iff Se ?(A) NP (B).
(d) Proof. Let Aand B be any sets. Since J is a subset of every set we
have JeP(A—B). Also JeP(A) and Je P(B). Therefore
¢ P(A) — P(B). This shows that P (A — B) £ P (A) — P(B).
13. (b)) AxB= {1 a), 1{}) 1) 2 0a),2{}) @2 mn),
({12}, o), ({1, 2}, {t}), ({1, 2}, 1)}
BxA={(a 1), {t} 1), (1), 2),{t} 2, ( 2),
({1, 2}), {1} {1. 2}), (=. {1, 2})}
15. (@) Proof. (a,b)e Ax (BNC)
iffac AandbeBNC
iff ac AandbeBandbe C
iff ac AandbeBandace Aandbe C
iff @b)e AxBand(a bh)e AxC
iff (ab)e (AxB)N (AxC).

19. (a) F. One serious error is the assertion that x ¢ C, which has no justification.
The author of this “proof” was misled by supposing x € A, which is an
acceptable step but not useful in proving A — C € B — C. After assuming
that A C B, the natural first step for proving that A—CCB—C is
to suppose that xe A — C.
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(b) Hint: The second sentence of this proof says “Suppose A — C,” which
doesn’t make good sense when you think about it. (What should we
suppose about the set A — C?) Consider that the author of this proof
may have meant to say “Suppose x e A — C.”

(d) C. The proof that AN B = Alis incomplete.

(e) F. The claim is false. The statement “xe A and xe J iff xe A” is
false.

() F. Although a picture may help by suggesting ideas around which a cor-
rect proof can be made, a picture alone is rarely sufficient for a proof.
Thus a proof that consists only of Venn diagrams will usually have a
grade of F. This “proof” is made better because of the explanation that is
included, but the only way to give a complete proof is to show that
AUBCBandBC AUB.

Exercises 2.3

1. (a AUggA:{l, 2,3,4,5,6,7,8}; Aﬂ&gA={4, 5}

© UA,=1{5,6,10,11,12,15,16,17,18} U{neN:n >20}; (A, =D

neN neN

©® UA=z [1A={10}

Aedd Aed

@ UA=(1); nﬂNAn =]

neN

0 UA=[00c0)NA=0

reR reR
(p) The union is the triangular region bounded by y =0, x=1, y=x. The

intersection consists of the sides of the triangle that lie on the axes.
2. The family in Exercise 1(a) is not pairwise disjoint. The family in 1(b) is pair-
wise disjoint.
4. (a) Hint: For what real numbersis (VA)(Ae sl = x € A) true?
(b) Hint: For what real numbers is (3A) (A € o A X € A) true?

5. (a) Let Be A. Suppose xe [ ) A.. Then x e A, for each a € A. Since

aeA

B € A, xe Ag. Therefore (| AC Ag.

aeA

6. (8 xeBn [JA, iffxeBandxe A,

aeA aeA
iff xeBandxe A, forsomea € A

iff xe BN A, forsomea e A
iff xe |J (BNA).

aeA
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r @ (Ua)o (o) - L))
- Uy ane)

8. (¢) Hint: The statement is correct.
9. (@) Suppose xe |[JA, Then xeA, for some acI'. Since I'C A,

ael’

a € A. Thus x € A, for some a € A. Therefore, x € U A,

acA

10. (@) Proof. Let xe B. For each Ae o4, BC A. Thus for each Ae A,
x € A. Therefore xe [ A

Aed
©) X= A
Aedd

m
15. (c) Proof. Let xe [JA. Then there exists j € N such that k <j <m
i=k

and x e A. Since j e Nand x € A, xe [JA.
i=1
Alternate Proof: The set I' ={k, k+ 1, k+ 2,..., m} is a subset of

m 00
A ={1,2,3,...} Therefore, by Exercise 9(a), [ JA < JA.
i=k i=1

17. (a) LetAc= [—% 1+ %) for each k € N.

18. (a) C. This proof omits an explanation of why there is some B in A such that
Az € {Aa: @ € A}. The explanation is that by definition of an indexed
family, A = &. If we allowed A = &, the claim would be false.

(b) C. No connection is made between the first and second sentences. The
connection that needs to be made is that if x € U A, then x € A, for
some a € A, so X € B because A, C B. aed

(e) F. Theclaimis false. [ J[n, n+ 1) =1, c0).

n=1

Exercises 2.4

1. (b) notinductive
(d) notinductive
(f) not inductive
2. (b) true
(e) false
4. (& (n+2)(n+1)
5. () A={n:n=2"for some k € N} may be defined as
iy 2eA
(i) ifxeA then2xe A
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6. (a) Proof.

0] The statement is true for n=1 because Z(3| —2)=1 and
T -1=1 -

n
(i) Assume that for some ne N, Y (3i —2) = g(3n —1). We must
i=1

n+1 n-+ 1
show Y (3i —2) = — (3(n + 1) — 1). The equation’s left-hand
i=1

side is i(si -2 +[B(n+1)-2]= g(sn—1)+(3n+1):
i=1

gnz+gn+1 and the equation’s right-hand side s

%(n + 1)(3n + 2), which also simplifies to %nz + gn + 1.
Thus the statement is true for n + 1.
(iif) By the PMI, the statement is true for every n € N.

7. (b) Proof.
(i) Forn=1,4'— 1= 3, whichis divisible by 3.

(i) Suppose for some k e N that 4% — 1 is divisible by 3. Then
4l 1 =404 -1
=4(4k-1)—-1+4

=4(4—1) + 3.
Both 3 and 4% — 1 are divisible by 3, so 41 — 1 is divisible
by 3.
(iii) By the PMI, 4" — 1 is divisible by 3 for all n e N.
(i) Proof.

(i) 3¥*t1=3%=81>64=(1+ 3)3 so the statement is true for n=1.
(i) Assume that 3"*3 > (n + 3)3 for some n € N. Then
3(n+1)+3 —3n+4 _3.3n+3
> 3(n+ 3)% = 3(n® + 9n? 4 27n + 27)
=3n®+27n° + 81n + 81
>+ 12 +48n+64 = (n+ 4)°=((n+ 1) + 3)°.
That is, 3"+D+3 > ((n 4 1) 4 3)°.
(iii) By the PMI, 3"*3 > (n + 3)3 for every n e N.
8. (a) Proof.
(i) 6%=216 < 720 = 6!, so the statement is true for n = 6.
(i) Assume n® < n! for some n > 6. Then
N+1)3=nm+3+3n+1
<n+3n’+3n+n=n®+3n*+4n
<M 43 +n? =nd 4 4n?
<m+n=2n
<(n+ 1
<+ n!=(n+ 1)
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(iii) By the PMI, n® < n! for all n > 6.

(©) Hint: (n+2)[(n+ '] > (n+ 2)2"+3 > 2(2"+3),

(g) Hint: For a convex polygon, any line segment drawn from an edge point
to another edge point lies inside the polygon. For the inductive
step, when you consider a polygon of n + 1 sides, draw a line as shown
between two vertices. (Only part of the polygon is shown.)

The new line segment separates the upper left triangle from a con-
vex polygon that has exactly n sides, so we can apply the hypothesis of
induction to the n-sided polygon. Then use the result to compute the sum
of the interior angles for the polygon of n + 1 sides.

10. Hint: Use n = 3 for the basis step. For the inductive step, assume the state-
ment is correct for any collection of n points with no three points collinear.
Consider a collection of n+ 1 points, but apply the hypothesis of induction
to only n of those points. Then calculate the total number of line segments
determined by all n + 1 points.

11. Hint: For the induction step, visualize the starting position with n+ 1
disks. When you think about the moves you would make to transfer all
n+ 1 disks from one peg to another, try to break down the task into three
separate tasks, so you can use the assumption about how many moves are
required to move n disks. The first task is to move the top n disks from the
stack to another peg.

13. (a) F. The claim is obviously false, but this example of incorrect reasoning

is well known because it’s fun and the flaw is not easy to spot.

Let S={neN: all horses in every set of n horses have the
same color}. Itis true that 1 € S It is also true, for n > 2, thatif ne S
thenn+ 1 € S The “proof” fails in the case when n = 1 because 1 € S
but 2 ¢ S In this case, when either horse is removed from the set, the
remaining horse has the same color (as itself), [because there is only one
horse left] but the two horses may have different colors. We conclude that
the set Sis not inductive, and in fact S= {1}.

(b) F. The basis step and the assumption that the statement is true for some
n are correct. Perhaps the author hopes that just saying the statement is
true for n 4 1 is good enough. For a correct proof, one must use the
statement about n to prove the statement about n + 1.

(e) F. The factorization of xy + 1 is wrong, and there is no reason to believe
X+ 1lory+ 1lisprime.
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Exercises 2.5

1. (@ Hint: Let S={ne N:n> 22 and n= 3s+ 4t for some integers s> 3
and t > 2}. Show that 23, 24, and 25 are in S Then let m > 22 be a nat-
ural number and assume that for all ke {23,24,...m— 1}, ke S To
show that me S proceed as follows: If m= 23, 24, or 25 we already
know mis in S Otherwise m > 26, so m — 3 > 23. By the hypothesis of
induction, m— 3 e S so m— 3 =3s+ 4t for some integers s and t,
where s> 3andt > 2. Then m= 3(s+ 1) + 4t.

3. (c) Hint: Let A= {b e N: there exists a € N such that a? = 2b?}, assume A
is nonempty, and use the WOP to reach a contradiction.

5. (a) Hint: The induction hypothesis is “Suppose f3x is even and both fa, 1
and fax » are odd for some natural number k.” From this use the defini-
tion of Fibonacci numbers to show that fa 1y is even and both
f3(k+1)+1 and f3(k+1)+2 are odd.

(d) Proof.
(i) In the case of n=1, the formula is f; = f;., — 1, which is
1 =2 — 1. Thus the statement is true for n = 1.
(it)  Suppose for some kthat f; + f, + f3+ -+ + fy= fu.2 — 1. Then

fit fot fot o 4 fd fipn=(h+ o+ o+ -+ f) + funa
= (fip2 = 1) + figa

(fro+ fir) =1

= fk+3—1-

Therefore the statement is true for n + 1.
(iii) Thus, by the PMI, f; + fo + f3+ .-+ f, = fo.2 — 1 for all natu-
ral numbers n.

6. (d) Hint: Consider the cases n =1 and n = 2 separately. For n > 2, you will
find it useful to multiply the equation a®>=a+ 1 by "2 and
B2=p+1byp"2

7. Hint: Modify the proof given for the case a > 0. Slightly different argu-

ments are needed to show (i) that Sis nonempty and (ii) thatr < |a| = —a.

9. Hint: Suppose n is the smallest positive integer greater than 1 that is not

prime and such that n can be expressed in two different ways as a product of

primes (where we ignore the order in which the prime factors appear). Then

nmay be writtenas: N =pyP2Ps...pnand N = h g2 Gs - . . Gm- Apply Euclid’s

Lemma to show that p; = gj for some 1 < j < m. Then find a contradiction.

12. (b) Proof. Let Sbe a subset of N such that 1 € Sand Sis inductive. We

wish to show that S= N. Assume that S# N and let T= N — S By the

WOP, the nonempty set T has a least element. This least element is not

1, because 1 € S If the least elementisn, thenne Tand n — 1 € S But

by the inductive property of S n— 1 € Simplies that ne S This is a
contradiction. Therefore, S= N.

13. (b) F The claim is false. The flaw in the “proof ” is the incorrect assumption

that m — 1 is a natural number. In fact, 1 isthe smallest natural number n

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Answers to Selected Exercises 371

such that 3 does not divide n® + 2n + 1. There is no contradiction about
a smaller natural number because there is no smaller natural number.

Exercises 2.6

N

(b) 16

3. Hint: Since 1,000,000 = (10%)2 = (10%)° = 108, there are 10° squares less than
or equal to 1,000,000; 102 cubes less than or equal to 1,000,000; and 10 natu-
ral numbers that are both squares and cubes (sixth powers) less than or equal to
1,000,000.

5. Hint: Complete this formula:
AUBUCUD =

A+---—ANB—----+ANBNC+---—ANBNCND.

10. Hint: The answer is not 20 - 19 - 19 - 18; it is 130,340. Consider the cases
where the bottom right is colored the same as or differently from the upper left
corner, and give two products that yield the correct sum.

21. (a) Hint: The algebra in the inductive step is:

ril(n + 1)arbn+lr
r

=p"1 4 Z (n + 1>arbn+1—r 4 ant+!
r

— pn+1 + Z((?) + <r n l>>arbn+1—r + ant+i
r=1 -

=bn+1+ i(?)arbmrlr_i_ i( n )arbn+lr+an+1

r=1 r_l

= (b” + é(?)a’b“‘r> + a(é(r E 1)ar‘1b”+"1 + a”)
(g Ol oo )
( (%)

e
=(a+ b)(é(?)a’b“‘f)

(c) Proof. Choose one particular element x from a set A of nelements. The
. . (n .
number of subsets of A with r elements is (r) The collection of

r-element subsets may be divided into two disjoint collections: those
subsets containing x and those subsets not containing x. We count the
number of subsets in each collection and add the results. First, there are

n-1 . . .
( > r-element subsets of A that do not contain X, since each is a sub-
r

n—1
set of A — {x}. Second, there are < 1) r-element subsets of A that do
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contain x, because each of these corresponds to the (r — 1)-element sub-
set of A — {x} obtained by removing x from the subset. Thus the sum of
the number of subsets in the two collections is

("7 G2)-0)

23. (b) Hint: Consider two disjoint sets containing n and melements.

Exercises 3.1

2. (a) domain R, range R
() domain [1, 00), range [0, o)
(e) domain R, range R
3 () y © Y

C) y

4. (@) Rii=R
(© Ri'={(xy)eRxRy=1x+10)}

© Rglz{(x,y)eRx[R:y:i 5;’(}

x+4}

(9) R7_1={(X,y)ER><[RR:y>

(i) Ro'={(x,y) € P x P:yisachild of xand x is male}
5. (b) RoT={(@3,2),45)}

(d) RoR={(12),(22)(5 2)}
6. (@ RicRi={(Xxy):x=y}=R

(d) RoRs={(xy) eR x R:y=—-35x+ 52}

(9 RioRs={(xy) R x R:y=16x* — 40x? + 27}
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() ReocRs={(xy)eRxR:y<x+2}

() RsoRy= {(x, YeR x Riy= X14X2 - 10}

(p) Hint: Ry o Ryis not{(x, y): y is a grandfather of x}.

15. (a) F. The statements “xe A x B” and “x € A and x € B” are not equiva-

lent. It’s wise to avoid writing something like “Suppose x € A x B.”
Think of an element of a product as an ordered pair, and write “Suppose
x,y)eAxB”

(b) C. The only correction required is that (a, ¢) ¢ B x D implies a ¢ B or
ce¢D.

(d) A.

Exercises 3.2

1. (@) not reflexive, not symmetric, transitive
(e) reflexive, not symmetric, transitive
() not reflexive, symmetric, not transitive (Note: Sibling means “a brother
or sister.”)

2. (@ {11),(22),(273),6 1}
1o

SN

2
d {11),(22),(,3),(13),(23).31) 32}

',

\

(:2‘:, p

3

3. (a) Sketch the graph y = 2x. This relation is not reflexive on R because it
does not contain (1, 1), not symmetric because it contains (1, 2) but not
(2, 1), and not transitive because it contains (1, 2) and (2, 4) but not (1, 4).
(d) Hint: Sketch the line y = x and the unit circle. This relation is not tran-
sitive because it contains (1, 0) and (0, —1) but not (1, —1).
y

® «  Thisis the graph of the relation {(x, y): y < X}.

5. (d) Hint: To show that R is reflexive, let a be a natural number. All prime
factorizations of a have the same number of 2’s. Thus a R a. It must also
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be shown that R is symmetric and transitive. Three elements of 4/R are
4=2.2,28=2-2-7,and300=2-2-3.5.5.

(g) Hint: First show P is reflexive on R x R and symmetric. To show tran-
sitivity begin by supposing that (x, y) P (z, w) and (z, w) P (u, v). Then
IX—y|=|z—w|]and |z—wW]| = |u—V|.

The equivalence class of (0, 0) is the line y = x.
7. (a) transitive, but not reflexive and not symmetric
(c) reflexive, symmetric, and transitive

8 (@ 0={..,—-15 -10,-5,0,5,10, ...}
1={..,-9, -4,1,6,11,.. .}
2=1{.. —8, -3,2,7,12,.. .}
3={.. -2,3,8,13,.. .}
4={ .. —-1,4,9,14,.. .}

10. (b) Hint: See part @.

() Hint: Assume X =Y. Part 1: Suppose z € X. Then x =, z By symmetry
y=mx and by transitivity y=nz Thus zey. This shows X C V.
In part 2, we must show y C X.

13. (b) Proof. Assume R is symmetric. Then (x Yy) € Riff (y, X) € Riff
(x,y) € R Thus R=R. Now, suppose R=R™. Then (x,y) e R
implies (x, y) € R~%, which implies (y, X) € R Thus R is symmetric.

15. (@) Proof. Suppose (x,y) e RUR™™ Then (x,y)e Ror (x,y) e R If
(%, y) € R then (y, X) € R%. Likewise, if (x,y) € R™%, then (y,X) e R
In either case, (y, X) € RUR™. Thus, RU Rt is symmetric.

18. Hint: One part of the proof is to show that R is symmetric. Suppose X RY.

ThenxLyandyL x soyL xand x Ly Therefore, y Rx.

19. (f) F The last sentence confuses RN Swith Ro S A correct proof requires

a more complete second sentence.

Exercises 3.3

2. (d) The elements of s are natural numbers, not subsets of N, so s is not a
partition of N. Note: {{1, 2, 3, 4}, {n € N: n > 5}} is a partition of N.
3. (b) There are 10 equivalence classes. The class 0/Rcontains 0, 1, 2, ..., 9,
100, 101, ...109, 200, 201, ..., 209, ...and all the negatives of these
numbers. The class of 10 modulo R contains all integers that have 1 as
the tens digit, and so forth.
5. Hint: There are four subsets in the partition. One of them is the set
{(11_1)7 (_1! 1)! (Iv |)7 (—i, _I)}
6. (b) XxRyiff x=yorbothx>2andy> 2.
(d) xRyiff (i) x=yandxe Z or (ii) int(x) = int(y) and x, y ¢ Z.
(Recall that int(x) denotes the greatest integer function.)
8 (@ {1.1),(12,(21),(22),33),34),@35),(43) 44 4)5),
(5.3),(5,4), (55)}
11. No. Let R be the relation {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1)} on
theset A={1,2,3}. Then R(1) = {1, 2, 3}, R = {1, 2}, and R(3) = {1, 3}.
The set o = {{1, 2, 3}, {1, 2}, {1, 3}} is not a partition of A.
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14. (a) Yes {Bf, B;} of a partition of A when B; # By, because {Bf, B;}=
{Bz, Bi}. If B; = By, then B, = B, = A and B] = B; = &, so {Bf, B}
is not a partition of A.

15. (d) Af(orC). The proof is correct because the ideas are all there, and every state-
ment is true. You may give ita C if you feel the ideas are not well connected.

Exercises 3.4
1. (@ No,since(2,4)and (4,2)areinR.
(©) No,since (2, —2) and (-2, 2) are in R.
(f) No,since (1,3)and (3, 1) arein R.

10. (@ A{(aa), (b b) (c c) (c a) (c b}

11. (a) There are multiple correct answers for this question, depending on pref-
erences. One answer is:

ty

t

/

YN,
{6 I
| &
{5 I
I ty
t4

12. (a) Proof. Suppose B—{x} CC<B. For any ye B—{x}, we have
y e C. If xe C, then for all y e B we have y € C. Therefore, B C C,
which shows that C = B. On the other hand, if x ¢ C, then forally e C
we have ye B and y# x. Thus, C < B — {x}, which shows that
C =B — {x}. Therefore, there is no C different from B and B — {x} such
that B — {x} € C C B. Hence B — {x} is an immediate predecessor of B.

13. (b) No. For example, consider a set of two squares where the squares are
side by side within the rectangle.

(c) Aset containing two disjoint squares does not have a lower bound.

14. (a) Hint: Use parts of Theorem 2.2.1 and Exercise 9 of Section 2.2.

(b) Hint: Use parts of Theorem 2.3.1 and Exercise 10 of Section 2.3.

20. (b) F. This proof does not show that sup(B) exists. All it shows is that if
sup(B) exists, then u=sup(B). A correct proof would show that
u=sup(B) by showing u has the two supremum properties (u is an
upper bound and u Rv for all other upper bounds v.)

Exercises 3.5
2. (d) not possible
3. (c) not possible
9. Hint: Suppose the graph G has order n > 2, and all vertices have different

degrees. Consider what these degrees must be. Can one vertex have degree
n — 1 and another have degree 0?
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Exercises 4.1

1. (a) Thisisa function with domain and range {0, A, [, U, N}. Other possi-
ble codomains are {0, A, I, U, N, $}, {0, A, [0, U, N, +, #, %} and
{A,0,Un01,2 3}

3. (& Domain=R — {-1}. Range ={y e R:y+ 0}. A possible codomain
is C.

(d) Domain=R — [% +kr ke Z}. Range = R. A possible codomain is C.

4. (@ Dom(f)=R—{3},Rng(f)=R —{-1}.

5. (@ Ifx=1then2x+y=2+y Fory=1,2,3,0r4,2+yisprimeand
not 5 iff y=1.
Ifx=2then2x+y=4+y. Fory=1,2,3,0r 4,4+ yis prime and
not 5 iff y=3.
If x=3then2x+y=6+y. Fory=1,2,3,0r4,6+yis prime and
not 5 iff y=1.
If x=4then2x+y=8+y. Fory=1,2,3,0or 4,8+ yis prime and
not 5 iff y=3.
For each x € A, there is a unique y in A such that (x, y) € R

8. (& A

9. (a) Letx,= —n.Then xisthe sequence —1, —2, —3, —4,....
() Hint: Find a rule so that x; = 3 % and x, = 3 %
10. (8 f@)=3={..,-9-3,3,9,...}
11. (b) Thisrule is a function.
(&) Not a function. For example in Zz we have 0 =3 =6=9. The rule
assigns to 0 these different images: [0], [3], [2], and [1] in Z4.
15. (a) Dom(S
16. (a) Proof. Letxy,zeN.
(i) By definition of absolute value, d(x,y) = |x —y| > 0 for all x, y € N.
(i) dx,y)=Ix—yl=0iff x—y=0 iff x=Y.
(i) d(xy)=Ix—yl=ly—xl=d(y, ).
(iv) By the triangle property of absolute value, [x —y| + |y — 2| > |x — 2|.
Thus d(x, y) + d(y, 2 > d(X, 2).

m . .
17. (c) <2>n2 We choose 2 elements from A for first coordinates; each may
then be assigned any element of B as its image.

Exercises 4.2

1. (@ (fog)(x)=17—14x (gof)(X) = —29 — 14x
(© (fog)(¥) = sin(2x?+ 1), (gof)(x) =2sin’x+ 1
(e fog={kn).tr), (s}t gef=9

(i) Observethat(fog)(x)={;Ei)g) :;ifj
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We must consider cases. If x < —1, f (g(X)) = f (2x). Since in this case
2x <0, f(2X) =2x+ 1. If x> —1, f(g(X)) =f(—X). There are two
sub-cases:

If x> 0,then —x < 0,s0f (—X) = —x+ 1.
If -1 <x<0,thenl > —x> 0,50 f(—X) = —2x.

Therefore,
2x+1 ifx< -1
(fog)x) =4 —2x if -1 <x<0.
—x+1 ifx>0
Similarly,
_Jax+1) ifx<0
(gof)(x)_{g(zx) if x>0

If x < 0,g(f (X)) =g(x+ 1). There are two subcases:

Ifx< —2,thenx+1< —1,50g(x+ 1) =2x+ 2.
Ifx> —2,thenx+1>—-1,s0g9(x+1)=—-x—1.

If x>0, g(f(x)=9(2x). Since x>0, 2x> 0, so 2x > —1. Thus
g(2x) = —2x.
2x+2  ifx< =2
Therefore, (gof) () =9 —x—1 if-2<x=<0.
—2X ifx >0
2. (@ Dom(fog)=R=Rng(fog)=Dom(go f)=Rng(go f)
(9 Dom(fog)=R,Rng(fog)=[-11]
Dom(go f) =R, Rng(go f) =1, 3]
(e) Dom(fog)=4{kt s} Rng(fog)={r 1}
Dom(go f) = =Rng(go f)
(i) Dom(fog)=R,Rng(fog)=(—00,2)
Dom(ge f) =R, Rng(go f) = (—o0, 1)
3. (@) Example1:f(x) =x% g(X) =3x+ 7.
Example 2: f (X) = (x + 7)?, g(X) = 3x.

5 (a) f*l(x)=xg2
© 1= """

(e f1x)=-3+Inx
9. @ {(xy)eRxR:y=0ifx<0andy=x?if x>0}
{(x,y) e R x R:y=x?%}
13. Hint: Write AUCas AU (C — E). Thenshow hug=huU (g]c_g) and use
Theorem 4.2.5.
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14. (@) hugis afunction.

y

/ X
16. (a) Proof. Letx,ye R.Suppose.x <y.Then3x<3yand3x—7 <3y—7.
There-fore, f (X) < f (y).
(d) Proof. Suppose x and y are in (—3, c0) and x <y. Then 4x < 4y,
SO 3X—y<3y—X Thus xy+3x—y—3<xy+3y—x—3 or
x—=1)(y+3) < (y— 1)(x+ 3). Using the fact that x and y are in

(=3, 00), we know x + 3 and y + 3 are positive. Dividing both sides of
the last inequality by x + 3 and y + 3, we conclude that

x—1 y-1
x+3<y+3'

Thus f (X) < f(y).
(Note: This proof was found by working backward from the conclusion.)

17. (d) The function f given by

x+1 ifx<0
fx)=91—-x if0<x<1
x—1 ifx>1

is a counterexample. Another counterexample is f given by f (X) =
(x+ D)(x — 1)2

18. (a) Proof. We show that f; 4+ f, is a function with a domain R. First
fiy + f, is by definition a relation. For all x € R there is some ue R
such that (x, u) € f; because f;: R — R and there exists ve R such
that (x,v) € f, because f;: R— R. Then (X, u+Vv) e fi+ f,, so
x e Dom(f; +f;). It is clear from the definition of f; + f, that
x € Dom(f; + f,) implies x € R, so Dom(f; + f;) = R.

Let xeR. Suppose (x,c) and (x,d) are in f;4+ f,. Then

¢ = f1(X) + f2(X) = d. Therefore, f; 4+ f, is a function.

20. (a) A. On line 3 the author of this proof chose not to mention that x € A
(because A is the domain of f). The reader is expected to observe this to
verify that (X, y) € la.

Exercises 4.3

1. (@ OntoR. Proof. Letwe R. Then for x=2(w — 6), xe R, and f (x) =
% [2(w — 6)] + 6 = w. Thus w € Rng( f). Therefore, f maps onto R.
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(c) Not onto N x N. Since (5,8) € N x N and (5, 8) ¢ Rng(f), f does
not map onto N x N.
(k) Proof. First, if xe[2,3), then x—2>0 and 3—x>0, so

-2
f(x)= ;( ™ > 0. Therefore Rng(f) € [0, co). Now let w € [0, o0).
3 2
Choose x= Wt . Then w>0, so 2w+ 2 <3w+2 < 3w+ 3.

w
Dividing by w + 1, we have 2 < x < 3. Thus x € [2, 3), and

3w+ 2 . 3w+ 2
f(x)_{erl _2} ' {3_ W-i—l}
3w+2—2(w+ 1)

= = W.
3w+ 1) — (3w + 2)

(This value for x was found by working backward from the desired
result.) Therefore, f maps onto [0, o).
2. (a) One-to-one. Proof. Suppose f(x)= f(y)forsomex yeR. Then

1 1 1 1
§x+6= Ey-{-6.Then§x=§y, SO X =Y.

(c) One-to-one. Proof. Suppose myneNandf(m)=f(n). Then
(m, m) =(n,n),som=n.

(k) fis one-to-one. Proof. Suppose x,ze [2,3) and f(X) = f(2. Then

-2 -2
X—zz—, S0 3X—xz2—6+22=32—xz—6+2x. Thusx=z
3—-x 3-z

(@ B={0,3} f={(10)(23).(3,0), (40}

(8 Let f:R— R be given by f(X)=2x and g: R — R be given by
g(x) = x2. Then f maps onto R but g o fis not onto R.

(e) Let A={a b,c}, B={1,2,3}, and C={xy, Z}. The function f
must not be one-to-one. Let f={(a 2), (b, 2),(c,3)} and g=
{(1,%), (2,y), (3, 2}. Then g is one-to-one, but the composite go f =
{(@y). (b,y), (¢, 2} is not.

9. (c) Proof. We verifythat f mapsonto R as follows: 1 € Rng( f), because

4w + 2
f(4) = 1. For w# 1, choose x = 1W+

© &

. Then x#£ —4 and

4w + 2 4w + 2 6w
— 2|+ +4|=—=w.
1-w 1—-w

f(x):[ .

Therefore, f maps onto R.
To show that f is one-to-one, suppose f (X) = f (2). Then for x £ —4
X—2 z-
and z#£ —4, =
7 X+4 z+44
X2—2X+4z—8, so 6x=06z and x=2z We must also consider
-2
whether f (x) might be 1, for x # —4. Butifx # —4andf (xX) = §+74 =1,
then X —2=x+4, so —2 =4. This is impossible. Therefore f is
one-to-one.

Therefore, xz—2z+4x—8=
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11. (a) Proof. f isnota surjection because [1] has no pre-image in Z,4. This is
because if f (X) = [1], then [2X] = [1]. But then 8 divides the odd number
2x — 1, which is impossible. To show f is an injection, suppose
f(X) = f(Z). Then[2X] = [2Z], s0 2x = 2z (mod 8). Therefore, 8 divides
2X — 22,50 4 divides X — z and thus X = Z.

12. (b) Example 1: x, = nforall n € N (the identity function).

50-n ifn<50
n ifn> 50
n+1 ifnisodd
n—1 ifniseven
The sequence of example 3is 2,1, 4,3,6,5,8,7, ...
13. () None.
(f) Since m=n+ 1, one element of B has two pre-images. This element of

Example 2: x, = {

Example 3: x, = {

. . . /Mm+1
B can be selected in n ways, and the two pre-images in ( —; ) ways.

We can assign each of the remaining n — 1 elements of B as the image
of exactly one of the n — 1 remaining elements of Aiin (n — 1)! ways.

n+1 n+1
Thus there are n( —; >(n - I= n!( ;— ) functions from A onto B.

14. (a) F. To show that fis onto R we must prove that R € Rng(f). The proof
shows only that Rng(f) € R.
(b) Hint: What additional information should be included in this proof?
(d) A. Notice that a direct proof would have been a little easier to follow.

Exercises 4.4

3. (b) Lethbe the inverse of g. Then
xy)ehiff(y,x) eg

. 4y

iff x=—"
y+2

iff Xy + 2x =4y

iff y(x —4) = —2x

for x < 4.

iff y=
"y 4 —x

2X . . .
Therefore h(x) = % To verfiy that this formula is correct, suppose
X > —2.Then

(hog)(x) =h(9(x)

4x
- h(x+ 2)

o)
4=t
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8x
_ X+ 2
TA(X+2) — 4x
X+ 2

=X

Since the composite is the identity function on the domain of g, we
conclude that h = g2,

9. (0) [2546173]
(e [6147532]
() [5374126]

Exercises 4.5

1. (@ h@)=9, h({1})={4} h({2})={4}, h({3})={5}, h({1, 2})={4},
h({1,3}) ={4,5}, h({2, 3}) = {4, 5}, h(A) = {4, 5}.
2. (a) [2 10]
(o {0}
4. (b) [25.2]

© [2—\@,3_2[5>u<32ﬁ,2+\/§

8. (a) Suppose bef< N Da>. Then b= f(a) for some ac () D, Thus

aeA aeA

ae D, for every a € A. Since b= f (a) we conclude that b € f (D,)
for every ae A. Therefore, be [) f(D,). This proves that

f(Np.)e Nro) -

aeA aeA

9. Hint: There must be at least two sets D; and D, in the family, and b € f (D)
forall @ € A, but no element ain [ D, such that f (a) = b. The function f

ae A

cannot be one-to-one.

10. (a) Suppose b e f(f~E)). Then there is ae f~Y(E) such that f (a) = b.
Since aef~YE), f(a)eE. But f(a)=Db, so beE. Therefore,
f(f-YE) CE

(d) First, suppose E = f(f ~1(E)). Suppose b e E. Then b e f(f "Y(E)).
Thus there is ae f~%(E) such that b= f(a), so b € Rng(f). There-
fore, E € Rng(f).

Now assume ECRng(f). We know by part (a) that
f(f "Y(E)) C E, so to prove equality, we must show E C f (f ~}(E)).
Suppose b € E. Then b € Rng(f), so b= f (a) for some a € A. Since
b=f(a)eE, ae f"}E). Thus b= f(a) and ae f~1(E), so
b e f(f “Y(E)). Therefore, E C f (f "1(E)).

11. (b) Proof. Suppose t € f(X) — f(Y). Thent e f(X), so there exists x € X
such that f(xX)=t. We note xeg Y since t= f(x) e f(Y). Thus
x e X — Yand thereforet = f (x) € f (X =Y).
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12. The converse is true. To prove f is one-to-one, suppose X, y € A and X #y.
Then {X}N{y}= and thus f({x}N{y})=C. By hypothesis,
OGN = F ({3 N Y ={f (F N {f ()} Thus f(x) # f(y).

15. (a) If f is one-to-one, then the induced function is one-to-one.

18. (a) F. The claim is not true. We cannot conclude x € X from f (x) € f (X).

Exercises 4.6

3. (a) does not exist
© 2
(e 0

(9) €?(Recall that nﬂ)m@(l + %)n =e)
O

5. (a) Hint: To show x diverges, suppose the limitis L and let e = 1.
(c) Hint: x diverges; use ¢ = 1.
(f) Hint: x, — 0; for & > 0, use N > (2¢) 2 and

NGRS SNC BN rs SN EARE R )]
Jn+1+ +/n

6. (a) Proof. Let ¢ > 0. Then §> 0. Since x,— L, there exists N; € N
such that if n> Ny, then [x, — L| < % Likewise, there exists N, € N
such that n> N, implies |y,—M|< % Let Nz = max {Ng, Ny},
and assume n> Ni. Therefore we have |(X,+ Yn) — (L + M)| =
[0 = L)+ (%a = M)| < o= LI+ Iya =Ml <5 +5 =& There-
fore, Xp + Yn — L + M.

(f)  Hint: |x)| — L] < [% — L|.

7. (a) Hint: Since x, — L, |x,| — |L|, by Exercise 6(f). Now apply the defini-
tion of |x,| — |L| with ¢ = %

10. (b) A. The proof uses Exercise 6(b).

Exercises 5.1

2. (a) finite
(c) finite
(e) infinite
(f) finite
6. (a) Suppose Ais finite. Since AN B is a subset of A, AN B is finite.

7. Hint: WrittAUB = (A - B)UBandA=(A— B)U (AN B)and apply The-
orem 5.1.7(a).
9. (a) Hint: Define f: A— AU {x} by f(a) = (a x), for each a A. Now
show that f is one-to-one and onto A U {x}.
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10. Hint: First show ? (A x B) is finite.

11. (c) not possible

13. Obviously Ny — {x} ~N;_1 when x=r. If x#r, define a function on
N; — {x} by considering first the images of elements that are less than x and
then images of elements greater than x.

15. Hint: Use the argument that if n < m, then the finite set N, is equivalent to
one of its proper subsets.

18. (a) Hint: Suppose f is not onto B and consider the range of f.

(b) Hint: Suppose f is not one-to-one. Then A is not empty and since A and
B are finite and A~ B, there is some ne N such that N,~ A and
B ~ N,. Use these facts to construct a function F from N, onto N, that
is not one-to-one. Then for some X, y, ze Ny, f(X) = f(y) = z Remov-
ing (y, 2 from F produces a function from a proper subset of N, onto
Nn. Now apply Exercise 17.

19. Hint: Use induction on the number of elements in the domain.

20. Proof. Suppose A and B are finite, A=m, B=n, m>n, and f:A— B
is one-to-one. Then there exists a one-to-one (and onto) function g: Ny, — A
and a one-to-one (and onto) function h: B — N, See the diagram below.
Then hofo g is a one-to-one function from Ny, to N, by Theorem 4.3.4.
But m> n so the conclusion that hofog is a one-to-one contradicts

Theorem 5.1.9.
A— B
/ \

N — >N
hofog

21. (b) Hint: The largest possible sum of 10 elements of Ngg is
90 + 91 + - -4 99 = 945. Thus there are no more than 945 possible
sums. However, there are 21° — 1 = 1,023 nonempty subsets of S
Apply the Pigeonhole Principle, and delete any common elements from
two subsets that have the same sum to form disjoint subsets.

22. (b) C. In Case 2, it is not correct that Ny UN;~ Ny, ;. In fact,
Nk U N; = Ny

Exercises 5.2

3. (@) Proof. Letf:N — D" begivenbyf(n)=2n— 1foreachne N.We
show that f is one-to-one and maps onto D™. First, to show f is one-to-
one, suppose f (X) = f (y). Thus 2x — 1 = 2y — 1, which implies x =y.
Also, f maps onto D since if d is an odd positive integer, then d has the
formd = 2r — 1 for some r € N. But then f (r) = d.

(e) Hint: Consider f (X) = —(x + 12) with domain N.
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1
4. (a) Hint: Let f(0,1) — (1, 0o) be given by f (X) =%

(b) Hint: Let f(0,1) — (a, o) be givenby f (x) = (a— 1) +;
(d) Hint: Let f(0,1) — [1,2) U (5, 6)be given by
. 1
2—-2x if0<x<Z
f(x) = L 2,
6. (a) Defineg:N — E* by

20 ifx=1
g =4 2 ifx=10 .
2x  ifx#£1,x#10

7. (@ c
(© Ry
(e c

12. (a) F Wiscertainly an infinite subset of N, and D" is denumerable, but this
“proof” claims without justification that every infinite subset of N is
denumerable. To show W is denumerable, we need to use another theo-
rem or a bijection between W and a denumerable set.

(c) F. Theclaim is false. Also “A and B are finite” is not a denial of “A and
B are infinite.”

(d) F. Writing an infinite set A as {Xq, X, .. .} is the same as assuming A is
denumerable.

Exercises 5.3

6. Hint: Use a proof by induction on n, the number of sets in the family.

7. Hint: This theorem has been proved in the cases where Aand B are finite (The-
orem 5.1.7(a)), where one set is denumerable and the other is finite (Theorem
5.3.4), and where A and B are denumerable and disjoint (Theorem 5.3.5). The
only remaining case is where A and B are denumerable and not disjoint. Write
AUB as AU (B — A), a union of disjoint sets. Now explain why B — A is
countable, and then apply Theorems 5.3.4 and 5.3.5.

Hint: Give a proof by induction.

Hint: For each me N, let By, = ky,. Then there is a bijection fi: By — N .

m—1
Define h: | Bi — N by h(x) = ( > Iq) + fm(X), for x € By,
ieN i=1

13. (b) Hint: First prove that each set T, is infinite. Then for a e T, define
f(a)=2%.3%.5%. ...p% where py is the kth prime and & = 0 for
all i > k. Explain why Ty, is equivalent to Rng (f) and why Rng (f) is
countable.

15. (&) C. The proof is valid only when f (1) = x. In the case when f (1) # X,
we need a new function g that is almost the same as f except that the

F o
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image of 1 will be x. This involves removing the two ordered pairs
with second coordinates x and f (1) and replacing them with two other
ordered pairs. Let t be the unique element of N such that f(t) = x
and define f* = (f— {(1, f (1)), (t, )}) U{(L, X), (t, f(1))}. Now let
g(n)=f*(n+ 1) forallneN.

Exercises 5.4

Hint: Recall that P(N) = R.
(b) true
8. (@ T<{0}<{0,1}<Q<(0,1)=[0,1]=R-N

=R < P2(R) < 2(P(R)).

an

11. (b) not possible

16. (a) Hint: Assume that there is a bijection. Associate each function f in &
with the corresponding real number a such that 0 < a < 1, and write f
as f, Define g: [0, 1] — [0, 1] by

0 if f(x)£0

909 = {1 if () = 0

Then g = f,, for some b € [0, 1]. Compute g(b) to obtain a contradic-
tion. [Ref.: J. Robertson, “A Student Exercise on Cardinality,” Mathe-
matics and Computer Education 32 (1998), 17-18.]

(b) Hint: Consider the set of constant functions in %.

17. (b) F. The claim is false. We have not defined or discussed properties of
operations such as addition for infinite cardinal numbers. Thus the equa-
tion C = B + (C — B) applies only to finite sets.

(d) F. The “proof” assumes that every element of B is in the range of f.

Exercises 5.5

1. (b) The Axiom of Choice is not necessary since there are only a finite
number of sets in the collection.

(h) The Axiom of Choice is necessary. -

5. Proof. Let B C Awith B infinite and A denumerable. Since BC A, B < A.
Since A is denumerable, A= N. Since B is infinite, B has a denumerable
subset D by Theorem 5.5.4. Thus A=N=D < B. By the Cantor-
Schroder—Bernstein Theorem, B = A. Thus B~ A
Alternate Proof. The set B is an infinite subset of the countable set A, so B
is countable and denumerable. Since both A and B are equivalent to N, A is
equivalent to B.

8. Hint: Let xe A By Theorem 5.5.4, A— {x} has a denumerable subset
{an: n € N}. Construct a one-to-one correspondence between Aand A — {x}.

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



386 Answers to Selected Exercises

10. (a) A. Note that the range of every sequence is countable.

() F. The idea of this “proof” is to take out countably many elements, one
at a time, until denumerably many elements are left. But if A is un-
countable and C is countable, then the set B= A — C of leftover ele-
ments will always be uncountable. (See Exercise 9(b) of Section 5.3.)

Exercises 6.1

1. (@ vyes
(e no
2. (a) notcommutative
() notan operation
3. (a) notassociative
() notan operation
4. (a) aisthe identity element

(b) Yes. This is tedious to verify because one must verify that 64 equations
of the form (x o y) o z= xo (y o 2) are all true. It helps to observe that
if x = a (the identity) then (xoy) o z=yoz=xo (yo 2. Similarly, if
y = a or z=a, the equation is easily seen to be true. This leaves
only 27 cases to verify when none of X, y, or z is a. For example,
(boc)ob=dob=c,whilebo (cob)=(bod)=c, sothe equation
istruewhenx=Db,y=c,and z=h.

(c) Yes, because the table is symmetric about its main diagonal. To verify by
cases that the equation x o y =y o x is true for every choice of x and y,
consider first that case that one of x or y is a, then the case that x =y, and
finally the other 3 cases.

(d) Theinverses of a b, c, d, are a, b, ¢, d, respectively.

(e) No. The product b o ¢ = dis not in By, so By is not closed under o.

(f) Yes.aca=a aoc=ccoa=ccoc=a

(99 {a} {a b}, {a c}, {a d}, and {a b, c, d}.

(h) True. Infact, forall xe A, xox=a.

8. Hint: Compute (ac)(db) and (db)(ac).
9. (a) Hint: Compute xo (aoy)and (xoa)oy.

10. (b) Hint: Assume that for some natural number n, every product of t ele-
ments ag, ap, ..., a of Ais equal to (...((a;*ay) *ag)...) * a for
every t < n. Now consider a product of n + 1 factors a;, @, ..., @41 in
that order. This product has the form by = by, where by is a product of
some k factors (k < n) &, @, ..., ax in that order and b, is a product of
the remaining factors ax.1, ..., an1 in that order. First use the induc-
tion hypothesis to write by and b, in left-associated form.

Now consider two cases. If k > 1, then there are at least two factors
a; and ay in the product b;. Denote the product a; * a, by ¢, which is an
element of A. Replace a; * a, by ¢ and use the hypothesis of induction to
write by = b, as a left-associated product.
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If k=1 and b, has only one factor, then the product b, = b, is a; * a,
which is already in left-associated form. Otherwise, b, has at least 2 fac-
tors, and we may denote by d the product of the first two factors a, and
ag of b,. Replace a, * a3 by d in the product b, = b, and apply the hypoth-
esis of induction. Finally, apply the associative property to a; * (a, * ag)
to write the entire product in left-associated form.

12. Hint: Assume that a= ¢ (mod m) and b = d (mod m). Then there exist inte-
gers x and y such that mx=a—c and my=b—d. To show that
a+b=c+d(mod m), compute the sum of mx and my. To show that
a-b=c-d(mod m), simplify bmx + cmy.

15. (a) 2,4, and6.

(c) There are no divisors of zero.

16. (b) F. The claim is false. One may premultiply (multiply on the left) or
postmultiply both sides of an equation by equal quantities. Multiplying
one side on the left and the other on the right does not always preserve
equality.

(d) F. The proof makes the assumption that xy # 0, which may be false.

Exercises 6.2

1 © - | 1 -1 i =i We see from the table that the set is
1 1 1 : i closed under -, 1 is the identity, and
1| -1 1 i i each element has an inverse. Also, -
[ i - -1 1 is associative.
—i —i i 1 -1

(d) Hint: Jis the identity.

2. e u v w
e e u \% w
u u \' w e
\' \" w e u
w w e u \%
4. (c) The group is abelian.
8. (b) [3214],[1234],[2413].

12. Hint: For a, b € G, compute a’b? and (ab)? two ways.

13. Hint: To have both cancellation properties, every element must occur in every
row and in every column of the table.

16. (@) v,w,eandu
(b) Hint: Let a, b e G. For an element x such that a = x = b, try a~!=b.

19. Since (p—1)(p—1)=p*—2p+1=p(p—2)+1, (p—1)2=1(mod p).
Therefore (p — 1)(p — 1) = 1in Zp, and hence (p — 1)1 =p — 1.

20. (@ x=0,4,8,12,16
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21. (c) x=6
(e) No solution
2. (@ X—-1)x+1)=x>*-1=0
23. (b) F. Aminor criticism is that no special case is needed for e. The fatal flaw
is the use of the undefined division notation.
() A.The proof is correct, but provides minimal explanation.

Exercises 6.3

1. (a {0}, Zs {0,4},{0,2, 4,6}
(d) Hint: There are six subgroups.
7. (a) Yes.Assume G is abelian and H is a subgroup of G. Suppose x, y € H.
Then x, y € G. Therefore, Xy = yx.
9. (c) The order of 0 is 1. The elements 1, 3, 5, and 7 have order 8. The ele-
ments 2 and 6 have order 4. The order of 4 is 2.

11. Proof. The set C, is not empty because ea= a=ae, so ee C,. Letx, y € C,.
Then xa = ax and ya = ay. Multiplying both sides of the last equation by y—1,
we have y~t(ya)y =y Hay)y ™t Thus (y'y)(ay ! = (y'a)(yy D)
or ayl=vyla Therefore, (xy Ha=x(y'a)=x(ay ) =(xay =
(ax)y—1 = a(xy~1). This shows xy 1 € C,. Therefore, C, is a subgroup of G, by
Theorem 6.3.3.

14. Proof. The identity e € H because H is a group, and thus a—!ea e K. Thus
K is not empty. Suppose b, c e K. Then b =a'h;a and ¢ = a'hya for
some hy, hy € H. Thus bc™! = (a~*h;a)(a~th,a) ! = (a~th;a)(a~thz'a) =
a~'hi(aaYhzta=ath;hs'a. But H is a group, so h;hy* e H. Thus
bc~! € K. Therefore, K is a subgroup of G.

17. Hint: Let H be a subgroup of (a). If H is the trivial subgroup it is clearly
cyclic. Otherwise show that there is a positive integer t such that a' is in H.
Now use the Well Ordering Principle to find the smallest such t and use the
Division Algorithm to show that this power of a is a generator for H.

18. (c) alf a®

19. (@) C. The proof omits the step of verifying that HN G is nonempty

(because it contains the identity).

Exercises 6.4

4. Letf,geF.Thenl(f+g)= [(f+aMdx= [ F()dx+ [2g(x)dx=
[(f)+1(9).
8. (@ LetC,DeP(A).Thenf(CuD)=f(C)uUf(D)byTheorem4.5.1(b).
Therefore, f is an OP mapping.
10. (a) Hint: Suppose G = ({e, a}, ©) and H = ({i, b}, *) are two groups with
identity elements e and i. To define an isomorphism from G to H, first
determine the image of e.
(c) Hint: Use Theorem 6.4.3(c) to show that the algebraic system in
Exercise 2 of Section 6.2 is not isomorphic to (Z4, +).
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14. (a) Suppose y=X in Z;g. Then 18 divides x—y. Therefore, 6
divides x—vy, and so 24 divides 4(x—y)=4x—4y. Thus
f(X)=1[4X] = [4y] =T (y) in Zy4, so f is well defined. Now let
X,V € Z1g. Then f(X +18y) = [4(x+ Y)] = [4x + 4y] = [4X] +24 [4Y]
=f(X) +24 T ().

(b) Rng (f)={[0], [4], [8], [12], [16], [20]}. The table is:

o] 4 [ [12] [16] [20]

o] [0 4 [8 [12] [16] [20]
41 [4 [8 [12] [16] [20]  [O]
8 [8 [12] [16] [20] [0]  [4]
[12]  [12] [16] [20] ~ [0]  [4]  [8]
[16] [i6] [200 [0]  [4] [8] [12]
[20] f20] [0] [4 [8 [12] [16]

Exercises 6.5

1. (b) Theinterval [—1, 1] is nota ring because it is not closed under addition.
(For example, 3 4 3in not an element of [—1, 1]).

4. Hint: First show that Z x Z is closed under & and ® and that the
additive identity is (0, 0). The inverse of (a, b) is (—a, —b) because

(a, b)® (—a —b)=(a+ (—a), b+ (—b)) = (0, 0), and
(—a,—b)® (a,b)=(—a+a — b+ b)=(0,0).

Explain why the remaining axioms hold for Z x Z.

13. (&) Hint: Let me N. First, show that if mis composite, then m has divisors
of 0. Now suppose mis prime and there are nonzero elements aand b in
Z . such that ab = 0. Apply Euclid’s Lemma to reach a contradiction.

Exercises 7.1

1 (b) 5123

(b) 0 and all negative real numbers are lower bounds.

3. (& supremum: 1; infimum: 0

(c) supremum: does not exist; infimum: 0

(e) supremum: 1; infimum: 1

(@) supremum: 5; infimum: —1

(&) Hint: Show that an upper bound for A is an upper bound for B.

Hint: Suppose b is an upper bound for A. Therefore, for all x, if x € A then

X < b. This means that for all x, if x > b, then x ¢ A. Explain why A° is not

bounded above.

8. (&) Proof. Letxandy be least upper bounds for A. Then x and y are upper
bounds for A. Since y is an upper bound and x is a least upper bound,

N

o &
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X <. Since x is an upper bound and y is a least upper bound, y < x.
Thus x=y.

13. (@) Proof. Lets=sup (A), B={u: uisan upper bound for A}. Then Bis
bounded below (by elements of A) so inf (B) exists. Let t = inf (B). We
must show s=1.

(i) Toshow t < swe note that since s= sup (A), sis an upper bound
for A. Thus s € B. Therefore, t < s.

(ii) Toshow s < t we will show t is an upper bound for A. If t is not an
upper bound for A, then there exists ae A with a>t. Let
&= aT_t. Since t = inf (B) and t < t + &, there exists u € B such
that u <t + ¢e. But t+ ¢ < a. Therefore, u < a, a contradiction,
sinceue Bandae A

14. (a) Proof. Suppose sup (A) and sup (B) exist. Then AU B is bounded
above by m= max{sup (A), sup (B)} (see Exercise 4(c)). By the com-
pleteness property, sup (A U B) exists. We show that sup (AU B) = m.

(i) Since ACAUB, we have sup(A) <sup(AUB). Also,
B C AU B implies that sup (B) < sup (AU B). It follows that
m = max{sup (A), sup (B)} < sup (AU B).

(ii) It suffices to show mis an upper bound for AU B. Let xe AU B.
If xe A then x <sup (A) <m. If xe B, then x < sup (B) < m.
Thus mis an upper bound for AU B. Hence sup (AU B) < m.

19. Hint: Let F be an ordered field. Assume that F is complete and let A be a non-
empty subset of F that has a lower bound in F. To show that A has an infimum
in F, begin by defining the set A~ = {—x: x € A}. Prove that A~ has a supre-
mum and then find an infimum for A.

21. (a) F. Theclaimistruebuty =i+ % might not be in A.

Exercises 7.2

=

(b) x=3.825,6=0.025
2. (b) Hint: In the case where |X; — X;| < 263,

N(xq, 81) N N (X, 1) =N<X1;—X2,81 _ | Xo ; X1 | )
3. lim f(x)=Liff for all ¢ > 0 there exists 6 > 0 such that if x e N(a, 5),
X—a

then f (x) € N(L, ¢).

4. (&)
i) U®m+01,n+02)
neN
5. (b) open
(e) open
(i) closed
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13. (a) not compact (not bounded)
(d) not compact (neither closed nor bounded)
(g) not compact (not closed)
15. (@) Hint: First show that a cover for AU B is a cover for Aand a cover for B.
19. (c) C.Withthe addition of O* to the cover {O,: a € A} we are assured that
there is a finite subcover of {O*} U {O,: a € A}, but not necessarily a
subcover of {O,: @ € A}. Since O* = A — Biis useless in a cover for B,
it can be deleted from the subcover.

Exercises 7.3

1\n
1. (c) Hint: Use the factthe lim <1 +ﬁ> =e

n—oo
3@ 3]
(o o
@ {02}
(m) N
{0, 1}
Hint: Let a€ A Then z> a. Show zis an accumulation point of A by using
Theorem 7.1.1.
7. (b) Hint: Use Exercise 6(a).

10. (a) The set has no accumulation points.

(c) The set has at least one accumulation point.
13. (a) F. Hint: Identify the misuse of quantifiers.

() F. Theclaimis false. (B®)’ need not be a subset of (B’)°.

S

Exercises 74

1. (a) bounded below by 10, not bounded above
(c) bounded; bounded above by %, bounded below by 0

(e) bounded; bounded above by 10, bounded below by 0
(g) not bounded above, not bounded below
(i)  bounded; bounded above by 0.81, bounded below by —0.9
3. Hint: Letybe bounded, and B a number such that |y,| < Bforall ne N. Use

the definition of x, — 0 with %

(n+ 1)! n!

5. (f) Hint: It sufficesto showthatforne N, ——— < —.
(n+ 1)n+1 n"

Exercises 7.5

3. (&) Hint: Consider rational numbers in [7, 8] whose square is less than 50.
6. (a) Hint: Consider a set A that includes [0,2] and the sequence
Xp=n/(n+ 1).
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(b) F. The claim is correct but there is little that is correct in this proof. For
instance, the upper bound a, for A may be negative, in which case
B would have to be defined differently. The most serious error is that
there is no connection between being an accumulation point and being
an upper bound for a set.
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A
Abel, Niels, 285
Abelian groups, 285, 309
Accumulation point, 337-339
Aha! Gotcha: Paradoxes to Puzzle and Delight
(Gardner), 254n
Algebraic proofs, 130
Algebraic structures, 275-280
Algebraic system
definition of, 276
order of, 276
properties of, 277-280
Antecedent, 9
Antisymmetric property of relations, 164-165
Appel, Kenneth, 36
Archimedean Principle, 108-109, 319, 337
Arcs, 138
Arithmetic mean, 347
Associative Laws, 5
Associative property, 277-280
Assumptions
identification of, 60
statement of, 28
Axiomatic set theory, 72
Axiom of Choice, 255, 262, 267-272
Axioms
consistent systems of, 46
definition of, 27
of natural numbers, 100
statement of, 28

B
Banach-Tarski paradox, 270
Bernstein, Felix, 262
Biconditional sentences
definition of, 12
proof of, 43-44

Bijections. See also One-to-one correspondence
construction of, 214
definition of, 212
permutation as, 217
Binary operations, 79, 275-277
Binomial coefficients, 127, 129
Binomial Theorem, 344-345
Bolzano, Bernard, 336n
Bolzano-Weierstrass Theorem, 336-339
Borel, Emile, 331-332
Bound, upper and lower, 168, 318
Bounded Monotone Sequence Theorem, 341-345
Bounded sequences, 342-345, 347
Bounded sets, 336-339

C
Canonical map, 191
Cantor, Georg, 251, 259, 261, 262
Cantor-Schrdder-Bernstein Theorem, 262-266
Cantor’s Theorem, 261-262
Cardinality
comparability of cardinal numbers and, 267-272
countable sets and, 251-257
equivalent sets and, 234-236
finite sets and, 236-240
infinite sets and, 236, 242-248
ordering of cardinal numbers and, 259-266
symbol for, 243
Cardinal numbers
comparability of, 267-272
definition of, 259-260
finite, 243
infinite, 242, 243, 247
ordering of, 259-266
Cartesian products
definition of, 85
Cauchy, Augustin Louis, 346n
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Cauchy sequences, 346, 349-350 Counterexamples, 56

Cayley, Arthur, 277n Counting, two-way, 128

Cayley’s Theorem, 303 Counting principles

Cayley tables, 277, 302 Combination Rule, 128-131
Characteristic function, 190 Generalized Product Rule, 125-127
Choice function, 268 Generalized Sum Rule, 122-124
Codomain, 186 Permutation Rule, 127-128
Cohen, Paul, 272 Product Rule, 125

Combination Rule, 128-131 Sum Rule, 122

Combinatorial proofs, 130 Cyclic group, 295, 296
Commutative Laws, 5 Cyclic subgroup, 295, 296

Commutative property, 277, 279, 285
Commutative ring, 310, 311-312
Compact sets, 330-331

Comparability property, 164
Comparability Theorem, 267-268, 270

D

Dedekind, Richard, 349n
Dedekind cuts, 349-350
Deductive reasoning, 1

Compl_ement Definitions, 28
of digraph, 156 Degree of a vertex, 175
of set, 83 \ :

DeMorgan, Augustus, 5n
De Morgan’s Laws, 5, 6, 29, 93
Denumerable sets, 251, 252, 255, 256, 269
Denumerable subsets, 271
Derived sets, 338
Descartes, René, 85
Difference, set operations of, 79-81
Digraphs
complement of, 156
definition of, 138
Direct proof
examples of, 33-35, 48
explanation of, 31-33
form of, 49-50
use of, 61
Disjunction, 2
Distributive Laws, 5
Division Algorithm, 62-65, 117-118
Domain
of function, 186
of relation, 137
Double Negation Law, 5

Complete graphs, 176
Complete induction, 114
Completeness

of an ordered field, 320

equivalents of, 347-350
Component of a graph, 179
Composition

of function, 156

of relation, 83
Conditionals, 9-15
Conditional sentences

converse and contrapositive of, 11-12

definition of, 9

direct proof of, 33
Congruence, 151
Congruence modulo, 278
Conjunction

definition of, 2

negation of, 6
Connected graph, 180
Consequent, 9
Consistent axiom systems, 46
Continuum hypothesis, 247, 271-272

Contradiction E

definition of, 4 Edge, 174

negation of, 4 Element-chasing proof, 77

proof by, 41-43, 46, 50-52, 61, Equivalence relations

263-264 algebraic structures based on, 278-279

Contraposition, proof by, 40-41, 45 definition of, 147
Contrapositive, of sentence, 11 partitions and, 157-161, 179
Convergence, of sequence, 225-229, 348 Equivalent sets, 233-236
Converse, of sentence, 11 Equivalents of completeness, 347-350
Correspondence Euclidean axioms, 28

rules of, 191 Euclid of Alexandria, 28n, 42, 46

single-valued, 187 Euclid’s Lemma, 45, 65
Countable sets, 245-246, 251-257, 269 Euler, Leonard, 51
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Exhaustion, proof by, 36
Existence theorems, 51, 52, 54
Existential quantifier, 19

F
Family of sets
definition of, 89
indexed, 92-95
Fibonacci, Leonardo, 115n
Fibonacci numbers, 115, 116
Fields
algebraic properties of, 320-321
complete, 320
discussion of, 311-312, 315
ordered, 316-321, 347, 349, 350
Fifth postulate (Euclid), 46
Finite sets
definition of, 236
Pigeonhole Principle and, 239-240
Four-Color Theorem, 36
Fraenkel, Abraham, 72
Functions
characteristic, 190
choice, 268
codomain of, 186, 188, 205, 206
composite, 198
constructions of, 195-202
decreasing, 201
definition of, 185
greatest integer, 190
identity, 189, 217
image of sets and, 220-223
inclusion, 189
increasing, 201
induced, 223
inverse of, 196
one-to-one, 208-210
one-to-one correspondence and inverse, 213-218
onto, 205-208
piecewise defined, 201
range of, 186
real, 188
as relations, 186-191
sequences and, 225-230
step, 190
Fundamental Theorem of Arithmetic, 118-119

G

Galois, Evariste, 283

Gardner, Martin, 239

Gauss, Carl Friedrich, 151

Generalized Principle of Mathematical Induction, 109
Generalized Product Rule, 125-127

Generalized Sum Rule, 122-124

Generator, 295

Index

Geometric mean, 347
Godel, Kurt, 272n
Goldbach, Christian, 57n
Goldbach Conjecture, 57n
Graphs
complete, 176
connected, 180
definition of, 174
to describe relations, 136
directed, 138
discussion of, 177-181
of functions, 187, 188, 190, 200-202
isomorphic, 175
null, 176
subgraphs, 177
Graph theory, 174
Greatest common divisor, 62, 63
Greatest integer function, 190
Groups. See also Subgroups
abelian, 285, 308, 309
axiomatic approach to define, 283, 289
commutative, 285
cyclic, 295
definition of, 283-285
homomorphism, 300
Law of Exponents and, 288
permutation, 286-287

H
Haken, Wolfgang, 36
Handshaking Lemma, 176-177
Hasse diagram, 167, 169
Heine, Edward, 331-332
Heine-Borel Theorem, 332-333, 336
Hierarchy of connectives, 6, 15
Hilbert, David, 254
Homomorphic image, 300, 301, 303
Homomorphism

discussion of, 300-303

group, 300

ring, 309, 310
Horizontal Line Test, 206

|

Identity element, 277, 278
Identity function, 189, 217
Identity permutation, 217, 218
Identity subgroup, 293
Images of sets, 220-223
Immediate predecessor, 166
Inclusion function, 189
Index, 92

Indexing set, 92-93
Indirect proofs, 40-41
Induced function, 223
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Induction Normalized form, 246
complete, 114 Null graphs, 176
Generalized Principle of Mathematical, 109
hypothesis of, 102 O
Principle of Complete, 114-116 One-to-one correspondence. See also bijections
Principle of Mathematical, 100-109, 114 elements in set and, 233, 234
proofs by, 102-103 explanation of, 213-218, 234
Well-Ordering Principle, 116-119 infinite sets and, 244
Inductive set, 100 One-to-one functions, 208-210
Infimum, 168, 318 Open sets, 326-329
Infinite Hotel, 254 Operation preserving (OP), 298
Infinite order, 295 Operation tables, 277
Infinite sequence, 190 Order
Infinite sets, 236, 242-248 of an algebraic system, 276
Integral domain, 310, 311 of an element, 295
Intermediate Value Theorem, 20 of a graph, 175
Intersection Ordered field properties of real numbers, 316-321
over family of sets, 90 Ordered fields, 316-321, 347, 349, 350
set operation of, 80, 81 Ordered n-tuples, 84
Inverse element, 277, 278 Ordered pairs
Inverse functions, 215-218 definition of, 84
Inverse permutation, 218 as relation, 137
Isomorphic Ordering relations, 163-170
graphs, 175
groups, 302 P
Isomorphism, 302 Pairwise disjoint families, 94, 95
Paradox, 2
J Parentheses, 6-7
Join operation, 144 Partially ordered set (poset), 165-169
Partitions
L definition of, 157-159
The Last Recreations (Gardner), 239 equivalence relation and, 159-161, 179
Law of Cosines, 45 Pascal, Blaise, 130n
Law of Excluded Middle, 4 Pascal’s triangle, 130-131
Law of Exponents, 288 Path, 177-180
Leibnitz, G. W., 185 Peano, Giuseppe, 100
Leonardo of Pisa (Leonardo Fibonacci), 115 Permutation groups, 286-287
Linear combination, 63 Permutation Rule, 127-128
Linear order, 169, 170 Permutations
Loop, 138, 148 composites of, 218
Lower bound, 168, 318 counting number of, 128-129
definition of, 217, 285
M identity, 218
Mean Value Theorem, 51 inverses of, 217
Modulus, of congruence, 151, 152 of sets, 126, 285-286
Modus ponens, 29-30 Piecewise-defined functions, 201
Monotone sequences, 342-345, 347 Pigeonhole Principle, 239-240
Poset, 165
N Postulates, 27
Natural numbers Power set, 75
infinite sets and, 243-248 Principle of Complete Induction (PCI), 114-116
property of sets of, 100 Principle of Inclusion and Exclusion, 124
Negations Principle of Mathematical Induction (PMI)
of proposition, 2 discussion and use of, 100-109, 114
simplified form of, 23, 24 generalized, 109
Neighborhood, 325-326, 338 Product Rule, 125
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Products, 275
Proofs
algebraic, 130
basic methods I, 27-36
basic methods I1, 40-46
of biconditional sentences, 43-44
combinatorial, 130
by contradiction, 41-43, 46, 50-53, 61
by contraposition, 40-41, 45
direct, 31-35, 48-50
element-chasing, 77
by exhaustion, 36
explanation of, 1, 27
indirect, 40-41
induction, 102-103
involving quantifiers, 48-56
strategies for writing, 29, 60-62
Proper subset, 74
Propositions
ambiguity and, 6-7
antecedent, 9
compound, 34
conditionals and biconditionals and, 9-15
consequent, 9
contrapositive and, 11
converse and, 11
definition of, 1-2
denial of, 6
equivalent, 4-6
examples of, 2
formation of, 2
negation of, 2
Pugh, Charles Chapman, 349
Pythagoras, 28n
Pythagorean Theorem, 28

Q

Quantified sentences
explanation of, 22, 23
strategies for dealing with, 61

Quantifiers
existential, 19
explanation of, 18-25
hidden, 20-21
incorrect deductions and, 55-56
proofs involving, 48-56
unique existential, 24
universal, 20

R
Range
of function, 186
of relation, 137
Real functions, 188
Real Mathematical Analysis (Pugh), 349
Reasoning, deductive, 1

Index

Reflexive property of relations, 147-149, 164
Relational databases, 143
Relations
antisymmetric property of, 164-165
construction of, 139-144
definition of, 135
equivalence, 147-153, 159-161, 191
functions as, 185-191
graphs to represent, 174-181
inverse of, 139
n-tuple, 143
ordering, 163-170
reflexivity property of, 147-149, 164
symmetric property of, 147-149
transitive property of, 147-149, 164
Replacement rule, 29
Restrictions, of function, 199
Ring homomorphism, 309, 310
Ring isomorphism, 310
Rings
commutative, 310, 311
definition of, 307
with unity, 310
Rolle’s Theorem, 51
Russell, Bertrand, 2n, 72

S
Sandwich theorem, 229
Schroder, Ernst, 262
Sentences
conditional, 9-15
contrapositive of, 11
converse of, 11
quantified, 22, 23, 61
Sequences
bounded, 342-345, 347
Cauchy, 346, 349-350
convergence of, 225
decreasing, 343
definition of, 190, 225
divergence of, 225
increasing, 343
limit of, 226-229
monotone, 342-345, 347
nth term of, 190, 225
properties of, 225-226
Set operations
discussion of, 79-86
extended, 89-95
Sets
bounded, 318
compact, 330-331
countable, 245-246, 251-257, 269
counting elements in, 233, 234
denumerable, 251, 252, 255, 256, 269
derived, 338
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Sets (continued) Transitive closure, 156
equivalent, 234-236 Transitive property of relations, 147-149, 164
family of, 89-95 Triangles, Pascal’s, 130-131
finite, 236-240 Trichotomy property, 267-268
images of, 220-223 Trigonometric functions, 200, 215, 247
infinite, 236, 242-248 Trivial subgroup, 293
open, 326-329 Truth set, 18-20
partially ordered, 165-169 Truth table, 10-11
permutations of, 126, 285-286 Two-way counting, 128
supremum of, 318, 319
truth, 18-20 U
uncountable, 245-246 Unary operations, 276

Set theory Undecidable statements, 46
axiomatic, 72 Undefined terms, 28
basic concepts of, 71-77 Union
counting principles and, 122-131 of finite numbers, 238
equivalent forms of induction and, 114-119 over family of sets, 90
extended set operations and indexed families of sets and, set operation of, 80, 81

89-95 Unique existential quantifiers, 24
set operations and, 79-86 Universal quantifier, 20
Zermelo-Fraenkel, 72, 268, 272 Universe of discourse, 18, 83
Single-valued correspondence, 187 Upper bound, 168, 318

Squeeze theorem, 229
Step function, 190
Subgroups, 292-296. See also Groups
Subsequence, 346
Subsets
of algebraic system, 276
of countable sets, 253
definition of, 72

\%
\enn, John, 75n
Venn diagrams, 75, 80, 81, 91
\ertex
adjacent, 175
definition of, 138, 174

initial, 177
denumerable, 271 .
- isolated, 175
of finite sets, 237 .
terminal, 177

of groups, 294 Vertical Line Test, 188

proper, 74
Sum Rule, 122, 238
Supremum, 168, 318 w
Surjection, 205, 206, 208, 209 Walk, 177
Symmetric closure, 156 Weierstrass, Karl, 336n
Symmetric group on n symbols, 286 Well ordering, 170
Symmetric property of relations, 147-149 Well-Ordering Principle (WOP), 116-117, 170, 253
Well-Ordering Theorem, 170
T
Tautologies, 4, 29 z
Tautology rule, 29 Zermelo, Ernst, 72
Terminal vertex, 177 Zermelo-Fraenkel set theory, 72, 268, 272
Ternary operations, 276
Theorems

existence, 51, 52, 54
explanation of, 27
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Preface to the Sudent: {Avae A} 92 int(x) 190
xeA xiv UA., NA, 92 X, 190
X¢A Xiv acs a=a F1 19
{xP(X} xiv(and 71) UA, NA 93 GoF 19
@ xiv (and 72) = flo 199
ACB xiv(and 72) E:V”l OEOO f: Alﬂl‘i B 205
A=B xiv(and 74) N f:A— B 209
N,Z, Q,R,C xiv da 122 [abc] 217 (and 285)
[a b], (& b),(a 00), (—o0,8) xvi =1 f(X), f-1(Y) 220
f:A— B xvi(and 186) [la 125 f:?(A) > P(B) 223
f(x) xvii (and 189) =t f-1:p(B) - P(A) 223
Dom(f), Rng(f) xvii (and137) PC! 114 lim x, = L %, — L 226

WOP 116 N o0
Chapter 1: A
~P.PAQPVQ 2 An 122 Chaper 5:
PoQ 9 (r> 127 A~B A%B 234
PoQPiffQ 12 Nic 236
P(x) 18 Chapter 3: A 236
@AYPK), (YWP(X) 20 aRb aRb 135 No 243
(Vxe AP(x), Gxe A)P(x) 22 Dom(R),Rng(R) 137 c 2
(E”X)P(X) 24 Iln 138 A=B, A<B, A<B 260
ged(a b) 62 R 139
lcm(a, b) 68 SoR 141 Chapter 6:

x/R A/R 150 (A, ) 276
Chapter 2: % [X] 150 a+mb, a-mb 279
{x P} 71 (and xiv) X=mYy, Xx=y(modm) 151 x~t 283
& 72 (and xiv) 7. 153 [abc] 285 (and 217)
ACB 72 (and xiv) sup(A), inf(A) 168 (and 318) S 286
A=B 74 (and xiv) (V,E) 174 (& 295
PA) 75 d(u v) 182 OP 298
aZ 718 C(v) 180 ker(f) 306
AUB,ANBA—B 80 (R + ) 307
B¢ 83 Chapter 4: Chabter 7
(@b) 84 f:A— B 186 (and xvi) e
(@, @, ..., a,) 84 Dom(f) 188 (and xvii) jﬁp (Aa)’ 'ngéf) 318 (and 168)
AxB 84 Rng(f) 194 (and xvii) A,(a'33)9
AAB 88 f(x) 189 (and xvii)
UAMNA 92 Xp 189
Aed Aedd
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