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Preface to the Second Edition

We have made small changes throughout the book, including the exercises,
and we have tried to correct if not all, then at least most of the typos. We
wish to thank the many colleagues and students who have commented con-
structively on the book since its publication two years ago, and in particular
Professors Valentin Petrov, Esko Valkeila, Volker Priebe, and Frank Knight.

Jean Jacod, Paris
Philip Protter, Ithaca

March, 2002

Preface to the Second Printing
of the Second Edition

We have benefited greatly from the long list of typos and small suggestions
sent to us by Professor Luis Tenorio. These corrections have improved the
book in subtle yet important ways, and the authors are most grateful to him.

Jean Jacod, Paris
Philip Protter, Ithaca

January, 2004

Preface to the First Edition

We present here a one semester course on Probability Theory. We also treat
measure theory and Lebesgue integration, concentrating on those aspects
which are especially germane to the study of Probability Theory. The book
is intended to fill a current need: there are mathematically sophisticated stu-
dents and researchers (especially in Engineering, Economics, and Statistics)
who need a proper grounding in Probability in order to pursue their primary
interests. Many Probability texts available today are celebrations of Prob-
ability Theory, containing treatments of fascinating topics to be sure, but
nevertheless they make it difficult to construct a lean one semester course
that covers (what we believe) are the essential topics.



VIII Preface to the First Edition

Chapters 1–23 provide such a course. We have indulged ourselves a bit
by including Chapters 24–28 which are highly optional, but which may prove
useful to Economists and Electrical Engineers.

This book had its origins in a course the second author gave in Perugia,
Italy in 1997; he used the samizdat “notes” of the first author, long used
for courses at the University of Paris VI, augmenting them as needed. The
result has been further tested at courses given at Purdue University. We
thank the indulgence and patience of the students both in Perugia and in
West Lafayette. We also thank our editor Catriona Byrne, as well as Nick
Bingham for many superb suggestions, an anonymous referee for the same,
and Judy Mitchell for her extraordinary typing skills.

Jean Jacod, Paris
Philip Protter, West Lafayette
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1 Introduction

Almost everyone these days is familiar with the concept of Probability. Each
day we are told the probability that it will rain the next day; frequently we
discuss the probabilities of winning a lottery or surviving the crash of an air-
plane. The insurance industry calculates (for example) the probability that
a man or woman will live past his or her eightieth birthday, given he or she
is 22 years old and applying for life insurance. Probability is used in business
too: for example, when deciding to build a waiting area in a restaurant, one
wants to calculate the probability of needing space for more than n people
each day; a bank wants to calculate the probability a loan will be repaid;
a manufacturer wants to calculate the probable demand for his product in
the future. In medicine a doctor needs to calculate the probability of success
of various alternative remedies; drug companies calculate the probability of
harmful side effects of drugs. An example that has recently achieved spec-
tacular success is the use of Probability in Economics, and in particular in
Stochastic Finance Theory. Here interest rates and security prices (such as
stocks, bonds, currency exchanges) are modelled as varying randomly over
time but subject to specific probability laws; one is then able to provide in-
surance products (for example) to investors by using these models. One could
go on with such a list. Probability theory is ubiquitous in modern society and
in science.

Probability theory is a reasonably old subject. Published references on
games of chance (i.e., gambling) date to J. Cardan (1501–1576) with his book
De Ludo Alae [4]. Probability also appears in the work of Kepler (1571–1630)
and of Galileo (1564–1642). However historians seem to agree that the subject
really began with the work of Pascal (1623–1662) and of Fermat (1601–1665).
The two exchanged letters solving gambling “paradoxes” posed to them by
the aristocrat de Méré. Later the Dutch mathematician Christian Huygens
(1629–1695) wrote an influential book [13] elaborating on the ideas of Pascal
and Fermat. Finally in 1685 it was Jacques Bernoulli (1654–1705) who pro-
posed such interesting probability problems (in the “Journal des Scavans”)
(see also [3]) that it was necessary to develop a serious theory to answer
them. After the work of J. Bernoulli and his contemporary A. De Moivre
(1667–1754) [6], many renowned mathematicians of the day worked on prob-
ability problems, including Daniel Bernoulli (1700–1782), Euler (1707–1803),

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004



2 1 Introduction

Gauss (1777–1855), and Laplace (1749–1827). For a nice history of Probabil-
ity before 1827 (the year of the death of Laplace) one can consult [21]. In the
twentieth century it was Kolmogorov (1903–1987) who saw the connection
between the ideas of Borel and Lebesgue and probability theory and he gave
probability theory its rigorous measure theory basis. After the fundamental
work of Kolmogorov, the French mathematician Paul Lévy (1886–1971) set
the tone for modern Probability with his seminal work on Stochastic Pro-
cesses as well as characteristic functions and limit theorems.

We think of Probability Theory as a mathematical model of chance, or
random events. The idea is to start with a few basic principles about how
the laws of chance behave. These should be sufficiently simple that one can
believe them readily to correspond to nature. Once these few principles are
accepted, we then deduce a mathematical theory to guide us in more com-
plicated situations. This is the goal of this book.

We now describe the approach of this book. First we cover the bare essen-
tials of discrete probability in order to establish the basic ideas concerning
probability measures and conditional probability. We next consider proba-
bilities on countable spaces, where it is easy and intuitive to fix the ideas.
We then extend the ideas to general measures and of course probability mea-
sures on the real numbers. This represents Chapters 2–7. Random variables
are handled analogously: first on countable spaces and then in general. In-
tegration is established as the expectation of random variables, and later
the connection to Lebesgue integration is clarified. This brings us through
Chapter 12.

Chapters 13 through 21 are devoted to the study of limit theorems, the
central feature of classical probability and statistics. We give a detailed treat-
ment of Gaussian random variables and transformations of random variables,
as well as weak convergence.

Conditional expectation is not presented via the Radon-Nikodym theo-
rem and the Hahn–Jordan decomposition, but rather we use Hilbert Space
projections. This allows a rapid approach to the theory. To this end we cover
the necessities of Hilbert space theory in Chapter 22; we nevertheless extend
the concept of conditional expectation beyond the Hilbert space setting to
include integrable random variables. This is done in Chapter 23. Last, in
Chapters 24–28 we give a beginning taste of martingales, with an applica-
tion to the Radon–Nikodym Theorem. These last five chapters are not really
needed for a course on the “essentials of probability”. We include them how-
ever because many sophisticated applications of probability use martingales;
also martingales serve as a nice introduction to the subject of stochastic pro-
cesses.

We have written the book independent of the exercises. That is, the im-
portant material is in the text itself and not in the exercises. The exercises
provide an opportunity to absorb the material by working with the subject.
Starred exercises are suspected to be harder than the others.
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We wish to acknowledge that Allan Gut’s book [11] was useful in providing
exercises, and part of our treatment of martingales was influenced by the
delightful introduction to the book of Richard Bass [1].

No probability background is assumed. The reader should have a good
knowledge of (advanced) calculus, some linear algebra, and also “mathemat-
ical sophistication”.

Random Experiments

Random experiments are experiments whose output cannot be surely pre-
dicted in advance. But when one repeats the same experiment a large number
of times one can observe some “regularity” in the average output. A typical
example is the toss of a coin: one cannot predict the result of a single toss,
but if we toss the coin many times we get an average of about 50% of “heads”
if the coin is fair.

The theory of probability aims towards a mathematical theory which
describes such phenomena. This theory contains three main ingredients:

a) The state space: this is the set of all possible outcomes of the experiment,
and it is usually denoted by Ω.

Examples:

1) A toss of a coin: Ω = {h,t}.
2) Two successive tosses of a coin: Ω = {hh,tt,ht,th}.
3) A toss of two dice: Ω = {(i, j) : 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}.
4) The measurement of a length L, with a measurement error: Ω = R+,

where R+ denotes the positive real numbers [0,∞); ω ∈ Ω denotes the
result of the measurement, and ω − L is the measurement error.

5) The lifetime of a light-bulb: Ω = R+.

b) The events: An “event” is a property which can be observed either to
hold or not to hold after the experiment is done. In mathematical terms, an
event is a subset of Ω. If A and B are two events, then

• the contrary event is interpreted as the complement set Ac;
• the event “A or B” is interpreted as the union A ∪B;
• the event “A and B” is interpreted as the intersection A ∩B;
• the sure event is Ω;
• the impossible event is the empty set ∅;
• an elementary event is a “singleton”, i.e. a subset {ω} containing a

single outcome ω of Ω.

We denote by A the family of all events. Often (but not always: we will
see why later) we have A = 2Ω , the set of all subsets of Ω. The family A
should be “stable” by the logical operations described above: if A, B ∈ A,
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then we must have Ac ∈ A, A ∩ B ∈ A, A ∪ B ∈ A, and also Ω ∈ A and
∅ ∈ A.

c) The probability: With each event A one associates a number denoted by
P (A) and called the “probability of A”. This number measures the likelihood
of the event A to be realized a priori, before performing the experiment. It
is chosen between 0 and 1, and the more likely the event is, the closer to 1
this number is.

To get an idea of the properties of these numbers, one can imagine that
they are the limits of the “frequency” with which the events are realized: let
us repeat the same experiment n times; the n outcomes might of course be
different (think of n successive tosses of the same die, for instance). Denote
by fn(A) the frequency with which the event A is realized (i.e. the number
of times the event occurs, divided by n). Intuitively we have:

P (A) = limit of fn(A) as n ↑ +∞. (1.1)

(we will give a precise meaning to this “limit” later). From the obvious prop-
erties of frequencies, we immediately deduce that:

1. 0 ≤ P (A) ≤ 1,
2. P (Ω) = 1,
3. P (A ∪B) = P (A) + P (B) if A ∩B = ∅.

A mathematical model for our experiment is thus a triple (Ω,A, P ), con-
sisting of the space Ω, the family A of all events, and the family of all P (A)
for A ∈ A; hence we can consider that P is a map from A into [0, 1], which
satisfies at least the properties (2) and (3) above (plus in fact an additional
property, more difficult to understand, and which is given in Definition 2.3
of the next Chapter).

A fourth notion, also important although less basic, is the following one:

d) Random variable: A random variable is a quantity which depends on
the outcome of the experiment. In mathematical terms, this is a map from Ω
into a space E, where often E = R or E = Rd. Warning: this terminology,
which is rooted in the history of Probability Theory going back 400 years,
is quite unfortunate; a random “variable” is not a variable in the analytical
sense, but a function !

Let X be such a random variable, mapping Ω into E. One can then
“transport” the probabilistic structure onto the target space E, by setting

PX(B) = P (X−1(B)) for B ⊂ E,

where X−1(B) denotes the pre-image of B by X, i.e. the set of all ω ∈ Ω
such that X(ω) ∈ B. This formula defines a new probability, denoted by PX ,
but on the space E instead of Ω. This probability PX is called the law of
the variable X.
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Example (toss of two dice): We have seen that Ω = {(i, j) : 1 ≤ i ≤ 6, 1 ≤
j ≤ 6}, and it is natural to take here A = 2Ω and

P (A) =
#(A)

36
if A ⊂ Ω,

where #(A) denotes the number of points in A. One easily verifies the prop-
erties (1), (2), (3) above, and P ({ω}) = 1

36 for each singleton. The map
X : Ω → N defined by X(i, j) = i + j is the random variable “sum of the
two dice”, and its law is

PX(B) =
number of pairs (i, j) such that i + j ∈ B

36

(for example PX({2}) = P ({1, 2}) = 1
36 , PX({3}) = 2

36 , etc...).

We will formalize the concept of a probability space in Chapter 2, and ran-
dom variables are introduced with the usual mathematical rigor in Chapters
5 and 8.



2 Axioms of Probability

We begin by presenting the minimal properties we will need to define a Prob-
ability measure. Hopefully the reader will convince himself (or herself) that
the two axioms presented in Definition 2.3 are reasonable, especially in view
of the frequency approach (1.1). From these two simple axioms flows the en-
tire theory. In order to present these axioms, however, we need to introduce
the concept of a σ-algebras.

Let Ω be an abstract space, that is with no special structure. Let 2Ω

denote all subsets of Ω, including the empty set denoted by ∅. With A being
a subset of 2Ω , we consider the following properties:

1. ∅ ∈ A and Ω ∈ A;
2. If A ∈ A then Ac ∈ A, where Ac denotes the complement of A;
3. A is closed under finite unions and finite intersections: that is, if A1, . . .,

An are all in A, then ∪n
i=1Ai and ∩n

i=1Ai are in A as well (for this it is
enough that A be stable by the union and the intersection of any two
sets);

4. A is closed under countable unions and intersections: that is, if A1, A2,
A3, . . . is a countable sequence of events in A, then ∪∞

i=1Ai and ∩∞
i=1Ai

are both also in A.

Definition 2.1. A is an algebra if it satisfies (1), (2) and (3) above. It is a
σ-algebra, (or a σ-field) if it satisfies (1), (2), and (4) above.

Note that under (2), (1) can be replaced by either (1′): ∅ ∈ A or by (1′′):
Ω ∈ A. Note also that (1)+(4) implies (3), hence any σ-algebra is an algebra
(but there are algebras that are not σ-algebras: see Exercise 2.17).

Definition 2.2. If C ⊂ 2Ω, the σ-algebra generated by C, and written σ(C),
is the smallest σ-algebra containing C. (It always exists because 2Ω is a σ-
algebra, and the intersection of a family of σ-algebras is again a σ-algebra:
See Exercise 2.2.)

Example:

(i) A = {∅, Ω} (the trivial σ-algebra).
(ii) A is a subset; then σ(A) = {φ, A, Ac, Ω}.

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004



8 2 Axioms of Probability

(iii) If Ω = R (the Real numbers) (or more generally if Ω is a space
with a topology, a case we treat in Chapter 8), the Borel σ-algebra is
the σ-algebra generated by the open sets (or by the closed sets, which is
equivalent).

Theorem 2.1. The Borel σ-algebra of R is generated by intervals of the
form (−∞, a], where a ∈ Q (Q = rationals).

Proof. Let C denote all open intervals. Since every open set in R is the
countable union of open intervals, we have σ(C) = the Borel σ-algebra of R.

Let D denote all intervals of the form (−∞, a], where a ∈ Q. Let (a, b) ∈ C,
and let (an)n≥1 be a sequence of rationals decreasing to a and (bn)n≥1 be a
sequence of rationals increasing strictly to b. Then

(a, b) = ∪∞
n=1(an, bn]

= ∪∞
n=1 ((−∞, bn] ∩ (−∞, an]c) ,

Therefore C ⊂ σ(D), whence σ(C) ⊂ σ(D). However since each element of D
is a closed set, it is also a Borel set, and therefore σ(D) is contained in the
Borel sets B. Thus we have

B = σ(C) ⊂ σ(D) ⊂ B,

and hence σ(D) = B. �
On the state space Ω the family of all events will always be a σ-algebra A:

the axioms (1), (2) and (3) correspond to the “logical” operations described
in Chapter 1, while Axiom (4) is necessary for mathematical reasons. The
probability itself is described below:

Definition 2.3. A probability measure defined on a σ-algebra A of Ω is a
function P : A → [0, 1] that satisfies:

1. P (Ω) = 1
2. For every countable sequence (An)n≥1 of elements of A, pairwise disjoint

(that is, An ∩Am = ∅ whenever n �= m), one has

P (∪∞
n=1An) =

∞∑
n=1

P (An).

Axiom (2) above is called countable additivity; the number P (A) is called the
probability of the event A.

In Definition 2.3 one might imagine a more näıve condition than (2),
namely:

A, B ∈ A, A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B). (2.1)
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This property is called additivity (or “finite additivity”) and, by an elemen-
tary induction , it implies that for every finite A1, . . . Am of pairwise disjoint
events Ai ∈ A we have

P (∪m
n=1An) =

m∑
n=1

P (An).

Theorem 2.2. If P is a probability measure on (Ω,A), then:

(i) We have P (∅) = 0.
(ii) P is additive.

Proof. If in Axiom (2) we take An = ∅ for all n, we see that the number
a = P (∅) is equal to an infinite sum of itself; since 0 ≤ a ≤ 1, this is possible
only if a = 0, and we have (i). For (ii) it suffices to apply Axiom (2) with
A1 = A and A2 = B and A3 = A4 = . . . = ∅, plus the fact that P (∅) = 0, to
obtain (2.1). �

Conversely, countable additivity is not implied by additivity. In fact, in
spite of its intuitive appeal, additivity is not enough to handle the mathe-
matical problems of the theory, even in such a simple example as tossing a
coin, as we shall see later.

The next theorem (Theorem 2.3) shows exactly what is extra when we
assume countable additivity instead of just finite additivity. Before stating
this theorem, and to see that the last four conditions in it are meaningful,
let us mention the following immediate consequence of Definition 2.3:

A, C ∈ A, A ⊂ C ⇒ P (A) ≤ P (C)

(take B = Ac ∩ C, hence A ∩B = ∅ and A ∪B = C, and apply (2.1)).

Theorem 2.3. Let A be a σ-algebra. Suppose that P : A → [0, 1] satisfies
(1) and is additive. Then the following are equivalent:

(i) Axiom (2) of Definition (2.3).
(ii) If An ∈ A and An ↓ ∅, then P (An) ↓ 0.
(iii) If An ∈ A and An ↓ A, then P (An) ↓ P (A).
(iv) If An ∈ A and An ↑ Ω, then P (An) ↑ 1.
(v) If An ∈ A and An ↑ A, then P (An) ↑ P (A).

Proof. The notation An ↓ A means that An+1 ⊂ An, each n, and ∩∞
n=1An =

A. The notation An ↑ A means that An ⊂ An+1 and ∪∞
n=1An = A.

Note that if An ↓ A, then Ac
n ↑ Ac, and by the finite additivity axiom

P (Ac
n) = 1− P (An). Therefore (ii) is equivalent to (iv) and similarly (iii) is

equivalent to (v). Moreover by choosing A to be Ω we have that (v) implies
(iv).

Suppose now that we have (iv). Let An ∈ A with An ↑ A. Set Bn =
An ∪Ac. Then Bn increases to Ω, hence P (Bn) increases to 1. Since An ⊂ A
we have An ∩Ac = ∅, whence P (An ∪Ac) = P (An) + P (Ac). Thus



10 2 Axioms of Probability

1 = lim
n→∞ P (Bn) = lim

n→∞{P (An) + P (Ac)},

whence limn→∞ P (An) = 1− P (Ac) = P (A), and we have (v).
It remains to show that (i) is equivalent to (v). Suppose we have (v). Let

An ∈ A be pairwise disjoint: that is, if n �= m, then An∩Am = ∅. Define Bn =
∪1≤p≤nAp and B = ∪∞

n=1An. Then by the definition of a Probability Measure
we have P (Bn) =

∑n
p=1 P (Ap) which increases with n to

∑∞
n=1 P (An), and

also P (Bn) increases to P (B) by (v). We deduce limn→∞ P (Bn) = P (B) and
we have

P (B) = P (∪∞
n=1An) =

∞∑
n=1

P (An)

and thus we have (i).
Finally assume we have (i), and we wish to establish (v). Let An ∈ A,

with An increasing to A. We construct a new sequence as follows:

B1 = A1,

B2 = A2 \A1 = A2 ∩ (Ac
1),

...
Bn = An \An−1.

Then ∪∞
n=1Bn = A and the events (Bn)n≥1 are pairwise disjoint. Therefore

by (i) we have

P (A) = lim
n→∞

n∑
p=1

P (Bp).

But also
∑n

p=1 P (Bp) = P (An), whence we deduce limn→∞ P (An) = P (A)
and we have (v). �

If A ∈ 2Ω , we define the indicator function by

1A(ω) =
{

1 if ω ∈ A,
0 if ω �∈ A.

We often do not explicitly write the ω, and just write 1A.
We can say that An ∈ A converges to A (we write An → A) if

limn→∞ 1An (ω) = 1A(ω) for all ω ∈ Ω. Note that if the sequence An in-
creases (resp. decreases) to A, then it also tends to A in the above sense.

Theorem 2.4. Let P be a probability measure, and let An be a sequence of
events in A which converges to A. Then A ∈ A and limn→∞ P (An) = P (A).

Proof. Let us define

lim sup
n→∞

An = ∩∞
n=1 ∪m≥n Am,

lim inf
n→∞ An = ∪∞

n=1 ∩m≥n Am.
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Since A is a σ-algebra, we have lim supn→∞ An ∈ A and lim infn→∞ An ∈ A
(see Exercise 2.4).

By hypothesis An converges to A, which means limn→∞ 1An
= 1A, all

ω. This is equivalent to saying that A = lim supn→∞ An = lim infn→∞ An.
Therefore A ∈ A.

Now let Bn = ∩m≥nAm and Cn = ∪m≥nAm. Then Bn increases to A
and Cn decreases to A, thus limn→∞ P (Bn) = limn→∞ P (Cn) = P (A), by
Theorem 2.3. However Bn ⊂ An ⊂ Cn, therefore P (Bn) ≤ P (An) ≤ P (Cn),
so limn→∞ P (An) = P (A) as well. �
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Exercises for Chapter 2

2.1 Let Ω be a finite set. Show that the set of all subsets of Ω, 2Ω , is also
finite and that it is a σ-algebra.

2.2 Let (Gα)α∈A be an arbitrary family of σ-algebras defined on an abstract
space Ω. Show that H = ∩α∈AGα is also a σ-algebra.

2.3 Let (An)n≥1 be a sequence of sets. Show that (De Morgan’s Laws)

a) (∪∞
n=1An)c = ∩∞

n=1A
c
n

b) (∩∞
n=1An)c = ∪∞

n=1A
c
n.

2.4 Let A be a σ-algebra and (An)n≥1 a sequence of events in A. Show that

lim inf
n→∞ An ∈ A; lim sup

n→∞
An ∈ A; and lim inf

n→∞ An ⊂ lim sup
n→∞

An.

2.5 Let (An)n≥1 be a sequence of sets. Show that

lim sup
n→∞

1An − lim inf
n→∞ 1An = 1{lim supn An \lim infn An }

(where A \B = A ∩Bc whenever B ⊂ A).

2.6 Let A be a σ-algebra of subsets of Ω and let B ∈ A. Show that F =
{A ∩ B : A ∈ A} is a σ-algebra of subsets of B. Is it still true when B is a
subset of Ω that does not belong to A ?

2.7 Let f be a function mapping Ω to another space E with a σ-algebra E .
Let A = {A ⊂ Ω: there exists B ∈ E with A = f−1(B)}. Show that A is a
σ-algebra on Ω.

2.8 Let f : R → R be a continuous function, and let A = {A ⊂ R: there
exists B ∈ B with A = f−1(B)} where B are the Borel subsets of the range
space R. Show that A ⊂ B, the Borel subsets of the domain space R.

For problems 2.9–2.15 we assume a fixed abstract space Ω, a σ-algebra A,
and a Probability P defined on (Ω,A). The sets A, B, Ai, etc... always belong
to A.

2.9 For A, B ∈ A with A ∩B = ∅, show P (A ∪B) = P (A) + P (B).

2.10 For A, B ∈ A, show P (A ∪B) = P (A) + P (B)− P (A ∩B).

2.11 For A ∈ A, show P (A) = 1− P (Ac).

2.12 For A, B ∈ A, show P (A ∩Bc) = P (A)− P (A ∩B).
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2.13 Let A1, . . . , An be given events. Show that

P (∪n
i=1Ai) =

∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj)

+
∑

i<j<k

P (Ai ∩Aj ∩Ak)− . . . + (−1)n+1P (A1 ∩A2 ∩ . . . ∩An)

where (for example)
∑

i<j means to sum over all ordered pairs (i, j) with
i < j.

2.14 Suppose P (A) = 3
4 and P (B) = 1

3 . Show that always 1
12 ≤ P (A∩B) ≤

1
3 .

2.15 (Subadditivity) Let Ai ∈ A be a sequence of events. Show that

P (∪n
i=1Ai) ≤

n∑
i=1

P (Ai),

each n, and also

P (∪∞
i=1Ai) ≤

∞∑
i=1

P (Ai).

2.16 (Bonferroni Inequalities) Let Ai ∈ A be a sequence of events. Show
that

a) P (∪n
i=1Ai) ≥

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj),

b) P (∪n
i=1Ai) ≤

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj) +
∑

i<j<k

P (Ai ∩Aj ∩Ak).

2.17 Suppose that Ω is an infinite set (countable or not), and let A be the
family of all subsets which are either finite or have a finite complement. Show
that A is an algebra, but not a σ-algebra.



3 Conditional Probability and Independence

Let A and B be two events defined on a probability space. Let fn(A) denote
the number of times A occurs divided by n. Intuitively, as n gets large, fn(A)
should be close to P (A). Informally, we should have limn→∞ fn(A) = P (A)
(see Chapter 1).

Suppose now that we know the event B has occurred. Let P (A|B) denote
“the probability of A occurring given knowledge that B has occurred”. What
should P (A|B) be? If we look at fn(A), it is silly to count the occurrences
of A ∩ Bc, since we know B has occurred. Therefore if we only count those
occurrences of A where B also occurs, this is nfn(A ∩ B). Now the number
of trials is the number of occurrences of B (all other trials are discarded as
impossible since B has occurred). Therefore the number of relevant trials is
nfn(B). Consequently we should have

P (A|B) ≈ nfn(A ∩B)
nfn(B)

=
fn(A ∩B)

fn(B)
,

and “taking limits in n” motivates Definition 3.2 which follows.
Next imagine that events A and B are “independent” in the sense that

knowledge that B has occurred in no way changes one’s probability that A
will occur. Then one should have P (A | B) = P (A); this implies

P (A ∩B)
P (B)

= P (A), or P (A ∩B) = P (A)P (B).

This motivates Definition 3.1 which follows; the definition is a little more
complicated in order to handle finite collections of events.

Definition 3.1. (a) Two events A and B are independent if P (A ∩ B) =
P (A)P (B).
(b) A (possibly infinite) collection of events (Ai)i∈I is an independent col-
lection if for every finite subset J of I, one has

P (∩i∈JAi) =
∏
i∈J

P (Ai).

The collection (Ai)i∈I is often said to be mutually independent.

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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Warning: If events (Ai)i∈I are independent, they are pairwise indepen-
dent, but the converse is false. ((Ai)i∈I are pairwise independent if Ai and
Aj are independent for all i, j with i �= j.)

Theorem 3.1. If A and B are independent, so also are A and Bc, Ac and
B, and Ac and Bc.

Proof. For A and Bc,

P (A ∩Bc) = P (A)− P (A ∩B) = P (A)− P (A)P (B) = P (A)(1− P (B))
= P (A)P (Bc).

The other implications have analogous proofs. �

Examples:

1. Toss a coin 3 times. If Ai is an event depending only on the ith toss, then
it is standard to model (Ai)1≤i≤3 as being independent.

2. One chooses a card at random from a deck of 52 cards. A = {the card is
a heart}, and B = {the card is Queen}. A natural model for this experi-
ment consists in prescribing the probability 1

52 for picking any one of the
cards. By additivity, P (A) = 13

52 and P (B) = 4
52 and P (A ∩ B) = 1

52 ,
hence A and B are independent.

3. Let Ω = {1, 2, 3, 4}, and A = 2Ω . Let P (i) = 1
4 , where i = 1, 2, 3, 4.

Let A = {1, 2}, B = {1, 3}, C = {2, 3}. Then A, B, C are pairwise
independent but are not independent.

Definition 3.2. Let A, B be events, P (B) > 0. The conditional probability
of A given B is P (A | B) = P (A ∩B)/P (B).

Theorem 3.2. Suppose P (B) > 0.

(a) A and B are independent if and only if P (A | B) = P (A).
(b) The operation A → P (A | B) from A → [0, 1] defines a new probability

measure on A, called the “conditional probability measure given B”.

Proof. We have already established (a) in the discussion preceding the the-
orem. For (b), define Q(A) = P (A | B), with B fixed. We must show Q
satisfies (1) and (2) of Definition 2.3. But

Q(Ω) = P (Ω | B) =
P (Ω ∩B)

P (B)
=

P (B)
P (B)

= 1.

Therefore, Q satisfies (1). As for (2), note that if (An)n≥1 is a sequence of
elements of A which are pairwise disjoint, then

Q (∪∞
n=1An) = P (∪∞

n=1An | B) =
P ((∪∞

n=1An) ∩B)
P (B)

=
P (∪∞

n=1(An ∩B))
P (B)
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and also the sequence (An ∩B)n≥1 is pairwise disjoint as well; thus

=
∞∑

n=1

P (An ∩B)
P (B)

=
∞∑

n=1

P (An | B) =
∞∑

n=1

Q(An).

�
The next theorem connects independence with conditional probability for

a finite number of events.

Theorem 3.3. If A1, . . . , An ∈ A and if P (A1 ∩ . . . ∩An−1) > 0, then

P (A1 ∩ . . . ∩An) = P (A1)P (A2 | A1)P (A3 | A1 ∩A2)
. . . P (An | A1 ∩ . . . ∩An−1).

Proof. We use induction. For n = 2, the theorem is simply Definition 3.2.
Suppose the theorem holds for n− 1 events. Let B = A1 ∩ . . . ∩An−1. Then
by Definition 3.2 P (B ∩An) = P (An | B)P (B); next we replace P (B) by its
value given in the inductive hypothesis:

P (B) = P (A1)P (A2 | A1) . . . P (An−1 | A1 ∩ . . . ∩An−2),

and we get the result. �
A collection of events (En) is called a partition of Ω if En ∈ A, each n,

they are pairwise disjoint, P (En) > 0, each n, and ∪nEn = Ω.

Theorem 3.4 (Partition Equation). Let (En)n≥1 be a finite or countable
partition of Ω. Then if A ∈ A,

P (A) =
∑

n

P (A | En)P (En).

Proof. Note that

A = A ∩Ω = A ∩ (∪nEn) = ∪n(A ∩ En).

Since the En are pairwise disjoint so also are (A ∩ En)n≥1, hence

P (A) = P (∪n(A ∩ En)) =
∑

n

P (A ∩ En) =
∑

n

P (A | En)P (En).

�

Theorem 3.5 (Bayes’ Theorem). Let (En) be a finite or countable parti-
tion of Ω, and suppose P (A) > 0. Then

P (En | A) =
P (A | En)P (En)∑
m P (A | Em)P (Em)

.
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Proof. By Theorem 3.4 we have that the denominator∑
n

P (A | Em)P (Em) = P (A).

Therefore the formula becomes

P (A | En)P (En)
P (A)

=
P (A ∩ En)

P (A)
= P (En | A).

�
Bayes’ theorem is quite simple but it has profound consequences both in

Probability and Statistics. See, for example, Exercise 3.6.
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Exercises for Chapter 3

In all exercises the probability space is fixed, and A, B, An, etc... are events.

3.1 Show that if A ∩ B = ∅, then A and B cannot be independent unless
P (A) = 0 or P (B) = 0.

3.2 Let P (C) > 0. Show that P (A∪B | C) = P (A | C)+P (B | C)−P (A∩B |
C).

3.3 Suppose P (C) > 0 and A1, . . . , An are all pairwise disjoint. Show that

P (∪n
i=1Ai | C) =

n∑
i=1

P (Ai | C).

3.4 Let P (B) > 0. Show that P (A ∩B) = P (A | B)P (B).

3.5 Let 0 < P (B) < 1 and A be any event. Show

P (A) = P (A | B)P (B) + P (A | Bc)P (Bc).

3.6 Donated blood is screened for AIDS. Suppose the test has 99% accuracy,
and that one in ten thousand people in your age group are HIV positive. The
test has a 5% false positive rating, as well. Suppose the test screens you as
positive. What is the probability you have AIDS? Is it 99%? (Hint: 99% refers
to P (test positive|you have AIDS). You want to find P (you have AIDS|test
is positive).

3.7 Let (An)n≥1 ∈ A and (Bn)n≥1 ∈ A and An → A (see before Theorem 2.4
for the definition of An → A) and Bn → B, with P (B) > 0 and P (Bn) > 0,
all n. Show that

a) limn→∞ P (An | B) = P (A | B),
b) limn→∞ P (A | Bn) = P (A | B).
c) limn→∞ P (An | Bn) = P (A | B).

3.8 Suppose we model tossing a coin with two outcomes, H and T , repre-
senting Heads and Tails. Let P (H) = P (T ) = 1

2 . Suppose now we toss two
such coins, so that the sample space of outcomes Ω consists of four points:
HH, HT , TH, TT . We assume that the tosses are independent.

a) Find the conditional probability that both coins show a head given that
the first shows a head (answer: 1

2 ).
b) Find the conditional probability that both coins show heads given that at

least one of them is a head (answer: 1
3 ).

3.9 Suppose A, B, C are independent events and P (A ∩ B) �= 0. Show
P (C | A ∩B) = P (C).
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3.10 A box has r red and b black balls. A ball is chosen at random from the
box (so that each ball is equally likely to be chosen), and then a second ball is
drawn at random from the remaining balls in the box. Find the probabilities
that
a) Both balls are red

[
Ans.: r(r−1)

(r+b)(r+b−1)

]
b) The first ball is red and the second is black

[
Ans.: rb

(r+b)(r+b−1)

]
3.11 (Polya’s Urn) An urn contains r red balls and b blue balls. A ball is
chosen at random from the urn, its color is noted, and it is returned together
with d more balls of the same color. This is repeated indefinitely. What is
the probability that
a) The second ball drawn is blue?

[
Ans.: b

b+r

]
b) The first ball drawn is blue given that the second ball drawn is blue?[

Ans.: b+d
b+r+d

]
3.12 Consider the framework of Exercise 3.11. Let Bn denote the event that
the nth ball drawn is blue. Show that P (Bn) = P (B1) for all n ≥ 1.

3.13 Consider the framework of Exercise 3.11. Find the probability that the
first ball is blue given that the n subsequent drawn balls are all blue. Find
the limit of this probability as n tends to ∞.

[
Ans.: b+nd

b+r+nd ; limit is 1
]

3.14 An insurance company insures an equal number of male and female
drivers. In any given year the probability that a male driver has an accident
involving a claim is α, independently of other years. The analogous prob-
ability for females is β. Assume the insurance company selects a driver at
random.

a) What is the probability the selected driver will make a claim this year?[
Ans.: α+β

2

]
b) What is the probability the selected driver makes a claim in two consec-

utive years?
[
Ans.:α2+β2

2

]
3.15 Consider the framework of Exercise 3.14 and let A1, A2 be the events
that a randomly chosen driver makes a claim in each of the first and second
years, respectively. Show that P (A2 | A1) ≥ P (A1).[
Ans.: P (A2 | A1)− P (A1) = (α−β)2

2(α+β)

]
3.16 Consider the framework of Exercise 3.14 and find the probability that
a claimant is female.

[
Ans.: β

α+β

]
3.17 Let A1, A2, . . . , An be independent events. Show that the probability
that none of the A1, . . . , An occur is less than or equal to exp(−∑n

i=1 P (Ai)).

3.18 Let A, B be events with P (A) > 0. Show P (A∩B | A∪B) ≤ P (A∩B |
A).



4 Probabilities on a Finite or Countable Space

For Chapter 4, we assume Ω is finite or countable, and we take the σ-algebra
A = 2Ω (the class of all subsets of Ω).

Theorem 4.1. (a) A probability on the finite or countable set Ω is charac-
terized by its values on the atoms: pω = P ({ω}), ω ∈ Ω.

(b) Let (pω)ω∈Ω be a family of real numbers indexed by the finite or count-
able set Ω. Then there exists a unique probability P such that P ({ω}) = pω

if and only if pω ≥ 0 and
∑

ω∈Ω pω = 1.

When Ω is countably infinite,
∑

ω pω is the sum of an infinite number of
terms which a priori are not ordered: although it is possible to enumerate
the points of Ω, such an enumeration is in fact arbitrary. So we do not have
a proper series, but rather a “summable family”. In the Appendix to this
chapter we gather some useful facts on summable families.
Proof. Let A ∈ A; then A = ∪ω∈A{ω}, a finite or countable union of pairwise
disjoint singletons. If P is a probability, countable additivity yields

P (A) = P (∪ω∈A{ω}) =
∑
ω∈A

P ({ω}) =
∑
ω∈A

pω.

Therefore we have (a).
For (b), note that if P ({ω}) = pω, then by definition pω ≥ 0, and also

1 = P (Ω) = P (∪ω∈Ω{ω}) =
∑
ω∈Ω

P ({ω}) =
∑
ω∈Ω

pω.

For the converse, if the pω satisfy pω ≥ 0 and
∑

ω∈Ω pω = 1, then we define a
probability P by P (A) ≡∑ω∈A pω, with the convention that an “empty” sum
equals 0. Then P (∅) = 0 and P (Ω) =

∑
ω∈Ω pω = 1. For countable additivity,

it is trivial when Ω is finite; when Ω is countable it follows from the fact that
one has the following associativity:

∑
i∈I

∑
ω∈Ai

pω =
∑

ω∈∪i∈I Ai
pω if the

Ai are pairwise disjoint. �

Suppose first that Ω is finite. Any family of nonnegative terms summing
up to 1 gives an example of a probability on Ω. But among all these examples
the following is particularly important:

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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Definition 4.1. A probability P on the finite set Ω is called uniform if pω =
P ({ω}) does not depend on ω.

In this case, it is immediate that

P (A) =
#(A)
#(Ω)

.

Then computing the probability of any event A amounts to counting the
number of points in A. On a given finite set Ω there is one and only one
uniform probability.

We now give two examples which are important for applications.

a) The Hypergeometric distribution. An urn contains N white balls and
M black balls. One draws n balls without replacement, so n ≤ N + M . One
gets X white balls and n−X black balls. One is looking for the probability
that X = x, where x is an arbitrary fixed integer.

Since we draw the balls without replacement, we can as well suppose
that the n balls are drawn at once. So it becomes natural to consider that an
outcome is a subset with n elements of the set {1, 2, . . . , N +M} of all N +M
balls (which can be assumed to numbered from 1 to N +M). That is, Ω is the
family of all subsets with n points, and the total number of possible outcomes
is #(Ω) =

(
N+M

n

)
= (N+M)!

n!(N+M−n)! : recall that for p and q two integers with
p ≤ q, then

p ! = 1.2 . . . (p− 1).p,

(
q

p

)
=

q!
p!(q − p)!

.

The quantity
(

q
p

)
, often pronounced “q choose p,” can be thought of as the

number of different ways to choose p items from q items, without regard to
the order in which one chooses them.

Next, it is also natural to consider that all possible outcomes are equally
likely, that is P is the uniform probability on Ω. The quantity X is a “random
variable” because when the outcome ω is known, one also knows the number
X(ω) of white balls which have been drawn. The set X−1({x}), also denoted
by {X = x}, contains

(
N
x

)(
M

n−x

)
points if x ≤ N and n − x ≤ M , and it is

empty otherwise. Hence

P (X = x) =

⎧⎨⎩
(N

x )( M
n −x)

(N +M
n ) if 0 ≤ x ≤ N and 0 ≤ n− x ≤M

0 otherwise.

We thus obtain, when x varies, the distribution, or the law, of X. This
distribution is called the hypergeometric distribution, and it arises naturally
in opinion polls: we have N + M voters, among them N think “white” and
M think “black”, and one does a poll by asking the opinion of n voters (see
Exercise 4.3 for an extension to more than 2 opinions).
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b) The Binomial distribution. From the same urn as above, we draw n
balls, but each time a ball is drawn we put it back, hence n can be as big as
one wishes. We again want the probability P (X = x), where x is an integer
between 0 and n.

Here the natural probability space is the Cartesian product Ω = Πn
i=1Ξ

i

where Ξi = {1, 2, . . . , N +M} for all i, 1 ≤ i ≤ n; that is, Ω = {1, 2, . . . , N +
M}n, with again the uniform probability. Thus the number of elements in
Ω, also called the cardinality of Ω and denoted #(Ω), is given by #(Ω) =
(N + M)n. A simple computation shows that the cardinality of the set of all
ω such that X(ω) = x, that is #(X = x), equals

(
n
x

)
NxMn−x. Hence

P (X = x) =
(

n

x

) (
N

N + M

)x(
M

N + M

)n−x

for x = 0, 1, . . . n.

Upon setting p = N
N+M , we usually write the result as follows:

P (X = x) =
(

n

x

)
px(1− p)n−x for x = 0, 1, . . . n.

This formula gives the Binomial distribution with size n and parameter p. A
priori p is arbitrary in [0, 1] (in the previous example p is a rational number,
but in general p may be any real number between 0 and 1). This distribution,
which is ubiquitous in applications, is often denoted by B(p, n).

c) The Binomial distribution as a limit of Hypergeometric distribu-
tions. In the situation a) above we now assume that n is fixed, while N and
M increase to +∞, in such a way that N

N+M tends to a limit p (necessarily
in [0, 1]). One easily checks that

P (X = x) →
(

n

x

)
px(1− p)n−x for x = 0, 1, . . . , n.

That is, the hypergeometric distributions “converge” to the binomial dis-
tribution B(p, n). (Comparing with (b) above, the result is also intuitively
evident, since when N + M is big there is not much difference in drawing n
balls with or without replacement).

Some examples with a countable state space.

1. The Poisson distribution of parameter λ > 0 is the probability P defined
on N by

pn = e−λ λn

n!
, n = 0, 1, 2, 3, . . . .

2. The Geometric distribution of parameter α ∈ [0, 1) is the probability
defined on N by

pn = (1− α)αn, n = 0, 1, 2, 3, . . . .
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Note that in the Binomial model if n is large, then while in theory(
n
j

)
pj(1 − p)n−j is known exactly, in practice it can be hard to compute.

(Often it is beyond the capacities of quite powerful hand calculators, for ex-
ample.) If n is large and p is small, however (as is often the case), there is an
alternative method which we now describe.

Suppose p changes with n; call it pn. Suppose further limn→∞ npn = λ.
One can show (see Exercise 4.1) that

lim
n→∞

(
n

j

)
(pn)j(1− pn)n−j = e−λ λj

j!
,

and thus one can easily approximate a Binomial probability (in this case)
with a Poisson.

Appendix: Some useful result on series

In this Appendix we give a summary, mostly without proofs, of some useful
result on series and summable families: these are primarily useful for studying
probabilities on countable state spaces. These results (with proofs) can be
found in most texts on Calculus (for example, see Chapter 10 of [18]).

First we establish some conventions. Quite often one is led to perform
calculations involving +∞ (written more simply as ∞) or −∞. For these
calculations to make sense we always use the following conventions:

+∞+∞ = +∞, −∞−∞ = −∞, a+∞ = +∞, a−∞ = −∞ if a ∈ R,

0×∞ = 0, a ∈]0,∞] ⇒ a×∞ = +∞, a ∈ [−∞, 0[ ⇒ a×∞ = −∞.

Let un be a sequence of numbers, and consider the “partial sums” Sn =
u1 + ... + un.

S1: The series
∑

n un is called convergent if Sn converges to a finite limit
S, also denoted by S =

∑
n un (the “sum” of the series).

S2: The series
∑

n un is called absolutely convergent if the series
∑

n |un|
converges.

S3: If un ≥ 0 for all n, the sequence Sn is increasing, hence always con-
verges to a limit S ∈ [0,∞]. We still write S =

∑
n un, although the series

converges in the sense of (S1) if and only if S < ∞. The summands un

can even take their values in [0,∞] provided we use the conventions above
concerning addition with ∞.

In general the convergence of a series depends on the order in which the
terms are enumerated. There are however two important cases where the
ordering of the terms has no influence, and one speaks rather of “summable
families” instead of “series” in these cases, which are S4 and S5 below:
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S4: When the un are reals and the series is absolutely convergent one can
modify the order in which the terms are taken without changing the absolute
convergence, nor the sum of the series.

S5: When un ∈ [0,∞] for all n, the sum
∑

n un (which is finite or infinite:
cf. (S3) above) does not change if the order is changed.

S6: When un ∈ [0,∞], or when the series is absolutely convergent, we
have the following associativity property: let (Ai)i∈I be a partition of N∗,
with I = {1, 2, . . . , N} for some integer N , or I = N∗. For each i ∈ I we set
vi =

∑
n∈Ai

un: if Ai is finite this is an ordinary sum, otherwise vi is itself
the sum of a series. Then we have

∑
n un =

∑
i∈I vi (this latter sum is again

the sum of a series if I = N∗).
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Exercises for Chapter 4

4.1 (Poisson Approximation to the Binomial) Let P be a Binomial proba-
bility with probability of success p and number of trials n. Let λ = pn. Show
that

P (k successes)

=
λk

k!

(
1− λ

n

)n{(n

n

)(n− 1
n

)
· · ·
(

n− k + 1
n

)}(
1− λ

n

)−k

.

Let n → ∞ and let p change so that λ remains constant. Conclude that for
small p and large n,

P (k successes) ≈ λk

k!
e−λ, where λ = pn.

[Note: In general for this approximation technique to be good one needs n
large, p small, and also λ = np to be of moderate size — for example λ ≤ 20.]

4.2 (Poisson Approximation to the Binomial, continued) In the setting of
Exercise 4.1, let pk = P ({k}) and qk = 1 − pk. Show that the qk are the
probabilities of singletons for a Binomial distribution B(1 − p, n). Deduce a
Poisson approximation of the Binomial when n is large and p is close to 1.

4.3 We consider the setting of the hypergeometric distribution, except that
we have m colors and Ni balls of color i. Set N = N1+. . .+Nm, and call Xi the
number of balls of color i drawn among n balls. Of course X1 + . . .+Xm = n.
Show that

P (X1 = x1, . . . , Xm = xm) =

⎧⎨⎩ (N1
x1

)...(N m
xm

)
(N

n ) if x1 + . . . + xm = n

0 otherwise.
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In Chapter 5 we again assume Ω is countable and A = 2Ω . A random vari-
able X in this case is defined to be a function from Ω into a set T . A
random variable represents an unknown quantity (hence the term variable)
that varies not as a variable in an algebraic relation (such as x2−9 = 0), but
rather varies with the outcome of a random event. Before the random event,
we know which values X could possibly assume, but we do not know which
one it will take until the random event happens. This is analogous to algebra
when we know that x can take on a priori any real value, but we do not know
which one (or ones) it will take on until we solve the equation x2−9 = 0 (for
example).

Note that even if the state space (or range space) T is not countable, the
image T ′ of Ω under X (that is, all points {i} in T for which there exists an
ω ∈ Ω such that X(ω) = i) is either finite or countably infinite.

We can then define the distribution of X (also called the law of X) on the
range space T ′ of X by

PX(A) = P ({ω : X(ω) ∈ A}) = P (X−1(A)) = P (X ∈ A).

That this formula defines a Probability measure on T ′ (with the σ-algebra 2T ′

of all subsets of T ′) is evident. Since T ′ is at most countable, this probability
is completely determined by the following numbers:

pX
j = P (X = j) =

∑
{ω:X(ω)=j}

pω.

Sometimes, the family (pX
j : j ∈ T ′) is also called the distribution (or the law)

of X. We have of course PX(A) =
∑

j∈A pX
j . If PX has a known distribution,

for example Poisson, then we say that X is a Poisson random variable.

Definition 5.1. Let X be a real-valued random variable on a countable space
Ω. The expectation of X, denoted E{X}, is defined to be

E{X} =
∑
ω

X(ω)pω,

provided this sum makes sense: this is the case when Ω is finite; this is also
the case when Ω is countable, when the series is absolutely convergent or

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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X ≥ 0 always (in the latter case, the above sum and hence E{X} as well
may take the value +∞).

This definition can be motivated as follows: If one repeats an experiment n
times, and one records the values X1, X2, . . . , Xn of X corresponding to the n
outcomes, then the empirical mean 1

n (X1 + . . .+Xn) is
∑

ω∈Ω X(ω)fn({ω}),
where fn({ω}) denotes the frequency of appearance of the singleton {ω}.
Since fn({ω}) “converges” to P ({ω}), it follows (at least when Ω is finite)
that the empirical mean converges to the expectation E{X} as defined above.

Define L1 to be the space of real valued random variables on (Ω,A, P )
which have a finite expectation.

The following facts follow easily:

(i) L1 is a vector space, and the expectation operator E is linear,
(ii) the expectation operator E is positive: if X ∈ L1 and X ≥ 0, then

E{X} ≥ 0. More generally if X, Y ∈ L1 and X ≤ Y then E{X} ≤ E{Y }.
(iii) L1 contains all bounded random variables. If X ≡ a, then E{X} = a.
(iv) If X ∈ L1, its expectation depends only on its distribution and, if T ′ is

the range of X,
E{X} =

∑
j∈T ′

jP (X = j). (5.1)

(v) If X = 1A is the indicator function of an event A, then E{X} = P (A).

We observe that if
∑

ω(X(ω))2pω is absolutely convergent, then∑
ω

|X(ω)|pω ≤
∑

|X(ω)|<1

X(ω)pω +
∑

|X(ω)|≥1

X(ω)pω

≤
∑
ω

pω +
∑
ω

(X(ω))2pω <∞,

and X ∈ L1 too.
An important family of inequalities involving expectation follow from the

next theorem.

Theorem 5.1. Let h : R → [0,∞) be a nonnegative function and let X be
a real valued random variable. Then

P{ω : h(X(ω)) ≥ a} ≤ E{h(X)}
a

for all a > 0.

Proof. Since X is an r.v. so also is Y = h(X); let

A = Y −1([a,∞)) = {ω : h(X(ω)) ≥ a} = {h(X) ≥ a}.
Then h(X) ≥ a1A, hence

E{h(X)} ≥ E{a1A} = aE{1A} = aP (A)

and we have the result. �
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Corollary 5.1 (Markov’s Inequality).

P{|X| ≥ a} ≤ E{|X|}
a

.

Proof. Take h(x) = |x| in Theorem 5.1. �

Definition 5.2. Let X be a real-valued random variable with X2 in L1. The
Variance of X is defined to be

σ2 = σ2
X ≡ E{(X − E(X))2}.

The standard deviation of X, σX , is the nonnegative square root of the vari-
ance. The primary use of the standard deviation is to report statistics in the
correct (and meaningful) units.

An example of the problem units can pose is as follows: let X denote the
number of children in a randomly chosen family. Then the units of the vari-
ance will be “square children”, whereas the units for the standard deviation
σX will be simply “children”.

If E{X} represents the expected, or average, value of X (often called the
mean), then E{|X −E(X)|} = E{|X − μ|} where μ = E{X}, represents the
average difference from the mean, and is a measure of how “spread out” the
values of X are. Indeed, it measures how the values vary from the mean. The
variance is the average squared distance from the mean. This has the effect of
diminishing small deviations from the mean and enlarging big ones. However
the variance is usually easier to compute than is E{|X−μ|}, and often it has
a simpler expression. (See for example Exercise 5.11.) The variance too can
be thought of as a measure of variability of the random variable X.

Corollary 5.2 (Chebyshev’s Inequality). If X2 is in L1, then we have

(a) P{|X| ≥ a} ≤ E{X2}
a2 for a > 0,

(b) P{|X − E{X}| ≥ a} ≤ σ2
X

a2 for a > 0.

Proof. Both inequalities are known as Chebyshev’s inequality. For part (a),
take h(x) = x2 and then by Theorem 5.1

P{|X| ≥ a} = P{h(X) ≥ a2} ≤ E{X2}
a2 .

For part (b), let Y = |X − E{X}|. Then

P{|X − E{X}| ≥ a} = P{Y ≥ a} = P{Y 2 ≥ a2} ≤ E{Y 2}
a2 =

σ2
X

a2 .

�
Corollary 5.2 is also known as the Bienaymé-Chebyshev inequality.
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Examples:

1) X is Poisson with parameter λ. Then X:Ω → N (the natural numbers),
and

P (X ∈ A) =
∑
j∈A

P (X = j) =
∑
j∈A

λj

j!
e−λ.

The expectation of X is

E{X} =
∞∑

j=0

jP (X = j) =
∞∑

j=0

j
λj

j!
e−λ

= λ
∞∑

j=1

λj−1

(j − 1)!
e−λ = λeλe−λ = λ.

2) X has the Bernoulli distribution if X takes on only two values: 0 and 1.
X corresponds to an experiment with only two outcomes, usually called
“success” and “failure”. Usually {X = 1} corresponds to “success”. Also
it is customary to call P ({X = 1}) = p and P ({X = 0}) = q = 1 − p.
Note

E{X} = 1P (X = 1) + 0P (X = 0) = 1.p + 0.q = p.

3) X has the Binomial distribution if PX is the Binomial probability. That
is, for a given and fixed n, X can take on the values {0, 1, 2, . . . , n}.

P ({X = k}) =
(

n

k

)
pk(1− p)n−k,

where 0 ≤ p ≤ 1 is fixed.
Suppose we perform a success/failure experiment n times independently.
Let

Yi =

{
1 if success on the ith trial,
0 if failure on the ith trial.

Then X = Y1 + . . . + Yn has the Binomial distribution (see Chapter 4).
That is, a Binomial random variable is the sum of n Bernoulli random
variables. Therefore

E{X} = E

{
n∑

i=1

Yi

}
=

n∑
i=1

E{Yi} =
n∑

i=1

p = np.

Note that we could also have computed E{X} combinatorially by using
the definition:

E{X} =
n∑

i=0

iP (X = i) =
∞∑

i=1

i

(
n

i

)
pi(1− p)n−i,

but this would have been an unpleasant calculation.
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4) Suppose we are performing repeated independent Bernoulli trials. If in-
stead of having a fixed number n of trials to be chosen in advance, suppose
we keep performing trials until we have achieved a given number of suc-
cess. Let X denote the number of failures before we reach a success. X
has a Geometric distribution, with parameter 1− p:

P (X = k) = (1− p)kp, k = 0, 1, 2, 3, . . .

where p is the probability of success. We then have

E{X} =
∞∑

k=0

kP (X = k) =
∞∑

k=0

kp(1− p)k = p(1− p)
1
p2 =

1− p

p
.

5) In the same framework as (4), if we continue independent Bernoulli trials
until we achieve the rth success, then we have Pascal’s distribution, also
known as the Negative Binomial distribution. We say X has the Negative
Binomial distribution with parameters r and p if

P (X = j) =
(

j + r − 1
r − 1

)
pr(1− p)j

for j = 0, 1, 2, . . . . X represents the number of failures that must be
observed before r successes are observed. If one is interested in the total
number of trials required, call that r.v. Y , then Y = X + r.
Note that if X is Negative Binomial, then

X =
r∑

i=1

Zi,

where Zi are geometric random variables with parameter 1−p. Therefore

E{X} =
r∑

i=1

E{Zi} =
r(1− p)

p
.

6) A distribution common in the social sciences is the Pareto distribution,
also known as the Zeta distribution. Here X takes its values in N�, where

P (X = j) = c
1

jα+1 , j = 1, 2, 3, . . .

for a fixed parameter α > 0. The constant c is such that c
∑∞

j=1
1

jα+1 = 1.
The function

ζ(s) =
∞∑

k=1

1
ks

, s > 1,

is known as the Riemann zeta function, and it is extensively tabulated.
Thus c = 1

ζ(α+1) , and
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P (X = j) =
1

ζ(α + 1)
1

jα+1 .

The mean is easily calculated in terms of the Riemann zeta function:

E{X} =
∞∑

j=1

jP (X = j) =
1

ζ(α + 1)

∞∑
j=1

j

jα+1

=
1

ζ(α + 1)

∞∑
j=1

1
jα

=
ζ(α)

ζ(α + 1)
.

7) If the state space E of a random variable X has only a finite number of
points, say n, and each point is equally likely, then X is said to have a
uniform distribution. In the case where

P (X = j) =
1
n

, j = 1, 2, . . . , n,

then X has the Discrete Uniform distribution with parameter n. Using
that

∑n
i=1 i = n(n+1)

2 , we have

E{X} =
n∑

j=1

jP (X = j) =
n∑

j=1

j
1
n

=
1
n

n∑
j=1

j =
n(n + 1)

n · 2 =
n + 1

2
.
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Exercises for Chapter 5

5.1 Let g : [0,∞)→ [0,∞) be strictly increasing and nonnegative. Show that

P (|X| ≥ a) ≤ E{g(|X|)}
g(a)

for a > 0.

5.2 Let h : R → [0, α] be a nonnegative (bounded) function. Show that for
0 ≤ a < α,

P{h(X) ≥ a} ≥ E{h(X)} − a

α− a
.

5.3 Show that σ2
X = E{X2} − E{X}2, assuming both expectations exist.

5.4 Show that E{X}2 ≤ E{X2} always, assuming both expectations exist.

5.5 Show that σ2
X = E{X(X−1)}+μX−μ2

X , where μX = E{X}, assuming
all expectations exist.

5.6 Let X be Binomial B(p, n). For what value of j is P (X = j) the greatest?
(Hint: Calculate P (X=k)

P (X=k−1) ).
[Ans.: [(n + 1)p], where [x] denotes integer part of x.]

5.7 Let X be Binomial B(p, n). Find the probability X is even. [Ans.: 1
2 (1+

(1− 2p)n).]

5.8 Let Xn be Binomial B(pn, n) with λ = npn being constant. Let An =
{Xn ≥ 1}, and let Y be Poisson (λ). Show that limn→∞ P (Xn = j | An) =
P (Y = j | Y ≥ 1).

5.9 Let X be Poisson (λ). What value of j maximizes P (X = j)?
[Ans.: [λ].] (Hint: See Exercise 5.6.)

5.10 Let X be Poisson (λ). For fixed j > 0, what value of λ maximizes
P (X = j)?
[Ans.: j.]

5.11 Let X be Poisson (λ) with λ a positive integer. Show E{|X − λ|} =
2λλ e−λ

(λ−1)! , and that σ2
X = λ.

5.12 * Let X be Binomial B(p, n). Show that for λ > 0 and ε > 0,

P (X − np > nε) ≤ E{exp(λ(X − np− nε))}.

5.13 Let Xn be Binomial B(p, n) with p > 0 fixed. Show that for any fixed
b > 0, P (Xn ≤ b) tends to 0.
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5.14 Let X be Binomial B(p, n) with p > 0 fixed, and a > 0. Show that

P

( ∣∣∣∣Xn − p

∣∣∣∣ > a

)
≤
√

p(1− p)
a2n

min
{√

p(1− p), a
√

n
}

,

and also that P (|X − np| ≤ nε) tends to 1 for all ε > 0.

5.15 * Let X be a Binomial B( 1
2 , n), where n = 2m. Let

a(m, k) =
4m(2m
m

)P (X = m + k).

Show that limm→∞(a(m, k))m = e−k2
.

5.16 Let X be Geometric. Show that for i, j > 0,

P (X > i + j | X > i) = P (X > j).

5.17 Let X be Geometric (p). Show

E

{
1

1 + X

}
= log((1− p)

p
p−1 ).

5.18 A coin is tossed independently and repeatedly with the probability of
heads equal to p.

a) What is the probability of only heads in the first n tosses?
b) What is the probability of obtaining the first tail at the nth toss?
c) What is the expected number of tosses required to obtain the first tail?

[Ans.: 1
1−p .]

5.19 Show that for a sequence of events (An)n≥1,

E

{ ∞∑
n=1

1An

}
=

∞∑
n=1

P (An),

where ∞ is a possible value for each side of the equation.

5.20 Suppose X takes all its values in N (= {0, 1, 2, 3, . . .}). Show that

E{X} =
∞∑

n=0

P (X > n).

5.21 Let X be Poisson (λ). Show for r = 2, 3, 4, . . . ,

E{X(X − 1) . . . (X − r + 1)} = λr.

5.22 Let X be Geometric (p). Show for r = 2, 3, 4, . . .,

E{X(X − 1) . . . (X − r + 1)} =
r!pr

(1− p)r
.



6 Construction of a Probability Measure

Here we no longer assume Ω is countable. We assume given Ω and a σ-
algebra A ⊂ 2Ω . (Ω,A) is called a measurable space. We want to construct
probability measures on A. When Ω is finite or countable we have already
seen this is simple to do. When Ω is uncountable, the same technique does
not work; indeed, a “typical” probability P will have P ({ω}) = 0 for all ω,
and thus the family of all numbers P ({ω}) for ω ∈ Ω does not characterize
the probability P in general.

It turns out in many “concrete” situations – in particular in the next
chapter – that it is often relatively simple to construct a “probability” on an
algebra which generates the σ-algebra A, and the problem at hand is then
to extend this probability to the σ-algebra itself. So, let us suppose A is the
σ-algebra generated by an algebra A0, and let us further suppose we are
given a probability P on the algebra A0: that is, a function P : A0 → [0, 1]
satisfying

1. P (Ω) = 1.
2. (Countable Additivity) for any sequence (An) of elements of A0, pairwise

disjoint, and such that ∪nAn ∈ A0, we have P (∪nAn) =
∑

n P (An).

It might seem natural to use for A the set of all subsets of Ω, as we did
in the case where Ω was countable. We do not do so for the following reason,
illustrated by an example: suppose Ω = [0, 1], and let us define a set function
P on intervals of the form P ((a, b]) = b − a, where 0 ≤ a ≤ b ≤ 1. This is a
natural “probability measure” that assigns the usual length of an interval as
its probability. Suppose we want to extend P in a unique way to 2[0,1] = all
subsets of [0, 1] such that (i) P (Ω) = 1; and (ii) P (∪∞

n=1An) =
∑∞

n=1 P (An)
for any sequence of subsets (An)n≥1 with An ∩Am = φ for n �= m; then one
can prove that no such P exists! The collection of sets 2[0,1] is simply too
big for this to work. Borel realized that we can however do this on a smaller
collection of sets, namely the smallest σ-algebra containing intervals of the
form (a, b]. This is the import of the next theorem:

Theorem 6.1. Each probability P defined on the algebra A0 has a unique
extension (also called P ) on A.

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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We will show only the uniqueness. For the existence on can consult any
standard text on measure theory; for example [16] or [23]. First we need to
establish a very useful theorem.

Definition 6.1. A class C of subsets of Ω is closed under finite intersections
if for when A1, . . . , An ∈ C, then A1 ∩A2 ∩ . . . ∩An ∈ C as well (n arbitrary
but finite).

A class C is closed under increasing limits if wherever A1 ⊂ A2 ⊂ A3 ⊂
. . . ⊂ An ⊂ . . . is a sequence of events in C, then ∪∞

n=1An ∈ C as well.
A class C is closed under differences if whenever A, B ∈ C with A ⊂ B,

then B \A ∈ C1.
Theorem 6.2 (Monotone Class Theorem). Let C be a class of subsets of
Ω, closed under finite intersections and containing Ω. Let B be the smallest
class containing C which is closed under increasing limits and by difference.
Then B = σ(C).
Proof. First note that the intersection of classes of sets closed under increasing
limits and differences is again a class of that type. So, by taking the intersec-
tion of all such classes, there always exists a smallest class containing C which
is closed under increasing limits and by differences. For each set B, denote
BB to be the collection of sets A such that A ∈ B and A ∩B ∈ B. Given the
properties of B, one easily checks that BB is closed under increasing limits
and by difference.

Let B ∈ C; for each C ∈ C one has B ∩ C ∈ C ⊂ B and C ∈ B, thus
C ∈ BB . Hence C ⊂ BB ⊂ B. Therefore B = BB , by the properties of B and
of BB .

Now let B ∈ B. For each C ∈ C, we have B ∈ BC , and because of the
preceding, B ∩ C ∈ B, hence C ∈ BB , whence C ⊂ BB ⊂ B, hence B = BB .

Since B = BB for all B ∈ B, we conclude B is closed by finite intersec-
tions. Furthermore Ω ∈ B, and B is closed by difference, hence also under
complementation. Since B is closed by increasing limits as well, we conclude
B is a σ-algebra, and it is clearly the smallest such containing C. �

The proof of the uniqueness in Theorem 6.1 is an immediate consequence
of Corollary 6.1 below, itself a consequence of the Monotone Class Theorem.

Corollary 6.1. Let P and Q be two probabilities defined on A, and suppose
P and Q agree on a class C ⊂ A which is closed under finite intersections. If
σ(C) = A, we have P = Q.

Proof. Ω ∈ A because A is a σ-algebra, and since P (Ω) = Q(Ω) = 1 because
they are both probabilities, we can assume without loss of generality that
Ω ⊂ C. Let B = {A ∈ A: P (A) = Q(A)}. By the definition of a Probability
measure and Theorem 2.3, B is closed by difference and by increasing limits.
1 B \ A denotes B ∩ Ac
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Also B contains C by hypothesis. Therefore since σ(C) = A, we have B = A
by the Monotone Class Theorem (Theorem 6.2). �

There is a version of Theorem 6.2 for functions. We will not have need of
it in this book, but it is a useful theorem to know in general so we state it
here without proof. For a proof the reader can consult [19, p. 365]. LetM be
a class of functions mapping a given space Ω into R. We let σ(M) denote
the smallest σ-algebra on Ω that makes all of the functions in M measurable:

σ(M) = {f−1(∧);∧ ∈ B(R); f ∈M}.

Theorem 6.3 (Monotone Class Theorem). LetM be a class of bounded
functions mapping Ω into R. Suppose M is closed under multiplication:
f, g ∈ M implies fg ∈ M. Let A = σ(M). Let H be a vector space of
functions with H containing M. Suppose H contains the constant func-
tions and is such that whenever (fn)n≥1 is a sequence in H such that
0 ≤ f1 ≤ f2 ≤ f3 ≤ . . ., then if f = lim

n→∞ fn is bounded, then f is in H.
Then H contains all bounded, A-measurable functions.

It is possible to do a little bit better that in Theorem 6.1: we can extend
the probability to a σ-algebra slightly bigger than A. This is the aim of the
rest of this chapter.

Definition 6.2. Let P be a probability on A. A null set (or negligible set)
for P is a subset A of Ω such that there exists a B ∈ A satisfying A ⊂ B
and P (B) = 0.

We say that a property holds almost surely (a.s. in short) if it holds
outside a negligible set. This notion clearly depends on the probability, so we
say sometimes P -almost surely, or P -a.s.

The negligible sets are not necessarily in A. Nevertheless it is natural to
say that they have probability zero. In fact one even can extend the proba-
bility to the σ-algebra which is generated by A and all P -negligible sets: this
is what is done in the following theorem, which we do not explicitly use in
the sequel.

Theorem 6.4. Let P be a probability on A and let N be the class of all
P -negligible sets. Then A′ = {A ∪N : A ∈ A, N ∈ N} is a σ-algebra, called
the P -completion of A. This is the smallest σ-algebra containing A and N ,
and P extends uniquely as a probability (still denoted by P ) on A′, by setting
P (A ∪N) = P (A) for A ∈ A and N ∈ N .

Proof. The uniqueness of the extension is straightforward, provided it exists.
Also, since ∅ belongs to both A and N , the fact that A′ is the smallest σ-
algebra containing A and N is trivial, provided A′ is a σ-algebra. Hence it is
enough to prove that A′ is a σ-algebra and that, if we set Q(B) = P (A) for
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B = A ∪ N (with A ∈ A and N ∈ N ), then Q(B) does not depend on the
decomposition B = A ∪N and Q is a probability on A′.

First, Ω ∈ A ⊂ A′ and we have seen already that ∅ ∈ A′. Next, since A
and N are stable by countable unions (to verify this for N , use subadditivity
(cf. Exercise 2.15)),A′ is also stable by countable unions. Let B = A∪N ∈ A′,
with A ∈ A and N ∈ N . There exists C ∈ A with P (C) = 0 and N ⊂ C. Set
A′ = Ac∩Cc (which belongs to A) and N ′ = N c∩Ac∩C (which is contained
in C and thus belongs to N ); since Bc = A′ ∪N ′, we have Bc ∈ A′, and A′

is stable by complementation: hence A′ is a σ-algebra.
Suppose now that A1 ∪ N1 = A2 ∪ N2 with Ai ∈ A and Ni ∈ N . The

symmetrical difference A1ΔA2 = (A1∩Ac
2)∪(Ac

1∩A2) is contained in N1∪N2,
which itself is an element C ofA with zero probability: hence P (A1) = P (A2),
which shows that Q is defined unambiguously, and obviously coincide with
P on A. Finally, the fact that Q is a probability on A′ is evident. �
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This chapter is an important special case of what we dealt with in Chapter 6.
We assume that Ω = R.

Let B be the Borel σ-algebra of R. (That is, B = σ(O), where O are the
open subsets of R.)

Definition 7.1. The distribution function induced by a probability P on
(R,B) is the function

F (x) = P ((−∞, x]). (7.1)

Theorem 7.1. The distribution function F characterizes the probability.

Proof. We want to show that knowledge of F defined by (7.1) uniquely de-
termines P . That is, if there is another probability Q such that

G(x) = Q((−∞, x])

for x ∈ R, and if F = G, then also P = Q.
We begin by letting B0 be the set of finite disjoint unions of intervals of

the form (x, y], with −∞ ≤ x ≤ y ≤ +∞ (with the convention that (x,∞] =
(x,∞); observe also that (x, y] = ∅ if x = y). It is easy to see that B0 is an
algebra. Moreover if (a, b) is an open interval, then (a, b) = ∪∞

n=N (a, b − 1
n ],

for some N large enough, so σ(B0) contains all open intervals. But all open
sets on the line can be expressed as countable unions of open intervals, and
since the Borel sets (= B) are generated by the open sets, σ(B0) ⊃ B (note
also that ∩∞

n=1(a, b + 1
n ) = (a, b], so B0 ⊂ B and thus B = σ(B0)).

The relation (7.1) implies that

P ((x, y]) = F (y)− F (x),

and if A ∈ B0 is of the form

A = ∪1≤i≤n(xi, yi] with yi < xi+1,

then P (A) =
∑

1≤i≤n{F (yi)− F (xi)}.
If Q is another probability measure such that

F (x) = Q((−∞, x]),

J. Jacod et al., Probability  Essentials
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then the preceding shows that P = Q on B0. Theorem 6.1 then implies that
P = Q on all of B, so they are the same Probability measure. �

The significance of Theorem 7.1 is that we know, in principle, the complete
probability measure P if we know its distribution function F : that is, we can
in principle determine from F the probability P (A) for any given Borel set
A. (Determining these probabilities in practice is another matter.)

It is thus important to characterize all functions F which are distribution
functions, and also to construct them easily. (Recall that a function F is right
continuous if limy↓x F (y) = F (x), for all x ∈ R.)

Theorem 7.2. A function F is the distribution function of a (unique) prob-
ability on (R,B) if and only if one has:

(i) F is non-decreasing;
(ii) F is right continuous;
(iii) limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

Proof. Assume that F is a distribution function. If y > x, then (−∞, x] ⊂
(−∞, y], so P ((−∞, x]) ≤ P ((−∞, y]) and thus F (x) ≤ F (y). Thus we have
(i). Next let xn decrease to x. Then ∩∞

n=1(−∞, xn] = (−∞, x], and the
sequence of events {(−∞, xn];n ≥ 1} is a decreasing sequence. Therefore
P (∩∞

n=1(−∞, xn]) = limn→∞ P ((−∞, xn]) = P ((−∞, x]) by Theorem 2.3,
and we have (ii). Similarly, Theorem 2.3 gives us (iii) as well.

Next we assume that we have (i), (ii), and (iii) and we wish to show F is
a distribution function. In accordance with (iii), let us set F (−∞) = 0 and
F (+∞) = 1. As in the proof of Theorem 7.1, let B0 be the set of finite disjoint
unions of intervals of the form (x, y], with −∞ ≤ x < y ≤ +∞. Define a set
function P , P : B0 → [0, 1] as follows: for A = ∪1≤i≤n(xi, yi] with yi < xi+1,

P (A) ≡
∑

1≤i≤n

{F (yi)− F (xi)}.

(Note that since yi < xi+1, there is a unique way to represent a set A ∈ B0,
except for A = ∅, for which the above formula trivially gives P (∅) = 0
whatever representation is used.) Condition (iii) gives us that P (R) = 1.
We wish to show that P is a probability on the algebra B0; if we can show
that, we know by Theorem 6.1 that it has a unique extension to all of B, and
Theorem 7.2 will be proved.

To show P is a probability on B0 we must establish countable addi-
tivity: that is, for any sequence (An) ∈ B0, pairwise disjoint, and such
that ∪∞

n=1An ∈ B0, then P (∪∞
n=1An) =

∑∞
n=1 P (An). Now, finite additiv-

ity (that is, for any finite family A1, . . . , An ∈ B0, pairwise disjoint, then
P (∪n

i=1Ai) =
∑n

i=1 P (Ai)) is a trivial consequence of the definition of P , and
Theorem 2.3 gives equivalent conditions for a finitely additive P to be a prob-
ability on a σ-algebra B; however it is simple to check that these conditions
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are also equivalent on an algebra B0. Thus it suffices to show that if An ∈ B0
with An decreasing to ∅ (the empty set), then P (An) decreases to 0.

Let An ∈ B0 and let An decrease to ∅. Each An can be written

An = ∪1≤i≤kn (xn
i , yn

i ],

with yn
i < xn

i+1. Let ε > 0. By hypothesis (iii) there exists a number z such
that F (−z) ≤ ε and 1 − F (z) ≤ ε. For each n, i there exists an

i ∈ (xn
i , yn

i ]
such that F (an

i )− F (xn
i ) ≤ ε

2i+n , by (ii) (right continuity). Set

B′
n = ∪1≤i≤kn {(an

i , yn
i ] ∩ (−z, z]}, Bn = ∪m≤nB′

m.

Note that B′
n ∈ B0 and B′

n ⊂ An, hence Bn ∈ B0 and Bn ⊂ An. Furthermore,
An\Bn ⊂ ∪m≤n(Am\B′

m), hence

P (An)− P (Bn) ≤ P ((−z, z]c) +
n∑

m=1

P ((Am\B′
m) ∩ (−z, z])

≤ P ((−z, z]c) +
n∑

m=1

kn∑
i=1

P ((xn
i , an

i ])

≤ F (−z) + 1− F (z) +
n∑

m=1

kn∑
i=1

{F (an
i )− F (xn

i )} ≤ 3ε. (7.2)

Furthermore observe that Bn ⊂ An (where Bn is the closure of Bn), hence
∩∞

n=1Bn = ∅ by hypothesis. Also Bn ⊂ [−z, z], hence each Bn is a compact
set. It is a property of compact spaces1 (known as “The Finite Intersection
Property”) that for closed sets Fβ , ∩β∈BFβ �= ∅ if and only if ∩β∈CFβ �= ∅
for all finite subcollections C of B. Since in our case ∩∞

n=1Bn = ∅, by the
Finite Intersection Property we must have that there exists an m such that
Bn = φ for all n ≥ m. Therefore Bn = φ for all n ≥ m, hence P (Bn) = 0 for
all n ≥ m. Finally then

P (An) = P (An)− P (Bn) ≤ 3ε

by (7.2), for all n ≥ m. Since ε was arbitrary, we have P (An) ↓ 0.
(Observe that this rather lengthy proof would become almost trivial if the

sequence kn above were bounded; but although An decreases to the empty
set, it is not usually true). �

Corollary 7.1. Let F be the distribution function of the probability P on R.
Denoting by F (x−) the left limit of F at x (which exists since F is nonde-
creasing), for all x < y we have
1 For a definition of a compact space and the Finite intersection Property one can

consult (for example) [12, p.81].
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(i) P ((x, y]) = F (y)− F (x),
(ii) P ([x, y]) = F (y)− F (x−),
(iii) P ([x, y)) = F (y−)− F (x−),
(iv) P ((x, y)) = F (y−)− F (x),
(v) P ({x}) = F (x)− F (x−),

and in particular P ({x}) = 0 for all x if and only the function F is continu-
ous.

Proof. (i) has already been shown. For (ii) we write

P ((x− 1
n

, y]) = F (y)− F (x− 1
n

)

by (i). The left side converges to F (y)−F (x−) as n→∞ by definition of the
left limit of F ; the right side converges to P ([x, y]) by Theorem 2.3 because
the sequence of intervals (x − 1

n , y] decreases to [x, y]. The claims (iii), (iv)
and (v) are proved similarly. �

Examples.
We first consider two general examples:

1. If f is positive (and by “positive” we mean nonnegative; otherwise we
say “strictly positive”) and Riemann-integrable and

∫∞
−∞ f(x)dx = 1, the

function F (x) =
∫ x

−∞ f(y)dy is a distribution function of a probability on
R; the function f is called its density. (It is not true that each distribution
function admits a density, as the following example shows).

2. Let α ∈ R. A “point mass” probability on R (also known as “Dirac
measure”) is one that satisfies

P (A) =
{

1 if α ∈ A,
0 otherwise.

Its distribution function is

F (x) =
{

0 if x < α,
1 if x ≥ α.

This probability is also known as the Dirac mass at point α.
In the examples 3 through 10 below we define the distribution by its
density function f ; that is, we specify f(x), and then the distribution
function F corresponding to f is F (x) =

∫ x

−∞ f(u)du. For f to be a
density we need f ≥ 0 and

∫∞
−∞ f(x)dx = 1, which the reader can check

is indeed the case for examples 3–10. We abuse language a bit by referring
to the density f alone as the distribution, since it does indeed determine
uniquely the distribution.
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3. f(x) =

{ 1
b− a

if a ≤ x ≤ b,

0 otherwise,
is called the Uniform distribution on [a, b].
The uniform distribution is the continuous analog of the idea that “each
point is equally likely”; this corresponds to a flat density function over
the relevant interval [a, b].

4. f(x) =
{

βe−βx if x ≥ 0,
0 if x < 0,

is called the Exponential distribution with parameter β > 0.
The exponential distribution is often used to model the lifetime of objects
whose decay has “no memory”; that is, if X is exponential, then the
probability of an object lasting t more units of time given it has lasted s
units already, is the same as the probability of a new object lasting t units
of time. The lifetimes of light bulbs (for example) are often modeled this
way; thus if one believes the model it is pointless to replace a working
light bulb with a new one. This memoryless property characterizes the
exponential distribution: see Exercises 9.20 and 9.21.

5. f(x) =

⎧⎨⎩
βα

Γ (α)
xα−1e−βx x ≥ 0,

0 x < 0,

is called the Gamma distribution with parameters α, β (0 < α <∞ and
0 < β <∞; Γ denotes the gamma function) 2.
The Gamma distribution arises in various applications. One example is
in reliability theory: if one has a part in a machine with an exponen-
tial (β) lifetime, one can build in reliability by including n − 1 back-up
components. When a component fails, a back-up is used. The result-
ing lifetime then has a Gamma distribution with parameters (n, β). (See
Exercise 15.17 in this regard.) The Gamma distribution also has a rela-
tionship to the Poisson distribution (see Exercise 9.22) as well as to the
chi square distribution (see Example 6 in Chapter 15). The chi square
distribution is important in Statistics: See the Remark at the end of
Chapter 11.

6. f(x) =
{

αβαxα−1e−(βx)α

if x ≥ 0,
0 if x < 0,

is called the Weibull distribution with parameters α, β (0 < α < ∞, 0 <
β <∞).
The Weibull distribution arises as a generalization of the exponential
distribution for the modeling of lifetimes. This can be expressed in terms
of its “hazard rate”; see for example Exercise 9.23.

7. f(x) = 1√
2πσ

e−(x−μ)2/2σ2
if −∞ < x < ∞ is called the Normal distri-

bution with parameters (μ, σ2), (−∞ < μ < ∞, 0 < σ2 < ∞). It is also
2 The Gamma function is defined to be Γ (α) =

∫∞
0

xα−1e−xdx, α > 0; it follows
from the definition that Γ (α) = (α − 1)! for α ∈ N, and Γ ( 1

2 ) =
√

π.
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known as the Gaussian distribution. Standard notation for the Normal
with parameters μ and σ2 is N(μ, σ2).
We discuss the Normal Distribution at length in Chapters 16 and 21; it is
certainly the most important distribution in probability and it is central
to much of the subject of Statistics.

8. Let gμ,σ2(x) = 1√
2πσ

e−(x−μ)2/2σ2
, the normal density. Then

f(x) =

{ 1
x

gμ,σ2(log x) if x > 0,

0 if x ≤ 0,

is called the Lognormal distribution with parameters μ, σ2(−∞ < μ <
∞, 0 < σ2 <∞).
The lognormal distribution is used for numerous and varied applications
to model nonnegative quantitative random phenomena. It is also known
as the Galton–McAlister distribution and in Economics it is sometimes
called the Cobb–Douglas distribution, where it has been used to model
production data. It has been used to model drug dosage studies, lengths
of words and sentences, lifetimes of mechanical systems, wildlife popula-
tions, and disease incubation periods.

9. f(x) =
β

2
e−β|x−α| if −∞ < x < ∞ is called the double exponential

distribution with parameters α, β (−∞ < α <∞, 0 < β <∞). (It is also
known as the Laplace distribution).

10. f(x) =
1

βπ

1
1 + (x− α)2/β2 if −∞ < x <∞ is called the Cauchy distri-

bution with parameters α, β (−∞ < α <∞, 0 < β <∞).
The Cauchy distribution (named after Baron Louis–Augustin Cauchy
(1789–1857) ) is often used for counter-examples in Probability theory
and was first proposed for that reason,3 since it has very “heavy tails”,
which lead to the absence of nice properties. Nevertheless it is used in me-
chanics and electricity and in particular is useful for calibration problems
in technical scientific fields.

3 Indeed Poisson used it as early as 1824 to demonstrate a case where the Central
Limit Theorem breaks down (the Central Limit Theorem is presented in Chap-
ter 21). Later it was central in a large dispute between Cauchy and Bienaymé.
It was this dispute that gave rise to its name as the Cauchy distribution.
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Exercises for Chapters 6 and 7

7.1 Let (An)n≥1 be any sequence of pairwise disjoint events and P a proba-
bility. Show that limn→∞ P (An) = 0.

7.2 * Let (Aβ)β∈B be a family of pairwise disjoint events. Show that if
P (Aβ) > 0, each β ∈ B, then B must be countable.

7.3 Show that the maximum of the Gamma density occurs at x = α−1
β , for

α ≥ 1.

7.4 Show that the maximum of the Weibull density occurs at x = 1
β (α−1

α )
1
α ,

for α ≥ 1.

7.5 Show that the maximum of the Normal density occurs at x = μ.

7.6 Show that the maximum of the Lognormal density occurs at x = eμe−σ2
.

7.7 Show that the maximum of the double exponential density occurs at
x = α.

7.8 Show that the Gamma and Weibull distributions both include the Ex-
ponential as a special case by taking α = 1.

7.9 Show that the uniform, normal, double exponential, and Cauchy densities
are all symmetric about their midpoints.

7.10 A distribution is called unimodal if the density has exactly one absolute
maximum. Show that the normal, exponential, double exponential, Cauchy,
Gamma, Weibull, and Lognormal are unimodal.

7.11 Let P (A) =
∫∞

−∞ 1A(x)f(x)dx for a nonnegative function f with∫∞
−∞ f(x)dx = 1. Let A = {x0}, a singleton (that is, the set A consists

of one single point on the real line). Show that A is a Borel set and also a
null set (that is, P (A) = 0).

7.12 Let P be as given in Exercise 7.11. Let B be a set with countable
cardinality (that is, the number of points in B can be infinite, but only
countably infinite). Show that B is a null set for P .

7.13 Let P and B be as given in Exercise 7.12. Suppose A is an event with
P (A) = 1

2 . Show that P (A ∪B) = 1
2 as well.

7.14 Let A1, . . . , An, . . . be a sequence of null sets. Show that B = ∪∞
i=1Ai

is also a null set.

7.15 Let X be a r.v. defined on a countable Probability space. Suppose
E{|X|} = 0. Show that X = 0 except possibly on a null set. Is it possible to
conclude, in general, that X = 0 everywhere (i.e., for all ω)? [Ans.: No]
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7.16 * Let F be a distribution function. Show that in general F can have
an infinite number of jump discontinuities, but that there can be at most
countably many.

7.17 Suppose a distribution function F is given by

F (x) =
1
4
1[0,∞)(x) +

1
2
1[1,∞)(x) +

1
4
1[2,∞)(x).

Let P be given by
P ((−∞, x]) = F (x).

Then find the probabilities of the following events:

a) A = (− 1
2 , 1

2 )
b) B = (− 1

2 , 3
2 )

c) C = ( 2
3 , 5

2 )
d) D = [0, 2)
e) E = (3,∞)

7.18 Suppose a function F is given by

F (x) =
∞∑

i=1

1
2i

1[ 1i ,∞).

Show that it is the distribution function of a probability on R.
Let us define P by P ((−∞, x]) = F (x). Find the probabilities of the

following events:

a) A = [1,∞)
b) B = [ 1

10 ,∞)
c) C = {0}
d) D = [0, 1

2 )
e) E = (−∞, 0)
f) G = (0,∞)



8 Random Variables

In Chapter 5 we considered random variables defined on a countable prob-
ability space (Ω,A, P ). We now wish to consider an arbitrary abstract
space, countable or not. If X maps Ω into a state space (F,F), then what
we will often want to compute is the probability that X takes its val-
ues in a given subset of the state space. We take these subsets to be ele-
ments of the σ-algebra F of subsets of F . Thus, we will want to compute
P ({ω : X(ω) ∈ A}) = P (X ∈ A) = P (X−1(A)), which are three equivalent
ways to write the same quantity. The third is enlightening: in order to com-
pute P (X−1(A)), we need X−1(A) to be an element of A, the σ-algebra on
Ω on which P is defined. This motivates the following definition.

Definition 8.1. (a) Let (E, E) and (F,F) be two measurable spaces. A func-
tion X : E → F is called measurable (relative to E and F) if X−1(Λ) ∈ E,
for all Λ ∈ F . (One also writes X−1(F) ⊂ E.)

(b) When (E, E) = (Ω,A), a measurable function X is called a random
variable (r.v.).

(c) When F = R, we usually take F to be the Borel σ-algebra B of R. We
will do this henceforth without special mention.

Theorem 8.1. Let C be a class of subsets of F such that σ(C) = F . In order
for a function X : E → F to be measurable (w.r.t. the σ-algebras E and F),
it is necessary and sufficient that X−1(C) ⊂ E.
Proof. The necessity is clear, and we show sufficiency. That is, suppose that
X−1(C) ∈ E for all C ∈ C. We need to show X−1(Λ) ∈ E for all Λ ∈ F .
First note that X−1(∪nΛn) = ∪nX−1(Λn), X−1(∩nΛn) = ∩nX−1(Λn), and
X−1(Λc) = (X−1(Λ))c. Define B = {A ∈ F :X−1(A) ∈ E}. Then C ⊂ B,
and since X−1 commutes with countable intersections, countable unions, and
complements, we have that B is also a σ-algebra. Therefore B ⊃ σ(C), and
also F ⊃ B, and since F = σ(C) we conclude F = B, and thus X−1(F) ⊂
σ(X−1(C)) ⊂ E . �

We have seen that a probability measure P on R is characterized by
the quantities P ((−∞, a]). Thus the distribution measure PX on R of a
random variable X should be characterized by PX((−∞, a]) = P (X ≤ a)
and what is perhaps surprisingly nice is that being a random variable is
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further characterized only by events of the form {ω: X(ω) ≤ a} = {X ≤ a}.
Indeed, what this amounts to is that a function is measurable — and hence
a random variable — if and only if its distribution function is defined.

Corollary 8.1. Let (F,F) = (R,B) and let (E, E) be an arbitrary measur-
able space. Let X, Xn be real-valued functions on E.

a) X is measurable if and only if {X ≤ a} = {ω: X(ω) ≤ a} = X−1((−∞, a])
∈ E, for each a; or iff {X < a} ∈ E, each a ∈ R.

b) If Xn are measurable, supXn, inf Xn, lim supn→∞ Xn and lim infn→∞ Xn

are all measurable.
c) If Xn are measurable and if Xn converges pointwise to X, then X is

measurable.

Proof.

(a) From Theorem 2.1, we know for the Borel sets B on R that B = σ(C)
where C = {(−∞, a]; a ∈ R). By hypothesis X−1(C) ⊂ E , so (a) follows
from Theorem 8.1.

(b) Since Xn is measurable, {Xn ≤ a} ∈ E . Therefore {supn Xn ≤ a} =
∩n{Xn ≤ a} ∈ E for each a. Hence supn Xn is measurable by part (a).
Analogously {infn Xn < a} = ∪n{Xn < a} ∈ E and thus infn Xn is mea-
surable by part (a). Note further that lim supn→∞ Xn = infn supm≥n Xm

= infn Yn, where Yn = supm≥n Xm. We have just seen each Yn is
measurable, and we have also seen that infn Yn is therefore measur-
able; hence lim supn→∞ Xn is measurable. Analogously lim infn→∞ Xn =
supn infm≥n Xm is measurable.

(c) If limn→∞ Xn = X, then X = lim supn→∞ Xn = lim infn→∞ Xn (be-
cause the limit exists by hypothesis). Since lim supn→∞ Xn is measurable
and equal to X, we conclude X is measurable as well.

�

Theorem 8.2. Let X be measurable from (E, E) into (F,F), and Y mea-
surable from (F,F) into (G,G); then Y ◦ X is measurable from (E, E) into
(G,G).
Proof. Let A ∈ G. Then (Y ◦X)−1(A) = X−1(Y −1(A)). Since Y is measur-
able, B = Y −1(A) ∈ F . Since X is measurable, X−1(B) ∈ E . �

A topological space is an abstract space with a collection of open sets;1

the collection of open sets is called the topology of the space. An abstract
definition of a continuous function is as follows: given two topological spaces
(E,U) and (F,V) (where U are the open sets of E and V are the open sets of
1 A “collection of open sets” is a collection of sets such that any union of sets in

the collection is also in the collection, and any finite intersection of open sets in
the collection is also in the collection.
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F), then a continuous function f : E → F is a function such that f−1(A) ∈ U
for each A ∈ V. (This is written concisely as f−1(V) ⊂ U .) The Borel σ-
algebra of a topological space (E,U) is B = σ(U). (The open sets do not form
a σ-algebra by themselves: they are not closed under complements or under
countable intersections.)

Theorem 8.3. Let (E,U) and (F,V) be two topological spaces, and let E,
F be their Borel σ-algebras. Every continuous function X from E into F is
then measurable (also called “Borel”).

Proof. Since F = σ(V), by Theorem 8.1 it suffices to show that X−1(V) ⊂ E .
But for O ∈ V, we know X−1(O) is open and therefore in E , as E being the
Borel σ-algebra, it contains the class U of open sets of E. �

Recall that for a subset A of E, the indicator function 1A(x) is defined to
be

1A(x) =
{

1 if x ∈ A,
0 if x �∈ A

.

Thus the function 1A(x), usually written 1A with the argument x being im-
plicit, “indicates” whether or not a given x is in A. (Sometimes the function
1A is known as the “characteristic function of A” and it is also written χA;
this terminology and notation is somewhat out of date.)

Theorem 8.4. Let (F,F) = (R,B), and (E, E) be any measurable space.

a) An indicator 1A on E is measurable if and only if A ∈ E.
b) If X1, . . . , Xn are real-valued measurable functions on (E, E), and if f is

Borel on Rn, then f(X1, . . . , Xn) is measurable.
c) If X, Y are measurable, so also are X + Y , XY , X ∨ Y (a short-hand for

max(X, Y )), X ∧Y (a short-hand for min(X, Y )), and X/Y (if Y �= 0).

Proof. (a) If B ⊂ R, we have

(1A)−1(B) =

⎧⎪⎪⎨⎪⎪⎩
∅ if 0 /∈ B, 1 /∈ B
A if 0 /∈ B, 1 ∈ B
Ac if 0 ∈ B, 1 /∈ B
E if 0 ∈ B, 1 ∈ B

The result follows.
(b) The Borel σ-algebra Bn on Rn is generated by the quadrants∏

i≤n(−∞, ai], by the exact same proof as was used in Theorem 2.1. Let
X denote the vector-valued function X = (X1, . . . , Xn). Thus X:E → Rn.
Then X−1(

∏
i≤n(−∞, ai]) = ∩i≤n{Xi ≤ ai} ∈ E , and therefore X is a mea-

surable function from (E, E) into (Rn,Bn). The statement (b) then follows
from Theorem 8.2.

(c) Note that the function f1:R2 → R given by f1(x, y) = x + y is
continuous. So also are f2(x, y) = xy; f3(x, y) = x∨y = max(x, y); f4(x, y) =
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x ∧ y = min(x, y). The function f5(x, y) = x
y is continuous from R × (R \

{0}) into R. Therefore (c) follows from (b) together with Theorem 8.3 (that
continuous functions are Borel measurable). �

If X is a r.v. on (Ω,A, P ), with values in (E, E), then the distribution
measure (or law) of X is defined by

PX(B) = P (X−1(B)) = (P ◦X−1)(B) = P (ω: X(ω) ∈ B) = P (X ∈ B),

∀B ∈ E . All four different ways of writing PX(B) on the right side above are
used in mathematics, but the most common is

PX(B) = P (X ∈ B)

where the “ω” is not explicitly written but rather implicitly understood to be
there. This allows us to avoid specifying the space Ω (which is often difficult
to construct mathematically), and simply work with Probability measures on
(E, E). Sometimes PX is also called the image of P by X.

Since X−1 commutes with taking unions and intersections and since
X−1(E) = Ω, we have

Theorem 8.5. The distribution of X, (or the law of X), is a probability
measure on (E, E).

When X is a real-valued r.v., its distribution PX is a probability on R,
which is entirely characterized by its distribution function:

FX(x) = PX((−∞, x]) = P (X ≤ x).

The function FX is called the cumulative distribution function of the r.v. X.
When FX admits a density fX (i.e. FX(x) =

∫ x

−∞ fX(y)dy for all x ∈ R),
we also say that the function fX is the probability density of the r.v. X.
Often the cumulative distribution function is referred to as a “cdf”, or simply
a “distribution function.” Analogously the probability density function is
referred to as a “pdf”, or simply a “density.”



9 Integration with Respect to a Probability
Measure

Let (Ω,A, P ) be a probability space. We want to define the expectation, or
what is equivalent, the “integral”, of general random variables. We have of
course already done this for random variables defined on a countable space
Ω. The general case (for arbitrary Ω) is more delicate.

Let us begin with special cases.

Definition 9.1. a) A r.v. X is called simple if it takes on only a finite
number of values and hence can be written in the form

X =
n∑

i=1

ai1Ai, (9.1)

where ai ∈ R, and Ai ∈ A, 1 ≤ i ≤ n (Such an X is clearly measurable;
conversely if X is measurable and takes on the values a1, . . . , an it must have
the representation (9.1) with Ai = {X = ai}; a simple r.v. has of course
many different representations of the form (9.1).)

b) If X is simple, its expectation (or “integral” with respect to P ) is the
number

E{X} =
n∑

i=1

aiP (Ai). (9.2)

(This is also written
∫

X(ω)P (dω) and even more simply
∫

XdP .)
A little algebra shows that E{X} does not depend on the particular rep-

resentation (9.1) chosen for X.

Let X, Y be two simple random variables and β a real number. We clearly
can write both X and Y in the form (9.1), with the same subsets Ai which
form a partition of Ω, and with numbers ai for X and bi for Y . Then βX and
X + Y are again in the form (9.1) with the same Ai and with the respective
numbers βai and ai + bi. Thus E{βX} = βE{X} and E{X +Y } = E{X}+
E{Y }; that is expectation is linear on the vector space of all simple r.v.’s. If
further X ≤ Y we have ai ≤ bi for all i, and thus E{X} ≤ E{Y }.

Next we define expectation for positive random variables. For X positive
(by this, we assume that X may take all values in [0,∞], including +∞: this
innocuous extension is necessary for the coherence of some of our further
results), let

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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E{X} = sup(E{Y } : Y a simple r.v. with 0 ≤ Y ≤ X). (9.3)

This supremum always exists in [0,∞]. Since expectation is a positive oper-
ator on the set of simple r.v.’s, it is clear that the definition above for E{X}
coincides with Definition 9.1.

Note that E{X} ≥ 0, but we can have E{X} =∞, even when X is never
equal to +∞.

Finally let X be an arbitrary r.v. Let X+ = max(X, 0) and X− =
−min(X, 0). Then X = X+ − X−, and X+, X− are positive r.v.’s. Note
that |X| = X+ + X−.

Definition 9.2. (a) A r.v. X has a finite expectation (is “integrable”) if both
E{X+} and E{X−} are finite. In this case, its expectation is the number

E{X} = E{X+} − E{X−}, (9.4)

also written
∫

X(ω)dP (ω) or
∫

XdP . (If X ≥ 0 then X− = 0 and X+ = X
and, since obviously E{0} = 0, this definition coincides with (9.3)).

We write L1 to denote the set of all integrable random variables. (Some-
times we write L1(Ω,A, P ) to remove any possible ambiguity.)
(b) A r.v. X admits an expectation if E{X+} and E{X−} are not both
equal to +∞. Then the expectation of X is still given by (9.4), with the
conventions +∞+ a = +∞ and −∞+ a = −∞ when a ∈ R. (If X ≥ 0 this
definition again coincides with (9.3); note that if X admits an expectation,
then E{X} ∈ [−∞,+∞], and X is integrable if and only if its expectation is
finite.)

Remark 9.1. When Ω is finite or countable we have thus two different defi-
nitions for the expectation of a r.v. X, the one above and the one given in
Chapter 5. In fact these two definitions coincide: it is enough to verify this
for a simple r.v. X, and in this case the formulas (5.1) and (9.2) are identical.

The next theorem contains the most important properties of the expec-
tation operator. The proofs of (d), (e) and (f) are considered hard and could
be skipped.

Theorem 9.1. (a) L1 is a vector space, and expectation is a linear map
on L1, and it is also positive (i.e., X ≥ 0 ⇒ E{X} ≥ 0). If further
0 ≤ X ≤ Y are two r.v. and Y ∈ L1, then X ∈ L1 and E{X} ≤ E{Y }.

(b) X ∈ L1 iff |X| ∈ L1 and in this case |E{X}| ≤ E{|X|}. In particular
any bounded r.v. is integrable.

(c) If X = Y almost surely1 (a.s.), then E{X} = E{Y }.
(d) (Monotone convergence theorem): If the r.v.’s Xn are positive and in-

creasing a.s. to X, then limn→∞ E{Xn} = E{X} (even if E{X} =∞).
1 X = Y a.s. if P (X = Y ) = P ({ω : X(ω) = Y (ω)}) = 1
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(e) (Fatou’s lemma): If the r.v.’s Xn satisfy Xn ≥ Y a.s. (Y ∈ L1), all n, we
have E{lim infn→∞ Xn} ≤ lim infn→∞ E{Xn}. In particular if Xn ≥ 0
a.s. all n, then E{lim infn→∞ Xn} ≤ lim infn→∞ E{Xn}.

(f) (Lebesgue’s dominated convergence theorem): If the r.v.‘s Xn converge
a.s. to X and if |Xn| ≤ Y a.s. ∈ L1, all n, then Xn ∈ L1, X ∈ L1, and
E{Xn} → E{X}.
The a.s. equality between random variables is clearly an equivalence rela-

tion, and two equivalent (i.e. almost surely equal) random variables have the
same expectation: thus one can define a space L1 by considering “L1 modulo
this equivalence relation”. In other words, an element of L1 is an equivalence
class, that is a collection of all r.v. in L1 which are pairwise a.s. equal. In
view of (c) above, one may speak of the “expectation” of this equivalence
class (which is the expectation of any one element belonging to this class).
Since further the addition of random variables or the product of a r.v. by a
constant preserve a.s. equality, the set L1 is also a vector space. Therefore we
commit the (innocuous) abuse of identifying a r.v. with its equivalence class,
and commonly write X ∈ L1 instead of X ∈ L1.

If 1 ≤ p <∞, we define Lp to be the space of r.v.’s such that |X|p ∈ L1;
Lp is defined analogously to L1. That is, Lp is Lp modulo the equivalence
relation “almost surely”. Put more simply, two elements of Lp that are a.s.
equal are considered to be representatives of one element of Lp. We will use
in this book only the spaces L1 and L2 (that is p = 1 or 2).

Before proceeding to the proof of Theorem 9.1 itself, we show two auxiliary
results.

Result 1. For every positive r.v. X there exists a sequence (Xn)n≥1 of pos-
itive simple r.v.’s which increases toward X as n increases to infinity. An
example of such a sequence is given by

Xn(ω) =
{

k2−n if k2−n ≤ X(ω) < (k + 1)2−n and 0 ≤ k ≤ n2n − 1,
n if X(ω) ≥ n.

(9.5)

Result 2. If X is a positive r.v., and if (Xn)n≥1 is any sequence of positive
simple r.v.’s increasing to X, then E{Xn} increases to E{X}.

To see this, observe first that the sequence E{Xn} increases to a limit a,
which satisfies a ≤ E{X} by (9.3). To obtain that indeed a = E{X}, and
in view of (9.3) again, it is clearly enough to prove that if Y is a simple r.v.
such that 0 ≤ Y ≤ X, then E{Y } ≤ a.

The variable Y takes on m different values, say a1, . . . , am, and set Ak =
{Y = ak}. Choose ε ∈ (0, 1]. The r.v. Yn,ε = (1 − ε)Y 1{(1−ε)Y ≤Xn } takes
the value (1 − ε)ak on the set Ak,n,ε = Ak ∩ {(1− ε)Y ≤ Xn} and 0 on the
set {(1− ε)Y > Xn}. Furthermore it is obvious that Yn,ε ≤ Xn, hence using
(9.2), we obtain
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E{Yn,ε} = (1− ε)
m∑

k=1

akP (Ak,n,ε) ≤ E{Xn}. (9.6)

Now recall that Y ≤ limn Xn, hence (1 − ε)Y < limn Xn as soon as Y > 0,
hence clearly Ak,n,ε → Ak as n → ∞. An application of Theorem 2.4 yields
P (Ak,n,ε)→ P (Ak), hence taking the limit in (9.6) gives

(1− ε)
m∑

k=1

ak P (Ak) = (1− ε)E{Y } ≤ a.

Letting ε→ 0 in the above, we deduce that E{Y } ≤ a, hence our Result 2.

Proof. (a) Let X, Y be two nonnegative r.v.’s and α ∈ R+. By Result 1 above
we associate with X, Y simple r.v.’s Xn, Yn increasing to X, Y respectively.
Then αXn and Xn + Yn are also simple r.v.’s increasing respectively to αX
and X + Y . Using that expectation is linear over simple r.v.’s and Result 2
above, we readily obtain E{αX} = αE{X} and E{X +Y } = E{X}+E{Y }.
If further X ≤ Y , that E{X} ≤ E{Y } readily follows from (9.3).

From this we first deduce the last two claims of (a). Since for (possibly
negative) r.v.’s X and Y and α ∈ R we have that (αX)++(αX)− ≤ |α|(X++
X−) and (X + Y )+ + (X + Y )− ≤ X+ + X− + Y + + Y −, we deduce next
that L1 is a vector space. Finally since E{X} = E{X+}−E{X−} we deduce
that expectation is linear.

(b) If X ∈ L1, then E{X+} <∞ and E{X−} <∞. Since |x| = x+ +x−,
we have E{|X|} = E{X+}+E{X−} <∞ as well, so |X| ∈ L1. Conversely if
E{|X|} <∞, then E{X+ +X−} <∞, and since E{X+ +X−} = E{X+}+
E{X−} and both terms are nonnegative, we have that they are also both
finite and X ∈ L1.

(c) Suppose X = Y a.s. and assume first X ≥ 0, Y ≥ 0. Let A =
{ω: X(ω) �= Y (ω)} = {X �= Y }. Then P (A) = 0. Also,

E{Y } = E{Y 1A + Y 1Ac } = E{Y 1A}+ E{Y 1Ac } = E{Y 1A}+ E{X1Ac }.
Let Yn be simple and Yn increase to Y . Then Yn1A are simple and Yn1A

increase to Y 1A too. Since Yn is simple it is bounded, say by N . Then

0 ≤ E{Yn1A} ≤ E{N1A} = NP (A) = 0.

Therefore E{Y 1A} = 0. Analogously, E{X1A} = 0. Finally we have

E{Y } = E{Y 1A}+ E{X1Ac } = 0 + E{X1Ac } = E{X1Ac }+ E{X1A}
= E{X}.

We conclude by noting that if Y = X a.s., then also Y + = X+ a.s. and
Y − = X− a.s., and (c) follows.

(d) For each fixed n choose an increasing sequence Yn,k, k = 1, 2, 3, . . . of
positive simple r.v.’s increasing to Xn (Result 1), and set
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Zk = max
n≤k

Yn,k.

Then (Zk)k≥1 is a non-decreasing sequence of positive simple r.v.’s, and thus
it has a limit Z = limk→∞ Zk. Also

Yn,k ≤ Zk ≤ Xk ≤ X a.s. for n ≤ k

which implies that
Xn ≤ Z ≤ X a.s.

Next if we let n → ∞ we have Z = X a.s. Since expectation is a positive
operator we have

E{Yn,k} ≤ E{Zk} ≤ E{Xk} for n ≤ k

Fix n and let k →∞. Using Result 2, we obtain

E{Xn} ≤ E{Z} ≤ lim
k→∞

E{Xk}.

Now let n→∞ to obtain:

lim
n→∞ E{Xn} ≤ E{Z} ≤ lim

k→∞
E{Xk},

and since the left and right sides are the same, they must equal the middle;
by (c) and X = Z a.s., we deduce the result.

(e) Note that we could replace Xn with X̂n = Xn − Y and then X̂n ≥
0, X̂n ∈ L1, and E{lim infn→∞ X̂n} ≤ lim infn→∞ E{X̂n} if and only if
E{lim infn→∞ Xn} ≤ lim infn→∞ E{Xn}, because

lim inf
n→∞ X̂n = (lim inf

n→∞ Xn)− Y.

Therefore without loss of generality we assume Xn ≥ 0 a.s., each n.
Set Yn = infk≥n Xk. Then Yn are also random variables and form a non-

decreasing sequence. Moreover

lim
n→∞ Yn = lim inf

n→∞ Xn.

Since Xn ≥ Yn, we have E{Xn} ≥ E{Yn}, whence

lim inf
n→∞ E{Xn} ≥ lim

n→∞ E{Yn} = E{ lim
n→∞ Yn} = E{lim inf

n→∞ Xn}

by the Monotone Convergence Theorem (part (d) of this theorem).
(f) Set U = lim infn→∞ Xn and V = lim supn→∞ Xn. By hypothesis

U = V = X a.s. We also have |Xn| ≤ Y a.s., hence |X| ≤ Y as well, hence
Xn and X are integrable. On the one hand Xn ≥ −Y a.s. and −Y ∈ L1, so
Fatou’s lemma (e) yields



56 9 Integration with Respect to a Probability Measure

E{U} ≤ lim inf
n→∞ E{Xn}.

We also have −Xn ≥ −Y a.s. and −V = lim infn→∞−Xn, so another appli-
cation of Fatou’s lemma yields

−E{V } = E{−V } ≥ lim inf
n→∞ E{−Xn} = − lim sup

n→∞
E{Xn}.

Putting together these two inequalities and applying (c) yields

E{X} = E{U} ≤ lim inf
n→∞ E{Xn} ≤ lim sup

n→∞
E{Xn} ≤ E{V } = E{X}.

This completes the proof. �
A useful consequence of Lebesgue’s Dominated Convergence Theorem

(Theorem 9.1(f)) is the next result which allows us to interchange summa-
tion and expectation. Since an infinite series is a limit of partial sums and
an expectation is also a limit, the interchange of expectation and summation
amounts to changing the order of taking two limits.

Theorem 9.2. Let Xn be a sequence of random variables.

(a) If the Xn’s are all positive, then

E

{ ∞∑
n=1

Xn

}
=

∞∑
n=1

E{Xn}, (9.7)

both sides being simultaneously finite or infinite.
(b) If

∑∞
n=1 E{|Xn|} <∞, then

∑∞
n=1 Xn converges a.s. and the sum of this

series is integrable and moreover (9.7) holds.

Proof. Let Sn =
∑n

k=1 |Xk| and Tn =
∑n

k=1 Xk. Then

E{Sn} = E

{
n∑

k=1

|Xk|
}

=
n∑

k=1

E{|Xk|},

and the sequence Sn clearly increases to the limit S =
∑∞

k=1 |Xk| (which
may be finite for some values of ω and infinite for others). Therefore by the
Monotone Convergence Theorem (Theorem 9.1(d)) we have:

E{S} = lim
n→∞ E{Sn} =

∞∑
k=1

E{|Xk|} <∞.

If all Xn’s are positive, then Sn = Tn and this proves (a). If the Xn’s are not
necessarily positive, but

∑∞
n=1 E{|Xn|} < ∞, we deduce also that E{S} <

∞.
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Now, for every ε > 0 we have 1{S=∞} ≤ εS, hence

P (S =∞) = E{1{S=∞}} ≤ εE{S}.
Then E{S} <∞ and since the choice of ε is arbitrary, we have that P (S =
∞) = 0: we deduce that

∑∞
k=1 Xk is an absolutely convergent series a.s. and

its sum, say T , is the limit of the sequence Tn. Moreover

|Tn| ≤ Sn ≤ S

and S is in L1. Hence by the Dominated Convergence Theorem (Theo-
rem 9.1(f)) we have that

E

{ ∞∑
k=1

Xk

}
= E{ lim

n→∞ Tn} = E{T},

which is (9.7). �
Recall that L1 and L2 are the sets of equivalence classes of integrable

(resp. square-integrable) random variables for the a.s. equivalence relation.

Theorem 9.3. a) If X, Y ∈ L2, we have XY ∈ L1 and the Cauchy-Schwarz
inequality:

|E{XY }| ≤
√

E{X2}E{Y 2};
b) We have L2 ⊂ L1, and if X ∈ L2, then E{X}2 ≤ E{X2};
c) The space L2 is a linear space, i.e. if X, Y ∈ L2 and α, β ∈ R, then

αX + βY ∈ L2 (we will see in Chapter 22 that in fact L2 is a Hilbert
space).

Proof. (a) We have |XY | ≤ X2/2+Y 2/2, hence X, Y ∈ L2 implies XY ∈ L1.
For every x ∈ R we have

0 ≤ E{(xX + Y )2} = x2E{X2}+ 2xE{XY }+ E{Y 2}. (9.8)

The discriminant of the quadratic equation in x given in (9.8) is√
4 {(E{XY })2 − E{X2}E{Y 2}},

and since the equation is always nonnegative,

E{XY }2 − E{X2}E{Y 2} ≤ 0,

which gives the Cauchy-Schwarz inequality.
(b) Let X ∈ L2. Since X = X · 1 and since the function equal to 1

identically obviously belongs to L2 with E{12} = 1, the claim follows readily
from (a).

(c) Let X, Y ∈ L2. Then for constants α, β, (αX+βY )2 ≤ 2α2X2+2β2Y 2

is integrable and αX + βY ∈ L2 and L2 is a vector space. �
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If X ∈ L2, the variance of X, written σ2(X) or σ2
X , is

Var(X) = σ2(X) ≡ E{(X − E{X})2}.

(Note that X ∈ L2 ⇒ X ∈ L1, so E{X} exists.) Let μ = E{X}. Then
Var(X) =

E{(X − μ)2} = E{X2} − 2μE{X}+ μ2

= E{X2} − 2μ2 + μ2

= E{X2} − μ2.

Thus we have as well the trivial but nonetheless very useful equality:

σ2(X) = E{X2} − E{X}2.

Theorem 9.4 (Chebyshev’s Inequality).

P{|X| ≥ a} ≤ E{X2}
a2 .

Proof. Since a21{|X|≥a} ≤ X2, we have E{a21{|X|≥a}} ≤ E{X2}, or

a2P (|X| ≥ a) ≤ E{X2};

and dividing by a2 gives the result. �
Chebyshev’s inequality is also known as the Bienaymé-Chebyshev inequal-

ity, and often is written equivalently as

P{|X − E{X}| ≥ a} ≤ σ2(X)
a2 ,

The next theorem is useful; both Theorem 9.5 and Corollary 9.1 we call
the Expectation Rule, as they are vital tools for calculating expectations.
It shows in particular that the expectation of a r.v. depends only on its
distribution.

Theorem 9.5 (Expectation Rule). Let X be a r.v. on (Ω,A, P ), with
values in (E, E), and distribution PX . Let h: (E, E)→ (R,B) be measurable.

a) We have h(X) ∈ L1(Ω,A, P ) if and only if h ∈ L1(E, E , PX).
b) If either h is positive, or if it satisfies the equivalent conditions in (a), we

have:
E{h(X)} =

∫
h(x)PX(dx). (9.9)

Proof. Recall that the distribution measure PX is defined by PX(B) =
P (X−1(B)). Therefore
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E{1B(X)} = P (X−1(B)) = PX(B) =
∫

1B(x)PX(dx).

Thus if h is simple, (9.9) holds by the above and linearity. If h is positive, let
hn be simple, positive and increase to h. Then

E{h(X)} = E{ lim
n→∞ hn(X)}

= lim
n→∞ E{hn(X)}

= lim
n→∞

∫
hn(x)PX(dx)

=
∫

lim
n→∞ hn(x)PX(dx)

=
∫

h(x)PX(dx)

where we have used the Monotone Convergence Theorem twice. This proves
(b) when h is positive, and applied to |h| it also proves (a) (recalling that a
r.v. belongs to L1 if and only if the expectation of its absolute value is finite).

If h is not positive, we write h = h+ − h− and deduce the result by
subtraction. �

The next result can be proved as a consequence of Theorem 9.5, but we
prove it in Chapter 11 (Corollary 11.1) so we omit its proof here.

Corollary 9.1 (Expectation Rule). Suppose X is a random variable that
has a density f . (That is, F (x) = P (X ≤ x) and F (x) =

∫ x

−∞ f(u)du,−∞ <

x <∞.) If E{|h(X)|} <∞ or if h is positive, then E{h(X)} =
∫

h(x)f(x)dx.

Examples:

1. Let X be exponential with parameter α. Then

E{h(X)} =
∫ ∞

0
h(x)αe−αxdx.

In particular, if h(x) = x, we have

E{X} =
∫ ∞

0
αxe−αxdx =

1
α

,

by integration by parts. Thus the mean of an exponential random variable
is 1/α.

2. Let X be normal (or Gaussian) with parameters (μ, σ2). Then E{X} = μ,
since

E{X} =
∫ ∞

−∞

1√
2πσ

xe−(x−μ)2/2σ2
dx.
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To see this, let y = x− μ; then x = y + μ, and

E{X} =
∫ ∞

−∞

1√
2πσ

(y + μ)e−y2/2σ2
dy

=
∫ ∞

−∞

1√
2πσ

ye−y2/2σ2
dy + μ

∫ ∞

−∞

1√
2πσ

e−y2/2σ2
dy.

The first integral is the integral of an odd function, so it is zero; the
second is equal to μ

∫∞
−∞ f(x)dx = μ · 1 = μ.

3. Let X be Cauchy with density function

f(x) =
1
π

1
1 + x2 .

We have E{X+} = E{X−} = E{|X|} = ∞ and the mean E{X} of a
Cauchy random variable does not exist. Indeed

E{X+} =
∫ ∞

0

x

π(1 + x2)
dx +

∫ 0

−∞

0
π(1 + x2)

dx

≥ 1
π

∫ ∞

1

1
2x

dx =∞

since x
1+x2 ≥ 0 for all x ≥ 0 and x

1+x2 ≥ 1
2x for x > 1. That E{X−} =∞

is proved similarly.
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Exercises for Chapters 8 and 9

9.1 Let X : (Ω,A)→ (R,B) be a r.v. Let

F = {A : A = X−1(B), some B ∈ B} = X−1(B).

Show that X is measurable as a function from (Ω,F) to (R,B).

9.2 * Let (Ω,A, P ) be a probability space, and let F and G be two σ-algebras
on Ω. Suppose F ⊂ A and G ⊂ A (we say in this case that F and G are sub
σ-algebras of A). The σ-algebras F and G are independent if for any A ∈ F ,
any B ∈ G, P (A ∩B) = P (A)P (B). Suppose F and G are independent, and
a r.v. X is measurable from both (Ω,F) to (R,B) and from (Ω,G) to (R,B).
Show that X is a.s. constant; that is, P (X = c) = 1 for some constant c.

9.3 * Given (Ω,A, P ), let A′ = {A ∪ N : A ∈ A, N ∈ N}, where N are the
null sets (as in Theorem 6.4). Suppose X = Y a.s. where X and Y are two
real-valued functions on Ω. Show that X: (Ω,A′) → (R,B) is measurable if
and only if Y : (Ω,A′)→ (R,B) is measurable.

9.4 * Let X ∈ L1 on (Ω,A, P ) and let An be a sequence of events such that
limn→∞ P (An) = 0. Show that limn→∞ E{X1An } = 0. (Caution: We are not
assuming that limn→∞ X1An = 0 a.s.)

9.5 * Given (Ω,A, P ), suppose X is a r.v. with X ≥ 0 a.s. and E{X} = 1.
Define Q : A → R by Q(A) = E{X1A}. Show that Q defines a probability
measure on (Ω,A).

9.6 For Q as in Exercise 9.5, show that if P (A) = 0, then Q(A) = 0. Give
an example that shows that Q(A) = 0 does not in general imply P (A) = 0.

9.7 * For Q as in Exercise 9.5, suppose also P (X > 0) = 1. Let EQ denote
expectation with respect to Q. Show that EQ{Y } = EP {Y X}.
9.8 Let Q be as in Exercise 9.5, and suppose that P (X > 0) = 1.

(a) Show that 1
X is integrable for Q.

(b) Define R:A → R by R(A) = EQ{ 1
X 1A}. Show that R is exactly the

probability measure P of Exercise 9.5. (Hint: Use Exercise 9.7.)

9.9 Let Q be as in Exercise 9.8. Show that Q(A) = 0 implies P (A) = 0
(compare with Exercise 9.6).

9.10 Let X be uniform over (a, b). Show that E{X} = a+b
2 .

9.11 Let X be an integrable r.v. with density f(x), and let μ = E{X}. Show
that

Var(X) = σ2(X) =
∫ ∞

−∞
(x− μ)2f(x)dx.
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9.12 Let X be uniform over (a, b). Show that σ2(X) = (b−a)2

12 .

9.13 Let X be Cauchy with density 1
π(1+(x−α)2) . Show that σ2(X) is not

defined, and E{X2} =∞.

9.14 The beta function is B(r, s) = Γ (r)Γ (s)
Γ (r+s) , where Γ is the gamma function.

Equivalently

B(r, s) =
∫ 1

0
tr−1(1− t)s−1dt (r > 0, s > 0).

X is said to have a beta distribution if the density f of its distribution measure
is

f(x) =

⎧⎨⎩
xr−1(1− x)s−1

B(r, s)
if 0 ≤ x ≤ 1,

0 if x < 0 or x > 1.

Show that for X having a beta distribution with parameters (r, s) (r > 0, s >
0), then

E{Xk} =
B(r + k, s)

B(r, s)
=

Γ (r + k)Γ (r + s)
Γ (r)Γ (r + s + k)

,

for k ≥ 0. Deduce that

E{X} =
r

r + s
,

σ2(X) =
rs

(r + s)2(r + s + 1)
.

The beta distribution is a rich family of distributions on the interval [0, 1]. It
is often used to model random proportions.

9.15 Let X have a lognormal distribution with parameters (μ, σ2). Show that

E{Xr} = erμ+ 1
2 σ2r2

and deduce that E{X} = eμ+ 1
2 σ2

and σ2
X = e2μ+σ2

(eσ2−1). (Hint: E{Xr} =∫∞
0 xrf(x)dx where f is the lognormal density; make the change of variables

y = log(x)− μ to obtain

E{Xr} =
∫ ∞

−∞

1√
2πσ2

e(rμ+ry−y2/2σ2)dy.)

9.16 The gamma distribution is often simplified to a one parameter distribu-
tion. A r.v. X is said to have the standard gamma distribution with parameter
α if the density of its distribution measure is given by

f(x) =

⎧⎨⎩
xα−1e−x

Γ (α)
if x ≥ 0,

0 if x < 0.
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That is, β = 1. (Recall Γ (α) =
∫∞
0 tα−1e−tdt.) Show that for X standard

gamma with parameter α, then

E{Xk} =
Γ (α + k)

Γ (α)
(k ≥ 0).

Deduce that X has mean α and also variance α.

9.17 * Let X be a nonnegative r.v. with mean μ and variance σ2, both finite.
Show that for any b > 0,

P{X ≥ μ + bσ} ≤ 1
1 + b2 .

(Hint: Consider the function g(x) = {(x−μ)b+σ}2

σ2(1+b2)2 and that E{((X − μ)b +
σ)2} = σ2(b2 + 1).)

9.18 Let X be a r.v. with mean μ and variance σ2, both finite. Show that

P{μ− dσ < X < μ + dσ} ≥ 1− 1
d2 .

(Note that this is interesting only for d > 1.)

9.19 Let X be normal (or Gaussian) with parameters μ = 0 and σ2 = 1.
Show that P (X > x) ≤ 1

x
√

2π
e− 1

2 x2
, for x > 0.

9.20 Let X be an exponential r.v. . Show that P{X > s + t | X > s} =
P{X > t} for s > 0, t > 0. This is known as the “memoryless property” of
the exponential.

9.21 * Let X be a r.v. with the property that P{X > s+t | X > s} = P{X >
t}. Show that if h(t) = P{X > t}, then h satisfies Cauchy’s equation:

h(s + t) = h(s)h(t) (s > 0, t > 0)

and show that X is exponentially distributed (Hint: use the fact that h is
continuous from the right, so Cauchy’s equation can be solved).

9.22 Let α be an integer and suppose X has distribution Gamma (α, β).
Show that P (X ≤ x) = P (Y ≥ α), where Y is Poisson with parameter
λ = xβ. (Hint: Recall Γ (α) = (α − 1)! and write down P (X ≤ x), and then
use integration by parts with u = tα−1 and dv = e−t/βdt.)

9.23 The Hazard Rate of a nonnegative random variable X is defined by

hX(t) = lim
ε→0

P (t ≤ X < t + ε | X ≥ t)
ε

when the limit exists. The hazard rate can be thought of as the probability
that an object does not survive an infinitesimal amount of time after time t.
The memoryless property of the exponential gives rise to a constant rate. A
Weibull random variable can be used as well to model lifetimes. Show that:
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a) If X is exponential (λ), then its hazard rate is hX(t) = λ;
b) If X is Weibull (α, β), then its hazard rate is hX(t) = αβαtα−1.

9.24 A positive random variable X has the logistic distribution if its distri-
bution function is given by

F (x) = P (X ≤ x) =
1

1 + e−(x−μ)/β
; (x > 0),

for parameters (μ, β), β > 0.

a) Show that if μ = 0 and β = 1, then a density for X is given by

f(x) =
e−x

(1 + e−x)2
;

b) Show that if X has a logistic distribution with parameters (μ, β), then X

has a hazard rate and it is given by hX(t) =
(

1
β

)
F (t).
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Recall that two events A and B are independent if knowledge that B has
occurred does not change the probability that A will occur: that is, P (A |
B) = P (A). This of course is algebraically equivalent to the statement P (A∩
B) = P (A)P (B). The latter expression generalizes easily to a finite number
of events: A1, . . . , An are independent if P (∩i=JAi) =

∏
i=J P (Ai), for every

subset J of {1, . . . , n} (see Definition 3.1).
For two random variables X and Y to be independent we want knowledge

of Y to leave unchanged the probabilities that X will take on certain values,
which roughly speaking means that the events {X ∈ A} and {Y ∈ B} are
independent for any choice of A and B in the σ-algebras of the state space of
X and Y . This is more easily expressed in terms of the σ-algebras generated
by X and Y : Recall that if X: (Ω,A) → (E, E), then X−1(E) is a sub σ-
algebra of A, called the σ-algebra generated by X. This σ-algebra is often
denoted σ(X).

Definition 10.1. a) Sub σ-algebras (Ai)i∈I of A, are independent if for
every finite subset J of I, and all Ai ∈ Ai, one has

P (∩i∈JAi) =
∏
i∈J

P (Ai).

b) Random variables (Xi)i∈I , with values in (Ei, Ei), are independent if the
generated σ-algebras X−1

i (Ei) are independent.

We will next, for notational simplicity, consider only pairs (X, Y ) of ran-
dom variables. However the results extend without difficulty to finite families
of r.v.’s.

Note that X and Y are not required to take values in the same space: X
can take its values in (E, E) and Y in (F,F).

Theorem 10.1. In order for X and Y to be independent, it is necessary and
sufficient to have any one of the following conditions holding:

a) P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) for all A ∈ E, B ∈ F ;
b) P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B) for all A ∈ C, B ∈ D, where
C and D are respectively classes of sets stable under finite intersections
which generate E and F ;

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004



66 10 Independent Random Variables

c) f(X) and g(Y ) are independent for each pair (f, g) of measurable func-
tions;

d) E{f(X)g(Y )} = E{f(X)}E{g(Y )} for each pair (f, g) of functions
bounded measurable, or positive measurable.

e) Let E and F be metric spaces and let E, F be their Borel σ-algebras.
Then E{f(X)g(Y )} = E{f(X)}E{g(Y )} for each pair (f, g) of bounded,
continuous functions.

Proof. (a) This is a restatement of the definition, since X−1(E) is exactly all
events of the form {X ∈ A}, for A ∈ E . (a)⇒(b): This is trivial since C ⊂ E
and D ⊂ F .

(a)⇒(b): This is evident.
(b)⇒(a): The collection of sets A ∈ E that verifies P (X ∈ A, Y ∈ B) =

P (X ∈ A)P (Y ∈ B) for a given B ∈ D is closed under increasing limits and
by difference and it contains the class C by hypothesis, and this class C is
closed by intersection. So the Monotone Class Theorem 6.2 yields that this
collection is in fact E itself. In other words, Assumption (b) is satisfied with
C = E . Then analogously by fixing A ∈ E and letting J = {B ∈ F :P (X ∈
A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)}, we have J ⊃ σ(D) and thus J = F .

(c)⇒(a): We need only to take f(x) = x and g(y) = y.
(a)⇒(c): Given f and g, note that

f(X)−1(E) = X−1(f−1(E)) ⊂ X−1(E).
Also, g(Y )−1(F) ⊂ Y −1(F), and since X−1(E) and Y −1(F) are independent,
the two sub σ-algebras f(X)−1(E) and g(Y )−1(F) will also be.

(d)⇒(a): Take f(x) = 1A(x) and g(y) = 1B(y).
(a)⇒(d): We have (d) holds for indicator functions, and thus for simple

functions (i.e., f(x) =
∑k

i=1 ai1Ai (x)) by linearity. If f and g are positive,
let fn and gn be simple positive functions increasing to f and g respectively.
Observe that the products fn(X)gn(Y ) increase to f(X)g(Y ). Then

E{f(X)g(Y )} = E
{

lim
n→∞ fn(X)gn(Y )

}
= lim

n→∞ E{fn(X)gn(Y )}
= lim

n→∞ E{fn(X)}E{gn(Y )} = E{f(X)}E{g(Y )}

by the monotone convergence theorem. This gives the result when f and g are
positive. When f and g are bounded we write f = f+− f− and g = g+− g−

and we conclude by linearity.
(d)⇒(e): This is evident.
(e)⇒(b): It is enough to prove (b) when C and D are the classes of all

closed sets of E and F (these classes are stable by intersection). Let for
example A be a closed subset of E. If d(x, A) denotes the distance between
the point x and the set A, then fn(x) = min(1, nd(x, A)) is continuous, it
satisfies 0 ≤ fn ≤ 1, and the sequence (1 − fn) decreases to the indicator
function 1A. Similarly with B a closed subset of F we associate continuous
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functions gn decreasing to 1B and having 0 ≤ gn ≤ 1. Then it suffices to
reproduce the proof of the implication (a)⇒(d), substituting the monotone
convergence theorem for the dominated convergence theorem. �
Example: Let E and F be finite or countable. For the couple (X, Y ) let

PXY
ij = P (X = i, Y = j)

= P ({ω : X(ω) = i and Y (ω) = j})
= P {(X = i) ∩ (Y = j)} .

Then X and Y are independent if and only if PXY
ij = PX

i PY
j , as a conse-

quence of Theorem 10.1.
We present more examples in Chapter 12.
We now wish to discuss “jointly measurable” functions. In general, if E

and F are each σ-algebras on spaces E and F respectively, then the Cartesian
product E×F = {A ⊂ E×F : A = Λ×Γ, Λ ∈ E and Γ ∈ F} is not a σ-algebra
on E × F . Consequently we write σ(E ×F) to denote the smallest σ-algebra
on E ×F generated by E ×F . Such a construct is common, and we give it a
special notation:

E ⊗ F = σ(E × F).

Theorem 10.2. Let f be measurable: (E × F, E ⊗ F) → (R,R). For each
x ∈ E (resp. y ∈ F ), the “section” y → f(x, y) (resp. x → f(x, y)) is an
F-measurable (resp. E-measurable) function.

Note: The converse to Theorem 10.2 is false in general.
Proof. First assume f is of the form f(x, y) = 1C(x, y), for C ∈ E ⊗ F . Let
H = {C ∈ E ⊗ F : y → 1C(x, y) is F-measurable for each fixed x ∈ E}.
Then H is a σ-algebra and H contains E × F , hence σ(E × F) ⊂ H. But by
construction H ⊂ σ(E ×F), so we have H = E ⊗F . Thus we have the result
for indicators and hence also for simple functions by linearity. If f is positive,
let fn be simple functions increasing to f . Then gn(y) = fn(x, y) for x fixed
is F-measurable for each n, and since

g(y) = lim
n→∞ gn(y) = f(x, y),

and since the limit of measurable functions is measurable, we have the result
for f . Finally if f is arbitrary, take f = f+ − f−, and since the result holds
for f+ and f−, it holds as well for f because the difference of two measurable
functions is measurable. �

Theorem 10.3 (Tonelli-Fubini). Let P and Q be two probabilities on
(E, E) and (F,F) respectively.

a) Define R(A × B) = P (A)Q(B), for A ∈ E and B ∈ F . Then R extends
uniquely to a probability on (E × F, E ⊗ F), written P ⊗Q.
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b) For each function f that is E ⊗F-measurable, positive, or integrable with
respect to P ⊗ Q, the function x → ∫ f(x, y)Q(dy) is E-measurable, the
function y → ∫ f(x, y)P (dx) is F-measurable and∫

f dP ⊗Q =
∫ {∫

f(x, y)Q(dy)
}

P (dx)

=
∫ {∫

f(x, y)P (dx)
}

Q(dy).

Proof. (a) Let C ∈ E ⊗ F , and let us write C(x) = {y: (x, y) ∈ C}. If
C = A×B, we have in this case C(x) = B if x ∈ A and C(x) = ∅ otherwise,
hence:

R(C) = P ⊗Q(C) = P (A)Q(B) =
∫

P (dx)Q[C(x)].

Let H = {C ∈ E ⊗F : x→ Q[C(x)] is E-measurable}. Then H is closed under
increasing limit and differences, while E×F ⊂ H ⊂ E⊗F , whence H = E⊗F
by the monotone class theorem. For each C ∈ H = E ⊗F , we can now define
(since Q[C(x)] is measurable and positive)

R(C) =
∫

P (dx)Q[C(x)].

We need to show R is a probability measure. We have

R(Ω) = R(E × F ) =
∫

E

P (dx)Q[F ] = 1.

Let Cn ∈ E ⊗ F be pairwise disjoint and set C = ∪∞
n=1Cn. Then since

the Cn(x) also are pairwise disjoint and since Q is a probability measure,
Q[C(x)] =

∑∞
n=1 Q[Cn(x)]. Apply Theorem 9.2 to the probability measure

P and to the functions fn(x) = Q[Cn(x)], to obtain

∞∑
n=1

R(Cn) =
∞∑

n=1

∫
fndP

=
∫

(
∞∑

n=1

fn)dP

=
∫

P (dx)Q[C(x)] = R(C).

Thus R is a probability measure. The uniqueness of R follows from Corol-
lary 6.1.

(b) Note that we have already established part (b) in our proof of (a) for
functions f of the form f(x, y) = 1C(x, y), C ∈ E ⊗F . The result follows for
positive simple functions by linearity. If f is positive, E ⊗ F-measurable, let
fn be simple functions increasing to f . Then
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ER(f) = lim
n→∞ ER(fn) = lim

n→∞

∫ {∫
fn(x, y)Q(dy)

}
P (dx).

But x→ ∫ fn(x, y)Q(dy) are functions that increase to x→ ∫ f(x, y)Q(dy),
hence by the monotone convergence theorem

=
∫ {

lim
n→∞

∫
fn(x, y)Q(dy)

}
P (dx),

and again by monotone convergence

=
∫ {∫

lim
n→∞ fn(x, y)Q(dy)

}
P (dx) =

∫ {∫
f(x, y)Q(dy)

}
P (dx).

An analogous argument gives

=
∫ {∫

f(x, y)P (dx)
}

Q(dy).

Finally for general f it suffices to take f = f+ − f− and the result follows.
�

Corollary 10.1. Let X and Y be two r.v. on (Ω,A, P ), with values in (E, E)
and (F,F) respectively. The pair Z = (X, Y ) is a r.v. with values in (E ×
F, E ⊗ F), and the r.v.’s X, Y are independent if and only if the distribution
P (X,Y ) of the couple (X, Y ) equals the product PX ⊗ PY of the distributions
of X and Y .

Proof. Since Z−1(A×B) = X−1(A)∩Y −1(B) belongs to A as soon as A ∈ E
and B ∈ F , the measurability of Z follows from the definition of the product
σ-algebra E ⊗ F and from Theorem 8.1.

X and Y are independent iff for all A ∈ E and B ∈ F , we have

P ((X, Y ) ∈ A×B) = P (X ∈ A)P (Y ∈ B),

or equivalently
P (X,Y )(A×B) = PX(A)PY (B).

This is equivalent to saying that P (X,Y )(A × B) = (PX ⊗ PY )(A × B) for
all A × B ∈ E ⊗ F), which by the uniqueness in Fubini’s theorem is in turn
equivalent to the fact that P (X,Y ) = PX ⊗ PY on E ⊗ F . �

We digress slightly to discuss the construction of a model with independent
random variables. Let μ be a probability measure on (E, E). It is easy to
construct a r.v. X, with values in E, whose distribution measure is μ: simply
take Ω = E; A = E ; P = μ; and let X be the identity: X(x) = x.

Slightly more complicated is the construction of two independent random
variables, X and Y , with values in (E, E), (F,F), and given distribution
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measures μ and ν. We can do this as follows: take Ω = E × F ; A = E ⊗ F ;
P = μ⊗ ν, and X(x, y) = x; Y (x, y) = y, where (x, y) ∈ E × F .

Significantly more complicated, but very important for applications, is
to construct an infinite sequence of independent random variables of given
distributions. Specifically, for each n let Xn be defined on (Ωn,AnPn), and
let us set

Ω =
∞∏

n=1

Ωn (countable Cartesian product)

A =
∞⊗

n=1

An

where ⊗∞
n=1An denotes the smallest σ-algebra on Ω generated by all sets of

the form

A1 ×A2 × . . .×Ak ×Ωk+1 ×Ωk+2 × . . . , Ai ∈ Ai; k = 1, 2, 3, . . . .

That is, A is the smallest σ-algebra generated by finite Cartesian products
of sets from the coordinate σ-algebras.

The next theorem is from general measure theory, and can be considered
a (non trivial) extension of Fubini’s theorem. We state it without proof.

Theorem 10.4. Given (Ωn,An, Pn) probability spaces and Ω =
∏∞

n=1 Ωn,
A = ⊗∞

n=1An, then there exists a probability P on (Ω,A), and it is unique,
such that

P (A1 ×A2 × . . .×Ak ×Ωk+1 ×Ωk+2 × . . .) =
k∏

i=1

Pi(Ai)

for all k = 1, 2, . . . and Ai ∈ Ai.

For Xn defined on (Ωn,An, Pn) as in Theorem 10.4, let X̃n denote its
natural extension to Ω as follows: for ω ∈ Ω, let ω = (ω1, ω2, . . . , ωn, . . .)
with ωi ∈ Ωi, each i. Then

X̃n(ω) = Xn(ωn).

Corollary 10.2. Let Xn be defined on (Ωn,An, Pn), each n, and let X̃n

be its natural extension to (Ω,A, P ) as given above. Then (X̃n)n≥1 are all
independent, and the law of X̃n on (Ω,A, P ) is identical to the law of Xn on
(Ωn,An, Pn).

Proof. We have

X̃−1
n (Bn) = Ω1 × . . .×Ωn−1 ×X−1

n (Bn)×Ωn+1 ×Ωn+2 × . . . ,

and by Theorem 10.4 we have for k = 1, 2, . . .:



10 Independent Random Variables 71

P
(∩k

n=1X
−1
n (Bn)

)
= P

(
X−1

1 (B1)× . . . X−1
k (Bk)×Ωk+1 × . . .

)
=

k∏
n=1

Pn(Xn ∈ Bn),

and the result follows. �

Next we wish to discuss some significant properties of independence.
Let An be a sequence of events in A. We define:

lim sup
n→∞

An = ∩∞
n=1 (∪m≥nAm) = lim

n→∞ (∪m≥nAm) .

This event can be interpreted probabilistically as:

lim sup
n→∞

An = “An occurs infinitely often”,

which means that An occurs for an infinite number of n. This is often abbre-
viated “i.o.”, and thus we have:

lim sup
n

An = {An i.o.}.

Theorem 10.5 (Borel-Cantelli). Let An be a sequence of events in
(Ω,A, P ).

a) If
∑∞

n=1 P (An) <∞, then P (An i.o.) = 0.
b) If P (An i.o.) = 0 and if the An’s are mutually independent, then∑∞

n=1 P (An) <∞.

Note: An alternative statement to (b) is: if An are mutually independent
events, and if

∑∞
n=1 P (An) = ∞, then P (An i.o.) = 1. Hence for mutually

independent events An, and since the sum
∑

n P (An) has to be either finite
or infinite, the event {An i.o.} has probability either 0 or 1; this is a particular
case of the so-called zero-one law to be seen below.
Proof. (a) Let an = P (An) = E{1An }. By Theorem 9.2(b)

∑∞
n=1 an < ∞

implies
∑∞

n=1 1An < ∞ a.s. On the other hand,
∑∞

n=1 1An (ω) = ∞ if and
only if ω ∈ lim supn→∞ An. Thus we have (a).

(b) Suppose now the An’s are mutually independent. Then

P (lim sup
n→∞

An) = lim
n→∞ lim

k→∞
P
(∪k

m=nAm

)
= lim

n→∞ lim
k→∞

(
1− P

(∩k
m=nAc

m

))
= 1− lim

n→∞ lim
k→∞

(
k∏

m=n

(1− P (Am))

)
by independence;
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= 1− lim
n→∞ lim

k→∞

k∏
m=n

(1− am)

where am = P (Am). By hypothesis P (lim supn→∞ An) = 0,
so limn→∞ limk→∞

∏k
m=n(1 − am) = 1. Therefore by taking logarithms we

have

lim
n→∞ lim

k→∞

k∑
m=n

log(1− am) = 0,

or
lim

n→∞

∑
m≥n

log(1− am) = 0,

which means that
∑

m log(1−am) is a convergent series. Since | log(1−x)| ≥ x
for 0 < x < 1, we have that

∑
m am is convergent as well. �

Let now Xn be r.v.’s all defined on (Ω,A, P ). Define the σ-algebras

Bn = σ(Xn)
Cn = σ (∪p≥nBp)
C∞ = ∩∞

n=1Cn
C∞ is called the tail σ-algebra.

Theorem 10.6 (Kolmogorov’s Zero-one law). Let Xn be independent
r.v.’s, all defined on (Ω,A, P ), and let C∞ be the corresponding tail σ-algebra.
If C ∈ C∞, then P (C) = 0 or 1.

Proof. Let Dn = σ(∪p<nBp). By the hypothesis, Cn and Dn are independent,
hence if A ∈ Cn, B ∈ Dn, then

P (A ∩B) = P (A)P (B). (10.1)

If A ∈ C∞ we hence have (10.1) for all B ∈ ∪Dn, hence also for all B ∈ D =
σ(∪Dn), by the Monotone Class Theorem (Theorem 6.2). However C∞ ⊂ D,
whence we have (10.1) for B = A ∈ C∞, which implies P (A) = P (A)P (A) =
P (A)2, hence P (A) = 0 or 1. �

Consequences:

1. {ω : limn→∞ Xn(ω) exists} ∈ C∞, therefore Xn either converges a.s. or
it diverges a.s.

2. Each r.v. which is C∞ measurable is a.s. constant. In particular,

lim sup
n→∞

Xn, lim inf
n→∞ Xn,

lim sup
n→∞

1
n

∑
p≤n

Xp, lim inf
n→∞

1
n

∑
p≤n

Xp

are all a.s. constant. (Recall we are still assuming that Xn is a sequence
of independent r.v.’s)
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Exercises for Chapter 10

10.1 Let f = (f1, f2):Ω → E × F . Show that f : (Ω,A) → (E × F, E ⊗ F)
is measurable if and only if f1 is measurable from (Ω,A) to (E, E) and f2 is
measurable from (Ω,A) to (F,F).

10.2 Let R2 = R×R, and let B2 be the Borel sets of R2, while B denotes
the Borel sets of R. Show that B2 = B ⊗ B.

10.3 Let Ω = [0, 1], A be the Borel sets of [0, 1], and let P (A) =
∫

1A(x)dx
for A ∈ A. Let X(x) = x. Show that X has the uniform distribution.

10.4 Let Ω = R andA = B. Let P be given by P (A) = 1√
2π

∫
1A(x)e−x2/2dx.

Let X(x) = x. Show that X has a normal distribution with parameters μ = 0
and σ2 = 1.

10.5 Construct an example to show that E{XY } = E{X}E{Y } does not
imply in general that X and Y are independent r.v.’s (we assume X, Y and
XY are all in L1).

10.6 Let X, Y be independent random variables taking values in N with

P (X = i) = P (Y = i) =
1
2i

(i = 1, 2, . . .).

Find the following probabilities:

a) P (min(X, Y ) ≤ i) [Ans.: 1− 1
4i ]

b) P (X = Y ) [Ans.: 1
3 ]

c) P (Y > X) [Ans.:
∑

i≥0
1

2i (2i −1) ]
d) P (X divides Y ) [Ans.: 1

3 ]
e) P (X ≥ kY ) for a given positive integer k [Ans.: 1

21+k −1 ]

10.7 Let X, Y be independent geometric random variables with parameters
λ and μ. Let Z = min(X, Y ). Show Z is geometric and find its parame-
ter. [Ans: λμ.]

10.8 Let X, Y ∈ L2. Define the covariance of X and Y as

Cov(X, Y ) = E{(X − μ)(Y − ν)}
where E{X} = μ and E{Y } = ν. Show that

Cov(X, Y ) = E{XY } − μν

and show further that X and Y independent implies Cov(X, Y ) = 0.

10.9 Let X, Y ∈ L1. If X and Y are independent, show that XY ∈ L1. Give
an example to show XY need not be in L1 in general (i.e., if X and Y are
not independent).
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10.10 * Let n be a prime number greater than 2; and let X, Y be independent
and uniformly distributed on {0, 1, . . . , n− 1}. (That is, P (X = i) = P (Y =
i) = 1

n , for i = 0, 1, . . . , n − 1.) For each r, 0 ≤ r ≤ n − 1, define Zr =
X + rY (mod n).

a) Show that the r.v.’s {Zr : 0 ≤ r ≤ n− 1} are pairwise independent.
b) Is the same result true if n is no longer assumed to be prime? [Ans: No.]

10.11 Let X and Y be independent r.v.’s with distributions P (X = 1) =
P (Y = 1) = 1

2 and P (X = −1) = P (Y = −1) = 1
2 . Let Z = XY . Show that

X, Y, Z are pairwise independent but that they are not mutually independent.

10.12 Let An be a sequence of events. Show that

P (An i.o.) ≥ lim sup
n→∞

P (An).

10.13 A sequence of r.v.’s X1, X2, . . . is said to be completely convergent to
X if ∞∑

n=1

P (|Xn −X| > ε) <∞ for each ε > 0.

Show that if the sequence Xn is independent then complete convergence is
equivalent to convergence a.s.

10.14 Let μ, ν be two finite measures on (E, E), (F,F), respectively, i.e. they
satisfy all axioms of probability measures except that μ(E) and ν(F ) are
positive reals, but not necessarily equal to 1. Let λ = μ⊗ν on (E×F, E ⊗F)
be defined by λ(A × B) = μ(A)ν(B) for Cartesian products A × B (A ∈ E ,
B ∈ F).

a) Show that λ extends to a finite measure defined on E ⊗ F ;
b) Let f : E × F → R be measurable. Prove Fubini’s Theorem: if f is

λ-integrable, then x → ∫ f(x, y)ν(dy) and y → ∫ f(x, y)μ(dx) are re-
spectively E and F measurable, and moreover∫

f dλ =
∫ ∫

f(x, y)μ(dx)ν(dy) =
∫ ∫

f(x, y)ν(dy)μ(dx).

(Hint: Use Theorem 10.3.)

10.15 * A measure τ is called σ-finite on (G,G) if there exists a sequence of
sets (Gj)j≥1, Gj ∈ G, such that ∪∞

j=1Gj = G and τ(Gj) < ∞, each j. Show
that if μ, ν are assumed to be σ-finite and assuming that λ = μ ⊗ ν exists,
then

a) λ = μ⊗ ν is σ-finite; and
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b) (Fubini’s Theorem): If f : E × F → R is measurable and λ-integrable,
then x → ∫ f(x, y)ν(dy) and y → ∫ f(x, y)μ(dx) are respectively E and
F measurable, and moreover∫

f dλ =
∫ ∫

f(x, y)μ(dx)ν(dy) =
∫ ∫

f(x, y)ν(dy)μ(dx).

(Hint: Use Exercise 10.14 on sets Ej×Fk, where μ(Ej) <∞ and ν(Fk) <
∞.)

10.16 * Toss a coin with P (Heads)= p repeatedly. Let Ak be the event that
k or more consecutive heads occurs amongst the tosses numbered 2k, 2k +
1, . . . , 2k+1 − 1. Show that P (Ak i.o.) = 1 if p ≥ 1

2 and P (Ak i.o.) = 0 if
p < 1

2 .

10.17 Let X0, X1, X2, . . . be independent random variables with P (Xn =
1) = P (Xn = −1) = 1

2 , all n. Let Zn = Πn
i=0Xi. Show that Z1, Z2, Z3, . . . are

independent.

10.18 Let X, Y be independent and suppose P (X + Y = α) = 1, where α is
a constant. Show that both X and Y are constant random variables.



11 Probability Distributions on R

We have already seen that a probability measure P on (R,B) (with B the
Borel sets of R) is characterized by its distribution function

F (x) = P ((−∞, x]).

We now wish to use the tools we have developed to study Lebesgue measure
on R.

Definition 11.1. Lebesgue measure is a set function m:B → [0,∞] that
satisfies

(i) (countable additivity) if A1, A2, A3, . . . are pairwise disjoint Borel sets,
then

m (∪∞
i=1Ai) =

∞∑
i=1

m(Ai)

(ii) if a, b ∈ R, a < b, then m((a, b]) = b− a.

Theorem 11.1. Lebesgue measure is unique.

Proof. Fix a < b in R, and define

ma,b(A) =
m(A ∩ (a, b])

b− a
, all A ∈ B.

Then ma,b is a probability measure on (R,B), and the corresponding “dis-
tribution” function Fa,b is given by

Fa,b(x) = ma,b((−∞, x]) =

⎧⎪⎨⎪⎩
0 if x < a
x− a

b− a
if a ≤ x < b

1 if b ≤ x.

(11.1)

Therefore ma,b is uniquely determined (since Fa,b has a given formula and is
thus unique). Moreover since

m(A) =
∑
n∈Z

mn,n+1(A), any A ∈ B, (11.2)

we have that m is uniquely determined as well. �
Now that we know Lebesgue measure is unique, we need to know it exists!

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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Theorem 11.2. Lebesgue measure exists.

Proof. The function Fa,b given in (11.1) clearly exists, and it is nondecreasing,
continuous and equals 0 for x small enough, and it equals 1 for x large enough.
Therefore the probability measure ma,b also exists by Theorem 7.2. Thus it
suffices to define m by (11.2). The verification of countable additivity and
that m((a, b]) = b− a are all immediate. �

The theory of integration that we sketched in Chapter 9 remains true
for Lebesgue measure: the only difference is that m(R) does not equal 1
but equals +∞: all the results of Chapter 9 remain valid except for the
statements that any bounded Borel function is integrable (Theorem 9.1(b))
and that L2 ⊂ L1 (Theorem 9.3(b)), which are now false!

If f is a Borel measurable function which is integrable for Lebesgue
measure, then its integral is written

∫
f(x)dx. Recall that f is integrable

if
∫

f+(x)dx < ∞ and
∫

f−(x)dx < ∞, where f = f+ − f−. The Lebesgue
integral exists more generally than does the Riemann integral, but when they
both exist then they are equal.

Definition 11.2. The density of a probability measure P on (R,B) is a
positive Borel measurable function f that verifies for all x ∈ R:

P ((−∞, x]) =
∫ x

−∞
f(y)dy =

∫
f(y)1(−∞,x](y)dy. (11.3)

If P = PX , the distribution measure of a r.v. X, then we say f is the density
of X.

Warning: As already stated in Chapter 7, not all probability measures
on (R,B) have densities. Indeed, (11.3) implies that F is continuous, and
not all F are continuous. Actually (11.3) is much stronger than continuity,
and there are even continuous distribution functions F whose corresponding
probabilities do not have densities.

Theorem 11.3. A positive Borel measurable function f on R is the density
of a probability measure on (R,B) if and only if it satisfies

∫
f(x)dx = 1. In

this case it entirely determines the probability measure, and any other positive
Borel measurable function f ′ such that m(f �= f ′) = 0 is also a density for
the same probability measure.

Conversely a probability measure on (R,B) determines its density (when
it exists) up to a set of Lebesgue measure zero (i.e., if f and f ′ are two
densities for this probability, then m(f �= f ′) = 0).

Proof. Let f be a density for a probability measure P . By (11.3) we have∫ x

−∞
f(y)dy = P ((−∞, x]).
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Let x increase to ∞, and we see that∫
f(y)dy =

∫ ∞

−∞
f(y)dy = lim

x→∞

∫ x

−∞
f(y)dy = 1.

Thus
∫

f(x)dx = 1.
For the sufficient condition one could give a very short proof based upon

the distribution function. Nevertheless we give a longer but more direct proof
which readily extends to probabilities on Rn. Let f be a positive Borel func-
tion with

∫
f(x)dx = 1. For every Borel set A we put

P (A) =
∫

A

f(y)dy =
∫

f(y)1A(y)dy. (11.4)

This defines a function P : B → R+ which clearly has P (R) = 1. Further if
A1, A2, . . . , Am, . . . are all pairwise disjoint, then

P (∪∞
i=1Ai) =

∫
f(x)1{∪∞

i=1Ai }(x)dx

=
∫ ( ∞∑

i=1

f(x)1Ai (x)

)
dx

since the Ai are pairwise disjoint;

=
∞∑

i=1

∫
f(x)1Ai (x)dx =

∞∑
i=1

P (Ai)

by using Theorem 9.2. Therefore we have countable additivity and P is a
true probability measure on (R,B). Taking A = (−∞, x] in (11.4) yields

P ((−∞, x]) =
∫ x

−∞
f(y)dy,

that is P admits the density f .
We now show that P determines f up to a set of Lebesgue measure zero.

Suppose f ′ is another density for P . Then f ′ will also satisfy (11.4) (to see
this, define P ′ by (11.4) with f ′ and observe that both P and P ′ have the
same distribution function, implying that P = P ′). Therefore, if we choose
ε > 0 and set A = {x : f(x) + ε ≤ f ′(x)} and if m(A) > 0, then

P (A) + εm(A) =
∫

(f(x) + ε)1A(x)dx ≤
∫

f ′(x)1A(x)dx = P (A),

a contradiction. We conclude m({f + ε ≤ f ′}) = 0. Since {f + ε ≤ f ′}
increases to {f < f ′} as ε decreases to 0, we obtain that m({f ′ < f}) =
0. Analogously, m({f ′ > f}) = 0, hence f ′ = f almost everywhere (dm).
[“Almost everywhere” means except on a set of measure zero; for probability
measures we say “almost surely” instead of “almost everywhere”.] �
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Remark 11.1. Since the density f and the distribution function F satisfy
F (x) =

∫ x

−∞ f(y)dy, one is tempted to conclude that F is differentiable, with
derivative equal to f . This is true at each point x where f is continuous.
One can show – and this is a difficult result due to Lebesgue – that F is
differentiable dm-almost everywhere regardless of the nature of f . But this
result is an almost everywhere result, and it is not true in general for all
x. However in most “concrete” examples, when the density exists it turns
out that F is piecewise differentiable: in this case one may take f = F ′ (the
derivative of F ) wherever it exists, and f = 0 elsewhere.

Corollary 11.1 (Expectation Rule). Let X be an R-valued r.v. with den-
sity f . Let g be a Borel measurable function. Then g is integrable (resp. admits
an integral) with respect to PX , the distribution measure of X, if and only if
the product fg is integrable (resp. admits an integral) with respect to Lebesgue
measure, and in this case we have

E{g(X)} =
∫

g(x)PX(dx) =
∫

g(x)f(x)dx. (11.5)

Proof. The equality (11.5) holds for indicator functions by Theorem 11.3,
because it reduces to (11.4). Therefore (11.5) holds for simple functions by
linearity. For g nonnegative, let gn be simple functions increasing to g. Then
(11.5) holds by the monotone convergence theorem. For general g, let g =
g+ − g−, and the result follows by taking differences. �

We presented examples of densities in Chapter 7. Note that all the exam-
ples were continuous or piecewise continuous, while here we seem concerned
with Borel measurable densities. Most practical examples of r.v.’s in Statis-
tics turn out to have relatively smooth densities, but when we perform simple
operations on random variables with nice densities (such as taking a condi-
tional expectation), we quickly have need for a much more general theory
that includes Borel measurable densities.

Let X be a r.v. with density f . Suppose Y = g(X) for some g. Can we
express the density of Y (if it exists) in terms of f? We can indeed in some
“good” cases. We begin with a simple result:

Theorem 11.4. Let X have density fX and let g be a Borel measurable
function. Let Y = g(X). Then

FY (y) = P (Y ≤ y) =
∫

Ay

fX(u)du

where Ay = {u : g(u) ≤ y}.
Note that if FY is differentiable, we can use Theorem 11.4 to find the

density.
Example: Let X be uniform on [0, 1] and let Y = − 1

λ log(X), where λ > 0.
Then
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FY (y) = P

(
− 1

λ
log(X) ≤ y

)
= P (log(X) ≥ −λy)
= P (X ≥ exp(−λy))

=
{

1− e−λy for y ≥ 0
0 otherwise.

Therefore (cf. Remark 11.1):

fY (y) =
d

dy
FY (y) =

{
λe−λy if y > 0
0 if y ≤ 0

and we see that Y is exponential with parameter λ.
Caution: The preceding example is deceptively simple because g was injective,
or one to one. The general result is given below:

Corollary 11.2. Let X have a continuous density fX . Let g:R → R be
continuously differentiable with a non-vanishing derivative (hence g is strictly
monotone). Let h(y) = g−1(y) be the inverse function (also continuously
differentiable). Then Y = g(X) has the density

fY (y) = fX(h(y))|h′(y)|.

Proof. Suppose g is increasing. Let FY (y) = P (Y ≤ y). Then

FY (y) = P (g(X) ≤ y) = P (h(g(X)) ≤ h(y)) ,

since h is monotone increasing because g is. Then the above gives

= P (X ≤ h(y)) = FX(h(y)) =
∫ h(y)

−∞
f(x)dx.

It is a standard result from calculus (see, e.g., [18, p.259]) that if a function g
is injective (one–to–one), differentiable, and such that its derivative is never
zero, then h = g−1 is also differentiable and h′(x) = 1

f ′(h(x)) . Therefore FY (y)
is differentiable and

d

dy
FY (y) = f(h(y))h′(y) = f(h(y))|h′(y)|.

If g is decreasing the same argument yields

d

dy
FY (y) = f(h(y)))(−h′(y)) = f(h(y))|h′(y)|.

�
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Corollary 11.3. Let X have a continuous density fX . Let g:R → R be
piecewise strictly monotone and continuously differentiable: that is, there exist
intervals I1, I2, . . . , In which partition R such that g is strictly monotone and
continuously differentiable on the interior of each Ii. For each i, g : Ii → R
is invertible on g(Ii) and let hi be the inverse function. Let Y = g(X) and
let ∧ = {y: y = g(x), x ∈ R}, the range of g. Then the density fY of Y exists
and is given by

fY (y) =
n∑

i=1

fX(hi(y))|h′
i(y)|1g(Ii )(y).

Remark: The proof, similar to the proof of the previous corollary, is left to
the reader. Our method uses the continuity of fX , but the result holds when
fX is simply measurable.

Example: Let X be normal with parameters μ = 0; σ2 = 1. Let Y = X2.
Then in this case g(x) = x2, which is neither monotone nor injective. Take
I1 = [0,∞) and I2 = (−∞, 0). Then g is injective and strictly monotone
on I1 and I2, and I1 ∪ I2 = R. g(I1) = [0,∞) and g(I2) = (0,∞). Then
h1 : [0,∞)→ R by h1(y) =

√
y and h2 : [0,∞)→ R by h2(y) = −√y.

|h′
i(y)| =

∣∣∣∣ 1
2
√

y

∣∣∣∣ = 1
2
√

y
, for i = 1, 2.

Therefore by Corollary 11.3,

fY (y) =
1√
2π

e−y/2 1
2
√

y
+

1√
2π

e−y/2 1
2
√

y
(y > 0)

=
1√
2π

1√
y
e−y/21(0,∞)(y).

The random variable Y is called a χ2 random variable with one degree of
freedom. (This is pronounced “chi square”.)

The preceding example is sufficiently simple that it can also be derived
“by hand”, without using Corollary 11.3. Indeed,

FY (y) = P (Y ≤ y) = P (X2 ≤ y)
= P (−√y ≤ X ≤ √y)
= FX(

√
y)− FX(−√y);

and

FX(
√

y) =
∫ √

y

−∞

1√
2π

e−x2/2dx.

Thus differentiating yields

d

dy
FX(
√

y) =
1√
2π

e−y/2 1
2
√

y
1(y>0).
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Similarly,

−FX(−√y) = −
∫ −√

y

−∞

1√
2π

e−x2/2dx,

whence

d

dy
(−F (−√y)) = − 1√

2π
e−y/2 −1

2
√

y
1(y>0)

=
1√
2π

e−y/2 1
2
√

y
1(y>0),

and adding yields the same result as we obtained using the Corollary.
Remark: The chi square distribution plays an important role in Statistics.
Let p be an integer. Then a random variable X with density

f(x) =
1

Γ (p/2)2p/2 xp/2−1e− x
2 , 0 < x <∞

is called a chi squared density with p degrees of freedom. This is usually
denoted χ2

p. Note that it is a special case of a Gamma distribution: indeed X

is also Gamma (p
2 , 1

2 ). We have just seen in the example that if X is χ2
1, then

X equals Z2 in distribution, where Z is N(0, 1). We will see in Chapter 15
(Example 6) that if X is χ2

p then X =
∑p

i=1 Z2
i in distribution, where Zi

are i.i.d. N(0, 1), 1 ≤ i ≤ p. Such a distribution arises naturally in Statistics
when one tries to estimate the (unknown) variance of a normally distributed
population. (See in this regard Exercise 15.13).

Let us also note that a χ2
2 is simply an exponential random variable with

parameter λ = 1
2 .
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Exercises for Chapter 11

11.1 Use the density for a chi square r.v. to show that Γ ( 1
2 ) =

√
π.

11.2 Let X be uniformly distributed on [−1, 1]. Find the density of Y = Xk

for positive integers k. [Ans: for k odd, fY (y) = 1
2ky

1
k −11[−1,1](y); for k even,

fY (y) = 1
ky

1
k −11[0,1](y).]

11.3 Let X have distribution function F . What is the distribution function
of Y = |X|? When X admits a continuous density fX , show that Y also
admits a density fY , and express fY in terms of fX .

11.4 Let X be Cauchy with parameters α, 1. Let Y = a
X with a �= 0. Show

Y is also a Cauchy r.v. and find its parameters. [Ans: aα
1+α2 ,

√
|a|

1+α2 ].

11.5 Let X have a density fX , and let Y = a
X with a �= 0. Find the density

of Y in terms of fX . [Ans: fY (y) = |a|
y2 fX(a

y ).]

11.6 Let X be uniform on (−π, π), and let Y = sin(X + θ). Show that the
density for Y is fY (y) = 2

2π
√

1−y2
1[−1,1](y).

11.7 * Let X have a density and let Y = a sin(X + θ), a > 0. Show that:

fY (y) =
1√

a2 − y2

∞∑
i=−∞

(fX(hi(y)) + fX(ki(y)) 1[−a,a](y)

for appropriate functions hi and ki.

11.8 * Let X be uniform on (−π, π) and let Y = a tan(X), a > 0. Find
fY (y). [Ans: fY (y) = a/π

a2+y2 .]

11.9 * Let X have a density, and let

Y = ce−αX1{X>0}, (α > 0, c > 0).

Find fY (y) in terms of fX . [Ans: fY (y) = fX (− 1
α ln( y

c ))
αy 1(0,c)(y).]

11.10 A density f is called symmetric if f(−x) = f(x), for all x. (That is, f
is an even function.) A random variable X is symmetric if X and −X both
have the same distribution. Suppose X has a density f . Show that X is sym-
metric if and only if it has a density f which is symmetric. In this case, does it
admit also a nonsymmetric density? [Ans.: Yes, just modify f on a non-empty
set of Lebesgue measure zero in R+]. [Note: Examples of symmetric densi-
ties are the uniform on (−a, a); the normal with parameters (0, σ2); double
exponential with parameters (0, β); the Cauchy with parameters (0, β).]
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11.11 Let X be positive with a density f . Let Y = 1
X+1 and find the density

for Y .

11.12 Let X be normal with parameters (μ, σ2). Show that Y = eX has a
lognormal distribution.

11.13 Let X be a r.v. with distribution function F that is continuous. Show
that Y = F (X) is uniform.

11.14 Let F be a distribution function that is continuous and is such that
the inverse function F−1 exists. Let U be uniform on (0, 1). Show that X =
F−1(U) has distribution function F .

11.15 * Let F be a continuous distribution function and let U be uniform
on (0, 1). Define G(u) = inf{x : F (x) ≥ u}. Show that G(U) has distribution
function F .

11.16 Let Y = − 1
λ ln(U), where U is uniform on (0, 1). Show that Y is

exponential with parameter λ by inverting the distribution function of the
exponential. (Hint: If U is uniform on (0, 1) then so also is 1−U .) This gives
a method to simulate exponential random variables.



12 Probability Distributions on Rn

In Chapter 11 we considered the simple case of distributions on (R,B). The
case of distributions on (Rn,Bn) for n = 2, 3, . . . is both analogous and more
complicated. [Bn denotes the Borel sets of Rn.]

First let us note that by essentially the same proof as used in Theorem 2.1,
we have that Bn is generated by “quadrants” of the form

n∏
i=1

(−∞, ai]; ai ∈ Q;

note that B ⊗ B ⊗ . . . ⊗ B = Bn; that is, Bn is also the smallest σ-algebra
generated by the n-fold Cartesian product of B, the Borel sets on R.

The n-dimensional distribution function of a probability measure on
(Rn,Bn) is defined to be:

F (x1, . . . , xn) = P

(
n∏

i=1

(−∞, xi]

)
.

It is more subtle to try to characterize P by using F for n ≥ 2 than it is for
n = 1, and consequently distribution functions are rarely used for n ≥ 2.

We have also seen that the density of a probability measure on R, when
it exists, is a very convenient tool. Contrary to distribution functions, this
notion of a density function extends easily and is exactly as convenient on
Rn as it is on R (but, as is the case for n = 1, it does not always exist).

Definition 12.1. The Lebesgue measure mn on (Rn,Bn) is defined on
Cartesian product sets A1 ×A2 × . . .×An by

mn

(
n∏

i=1

Ai

)
=

n∏
i=1

m(Ai), all Ai ∈ B, (12.1)

where m is the one dimensional Lebesgue measure defined on (R,B). As in
Theorem 10.3, one can extend the measure defined in (12.1) for Cartesian
product sets uniquely to a measure mn on (Rn,Bn), and mn will still have
countable additivity. This measure mn is Lebesgue measure, and it is char-
acterized also by the following seemingly weaker condition than (12.1):

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004



88 12 Probability Distributions on Rn

mn

(
n∏

i=1

(ai, bi]

)
=

n∏
i=1

(bi − ai), all −∞ < ai < bi <∞.

If A ∈ Bn, one can view mn(A) as the “volume” of the set A, a property
which is apparent for “rectangles” of the form (12.1).

We write ∫
f(x)dx =

∫
f(x1, . . . , xn)dx1dx2 . . . dxn

to denote the integral of f with respect to mn, and also
∫

A
f(x)dx for the

integral of the product f1A when A ∈ Bn, as in the one-dimensional case.

Definition 12.2. A probability measure P on (Rn,Bn) has a density f if f
is a nonnegative Borel measurable function on Rn verifying

P (A) =
∫

A

f(x)dx =
∫

f(x)1A(x)dx

=
∫

f(x1, . . . , xn)1A(x1, . . . , xn)dx1 . . . dxn,

for all A ∈ Bn.

Once more, we warn the reader that not all probabilities on (Rn,Bn) have
densities!

The next theorem is the exact analogue of Theorem 11.3, and the proof
is similar and is not repeated here:

Theorem 12.1. A positive Borel measurable function f on Rn is the density
of a probability measure on (Rn,Bn) if and only if it satisfies

∫
f(x)dx = 1.

In this case it entirely determines the probability measure, and any other
positive Borel measurable function f ′ such that mn(f �= f ′) = 0 is also a
density for the same probability measure.

Conversely a probability measure on (Rn,Bn) determines its density
(when it exists) up to a set of Lebesgue measure zero (i.e., if f and f ′ are
two densities for this probability, then mn(f �= f ′) = 0; we also write: f = f ′

mn-a.e.).

For simplicity, we now let n = 2. That is, we restrict our discussion to
random variables taking their values in R2; Theorem 12.2 below generalizes
easily to Rn, n = 3, 4, . . ..

Let X be an R2-valued r.v. with components Y and Z; that is, X = (Y, Z).

Theorem 12.2. Assume that X = (Y, Z) has a density f on R2. Then:

a) Both Y and Z have densities on (R,B) given by:

fY (y) =
∫ ∞

−∞
f(y, z)dz; fZ(z) =

∫ ∞

−∞
f(y, z)dy. (12.2)
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b) Y and Z are independent if and only if

f(y, z) = fY (y)fZ(z) (dm2 a.e.).

c) The formula below defines another density on R at every point y ∈ R such
that fY (y) �= 0:

fY =y(z) =
f(y, z)
fY (y)

.

Before we prove Theorem 12.2 we digress a bit to explain part (c) above:
the densities fY (y) and fZ(z) are called the marginal densities of f . Note
that one cannot in general recover what f is from knowledge of the marginals
alone. (The exception is when Y and Z are independent.) Thus the “joint
density” f of X = (Y, Z) in general contains more information than do the
two marginals.

The function fY =y(z) is called the “conditional density of Z given Y = y”.
This cannot be interpreted literally, because here P (Y = y) = 0 for each y,
and conditional probabilities of the type P (A | Y = y) have no meaning when
P (Y = y) = 0. Nevertheless the terminology has a heuristic justification as
follows. Let Δy and Δz denote very small changes in y and z. Then

f(y, z)ΔyΔz ≈ P (y ≤ Y ≤ y + Δy; z ≤ Z ≤ z + Δz)

and
fY (y)Δy ≈ P (y ≤ Y ≤ y + Δy);

in this case P (y ≤ Y ≤ y + Δy) can be assumed to be strictly positive, and
then by division:

fY =y(z)Δz ≈ P (y ≤ Y ≤ y + Δy; z ≤ Z ≤ z + Δz)
P (y ≤ Y ≤ y + Δy)

≈ P (z ≤ Z ≤ z + Δz | Y ≈ y).

Proof of Theorem 12.2: a) For each Borel set A ∈ B, we have

P (Y ∈ A) = P (X ∈ A×R) =
∫ ∫

A×R
f(y, z)dy dz

=
∫

A

dy

∫ ∞

−∞
f(y, z)dz

=
∫

A

dy fY (y),

and since this holds for all A ∈ B, and since densities on R are characterized
by (11.4), fY as defined in (12.1) is a density of Y . The proof for fZ is the
same.
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b) Suppose f(y, z) = fY (y)fZ(z). Then

P (Y ∈ A, Z ∈ B) =
∫ ∫

1A×B(y, z)f(y, z)dy dz

=
∫ ∫

1A(y)1B(z)f(y, z)dy dz

=
∫ ∫

1A(y)1B(z)fY (y)fZ(z)dy dz

=
∫

1A(y)fY (y)dy

∫
1B(z)fZ(z)dz

= P (Y ∈ A)P (Z ∈ B),

and since A, B are arbitrary Borel sets, we have Y and Z are independent.
Now suppose Y and Z are independent. Let

H =
{

C ∈ B2 :
∫ ∫

C

f(y, z)dy dz =
∫ ∫

C

fY (y)fZ(z)dy dz

}
.

Then since Y, Z are independent, if C = A×B with A ∈ B and B ∈ B, then

P ((Y, Z) ∈ C) =
∫ ∫

C

f(y, z)dy dz

while

P ((Y, Z) ∈ C) = P (Y ∈ A, Z ∈ B)
= P (Y ∈ A)P (Z ∈ B)

=
∫

A

fY (y)dy

∫
B

fz(z)dz

=
∫ ∫

A×B

fY (y)fZ(z)dy dz

by the Tonelli-Fubini Theorem (Theorem 10.3). Therefore H contains the
class of all products C = A × B where A, B ∈ B, while this latter class
is closed under finite intersections and generates the σ-algebra B2. Since
further H is closed under increasing limits and differences, we deduce from
Theorem 6.2 that H = B2. Therefore

P (X ∈ C) =
∫

C

f(y, z)dy dz =
∫

C

fY (y)fZ(z)dy dz

for all Borel sets C ∈ B2. Then the uniqueness of the density (Theorem 12.1)
gives

f(y, z) = fY (y)fZ(z), a.e. dm2.
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c) We have∫
fY =y(z)dz =

∫ ∞

−∞

f(y, z)
fY (y)

dz

=
1

fY (y)

∫ ∞

−∞
f(y, z)dz =

1
fY (y)

fY (y) = 1.

Since fY =y(z) is positive, Borel measurable, and integrates to 1, it is a density.
�

Definition 12.3. Let X, Y be two real valued random variables, each with
finite variance. The covariance of X, Y is defined to be

Cov(X, Y ) = E{(X − E{X})(Y − E{Y })} = E{XY } − E{X}E{Y }.
Note that E{XY } exists: since X and Y have finite variances they are

both in L2, and Theorem 9.3a then gives that XY ∈ L1. We remark that

Cov(X, X) = Var(X) = σ2(X).

Theorem 12.3. If X and Y are independent, then Cov(X, Y ) = 0.

Proof. X and Y independent implies that E{XY } = E{X}E{Y }, and the
result follows. �

Warning: The converse to Theorem 12.3 is false in general: if one has
Cov(X, Y ) = 0 it is not true in general that X and Y are independent.

Definition 12.4. Let X and Y be two r.v.’s, both with finite variance. The
correlation coefficient of X and Y is the number

ρ =
Cov(X, Y )
σ(X)σ(Y )

.

(σ(X) =
√

σ2(X) and σ(Y ) =
√

σ2(Y ).)

Note that by the Cauchy-Schwarz inequality (Theorem 9.3a) we have
always that −1 ≤ ρ ≤ 1, and if X and Y are independent then ρ = 0 by
Theorem 12.3.

Definition 12.5. Let X = (X1, . . . , Xn) be an Rn-valued random variable.
The covariance matrix of X is the n× n matrix whose general term is

cij = Cov(Xi, Xj).

Theorem 12.4. A covariance matrix is positive semidefinite; that is, it is
symmetric (cij = cji, all i, j) and also

∑
aiajcij ≥ 0, for all (a1, . . . , an) ∈

Rn.
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Proof. The symmetry is clear, since Cov(Xi, Xj) = Cov(Xj , Xi) trivially. A
simple calculation shows that

∑
aiajcij = Var

(
n∑

i=1

aiXi

)
,

and since variances are always nonnegative, we are done. �

Theorem 12.5. Let X be an Rn-valued r.v. with covariance matrix C. Let
A be an m × n matrix and set Y = AX. Then Y is an Rm-valued r.v. and
its covariance matrix is C ′ = ACA∗, where A∗ denotes A transpose.

Proof. The proof is a simple calculation. �
We now turn our attention to functions of Rn-valued random variables.

We address the following problem: let g:Rn → Rn be Borel. Given X =
(X1, . . . , Xn) with density f , what is the density of Y = g(X) in terms of f ,
and to begin with, does it exist at all? We will need the following theorem
from advanced calculus (see for example [22, p.83]).

Let us recall first that if g is a differentiable function from an open set G
in Rn into Rn, its Jacobian matrix Jg(x) at point x ∈ G is Jg(x) = ∂g

∂x (x)
(that is, Jg(x)ij = ∂gi

∂xj
(x), where g = (g1, g2, . . . , gn)). The Jacobian of g at

point x is the determinant of the matrix Jg(x). If this Jacobian is not zero,
then g is invertible on a neighborhood of x, and the Jabobian of the inverse
g−1 at point y = g(x) is the inverse of the Jacobian of g at x.

Theorem 12.6 (Jacobi’s Transformation Formula). Let G be an open
set in Rn and let g:G → Rn be continuously differentiable.1Suppose g is
injective (one to one) on G and its Jacobian never vanishes. Then for f
measurable and such that the product f1g(G) is positive or integrable with
respect to Lebesgue measure,∫

g(G)
f(y)dy =

∫
G

f(g(x))|det(Jg(x))|dx

where by g(G) we mean:

g(G) = {y ∈ Rn: there exists x ∈ G with g(x) = y} .

The next theorem is simply an application of Theorem 12.6 to the density
functions of random variables.

Theorem 12.7. Let X = (X1, . . . , Xn) have joint density f . Let g:Rn →
Rn be continuously differentiable and injective, with non-vanishing Jacobian.
Then Y = g(X) has density
1 A function g is continuously differentiable if it is differentiable and also its deriva-

tive is continuous.
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fY (y) =
{

fX(g−1(y))|det Jg−1(y)| if y is in the range of g
0 otherwise.

Proof. We denote by G the range of g, that is G = {y ∈ Rn: there exists
x ∈ Rn with y = g(x)}. The properties of g imply that G is an open set
and that the inverse function g−1 is well defined on G and continuously
differentiable with non-vanishing Jacobian. Let B ∈ Bn, and A = g−1(B).
We have

P (X ∈ A) =
∫

A

fX(x)dx

=
∫

g−1(B)
fX(x)dx

=
∫

B

fX(g−1(x))|det Jg−1(x)|dx,

by Theorem 12.6 applied with g−1. But we also have P (Y ∈ B) = P (X ∈ A),
hence

P (X ∈ A) =
∫

B

fY (y)dy.

Since B ∈ Bn is arbitrary we conclude

fX(g−1(x))|det Jg−1(x))| = fY (x),

a.e., whence the result. �
In analogy to Corollary 11.3 of Chapter 11, we can also treat a case where

g is not injective but nevertheless smooth.

Corollary 12.1. Let S ∈ Bn be partitioned into disjoint subsets S0, S1, . . .,
Sm such that ∪m

i=0Si = S, and such that mn(S0) = 0 and that for each i =
1, . . . , m, g: Si → Rn is injective (one to one) and continuously differentiable
with non-vanishing Jacobian. Let Y = g(X), where X is an Rn-valued r.v.
with values in S and with density fX . Then Y has a density given by

fY (y) =
m∑

i=1

fX(g−1
i (y))|det Jg−1

i
(y)|

where g−1
i denotes the inverse map g−1

i : g(Si) → Si and Jg−1
i

is its corre-
sponding Jacobian matrix.

Examples:

1. Let X, Y be independent normal r.v.’s, each with parameters μ = 0,
σ2 = 1. Let us calculate the joint distribution of (U, V ) = (X+Y, X−Y ).
Here
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g(x, y) = (x + y, x− y) = (u, v),
and

g−1(u, v) =
(

u + v

2
,
u− v

2

)
.

The Jacobian in this simple case does not depend on (u, v) (that is, it is
constant), and is

Jg−1(u, v) =

⎛⎜⎜⎝
1
2

1
2

1
2
−1

2

⎞⎟⎟⎠ ,

and

det Jg−1 =
1
2

(
−1

2

)
−
(

1
2

)(
1
2

)
= −1

2
.

Therefore

f(U,V )(u, v) = f(X,Y )

(
u + v

2
,
u− v

2

)
|det J |

= fX

(
u + v

2

)
fY

(
u− v

2

)
|J |

=
1√
2π

e− 1
2 ( u+v

2 )2 1√
2π

e− 1
2 ( u −v

2 )2 · 1
2

=
1√
4π

e− u2
4

1√
4π

e− v2
4

for −∞ < u, v < ∞. We conclude that U, V are also independent nor-
mals, each with parameters μ = 0 and σ2 = 2.

2. Let (X, Y ) have joint density f . We want to find the density of Z = XY .
In this case h(x, y) = xy maps R2 to R1, and it appears we cannot use
Theorem 12.7 We can however by using a simple trick. Define

g(x, y) = (xy, x).

We can write S0 = {(x, y):x = 0, y ∈ R} and S1 = R2\S0. Then
m2(S0) = 0 and g is injective from S1 to R2 and g−1(u, v) = (v, u

v ).
The Jacobian

Jg−1(u, v) =

⎛⎜⎝ 0
1
v

1 − u

v2

⎞⎟⎠ ,

and det(Jg−1) = − 1
v . Therefore Corollary 12.1 gives

f(U,V ) =
{

f(X,Y )
(
v, u

v

) 1
|v| if v �= 0

0 if v = 0.
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Recall that we wanted fU (u), whence

fU (u) =
∫ ∞

−∞
fX,Y (v, u/v)

1
|v|dv.

3. Sometimes we can calculate a density directly, without resorting to The-
orem 12.6 and (for example) the trick of Example 2 above.
Let X, Y be independent and both be normal with parameters μ = 0 and
σ2 = 1. Let Z = X2 + Y 2. What is fZ(z)?
By Theorem 12.2(b) the density of the pair (X, Y ) is

f(x, y) =
1
2π

exp
(
−x2 + y2

2

)
,

and therefore

P (Z ∈ A) = E{1A(Z)} = E{1A(X2 + Y 2)}
=
∫ ∫

1A(x2 + y2)f(x, y)dx dy.

=
∫ ∫

1A(x2 + y2)
1
2π

e−( x2+y2

2 )dx dy

By changing to polar coordinates we have

=
1
2π

∫ ∞

0

∫ 2π

0
1A(r2)e−r2/2 r dr dθ

=
1
2π

∫ 2π

0
dθ

∫ ∞

0
1A(r2)e−r2/2 r dr

=
∫ ∞

0
1A(r2)e−r2/2 r dr.

Now let z = r2; then dz = 2r dr:

=
∫ ∞

0
1A(z)

1
2
e−(z/2)dz,

and we see that Z has the density 1
2e−(z/2) of an Exponential r.v. with

parameter 1
2 . Note that the polar coordinates transformation is not bi-

jective from R2 into its range, so to straighten out the above argument
we have to resort again to Corollary 12.1: this transformation is bijec-
tive from S1 = R2\{0} into (0,∞) × (0, 2π], while the set S0 = {0} is
of Lebesgue measure zero. This argument will be used without further
notice in the sequel.

4. When a function g transforms n random variables to one, we can some-
times avoid combining Theorem 12.6 with the trick of Example 2, known
as auxiliary random variables, by using instead the distribution function.
More specifically, if Y = g(X1, . . . , Xn) and if f is the joint density of
(X1, . . . , Xn), then
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FY (y) = P (Y ≤ y) =
∫

g(x1,...,xn )≤y

f(x)dx.

Suppose there exists a function h(y;x2, . . . , xn) such that

g(x1, x2, . . . , xn) ≤ y if and only if x1 ≤ h(y; x2, . . . , xn).

Then

FY (y) =
∫

{x:g(x)≤y}
f(x)dx

=
∫ ∞

−∞
. . .

∫ ∞

−∞

{∫ h(y;x2,...,xn )

−∞
f(x1, . . . , xn)dx1

}
dx2, . . . , dxn.

If we differentiate both sides with respect to y and assume that h is
continuously differentiable in y and f is continuous, then we get

fY (y) =
d

dy
FY (y) (12.3)

=
∫ ∞

−∞
. . .

∫ ∞

−∞

∂h(y; x2, . . . , xn)
∂y

× f (h(y, x2, . . . , xn), x2, . . . , xn) dx2 . . . dxn.

An example of this technique which is useful in deriving distributions
important in statistical inference is as follows: Let X, Y be independent
r.v.’s, and let X be normal (μ = 0, σ2 = 1) and let Y be Gamma (α =
n/2; β = 1

2 ; assume n ∈ N). [Note: Y is also the “chi-square with n
degrees of freedom”.] What is the distribution of

Z =
X√
Y/n

?

Here g(x, y) = x√
y/n

, and since x√
y/n
≤ z if and only if x ≤ z

√
y/n, we

have h(z; y) = z
√

y/n. By independence we have that the joint density
f of (X, Y ) is

f(x, y) = fX(x)fY (y) =
(

1√
2π

e− x2
2

)(
y

n
2 −1e− 1

2 y

2
n
2 Γ (n

2 )

)
for −∞ < x <∞ and 0 < y <∞, and f(x, y) = 0 otherwise.
We can now apply (12.3) to obtain

fZ(z) =
1√

2πnΓ (n
2 )2

n
2

∫ ∞

0
y

n −1
2 e−y

(1+ z2
n

)
2 dy (12.4)

=
Γ (n+1

2 )

Γ (n
2 )
√

πn(1 + z2

n )
1
2 (n+1)

, −∞ < z <∞.
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We note that the density of Z in (12.4) above is called the density for
the Student’s t-distribution with n degrees of freedom.
The Student’s t-distribution was originally derived as the distribution
of a random variable arising from statistical inference for the mean of
a normal distribution. It was originally studied by W. Gosset (1876–
1937)writing under the pseudonym “Student”.

5. Let X, Y be independent normal r.v.’s with mean μ = 0 and variance
σ2 <∞. Let Z =

√
X2 + Y 2 and W = X

Y if Y �= 0 and W = 0 if Y = 0.
We wish to find f(Z,W )(z, w), the joint density of (Z, W ). Here

g(x, y) =
(√

x2 + y2,
x

y

)
= (z, w)

and g is not injective. We have

g−1(z, w) =
(

zw√
1 + w2

,
z√

1 + w2

)
= (x, y).

A second inverse would be

h−1(z, w) =
( −zw√

1 + w2
,
−z√

1 + w2

)
.

The Jacobian Jg−1 is given by⎛⎜⎜⎜⎝
w√

1 + w2

1√
1 + w2

z

(1 + w2)
3
2

−zw

(1 + w2)
3
2

⎞⎟⎟⎟⎠
and its determinant is −z

1+w2 . Therefore by Corollary 12.1 we have

f(Z,W )(z, w) =
z

1 + w2

{
f(X,Y )

(
zw√

1 + w2
,

z√
1 + w2

)
+f(X,Y )

( −zw√
1 + w2

,
−z√

1 + w2

)}
.

In this case the normal density is symmetric:

f(X,Y )(x, y) = f(X,Y )(−x,−y),

hence we get

f(Z,W )(z, w) =
2z

1 + w2

1
2πσ2 e− z2

2σ2 1(z>0).

Note that the density factors:
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f(Z,W )(z, w) =
1

πσ2

(
1

1 + w2

)(
ze− z2

2σ2 1(z>0)

)
.

Therefore we deduce that Z and W are independent (which is not a
priori obvious), and we can even read off the densities of Z and W if we
can infer the normalizing constants from each. Indeed, since 1

π(1+w2) is
the density of a Cauchy random variable (with α = 0 and β = 1), we
conclude:

fZ(z) =
z

σ2 e− z2

2σ2 1(z>0)

and
fW (w) =

1
π(1 + w2)

, −∞ < w <∞,

and Z and W are independent. The distribution density fZ above is
known as the Rayleigh density with parameter σ2 > 0. This example
shows also that the ratio of two independent normals with mean 0 is a
Cauchy r.v. (α = 0 and β = 1).



Exercises 99

Exercises for Chapter 12

12.1 Show that ∫ ∞

−∞

∫ ∞

−∞
e

−(x2+y2)
2σ2 dx dy = 2πσ2,

and therefore that 1
2πσ2 e−(x2+y2)/2σ2

is a true density. (Hint: Use polar coor-
dinates.)

12.2 Suppose a joint density f(X,Y )(x, y) factors: f(X,Y )(x, y) = g(x)h(y).
Find fX(x) and fY (y).

12.3 Let (X, Y ) have joint density

f(x, y) =
1

2πσ1σ2
√

1− r2

× exp
(
− 1

2(1− r2)

{
(x− μ1)2

σ2
1

− 2r(x− μ1)(y − μ2)
σ1σ2

+
(y − μ2)2

σ2
2

})
.

Find fX=x(y). [Ans: 1
σ2

√
2π(1−r2)

exp(− 1
2σ2

2(1−r2){y − μ2 − rσ2
σ1

(x− μ1)}2).]

12.4 Let ρX,Y denote the correlation coefficient for (X, Y ). Let a > 0, c > 0
and b ∈ R. Show that

ρaX+b,cY +b = ρX,Y .

(This is useful since it shows that ρ is independent of the scale of measurement
for X and Y .)

12.5 If a �= 0, show that
ρX,aX+b =

a

|a| ,

so that if Y = aX+b is an affine non-constant function of X, then ρX,Y = ±1.

12.6 Let X, Y have finite variances and let

Z =
(

1
σY

)
Y −

(
ρX,Y

σX

)
X.

Show that σ2
Z = 1 − ρ2

X,Y , and deduce that if ρX,Y = ±1, then Y is a
non-constant affine function of X.

12.7 * (Gut (1995), p. 27.) Let (X, Y ) be uniform on the unit ball: that is,

f(X,Y )(x, y) =

⎧⎨⎩
1
π

if x2 + y2 ≤ 1

0 if x2 + y2 > 1.

Find the distribution of R =
√

X2 + Y 2. (Hint: Introduce an auxiliary r.v.
S = Arctan ( Y

X ).) [Ans: fR(r) = 2r1(0,1)(r).]
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12.8 Let (X, Y ) have density f(x, y). Find the density of Z = X + Y .
(Hint: Find the joint density of (Z, W ) first where W = Y .) [Ans: fZ(z) =∫∞

−∞ f(X,Y )(z − w, w)dw.]

12.9 Let X be normal with μ = 0 and σ2 < ∞, and let Θ be uniform on
(0, π): that is f(θ) = 1

π 1(0,π)(θ). Assume X and Θ are independent. Find the
distribution of Z = X + a cos(Θ). (This is useful in electrical engineering.)
[Ans: fZ(z) = 1

πσ
√

2π

∫ π

0 e−(z−a cos w)2/2σ2
dw.]

12.10 Let X and Y be independent and suppose Z = g(X) and W = h(Y ),
with g and h both injective and differentiable. Find a formula for fZ,W (z, w),
the joint density of (Z, W ).

12.11 Let (X, Y ) be independent normals, both with means μ = 0 and
variances σ2. Let

Z =
√

X2 + Y 2 and W = Arctan (
X

Y
), −π

2
< W ≤ π

2
.

Show that Z has a Rayleigh distribution, that W is uniform on (−π
2 , π

2 ), and
that Z and W are independent.

12.12 Let (X1, . . . , Xn) be random variables. Define

Y1 = min(Xi; 1 ≤ i ≤ n)
Y2 = second smallest of X1, . . . , Xn

...
Yn = largest of X1, . . . , Xn.

Then Y1, . . . , Yn are also random variables, and Y1 ≤ Y2 ≤ . . . ≤ Yn. Thus
the Y random variables are the same as the X ones, but they are arranged
in order. They are called the order statistics of (X1, . . . , Xn) and are usually
denoted

Yk = X(k).

Assume the Xi are i.i.d. with common density f . Show that the joint density
of the order statistics is given by

f(X(1),...,X(n ))(y1, . . . , yn) =
{

n!
∏n

i=1 f(yi) for y1 < y2 < . . . < yn

0 otherwise .

12.13 Let (X1, . . . , Xn) be i.i.d. uniform on (0, a). Show that the order statis-
tics (X(1), . . . , X(n)) have density

f(y1, . . . , yn) =
{

n!
an for y1 < y2 < . . . < yn

0 otherwise .

(Hint: Use Exercise 12.12.)
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12.14 Show that if (X1, . . . , Xn) are i.i.d. with common density f and dis-
tribution function F , then X(k) (see Exercise 12.12) has density

f(k)(y) = k

(
n

k

)
f(y)(1− F (y))n−kF (y)k−1.

12.15 (Simulation of Normal Random Variables.) Let U1, U2 be two indepen-
dent u niform random variables on (0, 1). Let θ = 2πU1 and let S = − ln(U2).

a) Show that S has an exponential distribution, and that R =
√

2S has a
Rayleigh distribution.

b) Let X = R cos θ, Y = R sin θ. Show that X and Y are independent
normals.

(Hint: For part (a), recall that an exponential is a special case of a Gamma
distribution: indeed, it is χ2

2. Then for part (b) reverse the procedure of
Exercise 12.11.)

Remark: Exercise 12.15 is known as the Box–Muller method for simulating
normal random variables.



13 Characteristic Functions

It often arises in mathematics that one can solve problems and/or obtain
properties of mathematical objects by “transforming” them into another
space, solving the problem there, and then transforming the solution back.
Two of the most important transforms are the Laplace transform and the
Fourier transform. While these transforms are widely used in the study of
differential equations, they are also extraordinarily useful for the study of
Probability. They can be used to analyze random variables (e.g., to compute
their moments), and they can be used to give short and elegant proofs of the
Central Limit Theorem (see Chapter 21). The Fourier transform is the more
sophisticated of the two, and it is also the most useful.

Let us write 〈x, y〉 for the scalar product of x, y ∈ Rn. That is, if x =
(x1, . . . , xn) and y = (y1, . . . , yn), then

〈x, y〉 =
n∑

j=1

xjyj .

(This is often written x ·y and called the “dot product” in Calculus courses.)

Definition 13.1. Let μ be a probability measure on Rn. Its Fourier trans-
form is denoted μ̂ and is a function on Rn given by

μ̂(u) =
∫

ei〈u,x〉μ(dx).

In the above definition i denotes the square root of negative one (i =√−1). We integrate the complex-valued function x → ei〈u,x〉; however, no
difficulty is involved here, since we have

ei〈u,x〉 = cos(〈u, x〉) + i sin(〈u, x〉), (13.1)

and in particular |eiux| = 1. (The equation (13.1) can be verified in an el-
ementary way by using the power series expansions of ez, cos z, and sin z.)
Now, both functions x → cos(〈u, x〉) and x → sin(〈u, x〉) are bounded and
Borel, hence integrable, and the formula of Definition 13.1 becomes

μ̂(u) =
∫

cos(〈u, x〉)μ(dx) + i

∫
sin(〈u, x〉)μ(dx).

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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As a matter of fact, all results of Chapter 9 hold for complex-valued functions
just by taking separately the real and imaginary parts. These results will be
used without further mention in the sequel (the only result which is more
subtle to get in the complex case is that | ∫ fdμ| ≤ ∫ |f |dμ for the modulus).

Definition 13.2. Let X be an Rn-valued random variable. Its characteristic
function ϕX defined on Rn is

ϕX(u) = E{ei〈u,X〉}.
We note that

ϕX(u) =
∫

ei〈u,x〉PX(dx) = P̂X(u) (13.2)

where PX is the distribution measure of X. Therefore characteristic func-
tions always exist because they are equal to Fourier transforms of probability
measures, which we have just seen always exist.

Theorem 13.1. Let μ be a probability measure on Rn. Then μ̂ is a bounded,
continuous function with μ̂(0) = 1.

Proof. We have already seen that μ̂ always exists; that is, its definition always
makes sense. Since |ei〈u,x〉| = 1 for all real u, x, we have

|μ̂(u)| ≤
∫
|ei〈u,x〉|μ(dx) =

∫
1μ(dx) = 1.

Moreover
μ̂(0) =

∫
ei〈0,x〉μ(dx) =

∫
1μ(dx) = 1.

Finally suppose up tends to u; we wish to show μ̂(up) tends to μ̂(u). The func-
tions ei〈up ,x〉 converge pointwise to ei〈u,x〉, and since x→ ei〈u,x〉 is bounded in
modulus by 1, the continuity follows from Lebesgue’s dominated convergence
theorem (Theorem 9.1(f)). �

Actually one can show that μ̂ is uniformly continuous, but we do not need
such a result here.

Theorem 13.2. Let X be an Rn valued random variable and suppose
E{|X|m} < ∞ for some integer m. Then the characteristic function ϕX

of X has continuous partial derivatives up to order m, and

∂m

∂xj1 . . . ∂xjm

ϕX(u) = imE{Xj1 . . . Xjm ei〈u,X〉}.

Proof. We prove an equivalent formulation stated in terms of Fourier trans-
forms of probability measures. (To see the equivalence, simply take μ to be
PX , the distribution measure on Rn of X as in (13.2).) Let μ be a probability
measure on Rn and assume f(x) = |x|m is integrable:



13 Characteristic Functions 105∫
Rn

|x|mμ(dx) <∞.

Then we wish to show that μ̂(u) is m-times continuously differentiable and

∂mμ̂

∂xj1 . . . ∂xjm

(u) = im
∫

xj1 . . . xjm ei〈u,x〉μ(dx).

We give the proof only for the case m = 1. The general case can be established
analogously by recurrence.

In order to prove that ∂μ̂
∂xj

exists at point u, it is enough to prove that for
every sequence of reals tp tending to 0, and with v = (v1, . . . , vn) being the
unit vector in Rn in the direction j (i.e. with coordinates vk = 0 for k �= j
and vj = 1), then the sequence

1
t p
{μ̂(u + tpv)− μ̂(u)} =

∫
ei〈u,x〉 eitp xj − 1

tp
μ(dx). (13.3)

converges to a limit independent of the sequence tp, and in this case this limit
equals ∂μ̂

∂xj
(u). The sequence of functions x → eitp xj −1

t (where xj is the jth

coordinate of x ∈ Rn) converges pointwise to ixj by differentiation; moreover∣∣∣∣eitp xj − 1
tp

∣∣∣∣ ≤ 2|x|,

and ∫
2|x|μ(dx) <∞

by hypothesis. Therefore by Lebesgue’s dominated convergence theorem
(Theorem 9.1(f)) we have that (13.3) converges to

i

∫
xje

i〈u,x〉μ(dx).

Therefore
∂μ̂(u)
∂xj

= i

∫
ei〈u,x〉xjμ(dx). (13.4)

The proof that the partial derivative in (13.4) above is continuous is exactly
the same as that of Theorem 13.1. �

An immediate application of the above is to use characteristic functions
to calculate the moments of random variables. (The kth moment of a r.v. X
is E{Xk}.) For the first two moments (by far the most important) we note
that for X real valued (by Theorem 13.2):

E{X} = −iϕ′
X(0) if E{|X|} <∞ (13.5)

E{X2} = −ϕ′′
X(0) if E{X2} <∞. (13.6)
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Examples:

1. Bernoulli (p): If X is Bernoulli with parameter p, then

ϕX(u) = E{eiuX} = eiu0(1− p) + eiup = peiu + 1− p

2. Binomial B(p, n): If X is Binomial with parameters n, p, then

ϕX(u) = E{eiuX} =
n∑

j=0

(
n

j

)
eiujpj(1− p)n−j = (peiu + 1− p)n .

We could also have noted that

X =
n∑

j=1

Yj ,

where Y1, . . . , Yn are independent and Bernoulli (p). Then

ϕX(u) = E{eiuX} = E{eiu
∑n

j=1
Yj } = E

⎧⎨⎩
n∏

j=1

eiuYj

⎫⎬⎭ =
n∏

j=1

E{eiuYj }

by the independence of the Yj ’s;

=
n∏

j=1

ϕYj (u) = (peiu + 1− p)n.

3. Poisson (λ):

ϕX(u) = E{eiuX} =
∞∑

k=0

eiukP (X = k)

=
∞∑

k=0

eiuk λk

k!
e−λ =

∞∑
k=0

(λeiu)k

k!
e−λ

= e−λeλeiu

= eλ(eiu −1) .

4. Uniform on (−a, a):

ϕX(u) = E{eiuX} =
1
2a

∫ a

−a

eiuxdx =
eiua − e−iua

2aiu
;

using that ez = cos z + i sin z, and that cos(a) = cos(−a), this equals

=
2i sin au

2aiu
=

sin au

au
.
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5. The Normal (μ = 0;σ2 = 1): Calculating the characteristic function of
the normal is a bit hard. It can be done via contour integrals and the
residue theorem (using the theory of complex variables), or by analytic
continuation (see Exercise 17 of Chapter 14); we present here a perhaps
non-intuitive method that has the virtue of being elementary:

ϕX(u) =
∫

eiux 1√
2π

e−x2/2dx

=
∫

cos ux√
2π

e−x2/2dx + i

∫
sinux√

2π
e−x2/2dx.

Since sin ux e−x2/2 is an odd and integrable function, we have that∫ ∞

−∞
sinux e−x2/2dx = 0,

and thus
ϕX(u) =

1√
2π

∫ ∞

−∞
cos ux e−x2/2dx.

By Theorem 13.2 we can differentiate both sides with respect to u to
obtain:

ϕ′
X(u) =

1√
2π

∫ ∞

−∞
−x sinux e−x2/2dx.

Next integrate by parts to get:

= − 1√
2π

∫ ∞

−∞
u cos ux e−x2/2dx = −uϕX(u).

This gives us the ordinary differential equation

ϕ′
X

ϕX
= −u,

and anti-differentiating both sides yields

ln |ϕX(u)| = −u2

2
+ C,

and exponentiating gives

ϕX(u) = eCe−u2/2.

Since ϕX(0) = 1, we deduce eC = 1, whence

ϕX(u) = e−u2/2 .
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Theorem 13.3. Let X be an Rn-valued random variable and a ∈ Rm. Let
A be an m× n matrix. Then

ϕa+AX(u) = ei〈u,a〉ϕX(A∗u),

for all u ∈ Rm, where A∗ denotes A transpose.

Proof. One easily verifies that

ei〈u,a+AX〉 = ei〈u,a〉ei〈A∗u,X〉,

and then taking expectations of both sides gives the result. �
Examples (continued)

6. The Normal (μ, σ2): Let X be N(μ, σ2). Then one easily checks (see
Exercise 14.18) that Y = X−μ

σ is Normal (0, 1). Alternatively, X can be
written X = μ + σY , where Y is N(0, 1). Then using Theorem 13.3 and
example 5 we have

ϕX = eiuμ−u2σ2/2

7. The Exponential (λ): Let X be Exponential with parameter λ. Then

ϕX(u) =
∫ ∞

0
eiuxλe−λxdx.

A formal calculation gives

=
∫ ∞

0
λe(iu−λ)xdx =

λ

λ− iu

but this is not mathematically rigorous. It can be justified by, for example,
a contour integral using complex analysis. Another method is as follows:
It is easy to check that the functions

λ

λ2 + u2 e−λx(−λ cos(ux) + u sin(ux)),

λ

λ2 + u2 e−λx(−u cos(ux)− λ sin(ux)),

have derivatives λe−λx cos(ux) and λe−λx sin(ux) respectively. Thus∫ ∞

0
λe−λx cos(ux)dx =

λ

λ2 + u2 e−λx(−λ cos(ux) + u sin(ux))
∣∣∣∣∞
0

,∫ ∞

0
λe−λx sin(ux)dx =

λ

λ2 + u2 e−λx(−u cos(ux)− λ sin(ux))
∣∣∣∣∞
0

.

Hence we get

ϕX(u) =
λ2

λ2 + u2 − i
λu

λ2 + u2 =
λ

λ− iu
.



13 Characteristic Functions 109

8. The Gamma (α, β): One can show using contour integration and the
residue theorem in the theory of complex variables that if X is Gamma
(α, β) then

ϕX(u) =
βα

(β − iu)α
.

One can also calculate the characteristic function of a Gamma random
variable without resorting to contour integration: see Exercise 14.19.
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We have seen several examples on how to calculate a characteristic function
when given a random variable. Equivalently we have seen examples of how to
calculate the Fourier transforms of probability measures. For such transforms
to be useful, we need to know that knowledge of the transform characterizes
the distribution that gives rise to it. The proof of the next theorem uses
the Stone-Weierstrass theorem and thus is a bit advanced for this book.
Nevertheless we include the proof for the sake of completeness.

Theorem 14.1 (Uniqueness Theorem). The Fourier transform μ̂ of a
probability measure μ on Rn characterizes μ: that is, if two probabilities on
Rn admit the same Fourier transform, they are equal.

Proof. Let

f(σ, x) =
1

(2πσ2)n/2 e−|x|2/2σ2
,

and
f̂(σ, u) = e−|u|2σ2/2.

Then f(σ, x) is the density of X = (X1, . . . , Xn), where the Xj ’s are inde-
pendent and N(0, σ2) for each j (1 ≤ j ≤ n). By Example 6 of Chapter 13
and the Tonelli-Fubini Theorem, we have∫

Rn

f(σ, x)ei〈u,x〉dx =
∫
Rn

n∏
j=1

1
σ
√

2π
e(

−x2
j

2σ2 +iuj xj )dx1 . . . dxn

=
n∏

j=1

∫
R

1
σ
√

2π
e(

−x2
j

2σ2 +iuj xj )dxj

=
n∏

j=1

e−
u2

j
σ2

2 = f̂(σ, u).

Therefore

f(σ, u− v) =
1

(2πσ2)n/2 f̂

(
σ,

u− v

σ2

)
=

1
(2πσ2)n/2

∫
Rn

f(σ, x)ei〈 u −v

σ2 ,x〉dx.

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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Next suppose that μ1 and μ2 are two probability measures on Rn with the
same Fourier transforms μ̂1 = μ̂2 = μ̂. Then∫

f(σ, u− v)μ1(du)

=
∫

1
(2πσ2)n/2

{∫
f(σ, x)ei〈 u −v

σ2 ,x〉dx

}
μ1(du)

=
∫

f(σ, x)
1

(2πσ2)n/2 μ̂
( x

σ2

)
e−i

〈v ,x〉
σ2 dx,

(the reader will check that one can apply Fubini’s theorem here), and the
exact same equalities hold for μ2. We conclude that∫

g(x)μ1(dx) =
∫

g(x)μ2(dx)

for all g ∈ H, where H is the vector space generated by all functions of the
form u→ f(σ, u− v). We then can apply the Stone-Weierstrass theorem1 to
conclude that H is dense in C0 under uniform convergence, where C0 is the set
of functions “vanishing at∞”: that is, C0 consists of all continuous functions
on Rn such that lim‖x‖→∞ |f(x)| = 0. We then obtain that∫

Rn

g(x)μ1(dx) =
∫
Rn

g(x)μ2(dx)

for all g ∈ C0. Since the indicator function of an open set can be written as
the increasing limit of functions in C0, the Monotone Convergence Theorem
(Theorem 9.1(d)) then gives

μ1(A) = μ2(A), all open sets A ⊂ Rn.

Finally the Monotone Class Theorem (Theorem 6.2) gives

μ1(A) = μ2(A) for all Borel sets A ⊂ Rn,

which means μ1 = μ2. �

Corollary 14.1. Let X = (X1, . . . , Xn) be an Rn-valued random variable.
Then the real-valued r.v.’s (Xj)1≤j≤n are independent if and only if

ϕX(u1, . . . , un) =
n∏

j=1

ϕXj (uj) (14.1)

1 One can find a nice treatment of the Stone–Weierstrass theorem in [20, p. 160].
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Proof. If the (Xj)1≤j≤n are independent, then

ϕX(u) = E{ei〈u,X〉} = E

{
e
i
∑n

j=1
uj Xj

}

= E

⎧⎨⎩
n∏

j=1

eiuj Xj

⎫⎬⎭ =
n∏

j=1

E{eiuj Xj }

by the independence;

=
n∏

j=1

ϕXj (uj).

Next suppose we have (14.1). Let μX denote the law of X on Rn and let μXj

denote the law of Xj on R. Then

μ̂X = (μX1 ⊗ μX2 ⊗ . . .⊗ μXn )̂,
and therefore by Theorem 14.1 we have

μX = μX1 ⊗ μX2 ⊗ . . .⊗ μXn ,

which is equivalent to independence. �
Caution: In the above, having ϕX(u, u, . . . , u) =

∏n
i=1 ϕXj (u) for all u ∈

R is not enough for the r.v.’s Xj to be independent.
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Exercises for Chapters 13 and 14

Note: The first three exercises require the use of contour integration and
the residue theorem from complex analysis. These problems are given the
symbol “�”.

14.1 � Let f(x) = 1
π(1+x2) , a Cauchy density, for a r.v. X. Show that

ϕX(u) = e−|u|,

by integrating around a semicircle with diameter [−R, R] on the real axis to
the left, from the point (−R, 0) to the point (R, 0) over the real axis.

14.2 � Let X be a gamma r.v. with parameters (α, β). Show using contour
integration that ϕX(u) = βα

(β−iu)α . [Hint: Use the contour for 0 < c < d on
the real axis, go from (d, 0) back to (c, 0), then descend vertically to the line
y = −ux

α and descend southeast along the line, and then ascend vertically to
(d, 0).]

14.3 � Let X be N(0, 1) (i.e., normal with μ = 0 and σ2 = 1), and show that
ϕX(u) = e−u2/2 by contour integration. [Hint: use the contour from (R, 0) to
(−R, 0) on the real axis; then descend vertically to (−R,−iu); then proceed
horizontally to (R,−iu), and then ascend vertically back to the real axis.]

14.4 * Suppose E{|X|2} <∞ and E{X} = 0. Show that Var(X) = σ2 <∞,
and that

ϕX(u) = 1− 1
2
u2σ2 + o(u2)

as u→ 0. [Recall that a function g is o(t) if limt→0
|g(t)|

t = 0.]

14.5 Let X = (X1, . . . , Xn) be an Rn valued r.v. Show that

a) ϕX(u, 0, 0, . . . , 0) = ϕX1(u) (u ∈ R)
b) ϕX(u, u, u, . . . , u) = ϕX1+...+Xn (u) (u ∈ R)

14.6 Let z denote the complex conjugate of z. That is, if z = a + ib then
z = a− ib (a, b ∈ R). Show that for X a r.v.,

ϕX(u) = ϕX(−u).

14.7 Let X be a r.v. Show that ϕX(u) is a real-valued function (as opposed
to a complex-valued function) if and only if X has a symmetric distribution.
(That is, PX = P−X , where PX is the distribution measure of X.) [Hint:
Use Exercise 14.6, Theorem 13.3, and Theorem 14.1.]

14.8 Show that if X and Y are i.i.d. then Z = X − Y has a symmetric
distribution.
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14.9 Let X1, . . . , Xn be independent, each with mean 0, and each with finite
third moments. Show that

E

⎧⎨⎩
(

n∑
i=1

Xi

)3
⎫⎬⎭ =

n∑
i=1

E{X3
i }.

(Hint: Use characteristic functions.)

14.10 Let μ1, . . . , μn be probability measures. Suppose λj ≥ 0 (1 ≤ j ≤ n)
and
∑n

j=1 λj = 1. Let ν =
∑n

j=1 λjμj . Show that ν is a probability measure,
too, and that

ν̂(u) =
n∑

j=1

λj μ̂j(u).

14.11 Let X have the double exponential (or Laplace) distribution with
α = 0, β = 1:

fX(x) =
1
2
e−|x| −∞ < x <∞.

Show that ϕX(u) = 1
1+u2 .

(Hint: Use Exercise 14.10 with μ1 the distribution of Y and μ2 the dis-
tribution of −Y , where Y is an Exponential of parameter λ = 1. (Take
λ1 = λ2 = 1

2 .) )

14.12 * (Triangular distribution) Let X be a r.v. with density fX(x) =
(1 − |x|)1(−1,1)(x). Show that ϕX(u) = 2(1−cos u)

u2 . (Hint: Let U, V be in-
dependent uniform on (− 1

2 , 1
2 ) and consider U + V . Observe further that(

eiu /2−e−iu /2

iu

)2
=
(

2 sin(u/2)
u

)2
.)

14.13 Let X be a positive random variable. The Mellin transform of X is
defined to be

TX(θ) = E{Xθ}
for all values of θ for which the expected value of Xθ exists.

a) Show that

TX(θ) = ϕlog X

(
θ

i

)
when all terms are well defined.

b) Show that if X and Y are independent and positive, then

TXY (θ) = TX(θ)TY (θ).

c) Show that TbXa (θ) = bθTX(aθ) for b > 0 and aθ in the domain of definition
of TX .
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14.14 Let X be lognormal with parameters (μ, σ2). Find the Mellin trans-
form (c.f. Exercise 14.13) TX(θ). Use this and the observation that TX(k) =
E{Xk} to calculate the kth moments of the lognormal distribution for
k = 1, 2, . . ..

14.15 Let X be N(0, 1). Show that E{X2n+1} = 0 and

E{X2n} =
(2n)!
2nn!

= (2n− 1)(2n− 3) . . . 3 · 1.

14.16 * Let X be N(0, 1). Let

M(s) = E{esX} =
∫ ∞

−∞

1√
2π

exp
(

sx− 1
2
x2
)

dx.

Show that M(s) = es2/2. (Hint: Complete the square in the integrand.)

14.17 * Substitute s = iu in Exercise 14.16 to obtain the characteristic func-
tion of the Normal ϕX(u) = e−u2/2; justify that one can do this by the theory
of analytic continuation of functions of a complex variable.

14.18 Let X be N(μ, σ2). Show that Y = X−μ
σ is N(0, 1).

14.19 * (Feller [9]) Let X be a Gamma r.v. with parameters (α, β). One
can calculate its characteristic function without using contour integration.
Assume β = 1 and expand eix in a power series. Then show

1
Γ (α)

∞∑
n=1

(iu)n

n!

∫ ∞

0
e−xxn+α−1dx =

∞∑
n=0

Γ (n + α)
n!Γ (α)

(iu)n

and show this is a binomial series which sums to 1
(1−iu)α .



15 Sums of Independent Random Variables

Many of the important uses of Probability Theory flow from the study of
sums of independent random variables. A simple example is from Statistics:
if we perform an experiment repeatedly and independently, then the “average
value” is given by x = 1

n

∑n
j=1 Xj , where Xj represents the outcome of the

jth experiment. The r.v. x is then called an estimator for the mean μ of each
of the Xj . Statistical theory studies when (and how) x converges to μ as n
tends to∞. Even once we show that x tends to μ as n tends to∞, we also need
to know how large n should be in order to be reasonably sure that x is close
to the true value μ (which is, in general, unknown). There are other, more
sophisticated questions that arise as well: what is the probability distribution
of x? If we cannot infer the exact distribution of x, can we approximate it?
How large need n be so that our approximation is sufficiently accurate? If
we have prior information about μ, how do we use that to improve upon our
estimator x? Even to begin to answer some of these fundamentally important
questions we need to study sums of independent random variables.

Theorem 15.1. Let X, Y be two R-valued independent random variables.
The distribution measure μZ of Z = X +Y is the convolution product of the
probability measures μX and μY , defined by

μX ∗ μY (A) =
∫ ∫

1A(x + y)μX(dx)μY (dy). (15.1)

Proof. Since X and Y are independent, we know that the joint distribution
of (X, Y ) is μX ⊗ μY . Therefore

E{g(X, Y )} =
∫ ∫

g(x, y)μX(dx)μY (dy),

and in particular, using g(x, y) = f(x + y):

E{f(X + Y )} =
∫ ∫

f(x + y)μX(dx)μY (dy), (15.2)

for any Borel function f on R for which the integrals exist. It suffices to take
f(x) = 1A(x). �

J. Jacod et al., Probability  Essentials
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Remark 15.1. Formula (15.2) above shows that for f : R → R Borel mea-
surable and Z = X + Y with X and Y independent:

E{f(Z)} =
∫

f(z)(μX ∗ μY )(dz) =
∫ ∫

f(x + y)μX(dx)μY (dy).

Theorem 15.2. Let X, Y be independent real valued random variables, with
Z = X + Y . Then the characteristic function ϕZ is the product of ϕX and
ϕY ; that is:

ϕZ(u) = ϕX(u)ϕY (u).

Proof. Let f(z) = ei〈u,z〉 and use formula (15.2). �
Caution: If Z = X + Y , the property that ϕZ(u) = ϕX(u)ϕY (u) for all

u ∈ R is not enough to ensure that X and Y are independent.

Theorem 15.3. Let X, Y be independent real valued random variables and
let Z = X + Y .

a) If X has a density fX , then Z has a density fZ and moreover:

fZ(z) =
∫

fX(z − y)μY (dy)

b) If in addition Y has a density fY , then

fZ(z) =
∫

fX(z − y)fY (y)dy =
∫

fX(x)fY (z − x)dx.

Proof. (b): Suppose (a) is true. Then

fZ(z) =
∫

fX(z − y)μY (dy).

However μY (dy) = fY (y)dy, and we have the first equality. Interchanging the
roles of X and Y gives the second equality.

(a): By Theorem 15.1 we have

μZ(A) =
∫ ∫

1A(x + y)μX(dx)μY (dy)

=
∫ {∫

1A(x + y)fX(x)dx

}
μY (dy).

Next let z = x + y; dz = dx;

=
∫ {∫

1A(z)fX(z − y)dz

}
μY (dy)

and applying the Tonelli-Fubini theorem:

=
∫ {∫

f(z − y)μY (dy)
}

1A(z)dz.

Since A was arbitrary we have the result for all Borel sets A, which proves
the theorem. �

The next theorem is trivial but surprisingly useful.
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Theorem 15.4. Let X, Y be independent real valued random variables that
are square integrable (that is E{X2} <∞ and E{Y 2} <∞). Then

σ2
X+Y = σ2

X + σ2
Y .

Proof. Since X and Y are independent we have E{XY } = E{X}E{Y }, and

σ2
X+Y = E{X2}+ 2E{XY }+ E{Y 2} − (E{X}+ E{Y })2 = σ2

X + σ2
Y .

�
Examples:

1. Let X1, . . . , Xn be i.i.d. Bernoulli (p). Then Y =
∑n

j=1 Xj is Binomial
B(p, n). We have seen

E{Y } = E

⎧⎨⎩
n∑

j=1

Xj

⎫⎬⎭ =
n∑

j=1

E{Xj} =
n∑

j=1

p = np.

Note that

σ2
Xj

= E{X2
j } − E{Xj}2 = p− p2 = p(1− p).

Therefore by Theorem 15.4,

σ2
Y =

n∑
j=1

σ2
Xj

= np(1− p).

Note that the above method of computing the variance is preferable to
explicit use of the distribution of Y , which would give rise to the following
calculation:

σ2
Y =

n∑
j=0

(j − np)2
(

n

j

)
pj(1− p)n−j .

2. Let X be Poisson (λ) and Y be Poisson (μ), and X and Y are indepen-
dent. Then Z = X + Y is also Poisson (λ + μ). Indeed, ϕZ = ϕXϕY

implies
ϕZ(u) = eλ(eiu −1)eμ(eiu −1) = e(λ+μ)(eiu −1),

which is the characteristic function of a Poisson (λ + μ). Therefore Z is
Poisson by the uniqueness of characteristic functions (Theorem 14.1).

3. Suppose X is Binomial B(p, n) and Y is Binomial B(p, m). (X and Y
have the same p.) Let Z = X + Y . Then

ϕZ = ϕXϕY ,

hence
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ϕZ(u) = (peiu + (1− p))n(peiu + (1− p))m = (peiu + (1− p))n+m,

which is the characteristic function of a Binomial B(p, m + n); hence
Z is Binomial B(p, m + n) by Theorem 14.1. We did not really need
characteristic functions for this result: simply note that

X =
n∑

j=1

Uj and Y =
m∑

j=1

Vj ,

and thus

Z =
n∑

j=1

Uj +
m∑

j=1

Vj ,

where Uj and Vj are all i.i.d. Bernoulli (p). Hence

Z =
m+n∑
j=1

Wj

where Wj are i.i.d. Bernoulli (p). (The first n Wj ’s are the Uj ’s; the next
m Wj ’s are the Vj ’s.)

4. Suppose X is normal N(μ, σ2) and Y is also normal N(ν, τ2), and X and
Y are independent. Then Z = X +Y is normal N(μ+ν, σ2 + τ2). Indeed

ϕZ = ϕXϕX

implies

ϕZ(u) = eiuμ−u2σ2/2eiuν−u2τ2/2 = eiu(μ+ν)−u2(σ2+τ2)/2

which is the characteristic function of a normal N(μ + ν, σ2 + τ2), and
we again use Theorem 14.1.

5. Let X be the Gamma (α, β) and Y be Gamma (δ, β) and suppose X and
Y are independent. Then if Z = X + Y , ϕZ = ϕXϕY , and therefore

ϕZ(u) =
βα

(β − iu)α

βδ

(β − iu)δ
=

βα+δ

(β − iu)α+δ
,

whence Z has the characteristic function of a Gamma (α+δ, β), and thus
by Theorem 14.1, Z is a Gamma (α + δ, β).

6. In Chapter 11 we defined the chi square distribution with p degrees of
freedom (denoted χ2

p), and we observed that if X is χ2
1, then X = Z2

in distribution, where Z is N(0, 1). We also noted that if X is χ2
p, then

X is Gamma (p
2 , 1

2 ). Therefore let X be χ2
p, and let Z1, . . . , Zp be i.i.d.

N(0, 1). If Y =
∑p

i=1 Z2
i , by Example 5 we have that since each Z2

i is
Gamma ( 1

2 , 1
2 ), then Y is Gamma (p

2 , 1
2 ) which is χ2

p. We conclude that if
X is χ2

p, then X =
∑p

i=1 Z2
i in distribution, where Zi are i.i.d. N(0, 1).
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Exercises for Chapter 15

15.1 Let X1, . . . , Xn be independent random variables, and assume E{Xj} =
μ and σ2(Xj) = σ2 <∞, 1 ≤ j ≤ n. Let

x =
1
n

n∑
j=1

Xj and S2 =
1
n

n∑
j=1

(Xj − x)2.

(x and S2 are also random variables, known as the “sample mean” and the
“sample variance”, respectively.) Show that

a) E{x} = μ;
b) Var (x) = σ2

n ;
c) E(S2) = n−1

n σ2.

15.2 Let X1, . . . , Xn be independent with finite variances. Let Sn =
∑n

j=1 Xj .
Show that

σ2
1
n Sn

=
1
n2

n∑
j=1

σ2
Xj

,

and deduce that if σ2
Xj

= σ2, 1 ≤ j ≤ n, then σ2
1
n Sn

= σ2/n.

15.3 Show that if X1, . . . , Xn are i.i.d., then

ϕSn (u) = (ϕX(u))n,

where Sn =
∑n

j=1 Xj .

Problems 4–8 involve the summation of a random number of independent
random variables. We let X1, X2, . . . be an infinite sequence of i.i.d. random
variables and let N be a positive, integer-valued random variable which is
independent from the sequence. Further, let

Sn =
n∑

i=1

Xi, and SN = X1 + X2 + . . . + XN ,

with the convention that SN = 0 if N = 0.

15.4 For a Borel set A, show that

P (SN ∈ A | N = n) = P (Sn ∈ A).
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15.5 Suppose E{N} <∞ and E{|Xj |} <∞. Show

E{SN} =
∞∑

n=0

E{Sn}P (N = n).

(Hint: Show first that

E{SN} = E

{ ∞∑
n=0

Sn1{N=n}

}
=

∞∑
n=0

E{Sn1{N=n}},

and justify the second equality above.)

15.6 Suppose E{N} < ∞ and E{|Xj |} < ∞. Show that E{SN} =
E{N}E{Xj}. (Hint: Use Exercise 15.5.)

15.7 Suppose E{N} <∞ and E{|Xj |} <∞. Show that

ϕSN
(u) = E{(ϕXj (u))N}.

(Hint: Show first

ϕSN (u) =
∞∑

n=1

E{eiuSn 1{N=n}}.)

15.8 Solve Exercise 15.6 using Exercise 15.7. (Hint: Recall that E{Z} =
iϕ′

Z(0), for a r.v. Z in L1.)

15.9 Let X, Y be real valued and independent. Suppose X and X + Y have
the same distribution. Show that Y is a constant r.v. equal to 0 a.s.

15.10 Let f, g map R to R+ such that∫ ∞

−∞
f(x)dx <∞ and

∫ ∞

−∞
g(x)dx <∞.

Show that

a) f ∗ g(x) =
∫∞

−∞ f(x− y)g(y)dy exists;
b) f ∗ g(x) = g ∗ f(x) (f ∗ g is called the convolution of f and g)
c) If one of f or g is continuous, then f ∗ g is continuous.

15.11 Let X, Y be i.i.d. Suppose further that X + Y and X − Y are inde-
pendent. Show that ϕX(2u) = (ϕX(u))3ϕX(−u).

15.12 * Let X, Y be as in Exercise 15.11, and also that E{X} = 0 and
E{X2} = 1. Show that X is Normal N(0, 1). (Hint: Show that for some
a > 0 we have ϕ(u) �= 0 for all u with |u| ≤ a. Let ψ(u) = ϕ(u)

ϕ(−u) for |u| ≤ a,
and show ψ(u) = {ψ(u/2n)}2n

; then show this tends to 1 as n → ∞. (See
Exercise 14.4.) Deduce that ϕ(t) = {ϕ(t/2n)}4n

and let n→∞.)



Exercises 123

15.13 Let X1, X2, . . . , Xn be i.i.d. Normal N(μ, σ2). Let x = 1
n

∑n
j=1 Xj and

let Yj = Xj − x. Find the joint characteristic function of (x, Y1, . . . , Yn). Let
S2 = 1

n

∑n
j=1 Y 2

j . Deduce that x and S2 are independent.

15.14 Show that |1 − eix|2 = 2(1 − cos x) ≤ x2 for all x ∈ R. Use this to
show that |1− ϕX(u)| ≤ E{|uX|}.
15.15 Let A = [− 1

u , 1
u ]. Show that∫

A

x2μX(dx) ≤ 12
11u2 {1− Re ϕX(u)}.

(Hint: 1− cos x ≥ 0 and 1− cos x ≥ 1
2x2− 1

24x4, all x ∈ R; also if z = a + ib,
then Re z = a, where a, b,∈ R.)

15.16 If ϕ is a characteristic function, show that |ϕ|2 is one too. (Hint: Let
X, Y be i.i.d. and consider Z = X − Y .)

15.17 Let X1, . . . , Xα be independent exponential random variables with
parameter β > 0. Show that Y =

∑α
i=1 Xi is Gamma (α, β).



16 Gaussian Random Variables (The Normal
and the Multivariate Normal Distributions)

Let us recall that a Normal random variable with parameters (μ, σ2), where
μ ∈ R and σ2 > 0, is a random variable whose density is given by:

f(x) =
1√
2πσ

e−(x−μ)2/2σ2
, −∞ < x <∞. (16.1)

Such a distribution is usually denoted N(μ, σ2). For convenience of notation,
we extend the class of normal distributions to include the parameters μ ∈ R
and σ2 = 0 as follows: we will denote by N(μ, 0) the law of the constant
r.v. equal to μ (this is also the Dirac measure at point μ). Of course, the
distribution N(μ, 0) has no density, and in this case we sometimes speak of a
degenerate normal distribution. When μ = 0 and σ2 = 1, we say that N(0, 1)
is the standard Normal distribution.

When X is a r.v. with distribution N(μ, σ2) we write X
D= N(μ, σ2), or

alternatively L(X) = N(μ, σ2), where L stands for “law”: that is, “the law
of X is N(μ, σ2)”. The characteristic function ϕX of X is

ϕX(u) = eiuμ− σ2u2
2 . (16.2)

When σ2 > 0 this comes from Example 13.6, and when σ2 = 0 this is trivial.
Let us recall also that when L(X) = N(μ, σ2), then

E{X} = μ, Var(X) = σ2. (16.3)

At first glance it might seem strange to call a distribution with such an
odd appearing density “normal”. The reason for this dates back to the early
18th century, when the first versions of the Central Limit Theorem appeared
in books by Jacob Bernoulli (1713) and A. de Moivre (1718). These early
versions of the Central Limit Theorem were expanded upon by P. Laplace
and especially C. F. Gauss. Indeed because of the fundamental work of Gauss
normal random variables are often called Gaussian random variables, and the
former 10 Deutsche Mark note in Germany has a picture of Gauss on it and
a graph of the function f given in (16.1), which is known as the Gaussian
density. (This use of Probability Theory on currency, perhaps inspired by the
extensive use of probability in Finance, has disappeared now that the Mark
has been replaced with the Euro.) The Gaussian version of the Central Limit

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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Theorem can be loosely interpreted as saying that sums of i.i.d. random vari-
ables are approximately Gaussian. This is quite profound, since one needs
to know almost nothing about the actual distributions one is summing to
conclude the sum is approximately Gaussian. Finally we note that later Paul
Lévy did much work to find minimal hypotheses for the Central Limit theo-
rem to hold. It is this family of theorems that is central to much of Statistical
Theory; it allows one to assume a precise Gaussian structure from minimal
hypotheses. It is the “central” nature of this theorem in Statistics that gives
it its name, and which in turn makes Gaussian random variables both impor-
tant and ubiquitous, hence normal. We treat the Central Limit Theorem in
Chapter 21; here we lay the groundwork by studying the Gaussian random
variables that will arise as the limiting distributions.

For a real-valued random variable X the definition L(X) = N(μ, σ2) is
clear: it is a r.v. X with a density given by (16.1) if σ2 > 0, and it is X ≡ μ
if σ2 = 0. For an Rn-valued r.v. the definition is more subtle; the reason is
that we are actually describing the class of random variables that can arise
as limits in the Central Limit Theorem, and this class is more complicated
in Rn when n ≥ 2.

Definition 16.1. An Rn-valued random variable X = (X1, . . . , Xn) is
Gaussian (or Multivariate Normal) if every linear combination

∑n
j=1 ajXj

has a (one-dimensional) Normal distribution (possibly degenerate; for exam-
ple it has the distribution N(0, 0) when aj = 0, all j).

Characteristic functions are of help when studying Gaussian random vari-
ables.

Theorem 16.1. X is an Rn-valued Gaussian random variable if and only
if its characteristic function has the form

ϕX(u) = exp{i〈u, μ〉 − 1
2
〈u, Qu〉} (16.4)

where μ ∈ Rn and Q is an n×n symmetric nonnegative semi-definite matrix.
Q is then the covariance matrix of X and μ is the mean of X, that is μj =
E{Xj} for all j.

Proof (Sufficiency): Suppose we have (16.4). Let

Y =
n∑

j=1

ajXj = 〈a, X〉

be a linear combination of the components of X. We need to show Y is
(univariate) normal. But then for v ∈ R:

ϕY (v) = ϕX(va) = exp
{

iv〈a, μ〉 − v2

2
〈a, Qa〉

}
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and by equation (16.2), ϕY (v) is the characteristic function of a normal
N(〈a, μ〉, 〈a, Qa〉), and thus by Theorem 14.1 we have Y is normal.

(Necessity): Suppose X is Gaussian, and let

Y =
n∑

j=1

ajXj = 〈a, X〉

be a linear combination of the components of X. Let Q = Cov (X) be the
covariance matrix of X. Then

E{Y } = 〈a, μ〉

where μ = (μ1, . . . , μn) and E{Xi} = μi, 1 ≤ i ≤ n; and also

σ2(Y ) = 〈a, Qa〉,

by Theorem 12.4. Since Y is normal by hypothesis, by (16.2) again we have

ϕY (v) = exp
{

iv〈a, μ〉 − v2

2
〈a, Qa〉

}
.

Then
ϕY (1) = ϕ〈a,X〉(1) = E{exp(i〈a, X〉)} = ϕX(a),

and we have equation (16.4). �
Notation: When X is as in the previous theorem, we denote by N(μ, Q) its
law. Its depends on the two parameters: μ, the mean vector, and Q, the covari-
ance matrix. The terminology “mean vector” is clear from the previous proof,
in which we have seen that μi = E{Xi}. For the matrix Q = (Qi,j)1≤i,j≤n, by
differentiating Equation (16.4) twice and by using Theorem 13.2 we obtain

E{XiXj} = μiμj + Qi,j .

Then we see that Qi,j = Cov(Xi, Xj).
Example 1:

Let X1, . . . , Xn be R-valued independent random variables with laws
N(μj , σ

2
j ). Then X = (X1, . . . , Xn) is Gaussian (i.e., Multivariate Normal).

This is easy to verify, since

ϕX(u1, . . . , un) =
n∏

j=1

ϕXj (uj)

by Corollary 14.1; therefore
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ϕX(u) =
n∏

j=1

eiuj μj −u2
j σ2

j /2

= exp

⎛⎝ n∑
j=1

iujμj − 1
2

n∑
j=1

u2
jσ

2
j

⎞⎠
= ei〈u,μ〉− 1

2 〈u,Qu〉

where μ = (μ1, . . . , μn) and Q is the diagonal matrix⎛⎜⎜⎜⎝
σ2

1 0
σ2

2
. . .

0 σ2
n

⎞⎟⎟⎟⎠ .

Since ϕX(u) is of the form (16.4), we know that X is multivariate normal.
The converse of Example 1 is also true:

Corollary 16.1. Let X be an Rn-valued Gaussian random variable. The
components Xj are independent if and only if the covariance matrix Q of X
is diagonal.

Proof. Example 1 shows the necessity. Suppose then we know Q is diagonal,
i.e.

Q =

⎛⎜⎜⎜⎝
σ2

1 0
σ2

2
. . .

0 σ2
n

⎞⎟⎟⎟⎠ .

By Equation (16.4) of Theorem 16.1 it follows that ϕX factors:

ϕX(u) =
n∏

j=1

ϕXj (uj),

where

ϕXj (uj) = exp
{

iujμj − 1
2
u2

jσ
2
j

}
.

Corollary 14.1 then gives that the Xj are independent, and they are each
normal (N(μj , σ

2
j )) by Equation (16.2). �

The next theorem shows that all Gaussian random variables (i.e., Multi-
variate Normal random variables) arise as linear transformations of vectors
of independent univariate normals. (Recall that we use the terms normal and
Gaussian interchangeably.)
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Theorem 16.2. Let X be an Rn-valued Gaussian random variable with
mean vector μ. Then there exist independent Normal random variables Y1,
. . . , Yn with

L(Yj) = N(0, λj), λj ≥ 0, (1 ≤ j ≤ n),

and an orthogonal matrix A such that X = μ + AY .

Important Comment: We have assumed in Theorem 16.2 only that λj ≥ 0.
Some of the λj can sometimes take the value zero. In this case we have
Yj = 0. Thus the number of independent normal random variables required
in Theorem 16.2 can be strictly less in number than the number of non-trivial
components in the Gaussian r.v. X.
Proof of Theorem 16.2: Since Q is a covariance matrix it is symmetric, non-
negative semi-definite and there always exists an orthogonal matrix A such
that Q = AΛA∗, where Λ is a diagonal matrix with all entries nonnegative.
(Recall that an orthogonal matrix is a matrix where the rows (or columns),
considered as vectors, are orthonormal: that is they have length (or norm)
one and the scalar product of any two of them is zero (i.e., they are orthog-
onal).) A∗ means the transpose of the matrix A. Since A is orthogonal, then
A∗ is also the inverse of A.

We set
Y = A∗(X − μ)

where μj = E{Xj} for Xj the jth component of X. Since X is Gaussian by
hypothesis, we have that Y must be Gaussian too, since any linear combina-
tion of the components of Y is also a linear combination of the components
of X and therefore univariate normal. Moreover the covariance matrix of Y
is A∗QA = Λ, the sought after diagonal matrix. Since X = μ + AY (because
A∗−1 = A), we have proved the theorem. �

Corollary 16.2. An Rn-valued Gaussian random variable X has a density
on Rn if and only if the covariance matrix Q is non-degenerate (that is,
there does not exist a vector a ∈ Rn such that Qa = 0, or equivalently that
det(Q) �= 0).

Proof. By Theorem 16.2 we know there exist n independent normals Y1, . . . , Yn

of laws N(0, λj), (1 ≤ j ≤ n), with Q = AΛA∗, for an orthogonal matrix
A. If det(Q) �= 0, we must have λj > 0, for all j (1 ≤ j ≤ n), because
det(Q) = det(Λ) =

∏n
i=1 λi. Since λj > 0 and L(Yj) = N(0, λj), we know

that Y has a density given by

fY (y) =
n∏

j=1

1√
2πλj

e−y2
j /2λj ,

and since X = μ+AY , we deduce from Theorem 12.7 that X has the density
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fX(x) =
1

2πn/2
√

det Q
e− 1

2 〈x−μ,Q−1(x−μ)〉. (16.5)

Next suppose Q is degenerate: that is, det(Q) = 0. Then there exists an
a ∈ Rn, a �= 0 such that Qa = 0 (that is, the kernel of the linear transforma-
tion represented by Q is non-trivial). The random variable Z = 〈a, X〉 has a
variance equal to 〈a, Qa〉 = 0, so it is a.s. equal to its mean 〈a, μ〉. Therefore
P (X ∈ H) = 1, where H is an affine hyperplane orthogonal to the vector a
and containing the vector μ, that is H = {x ∈ Rn : 〈x − μ, a〉 = 0}.) Since
the dimension of H is n − 1, the n-dimensional Lebesgue measure of H is
zero. If X were to have a density, we would need to have the property

1 = P (X ∈ H) =
∫

H

f(x)dx =
∫

H

f(x1, . . . , xn)dx1 . . . dxn. (16.6)

However ∫
1H(x1, . . . , xn)dx1 . . . dxn = 0

because H is a hyperplane (see Exercise 16.1), hence (16.6) cannot hold;
whence X cannot have a density. �
Comment: Corollary 16.2 shows that when n ≥ 2 there exist normal (Gaus-
sian) non constant random variables without densities (when n = 1 a normal
variable is either constant or with a density). Moreover since (as we shall see
in Chapter 21) these random variables arise as limits in the Central Limit
Theorem, they are important and cannot be ignored. Thus while it is tempt-
ing to define Gaussian random variables as (for example) random variables
having densities of the form given in (16.5), such a definition would not cover
some important cases.

An elementary but important property of Rn-valued Gaussian random
variables is as follows:

Theorem 16.3. Let X be an Rn-valued Gaussian random variable, and let
Y be an Rm-valued Gaussian r.v. If X and Y are independent then Z =
(X, Y ) is an Rn+m-valued Gaussian r.v.

Proof. We have
ϕZ(u) = ϕX(w)ϕY (v)

where
u = (w, v); w ∈ Rn, v ∈ Rm;

since X and Y are independent. By Theorem 16.1

ϕZ(u) = exp
{

i〈w, μX〉 − 1
2
〈w, QXw〉

}
exp
{

i〈v, μY 〉 − 1
2
〈v, QY v〉

}
= exp

{
i〈(w, v), (μX , μY )〉 − 1

2
〈u, Qu〉

}
,
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where

Q =
(

QX 0
0 QY

)
.

Again using Theorem 16.1 this is the characteristic function of a Gaussian
r.v. �

We say that two random variables X, Y are uncorrelated if Cov (X, Y ) = 0.
Since

Cov (X, Y ) = E{XY } − E{X}E{Y },
this is equivalent to saying that E{XY } = E{X}E{Y }. This of course is
true if X and Y are independent (Theorem 12.3) and thus X, Y independent
implies that X, Y are uncorrelated. The converse is false is general. However
it is true for the Multivariate Normal (or Gaussian) case, a surprising and
useful fact.

Theorem 16.4. Let X be an Rn-valued Gaussian random variable. Two
components Xj and Xk of X are independent if and only if they are uncor-
related.

Proof. We have already seen the necessity. Conversely, suppose that Xj and
Xk are uncorrelated. We can consider the two dimensional random vector
Y = (Y1, Y2), with Y1 = Xj and Y2 = Xk. Clearly Y is a bivariate normal
vector, and since Cov(Y1, Y2) = 0 by hypothesis we have that the covariance
matrix of Y is diagonal, and the theorem reduces to Corollary 16.1. �

A standard model used in science, engineering, and the social sciences is
that of simple linear regression.1 Here one has random variables Yi, 1 ≤ i ≤ n,
of the form

Yi = α + βxi + εi, (1 ≤ i ≤ n) (16.7)

where α, β, and xi are all constants, and εi are random variables. A typical
model is to think that one is measuring α+βxi and one makes a measurement
error εi. Because of the Central Limit Theorem (see Chapter 21), one often
assumes that (εi)1≤i≤n have a multivariate normal distribution. Following
Berger and Casella [5] we call xi the predictor variable (again, xi is non-
random), and we call Yi the response variable.2

Let us assume that E{εi} = 0, 1 ≤ i ≤ n. Then taking expectations in
(16.7) we have

E{Yi} = α + βxi. (16.8)

Typically one wishes to learn the nature of the linear relation between Yi and
xi; this would be obvious if εi were not present to obscure it. That is, one
1 The “linearity” refers to the linear nature of the dependence on the parameters

α and β; not of xi.
2 Sometimes xi is called the “independent variable” and Yi the “dependent vari-

able”. We do not use this terminology because of the possible confusion with
independent random variables.
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wants to find α and β by observing Yi and knowing xi, 1 ≤ i ≤ n. And to
begin with, we rule out the case where all xi’s are equal, because then we can
at best find the constant α+βx1 and we cannot discriminate between α and
β: in other words, we suppose that

∑n
i=1(xi−x)2 > 0, where x = 1

n

∑n
i=1 xi.

One can treat these models quite generally (see Chapter 12 of [5] for
example), but we will limit our attention to the most important case: where
the “errors” are normal.

Indeed, let the random variables (εi)1≤i≤n be i.i.d. N(0, σ2) random vari-
ables. An estimator U for α or V for β is a random variable which depends on
the observed values Y1, . . . , Yn and possibly on the known numbers x1, . . . , xn,
but not on the unknown α and β. Among all possible estimators, the simplest
ones are the so-called linear estimators, which are of the form

U = u0 +
n∑

i=1

uiYi, V = v0 +
n∑

i=1

viYi (16.9)

for some sequences of constants u0, . . . , un and v0, . . . , vn. The estimators U
and V are said to be unbiased if E{U} = α and E{V } = β. Since E{εi} = 0,
this is the case if and only if

α = E(U) = u0 + α

(
n∑

i=1

ui

)
+ β

(
n∑

i=1

uixi

)
(16.10)

β = E(V ) = v0 + α

(
n∑

i=1

vi

)
+ β

(
n∑

i=1

vixi

)
. (16.11)

These equations should be satisfied for all choices of α and β, and this is the
case if and only if

u0 = 0
n∑

i=1

ui = 1 and
n∑

i=1

uixi = 0, (16.12)

v0 = 0
n∑

i=1

vi = 0 and
n∑

i=1

vixi = 1. (16.13)

Among those estimators U (resp. V ) of the form (16.9), which satisfy
(16.12) (resp. (16.13)), how do we choose one? A standard method is to com-
pare squared error loss: that is, U1 and V1 can be considered to be “better”
than U2 and V2 if

E{(U1 − α)2} ≤ E{(U2 − α)2}, E{(V1 − β)2} ≤ E{(V2 − β)2}. (16.14)

It is a standard exercise in a statistics course to show that

vi =
(xi − x)∑n

j=1(xj − x)2
, ui =

1
n
− xvi (16.15)
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minimize the squared error losses, subject to the unbiasedness conditions
(16.12) and (16.13), and thus give the best estimators among linear unbiased
estimators. See, e.g., [5, pp.557–564]. Because of (16.15) these best estimators
take the following form, with Y = 1

n

∑n
i=1 Yi:

B =
n∑

i=1

(xi − x)∑n
j=1(xj − x)2

Yi, A = Y − xB. (16.16)

We can now determine the distributions of the estimates B and A for
the Gaussian case. It is a spectacular property of the Gaussian that A and
B are also themselves jointly Gaussian! Thus we can not only determine the
distributions of our estimato

Theorem 16.5. Let (εi)1≤i≤n be i.i.d. N(0, σ2) and suppose

Yi = α + βxi + εi, (1 ≤ i ≤ n).

The estimators B for β and A for α given in (16.16) are jointly Gaussian,
with means α and β respectively, and covariance matrix given by

Var (A) =
σ2

n
∑n

j=1(xj − x)2

n∑
j=1

x2
j ,

Var (B) =
σ2∑n

j=1(xj − x)2
,

Cov (A, B) =
−σ2x∑n

j=1(xj − x)2
,

where x = 1
n

∑n
j=1 xj.

Proof. Since the (εi)1≤i≤n are independent and Gaussian, they form a Gaus-
sian vector by Example 1. Now, A and B are both equal to a constant plus
a linear combination of the εi’s, so the pair (A, B) is Gaussian by the very
definition. By construction they are unbiased estimators for α and β, that is
they have α and β for their respective means.

Since for any r.v. U we have Var (uU + v) = u2Var (U), we can write

Var (B) = Var

(
n∑

i=1

viYi

)

= Var

(
n∑

i=1

viεi

)

=
n∑

i=1

v2
i Var (εi) by independence of the εi’s
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= σ2
n∑

i=1

(
(xi − x)∑n

j=1(xj − x)2

)2

=
σ2∑n

i=1(xi − x)2
.

Similarly, we have

Var (A) =
n∑

i=1

v2
i Var (εi)

= σ2
n∑

i=1

(
1
n2 + x2v2

i − 2
xvi

n

)

= σ2

(
1
n

+ x2
n∑

i=1

v2
i

)

=
σ2∑n

i=1 x2
i∑n

i=1(xi − x)2
.

Cov (A, B) = Cov

(
n∑

i=1

uiεi,
n∑

i=1

viεi

)

=
n∑

i=1

uiviVar (εi)

= σ2
n∑

i=1

(vi

n
− xv2

i

)
= −σ2x

n∑
i=1

v2
i = −xVar (B)

�
We end this chapter with an example that serves as a warning: X can

be an Rn-valued random variable, with each component being univariate
normal, but not be multivariate normal (or Gaussian). Thus the property
of being multivariate normal is stronger than simply having each component
being normal.
Example 2. Let L(Y ) = N(0, 1), and set for some a > 0:

Z = Y 1{|Y |≤a} − Y 1{|Y |>a}.

Then Z is also N(0, 1) (see Exercise 16.2), but Y + Z = 2Y 1{|Y |≤a} which is
not normal, since (for example) P (Y + Z > 2|a|) = 0 and Y + Z is not a.s.
equal to a constant. Therefore X = (Y, Z) is an R2-valued r.v. which is not
Gaussian, even though its two components are each normal (or Gaussian).

It is worth emphasizing that the Multivariate Normal has several special
properties not shared in general with other distributions. We have seen that
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1. Components are independent if and only if they are uncorrelated;
2. We have that the components are univariate normal: thus the components

belong to the same distribution family as the vector random variable;
3. A Gaussian X with an N(μ, Q) distribution with Q invertible can be

linearly transformed into an N(0, I) r.v. (Exercise 16.6); that is, linear
transformations do not change the distribution family;

4. The density exists if and only if the covariance matrix is nondegenerate,
giving a simple criterion for the existence of a density; and finally

5. We have that the conditional distributions of Multivariate Normal dis-
tributions are also normal (Exercise 16.10).

These six properties show a remarkable stability inherent in the Multi-
variate Normal. There are many more special features of the normal that we
do not go into here.

It is interesting to note that the normal distribution does not really exist
in nature. It arises via a limiting procedure (the Central Limit Theorem),
and thus it is an approximation of reality, and often it is an excellent approx-
imation. When one says, for example, that the heights of twenty year old
men in the United States are normally distributed with mean μ and variance
σ2, one actually means that the heights are approximately so distributed.
Indeed, if the heights were in fact normally distributed, there would be a
strictly positive probability of finding men that were of negative height and
also of finding men taller than the Sears Tower in Chicago. Such results are
of course nonsense. However these positive probabilities are so small as to be
equal to zero to many decimal places, and since zero is the true probability
of such events we do not have a contradiction to the result that the normal
distribution is indeed an excellent approximation to the true distribution of
men, which is itself not precisely known.
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Exercises for Chapter 16

16.1 Let a ∈ Rn, a �= 0, and μ ∈ Rn. Let H be the hyperplane in Rn given
by

H = {x ∈ Rn : 〈x− μ, a〉 = 0}.
Show that mn(H) = 0 where mn is n-dimensional Lebesgue measure, and
deduce that∫

H

f(x)dx =
∫ ∞

−∞
. . .

∫ ∞

∞
f(x1, . . . , xn)1H(X1, . . . , xn)dx1 . . . dxn = 0

for any Borel function f on Rn.

16.2 Let L(Y ) = N(0, 1), and let a > 0. Let

Z =
{

Y if |Y | ≤ a,
−Y if |Y | > a.

Show that L(Z) = N(0, 1) as well.

16.3 Let X be N(0, 1) and let Z be independent of X with P (Z = 1) =
P (Z = −1) = 1

2 . Let Y = ZX. Show L(Y ) = N(0, 1), but that (X, Y ) is not
Gaussian (i.e., not Multivariate Normal).

16.4 Let (X, Y ) be Gaussian with mean (μX , μY ) and covariance matrix Q
and det(Q) > 0. Let ρ be the correlation coefficient

ρ =
Cov (X, Y )√
Var(X)Var(Y )

.

Show that if −1 < ρ < 1 the density of (X, Y ) exists and is equal to:

f(X,Y )(x, y) =
1

2πσXσY

√
1− ρ2

exp
{ −1

2(1− ρ2)

((
x− μX

σX

)2

−2ρ(x− μX)(y − μY )
σXσY

+
(

(y − μY )
σY

)2
)}

.

Show that if ρ = −1 or ρ = 1, then the density of (X, Y ) does not exist.

16.5 Let ρ be in between −1 and 1, and μj , σ2
j (j = 1, 2) be given. Construct

X1, X2 Normals with means μ1, μ2; variances σ2
1 , σ2

2 ; and correlation ρ. (Hint:
Let Y1, Y2 be i.i.d. N(0, 1) and set U1 = Y1 and U2 = ρY1 +

√
1− ρ2 Y2.

Then let Xj = μj + σjYj (j = 1, 2).)
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16.6 Suppose X is Gaussian N(μ, Q) on Rn, with det(Q) > 0. Show that
there exists a matrix B such that Y = B(X−μ) has the N(0, I) distribution,
where I is the n×n identity matrix. (Special Note: This shows that any Gaus-
sian r.v. with non-degenerate covariance matrix can be linearly transformed
into a standard normal.)

16.7 Let X be Gaussian and let

Y =
n∑

j=1

ajXj ,

where X = (X1, . . . , Xn). Show that Y is univariate N(μ, σ2) where

μ =
n∑

j=1

ajE{Xj}

and

σ2 =
n∑

j=1

a2
jVar(Xj) + 2

∑
j<k

ajakCov (Xj , Xk).

16.8 Let (X, Y ) be bivariate normal N(μ, Q), where

Q =
(

σ2
X ρσXσY

ρσXσY σ2
Y

)
and ρ is the correlation coefficient (|ρ| < 1), (det(Q) > 0). Then (X, Y ) has
a density f and show that its conditional density fX=x(y) is the density of
a univariate normal with mean μY + ρ σY

σX
(x− μX) and variance σ2

Y (1− ρ2).
(cf. Theorem 12.2.)

16.9 Let X be N(μ, Q) with μ = (1, 1) and Q =
(

3 1
1 2

)
. Find the conditional

distribution of Y = X1 + X2 given Z = X1 −X2 = 0.⎡⎣Answer: fZ=0(y) =
1

√
2π
√

20
3

exp
{
−1

2
(y − 2)2

20
3

}
.

⎤⎦
16.10 Let L(X) = N(μ, Q) with det(Q) > 0. Show that the conditional
distributions of any number of coordinates of X, knowing the others, are
also multivariate normal (cf. Theorem 12.2). [This Exercise generalizes Ex-
ercise 16.8.]

16.11 (Gut, 1995). Let (X, Y ) have joint density

f(X,Y )(x, y) = c exp
{−(1 + x2)(1 + y2)

}
, −∞ < x, y <∞,

where c is chosen so that f is a density. Show that f is not the density of a
bivariate normal but that fX=x(y) and fY =y(x) are each normal densities.
(This shows that the converse of Exercise 16.10 does not hold.)
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16.12 Let (X, Y ) be Bivariate Normal with correlation coefficient ρ and mean
(0, 0). Show that if |ρ| < 1, then Z = X

Y is Cauchy with parameters α =
ρσX

σY
and β = σX

σY

√
1− ρ2. (Note: This result was already established in

Example 12.5 when X and Y were independent.) We conclude that the ratio
of two centered Bivariate Normals is a Cauchy r.v.

16.13 * Let (X, Y ) be bivariate normal with mean 0 and correlation coeffi-
cient ρ. Let β be such that

cos β = ρ (0 ≤ β ≤ π)

and show that
P{XY < 0} =

β

π
.

(Hint: Recall from Exercise 16.12 that if Z = X
Y and z = ρσX

σY
, then

FZ(z) =
1
2

+
1
π

Arctan

(
zσY − ρσX

σX

√
1− ρ2

)
.

Let α = Arcsin ρ (−π
2 ≤ α ≤ π

2 ) and show first P (XY < 0) = 1
2 − α

π , using
that Arctan ρ√

1−ρ2
= Arcsin ρ.)

16.14 Let (X, Y ), α and ρ be as in Exercise 16.13. Show that

P{X > 0, Y > 0} = P{X < 0, Y < 0} =
1
4

+
α

2π
;

P{X > 0, Y < 0} = P{X < 0, Y > 0} =
1
4
− α

2π
.

16.15 * Let (X, Y ) be bivariate normal with density

f(X,Y )(x, y) =
1

2πσXσY

√
1− ρ2

e
− 1

2(1−ρ2)

(
x2

σ2
X

− 2ρxy
σX σY

+ y2

σ2
Y

)
.

Show that:

a) E{XY } = ρσXσY

b) E{X2Y 2} = E{X2}E{Y 2}+ 2(E{XY })2
c) E{|XY |} = 2σX σY

π (cos α + α sinα) where α is given by sin α = ρ (−π
2 ≤

α ≤ π
2 ) (cf. Exercise 16.13).

16.16 Let (X, Y ) be bivariate normal with correlation ρ and σ2
X = σ2

Y . Show
that X and Y − ρX are independent.

16.17 Let X be N(μ, Q) with det(Q) > 0, with X Rn-valued. Show that

(X − μ)∗Q−1(X − μ) is χ2(n).
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16.18 Let X1, . . . , Xn be i.i.d. N(0, σ2), and let

x =
1
n

n∑
j=1

Xj and S2 =
1

n− 1

n∑
j=1

(Xj − x)2.

Recall from Exercise 15.13 that x and S2 are independent. Show that

n∑
j=1

X2
j =

n∑
j=1

(Xj − x)2 + nx2

and deduce that (n− 1)S2/σ2 has a χ2
n−1 distribution and that nx2/σ2 has

a χ2
1 distribution.

16.19 Let ε1, . . . , εn be i.i.d. N(0, σ2) and suppose Yi = α + βxi + εi, 1 ≤
i ≤ n. Suppose also that all xi’s are not equal, and set x = 1

n

∑n
i=1 xi. We

define regression residuals to be

ε̂i = Yi −A−Bxi,

where A and B are given in (16.16).

a) Show that E{ε̂i} = 0, 1 ≤ i ≤ n
b)∗ Show that

Var (ε̂i) = σ2
(

n− 1
n
− (xi − x)2∑n

i=1(xi − x)2

)
16.20 Let ε1, . . . , εn and ε̂1, . . . , ε̂n be as in Exercise 16.19. Suppose σ is
unknown, and define

σ̂2 =
1
n

n∑
i=1

ε̂2
i .

Show that E{σ̂2} = n−2
n σ2. (Since E{σ̂2} �= σ2, σ̂2 is said to be a biased

estimator for σ2; an unbiased estimator for σ2 is S2 = n
n−2 σ̂2.)

16.21 Let ε1, . . . , εn, A, B, S2 be as in Exercises 16.19 and 16.20. Show that
(A, B) and S2 are independent.



17 Convergence of Random Variables

In elementary mathematics courses (such as Calculus) one speaks of the con-
vergence of functions: fn:R → R, then limn→∞ fn = f if limn→∞ fn(x) =
f(x) for all x in R. This is called pointwise convergence of functions. A ran-
dom variable is of course a function (X: Ω → R for an abstract space Ω),
and thus we have the same notion: a sequence Xn: Ω → R converges point-
wise to X if limn→∞ Xn(ω) = X(ω), for all ω ∈ Ω. This natural definition
is surprisingly useless in probability. The next example gives an indication
why.

Example 1: Let Xn be an i.i.d. sequence of random variables with P (Xn =
1) = p and P (Xn = 0) = 1−p. For example we can imagine tossing a slightly
unbalanced coin (so that p > 1

2 ) repeatedly, and {Xn = 1} corresponds to
heads on the nth toss and {Xn = 0} corresponds to tails on the nth toss. In
the “long run”, we would expect the proportion of heads to be p; this would
justify our model that claims the probability of heads is p. Mathematically
we would want

lim
n→∞

X1(ω) + . . . + Xn(ω)
n

= p for all ω ∈ Ω.

This simply does not happen! For example let ω0 = {T, T, T, . . .}, the se-
quence of all tails. For this ω0,

lim
n→∞

1
n

n∑
j=1

Xj(ω0) = 0.

More generally we have the event

A = {ω : only a finite number of heads occur}.
Then

lim
n→∞

1
n

n∑
j=1

Xj(ω) = 0 for all ω ∈ A.

We readily admit that the event A is very unlikely to occur. Indeed, we
can show (Exercise 17.13) that P (A) = 0. In fact, what we will eventually
show (see the Strong Law of Large Numbers [Chapter 20]) is that
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P

⎛⎝⎧⎨⎩ω : lim
n→∞

1
n

n∑
j=1

Xj(ω) = p

⎫⎬⎭
⎞⎠ = 1.

This type of convergence of random variables, where we do not have conver-
gence for all ω but do have convergence for almost all ω (i.e., the set of ω
where we do have convergence has probability one), is what typically arises.

Caveat: In this chapter we will assume that all random variables are defined
on a given, fixed probability space (Ω,A, P ) and takes values in R or Rn.
We also denote by |x| the Euclidean norm of x ∈ Rn.

Definition 17.1. We say that a sequence of random variables (Xn)n≥1 con-
verges almost surely to a random variable X if

N =
{

ω : lim
n→∞ Xn(ω) �= X(ω)

}
has P (N) = 0.

Recall that the set N is called a null set, or a negligible set.

Note that

N c = Λ =
{

ω : lim
n→∞ Xn(ω) = X(ω)

}
and then P (Λ) = 1.

We usually abbreviate almost sure convergence by writing

lim
n→∞ Xn = X a.s.

We have given an example of almost sure convergence from coin tossing pre-
ceding this definition.

Just as we defined almost sure convergence because it naturally occurs
when “pointwise convergence” (for all “points”) fails, we need to introduce
two more types of convergence. These next two types of convergence also
arise naturally when a.s. convergence fails, and they are also useful as tools
to help to show that a.s. convergence holds.

Definition 17.2. A sequence of random variables (Xn)n≥1 converges in Lp

to X (where 1 ≤ p <∞) if |Xn|, |X| are in Lp and:

lim
n→∞ E{|Xn −X|p} = 0.

Alternatively one says Xn converges to X in pth mean, and one writes

Xn
Lp

→ X.

The most important cases for convergence in pth mean are when p = 1
and when p = 2. When p = 1 and all r.v.’s are one-dimensional, we have
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|E{Xn − X}| ≤ E{|Xn − X|} and |E{|Xn|} − E{|X|}| ≤ E{|Xn − X|}
because ||x| − |y|| ≤ |x− y|. Hence

Xn
L1

→ X implies E{Xn} → E{X} and E{|Xn|} → E{|X|}. (17.1)

Similarly, when Xn
Lp

→ X for p ∈ (1,∞), we have that E{|Xn|p} converges to
E{|X|p}: see Exercise 17.14 for the case p = 2.

Definition 17.3. A sequence of random variables (Xn)n≥1 converges in
probability to X if for any ε > 0 we have

lim
n→∞ P ({ω : |Xn(ω)−X(ω)| > ε}) = 0.

This is also written
lim

n→∞ P (|Xn −X| > ε) = 0,

and denoted
Xn

P→ X.

Using the epsilon-delta definition of a limit, one could alternatively say
that Xn tends to X in probability if for any ε > 0, any δ > 0, there exists
N = N(δ) such that

P (|Xn −X| > ε) < δ

for all n ≥ N .
Before we establish the relationships between the different types of con-

vergence, we give a surprisingly useful small result which characterizes con-
vergence in probability.

Theorem 17.1. Xn
P→ X if and only if

lim
n→∞ E

{ |Xn −X|
1 + |Xn −X|

}
= 0.

Proof. There is no loss of generality by taking X = 0. Thus we want to show
Xn

P→ 0 if and only if limn→∞ E{ |Xn |
1+|Xn |} = 0. First suppose that Xn

P→ 0.
Then for any ε > 0, limn→∞ P (|Xn| > ε) = 0. Note that

|Xn|
1 + |Xn| ≤

|Xn|
1 + |Xn|1{|Xn |>ε} + ε1{|Xn |≤ε} ≤ 1{|Xn |>ε} + ε.

Therefore

E

{ |Xn|
1 + |Xn|

}
≤ E

{
1{|Xn |>ε}

}
+ ε = P (|Xn| > ε) + ε.

Taking limits yields
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lim
n→∞ E

{ |Xn|
1 + |Xn|

}
≤ ε;

since ε was arbitrary we have limn→∞ E{ |Xn |
1+|Xn |} = 0.

Next suppose limn→∞ E{ |Xn |
1+|Xn |} = 0. The function f(x) = x

1+x is strictly
increasing. Therefore

ε

1 + ε
1{|Xn |>ε} ≤ |Xn|

1 + |Xn|1{|Xn |>ε} ≤ |Xn|
1 + |Xn| .

Taking expectations and then limits yields

ε

1 + ε
lim

n→∞ P (|Xn| > ε) ≤ lim
n→∞ E

{ |Xn|
1 + |Xn|

}
= 0.

Since ε > 0 is fixed, we conclude limn→∞ P (|Xn| > ε) = 0. �

Remark: What this theorem says is that Xn
P→ X iff1E{f(|Xn −X|)} → 0

for the function f(x) = |x]
1+|x| . A careful examination of the proof shows that

the same equivalence holds for any function f on R+ which is bounded, non-
decreasing on [0,∞), continuous, and with f(0) = 0 and f(x) > 0 when
x > 0. For example we have Xn

P→ X iff E{|Xn −X| ∧ 1} → 0 and also iff
E{arctan(|Xn −X|)} → 0.

The next theorem shows that convergence in probability is the weakest of
the three types of convergence (a.s., Lp, and probability).

Theorem 17.2. Let (Xn)n≥1 be a sequence of random variables.

a) If Xn
Lp

→ X, then Xn
P→ X.

b) If Xn
a.s.→ X, then Xn

P→ X.

Proof. (a) Recall that for an event A, P (A) = E{1A}, where 1A is the indi-
cator function of the event A. Therefore,

P{|Xn −X| > ε} = E
{
1{|Xn −X|>ε}

}
.

Note that |Xn −X|p
εp > 1 on the event {|Xn −X| > ε}, hence

≤ E

{ |Xn −X|p
εp

1{|Xn −X|>ε}

}
=

1
εp

E
{|Xn −X|p1{|Xn −X|>ε}

}
,

and since |Xn −X|p ≥ 0 always, we can simply drop the indicator function
to get:
1 The notation iff is a standard notation shorthand for “if and only if”
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≤ 1
εp

E{|Xn −X|p}.
The last expression tends to 0 as n tends to ∞ (for fixed ε > 0), which gives
the result.

(b) Since |Xn −X|
1+|Xn −X| ≤ 1 always, we have

lim
n→∞ E

{ |Xn −X|
1 + |Xn −X|

}
= E

{
lim

n→∞
|Xn −X|

1 + |Xn −X|
}

= E{0} = 0

by Lebesgue’s Dominated Convergence Theorem (9.1(f)). We then apply The-
orem 17.1. �

The converse to Theorem 17.2 is not true; nevertheless we have two partial
converses. The most delicate one concerns the relation with a.s. convergence,
and goes as follows:

Theorem 17.3. Suppose Xn
P→ X. Then there exists a subsequence nk such

that limk→∞ Xnk
= X almost surely.

Proof. Since Xn
P→ X we have that limn→∞ E{ |Xn −X|

1+|Xn −X|} = 0 by The-

orem 17.1. Choose a subsequence nk such that E{ |Xn k
−X|

1+|Xn k
−X|} < 1

2k . Then∑∞
k=1 E{ |Xn k

−X|
1+|Xn k

−X|} <∞ and by Theorem 9.2 we have that
∑∞

k=1
|Xn k

−X|
1+|Xn k

−X|
<∞ a.s.; since the general term of a convergent series must tend to zero, we
conclude

lim
nk →∞ |Xnk

−X| = 0 a.s.

�

Remark 17.1. Theorem 17.3 can also be proved fairly simply using the Borel–
Cantelli Theorem (Theorem 10.5).

Example 2: Xn
P→ X does not necessarily imply that Xn converges to X

almost surely. For example take Ω = [0, 1], A the Borel sets on [0, 1], and
P the uniform probability measure on [0, 1]. (That is, P is just Lebesgue
measure restricted to the interval [0, 1].) Let An be any interval in [0, 1] of
length an, and take Xn = 1An . Then P (|Xn| > ε) = an, and as soon as
an → 0 we deduce that Xn

P→ 0 (that is, Xn tends to 0 in probability). More
precisely, let Xn,j be the indicator of the interval [ j−1

n , j
n ], 1 ≤ j ≤ n, n ≥ 1.

We can make one sequence of the Xn,j by ordering them first by increasing
n, and then for each fixed n by increasing j. Call the new sequence Ym. Thus
the sequence would be:

X1,1 , X2,1 , X2,2 , X3,1 , X3,2 , X3,3 , X4,1 , . . .
Y1 , Y2 , Y3 , Y4 , Y5 , Y6 , Y7 , . . .
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Note that for each ω and every n, there exists a j such that Xn,j(ω) = 1.
Therefore lim supm→∞ Ym = 1 a.s., while lim infm→∞ Ym = 0 a.s. Clearly
then the sequence Ym does not converge a.s. However Yn is the indicator of
an interval whose length an goes to 0 as n → ∞, so the sequence Yn does
converge to 0 in probability.

The second partial converse of Theorem 17.2 is as follows:

Theorem 17.4. Suppose Xn
P→ X and also that |Xn| ≤ Y , all n, and Y ∈

Lp. Then |X| is in Lp and Xn
Lp

→ X.

Proof. Since E{|Xn|p} ≤ E{Y p} <∞, we have Xn ∈ Lp. For ε > 0 we have

{|X| > Y + ε} ⊂ {|X| > |Xn|+ ε}
⊂ {|X| − |Xn| > ε}
⊂ {|X −Xn| > ε},

hence
P (|X| > Y + ε) ≤ P (|X −Xn| > ε),

and since this is true for each n, we have

P (|X| > Y + ε) ≤ lim
n→∞ P (|X −Xn| > ε) = 0,

by hypothesis. This is true for each ε > 0, hence

P (|X| > Y ) ≤ lim
m→∞ P (|X| > Y +

1
m

) = 0,

from which we get |X| ≤ Y a.s. Therefore X ∈ Lp too.
Suppose now that Xn does not converge to X in Lp. There is a subse-

quence (nk) such that E{|Xnk
− X|p} ≥ ε for all k, and for some ε > 0.

The subsequence Xnk
trivially converges to X in probability, so by Theorem

17.3 it admits a further subsequence Xnkj
which converges a.s. to X. Now,

the r.v.’s Xnkj
−X tend a.s. to 0 as j →∞, while staying smaller than 2Y ,

so by Lebesgue’s Dominated Convergence we get that E{|Xnkj
−X|p} → 0,

which contradicts the property that E{|Xnk
−X|p} ≥ ε for all k: hence we

are done. �
The next theorem is elementary but also quite useful to keep in mind.

Theorem 17.5. Let f be a continuous function.

a) If limn→∞ Xn = X a.s., then limn→∞ f(Xn) = f(X) a.s.
b) If Xn

P→ X, then f(Xn) P→ f(X).
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Proof. (a) Let N = {ω : limn→∞ Xn(ω) �= X(ω)}. Then P (N) = 0 by
hypothesis. If ω �∈ N , then

lim
n→∞ f(Xn(ω)) = f

(
lim

n→∞ Xn(ω)
)

= f(X(ω)),

where the first equality is by the continuity of f . Since this is true for any
ω �∈ N , and P (N) = 0, we have the almost sure convergence.

(b) For each k > 0, let us set:

{|f(Xn)− f(X)| > ε} ⊂ {|f(Xn)− f(X)| > ε, |X| ≤ k} ∪ {|X| > k}. (17.2)

Since f is continuous, it is uniformly continuous on any bounded interval.
Therefore for our ε given, there exists a δ > 0 such that |f(x)− f(y)| ≤ ε if
|x− y| ≤ δ for x and y in [−k, k]. This means that

{|f(Xn)− f(X)| > ε, |X| ≤ k} ⊂ {|Xn −X| > δ, |X| ≤ k} ⊂ {|Xn−X| > δ}.

Combining this with (17.2) gives

{|f(Xn)− f(X)| > ε} ⊂ {|Xn −X| > δ} ∪ {|X| > k}. (17.3)

Using simple subadditivity (P (A∪B) ≤ P (A)+P (B)) we obtain from (17.3):

P {|f(Xn)− f(X)| > ε} ≤ P (|Xn −X| > δ) + P (|X| > k).

However {|X| > k} tends to the empty set as k increases to ∞ so
limk→∞ P (|X| > k) = 0. Therefore for γ > 0 we choose k so large that
P (|X| > k) < γ. Once k is fixed, we obtain the δ of (17.3), and therefore

lim
n→∞ P (|f(Xn)− f(X)| > ε) ≤ lim

n→∞ P (|Xn −X| > δ) + γ = γ.

Since γ > 0 was arbitrary, we deduce the result. �
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Exercises for Chapter 17

17.1 Let Xn,j be as given in Example 2. Let Zn,j = n
1
p Xn,j . Let Ym be the

sequence obtained by ordering the Zn,j as was done in Example 2. Show that
Ym tends to 0 in probability but that (Ym)m≥1 does not tend to 0 in Lp,
although each Yn belongs to Lp.

17.2 Show that Theorem 17.5(b) is false in general if f is not assumed to
be continuous. (Hint: Take f(x) = 1{0}(x) and the Xn’s tending to 0 in
probability.)

17.3 Let Xn be i.i.d. random variables with P (Xn = 1) = 1
2 and P (Xn =

−1) = 1
2 . Show that

1
n

n∑
j=1

Xj

converges to 0 in probability. (Hint: Let Sn =
∑n

j=1 Xj , and use Chebyshev’s
inequality on P{|Sn| > nε}.)
17.4 Let Xn and Sn be as in Exercise 17.3. Show that 1

n2 Sn2 converges to
zero a.s. (Hint: Show that

∑∞
n=1 P{ 1

n2 |Sn2 | > ε} < ∞ and use the Borel-
Cantelli Theorem.)

17.5 * Suppose |Xn| ≤ Y a.s., each n, n = 1, 2, 3 . . .Ṡhow that supn |Xn| ≤ Y
a.s. also.

17.6 Let Xn
P→ X. Show that the characteristic functions ϕXn converge

pointwise to ϕX (Hint: Use Theorem 17.4.)

17.7 Let X1, . . . , Xn be i.i.d. Cauchy random variables with parameters α =
0 and β = 1. (That is, their density is f(x) = 1

π(1+x2) , −∞ < x <∞.) Show
that 1

n

∑n
j=1 Xj also has a Cauchy distribution. (Hint: Use Characteristic

functions: See Exercise 14.1.)

17.8 Let X1, . . . , Xn, . . . be i.i.d. Cauchy random variables with parameters
α = 0 and β = 1. Show that there is no constant γ such that 1

n

∑n
j=1 Xj

P→ γ.
(Hint: Use Exercise 17.7.) Deduce that there is no constant γ such that
limn→∞ 1

n

∑n
j=1 Xj = γ a.s. as well.

17.9 Let (Xn)n≥1 have finite variances and zero means (i.e., Var(Xn) =
σ2

Xn
< ∞ and E{Xn} = 0, all n). Suppose limn→∞ σ2

Xn
= 0. Show Xn

converges to 0 in L2 and in probability.

17.10 Let Xj be i.i.d. with finite variances and zero means. Let Sn =∑n
j=1 Xj . Show that 1

nSn tends to 0 in both L2 and in probability.
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17.11 * Suppose limn→∞ Xn = X a.s. and |X| <∞ a.s. Let Y = supn |Xn|.
Show that Y <∞ a.s.

17.12 * Suppose limn→∞ Xn = X a.s. Let Y = supn |Xn−X|. Show Y <∞
a.s. (see Exercise 17.11), and define a new probability measure Q by

Q(A) =
1
c
E

{
1A

1
1 + Y

}
, where c = E

{
1

1 + Y

}
.

Show that Xn tends to X in L1 under the probability measure Q.

17.13 Let A be the event described in Example 1. Show that P (A) = 0.
(Hint: Let

An = { Heads on nth toss }.
Show that

∑∞
n=1 P (An) = ∞ and use the Borel-Cantelli Theorem (Theo-

rem 10.5.) )

17.14 Let Xn and X be real-valued r.v.’s in L2, and suppose that Xn tends
to X in L2. Show that E{X2

n} tends to E{X2} (Hint: use that |x2 − y2| ≤
(x− y)2 + 2|y||x− y| and the Cauchy-Schwarz inequality).

17.15 * (Another Dominated Convergence Theorem.) Let (Xn)n≥1 be random

variables with Xn
P→ X (limn→∞ Xn = X in probability). Suppose |Xn(ω)| ≤

C for a constant C > 0 and all ω. Show that limn→∞ E{|Xn−X|} = 0. (Hint:
First show that P (|X| ≤ C) = 1.)
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In Chapter 17 we considered four types of convergence of random variables:
pointwise everywhere, pointwise almost surely, convergence in pth mean (Lp

convergence), and convergence in probability. While all but the first differ
from types of convergence seen in elementary Calculus courses, they are nev-
ertheless squarely in the analysis tradition, and they can be thought of as
variants of standard pointwise convergence. While these types of convergence
are natural and useful in probability, there is yet another notion of conver-
gence which is profoundly different from the four we have already seen. This
convergence, known as weak convergence, is fundamental to the study of Prob-
ability and Statistics. As its name implies, it is a weak type of convergence.
The weaker the requirements for convergence, the easier it is for a sequence
of random variables to have a limit. What is unusual about weak conver-
gence, however, is that the actual values of the random variables themselves
are not important! It is simply the probabilities that they will assume those
values that matter. That is, it is the probability distributions of the random
variables that will be converging, and not the values of the random variables
themselves. It is this difference that makes weak convergence a convergence
of a different type than pointwise and its variants.

Since we will be dealing with the convergence of distributions of random
variables, we begin by considering probability measures on Rd, some d ≥ 1.

Definition 18.1. Let μn and μ be probability measures on Rd (d ≥ 1). The
sequence μn converges weakly to μ if

∫
f(x)μn(dx) converges to

∫
f(x)μ(dx)

for each f which is real-valued, continuous and bounded on Rd.

At first glance this definition may look like it has a typographical error:
one is used to considering

lim
n→∞

∫
fn(x)μ(dx) =

∫
f(x)μ(dx);

but here f remains fixed and it is indeed μ that varies. Note also that we do
not consider all bounded Borel measurable functions f , but only the subset
that are bounded and continuous.

Definition 18.2. Let (Xn)n≥1, X be Rd-valued random variables. We say
Xn converges in distribution to X (or equivalently Xn converges in law to X)
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if the distribution measures PXn converge weakly to PX . We write Xn
D→ X,

or equivalently Xn
L→ X.

Theorem 18.1. Let (Xn)n≥1, X be Rd-valued random variables. Then

Xn
D→ X if and only if

lim
n→∞ E{f(Xn)} = E{f(X)},

for all continuous, bounded functions f on Rd.

Proof. This is just a combination of Definitions 18.1 and 18.2, once we observe
that

E{f(Xn)} =
∫

f(x)PXn (dx), E{f(X)} =
∫

f(x)PX(dx).

�
It is important to emphasize that if Xn converges in distribution to X,

there is no requirement that (Xn)n≥1 and X be defined on the same probability
space (Ω,A, P )! Indeed in Statistics, for example, it happens that a sequence
(Xn)n≥1 all defined on one space will converge in distribution to a r.v. X
that cannot exist on the same space the (Xn)n≥1 were defined on! Thus the
notion of weak convergence permits random variables to converge in ways
that would otherwise be fundamentally impossible.

In order to have almost sure or Lp convergence, or convergence in proba-
bility, one always needs that (Xn)n≥1, X are all defined on the same space.
Thus a priori convergence in distribution is not comparable to the other kinds
of convergence. Nevertheless, if by good fortune (or by construction) all of
the (Xn)n≥1 and X are all defined on the same probability space, then we
can compare the types of convergence.

Theorem 18.2. Let (Xn)n≥1, X all be defined on a given and fixed proba-
bility space (Ω,A, P ). If Xn converges to X in probability, then Xn converges
to X in distribution as well.

Proof. Let f be bounded and continuous on Rd. Then by Theorem 17.5
we know that f(Xn) converges to f(X) in probability too. Since f is
bounded, f(Xn) converges to f(X) in L1 by Theorem 17.4. Therefore
limn→∞ E{f(Xn)} = E{f(X)} by (17.1), and Theorem 18.1 gives the re-
sult. �

There is a (very) partial converse to Theorem 18.2

Theorem 18.3. Let (Xn)n≥1, X be defined on a given fixed probability space
(Ω,A, P ). If Xn converges to X in distribution, and if X is a r.v. equal a.s.
to a constant, then Xn converges to X in probability as well.
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Proof. Suppose that X is a.s. equal to the constant a. The function f(x) =
|x−a|

1+|x−a| is bounded and continuous; therefore limn→∞ E{ |Xn −a|
1+|Xn −a|} = 0, and

hence Xn converges to a in probability by Theorem 17.1. �
It is tempting to think that convergence in distribution implies the fol-

lowing: that if Xn
D→ X then P (Xn ∈ A) converges to P (X ∈ A) for all

Borel sets A. This is almost never true. We do have P (Xn ∈ A) converges to
P (X ∈ A) for some sets A, but these sets are quite special. This is related
to the convergence (in the real valued case) of distribution functions: indeed,
if Xn are real valued and Xn

D→ X, then if Fn(x) = P (Xn ≤ x) were to
converge to F (x) = P (X ≤ x), we would need to have P (Xn ∈ (−∞, x])
converge to P (X ∈ (−∞, x]) for all x ∈ R, and even this is not always true!

Let us henceforth assume that (Xn)n≥1, X are real valued random vari-
ables and that (Fn)n≥1, F are their respective distribution functions. The
next theorem is rather difficult and can be skipped. We note that it is much
simpler if we assume that F , the distribution of the limiting random variable
X, is itself continuous. This suffices for many applications, but we include
a proof of Theorem 18.4 for completeness. For this theorem, recall that the
distribution function F of a r.v. is nondecreasing and right-continuous, and
so it has left limits everywhere, that is limy→x,y<x F (y) = F (x−) exists for
all x (see Exercise 18.4).

Theorem 18.4. Let (Xn)n≥1, X be real valued random variables.

a) If Xn
D→ X then limn→∞ Fn(x) = F (x) for all x in the dense subset of

R given by D = {x : F (x−) = F (x)}. (Fn(x) = P (Xn ≤ x); D is
sometimes called the set of continuity points of F .)

b) Suppose limn→∞ Fn(x) = F (x) for all x in a dense subset of R. Then
Xn

D→ X.

Proof of (a): Assume Xn
D→ X. Let D = {x : F (x−) = F (x)}. Then D is a

dense subset of R since its complement (the set of discontinuities of F ) is at
most countably infinite (see Exercises 18.4 and 18.5), and the complement of
a countable set is always dense in R.

Let us fix x ∈ R. For each integer p ≥ 1 let us introduce the following
bounded, continuous functions:

fp(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if y ≤ x

p(x− y) + 1 if x < y < x +
1
p

0 if x +
1
p
≤ y
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gp(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if y ≤ x− 1

p

p(x− y) if x− 1
p

< y < x

0 if x ≤ y.

Then

lim
n→∞ E{fp(Xn)} = E{fp(X)}, lim

n→∞ E{gp(Xn)} = E{gp(X)}

for each p ≥ 1. Note further that

E{gp(Xn)} ≤ Fn(x) ≤ E{fp(Xn)}
and hence

E{gp(X)} ≤ lim inf
n→∞ Fn(x) ≤ lim sup

n→∞
Fn(x) ≤ E{fp(X)}, each p ≥ 1.

(18.1)
Now limp→∞ fp(y) = 1(−∞,x](y) and limp→∞ gp(y) = 1(−∞,x)(y), hence by
Lebesgue’s dominated convergence theorem (Theorem 9.1(f)) we have that

lim
p→∞ E{fp(X)} = E

{
1(−∞,x](X)

}
= P (X ≤ x)
= F (x),

and similarly limp→∞ E{gp(X)} = F (x−) (the left limit of F at point x).
Combining these and (18.1) gives

F (x−) ≤ lim inf
n

Fn(x) ≤ lim sup
n

Fn(x) ≤ F (x). (18.2)

Therefore if x ∈ D, since we have F (x−) = F (x), we readily deduce that
Fn(x)→ F (x).
Proof of (b): Now we suppose that limn→∞ Fn(x) = F (x) for all x ∈ Δ,
where Δ is a dense subset of R. Let f be a bounded, continuous function on
R and take ε > 0. Let r, s be in Δ such that

P (X �∈ (r, s]) = 1− F (s) + F (r) ≤ ε.

(Such r and s exist, since F (x) decreases to 0 as x decreases to −∞, and
increases to 1 as x increases to +∞, and since Δ is dense). Since Fn converges
to F on Δ by hypothesis, there exists an N1 such that for n ≥ N1,

P (Xn �∈ (r, s]) = 1− Fn(s) + Fn(r) ≤ 2ε. (18.3)

Since [r, s] is a closed (compact) interval and f is continuous, we know f is
uniformly continuous on [r, s]; hence there exists a finite number of points
r = r0 < r1 < . . . < rk = s such that
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|f(x)− f(rj)| ≤ ε if rj−1 ≤ x ≤ rj ,

and each of the rj are in Δ, 1 ≤ j ≤ k. (That we may choose rj in Δ follows
from the fact that Δ is dense.)

Next we set

g(x) =
k∑

j=1

f(rj)1(rj −1,rj ](x) (18.4)

and by the preceding we have |f(x) − g(x)| ≤ ε on (r, s]. Therefore if α =
supx |f(x)|, we obtain

|E{f(Xn)} − E{g(Xn)}| ≤ αP (Xn �∈ (r, s]) + ε, (18.5)

and the same holds for X in place of Xn.
Using the definition (18.4) for g, observe that

E{g(Xn)} =
k∑

j=1

f(rj){Fn(rj)− Fn(rj−1)}

and analogously

E{g(X)} =
k∑

j=1

f(rj){F (rj)− F (rj−1)}.

Since all the rj ’s are in Δ, we have limn→∞ Fn(rj) = F (rj) for each j. Since
there are only a finite number of rj ’s, we know there exists an N2 such that
for n ≥ N2,

|E{g(Xn)} − E{g(X)}| ≤ ε. (18.6)

Let us now combine (18.5) for Xn and X and (18.6): if n ≥ max(N1, N2),
then

|E{f(Xn)} − E{f(X)}|
≤ |E{f(Xn)} − E{g(Xn)}|+ |E{g(Xn)} − E{g(X)}|+ |E{g(X)}
− E{f(X)}|

≤ (αP (Xn �∈ (r, s]) + ε) + ε + (αP (X �∈ (r, s]) + ε)
≤ (2αε + ε) + ε + (αε + ε)
≤ 3αε + 3ε.

Since ε was arbitrary, we conclude that limn→∞ E{f(Xn)} = E{f(X)} for
all bounded, continuous f ; hence by Theorem 18.1 we have the result. �
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Examples:

1. Suppose that (μn)n≥1 is a sequence of probability measures on R that
are all point masses (or, Dirac measures ): that is, for each n there exists
a point αn such that μn({αn}) = 1 and

μn({αn}c) = μn(R \ {αn}) = 0.

Then μn converges weakly to a limit μ if and only if αn converges to
a point α; and in this case μ is point mass at α. [Special note:: “point
mass” probability measures are usually written εα or δα in the literature,
which is used to denote point mass of size one at the point α.] Note that
Fn(x) = 1[αn ,∞)(x), and therefore limn→∞ Fn(x) = F (x) on a dense
subset easily implies that F must be of the form 1[α,∞)(x), where α =
limn→∞ αn.

2. Let

Fn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x ≤ − 1

n
1
2

+
n

2
x if − 1

n
< x <

1
n

1 if x ≥ 1
n

.

Then
lim

n→∞ Fn(x) = F (x) = 1[0,∞)(x)

for all x except x = 0; thus the set D of Theorem 18.4 is D = R \ {0}.
Thus if L(Xn) is given by Fn, then we have Xn

D→ X, where X is constant
and equal to 0 a.s. (L(X) is given by F .) What we have shown is that
a sequence of uniform random variables (Xn)n≥1, with Xn uniform on
(− 1

n , 1
n ), converge weakly to 0 (i.e., the constant random variable equal

to 0 a.s.).
3. Let (Xn)n≥1, X be random variables with densities fn(x), f(x). Then

the distribution function

F (x) =
∫ x

−∞
f(u)du

is continuous; thus F (x−) = F (x) on all of R. Suppose fn(x) ≤ g(x), all
n and x, and

∫∞
−∞ g(x)dx <∞, and limn→∞ fn(x) = f(x) almost every-

where. Then Fn(x) converges to F (x) by Lebesgue’s dominated conver-
gence theorem and thus Xn

D→ X.
Note that alternatively in this example we have that

lim
n→∞

∫
h(x)PXn (dx) = lim

n→∞

∫
h(x)fn(x)dx

=
∫

h(x) lim
n

fn(x)dx

=
∫

h(x)f(x)dx =
∫

h(x)PX(dx)
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for any bounded continuous function h by Lebesgue’s dominated conver-
gence theorem, and we have another proof that Xn

D→ X. This proof
works also in the multi-dimensional case, and we see that a slightly
stronger form of convergence than weak convergence takes place here:
we need h above to be bounded and measurable, but the continuity is
superfluous.

The previous example has the following extension, which might look a
bit surprising: we can interchange limits and integrals in a case where the
sequence of functions is not dominated by a single integrable function; this
is due to the fact that all functions fn and f below have integrals equal to 1.

Theorem 18.5. Let (Xn)n≥1, X be r.v.’s with values in Rd, with densities
fn, f . If the sequence fn converges pointwise (or even almost everywhere) to
f , then Xn

D→ X.

Proof. Let h be a bounded measurable function on Rd, and α = supx |h(x)|.
Put h1(x) = h(x)+α and h2(x) = α−h(x). These two functions are positive,
and thus so are h1fn and h2fn, all n. Since further for i = 1, 2 the sequence
hifn converges almost everywhere to hif , we can apply Fatou’s Lemma (see
Theorem 9.1) to obtain

E{hi(X)} =
∫

f(x)hi(x)dx ≤ lim inf
n→∞

∫
fn(x)hi(x)dx = lim inf

n→∞ E{hi(Xn)}.
(18.7)

Observe that E{h(Xn)} = E{h1(Xn)}−α and E{h(Xn)} = α−E{h2(Xn)},
and the same equalities hold with X in place of Xn. Since lim inf(xn) =
− lim sup(−xn), it follows from (18.7) applied successively to i = 1 and i = 2
that

E{h(X)} ≤ lim infn→∞ E{h(Xn)},
E{h(X)} ≥ lim supn→∞ E{h(Xn)}.

Hence E{h(Xn)} converges to E{h(X)}, and the theorem is proved. �
The next theorem is a version of what is known as “Helly’s selection

principle”. It is a difficult theorem, but we will need it to establish the relation
between weak convergence and convergence of characteristic functions. The
condition (18.8), that the measures can be made arbitrarily small, uniformly
in n, on the complement of a compact set, is often called tightness.

Theorem 18.6. Let (μn)n≥1 be a sequence of probability measures on R and
suppose

lim
m→∞ sup

n
μn([−m, m]c) = 0. (18.8)

Then there exists a subsequence nk such that (μnk
)k≥1 converge weakly.
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Proof. Let Fn(x) = μn((−∞, x]). Note that for each x ∈ R, 0 ≤ Fn(x) ≤ 1
for all n, thus (Fn(x))n≥1 is a bounded sequence of real numbers. Hence by
the Bolzano-Weierstrass theorem there always exists a subsequence nk such
that (Fnk

(x))k≥1 converges. (Of course the subsequence nk a priori depends
on the point x).

We need to construct a limit in a countable fashion, so we restrict our
attention to the rational numbers in R (denoted Q). Let r1, r2, . . . , rj , . . . be
an enumeration of the rationals. For r1, there exists a subsequence n1,k of n
such that the limit exists. We set:

G(r1) = lim
k→∞

Fn1,k
(r1).

For r2, there exists a sub-subsequence n2,k such that the limit exists. Again,
set:

G(r2) = lim
k→∞

Fn2,k
(r2).

That is, n2,k is a subsequence of n1,k. We continue this way: for rj , let nj,k

be a subsequence of nj−1,k such that the limit exists. Again, set:

G(rj) = lim
k→∞

Fnj,k
(rj).

We then form just one subsequence by taking nk := nk,k. Thus for rj , we
have

G(rj) = lim
k→∞

Fnk
(rj),

since nk is a subsequence of nj,k once k ≥ j.
Next we set:

F (x) = inf
y ∈Q
y>x

G(y). (18.9)

Since the function G defined on Q is non-decreasing, so also is the function
F given in (18.9), and it is right continuous by construction.

Let ε > 0. By hypothesis there exists an m such that

μn([−m, m]c) ≤ ε

for all n simultaneously. Therefore

Fn(x) ≤ ε if x < −m, and Fn(x) ≥ 1− ε if x > m;

therefore we have the same for G, and finally

F (x) ≤ ε if x < −m
F (x) ≥ 1− ε if x ≥ m.

}
(18.10)

Since 0 ≤ F ≤ 1, F is right continuous and non-decreasing, property (18.10)
gives that F is a true distribution function, corresponding to a probability
measure μ on R.
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Finally, suppose x is such that F (x−) = F (x). For ε > 0, there exist
y, z ∈ Q with y < x < z and

F (x)− ε ≤ G(y) ≤ F (x) ≤ G(z) ≤ F (x) + ε.

Therefore for large enough k,

F (x)− 2ε ≤ Fnk
(y) ≤ Fnk

(x) ≤ Fnk
(z) ≤ F (x) + 2ε. (18.11)

The inequalities (18.11) give that

F (x)− 2ε ≤ F (y) ≤ lim inf
k→∞

Fnk
(x)

≤ lim sup
k→∞

Fnk
(x) ≤ F (z) ≤ F (x) + 2ε

and by the pinching theorem the lim inf and lim sup above must be equal
and equal to limk→∞ Fnk

(x) = F (x). Thus μnk
converges weakly to μ by

Theorem 18.4. �

Remark 18.1. This theorem also has a multi-dimensional version (the proof
is similar, but more complicated): let μn be probabilities on Rd. Then it
suffices to replace the condition (18.8) by

lim
m→∞ sup

n
μn({x ∈ Rd : |x| > m}) = 0. (18.12)

A useful observation is that in order to show weak convergence, one does
not have to check that

∫
f dμn converges to

∫
f dμ for all bounded, continuous

f , but only for a well chosen subset of them. We state the next result in terms
of the convergence of random variables.

Theorem 18.7. Let (Xn)n≥1 be a sequence of random variables (R or Rd-

valued). Then Xn
D→ X if and only if limn→∞ E{g(Xn)} = E{g(X)} for all

bounded Lipschitz continuous functions g.

Proof. A function g is Lipschitz continuous if there exists a constant k such
that |g(x) − g(y)| ≤ k‖x − y‖, all x, y. Note that necessity is trivial, so
we show sufficiency. We need to show limn→∞ E{f(Xn)} = E{f(X)} for
all bounded, continuous functions f . Let f be bounded continuous, and let
α = supx |f(x)|. Suppose there exist Lipschitz continuous functions gi, with
−α ≤ gi ≤ gi+1 ≤ f , and limi→∞ gi(x) = f(x). Then

lim inf
n→∞ E{f(Xn)} ≥ lim inf

n→∞ E{gi(Xn)} = E{gi(X)},

for each fixed i. But the Monotone Convergence Theorem applied to gi(X)+α
and f(X) + α implies
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lim
i→∞

E{gi(X)} = E{f(X)}.

Therefore
lim inf
n→∞ E{f(Xn)} ≥ E{f(X)}. (18.13)

Next, exactly the same argument applied to −f gives

lim sup
n→∞

E{f(Xn)} ≤ E{f(X)}, (18.14)

and combining (18.13) and (18.14) gives

lim
n→∞ E{f(Xn)} = E{f(X)}.

It remains then only to construct the functions gi. We need to find a sequence
of Lipschitz functions {j1, j2, . . .} such that supk jk(x) = f(x) and jk(x) ≥
−α; then we can take gi(x) = max{j1(x), . . . , ji(x)}, and we will be done.

By replacing f(x) by f̃(x) = f(x) + α if necessary, without loss of gener-
ality we can assume the bounded function f(x) is positive for all x. For each
Borel set A define a function representing distance from A by

dA(x) = inf{‖x− y‖; y ∈ A}.

Then for rationals r ≥ 0 and integers m, define

jm,r(x) = r ∧ (m d{y:f(y)≤r}(x)
)
.

Note that |dA(x)−dA(y)| ≤ ‖x−y‖ for any set A, hence |jm,r(x)−jm,r(y)| ≤
m‖x− y‖, and so jm,r is Lipschitz continuous. Moreover jm,r(x) ≤ r, and it
is zero if f(x) ≤ r, so in particular 0 ≤ jm,r(x) ≤ f(x).

Choose and fix a point x and ε > 0. Choose a positive rational r such that
f(x)−ε < r < f(x). Since f is continuous, f(y) > r for all y in a neighborhood
of x. Therefore d{y:f(y)≤r}(x) > 0, hence jm,r(x) = r > f(x) − ε, for m
sufficiently large. Since the rationals and integers are countable, the collection
{jm,r;m ∈ N, r ∈ Q+} is countable. If {ji}i≥1 represents an enumeration, we
have seen that supi ji(x) ≥ f(x). Since ji ≤ f , each i, we have supi ji(x) =
f(x) and we are done. �

Corollary 18.1. Let (Xn)n≥1 be a sequence of random variables (R or Rd

valued). Then Xn
D→ X if and only if limn→∞ E{g(Xn)} = E{g(X)} for all

bounded uniformly continuous functions g.

Proof. If g is Lipschitz then it is uniformly continuous, so Theorem 18.7 gives
the result. �
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Remark 18.2. In Theorem 18.7 we reduced the test class of functions for R or
Rd valued random variables to converge weakly: we reduced it from bounded
continuous functions to bounded Lipschitz continuous functions. One may ask
if it can be further reduced. It can in fact be further reduced to C∞ functions
with compact support. See Exercises 18.19–18.22 in this regard, where the
solutions to the exercises show that Xn converges to X in distribution if and
only if E{f(Xn)} converges to E{f(X)} for all bounded, C∞ functions f .

A consequence of Theorem 18.7 is Slutsky’s Theorem, which is useful in
Statistics.

Theorem 18.8 (Slutsky’s Theorem). Let (Xn)n≥1 and (Yn)n≥1 be two

sequences of Rd valued random variables, with Xn
D→ X and ‖Xn− Yn‖ → 0

in probability. Then Yn
D→ X.

Proof. By Theorem 18.7 it suffices to show limn E{f(Yn)} = E{f(X)} for
all Lipschitz continuous, bounded f . Let then f be Lipschitz continuous. We
have |f(x)− f(y)| ≤ k‖x− y‖ for some real k, and |f(x)| ≤ α for some real
α. Then we have

lim
n→∞ |E{f(Xn)− f(Yn)}| ≤ lim

n→∞ E{|f(Xn)− f(Yn)|}
≤ kε + lim

n
E{|f(Xn)− f(Yn)|1{‖Xn −Yn ‖>ε}}.

But limn→∞ E{|f(Xn)−f(Yn)|1{‖Xn −Yn ‖>ε}} ≤ limn→∞ 2αP{‖Xn−Yn‖ >
ε} = 0, and since ε > 0 is arbitrary we deduce that limn→∞ |E{f(Xn) −
f(Yn)}| = 0. Therefore

lim
n→∞ E{f(Yn)} = lim

n→∞ E{f(Xn)} = E{f(X)},

and the theorem is proved. �
We end this section with a consideration of the weak convergence of ran-

dom variables that take on at most a countable number of values (e.g., the
binomial, the Poisson, the hypergeometric, etc.). Since the state space is
countable, we can assume that every function is continuous: this amounts to
endowing the state space with the discrete topology (Caution: if the state
space, say E, is naturally contained in R for example, then this discrete
topology is induced by the usual topology on R only when the minimum of
|x−y| for x, y ∈ E∩ [−m, m] is bounded away from 0 for all m > 0, like when
E = N or E = Z, where Z denotes the integer). The next theorem gives a
simple characterization of weak convergence in this case, and it is comparable
to Theorem 18.5.

Theorem 18.9. Let Xn, X be random variables with at most countably
many values. Then Xn

D→ X if and only if
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lim
n→∞ P (Xn = j) = P (X = j)

for each j in the state space of (Xn)n≥1, X.

Proof. First suppose Xn
D→ X. Then

lim
n→∞ E{f(Xn)} = E{f(X)}

for every bounded, continuous function f (Theorem 18.1). Since all functions
are continuous, choose f(x) = 1{j}(x) and we obtain the result.

Next, suppose limn→∞ P (Xn = j) = P (X = j) for all j in the state space
E. Let f be a bounded function with α = supj |f(j)|. Take ε > 0. Since∑

j∈E

P (X = j) = 1

is a convergent series, there must exist a finite subset Λ of E such that∑
j∈Λ

P (X = j) ≥ 1− ε;

also for n large enough we have as well:∑
j∈Λ

P (Xn = j) ≥ 1− 2ε.

Note that
E{f(X)} =

∑
j∈E

f(j)P (X = j),

so we have, for n large enough:∣∣∣E{f(X)} −∑j∈Λ f(j)P (X = j)
∣∣∣ ≤ αε∣∣∣E{f(Xn)} −∑j∈Λ f(j)P (Xn = j)
∣∣∣ ≤ 2αε.

⎫⎪⎬⎪⎭ (18.15)

Finally we note that since Λ is finite we have

lim
n→∞

∑
j∈Λ

f(j)P (Xn = j) =
∑
j∈Λ

f(j)P (X = j). (18.16)

Thus from (18.15) and (18.16) we deduce

lim sup
n→∞

|E{f(Xn)} − E{f(X)}| ≤ 3αε.

Since ε was arbitrary, we have

lim
n→∞ E{f(Xn)} = E{f(X)}

for each bounded (and a fortiori continuous) function f . Thus we have Xn
D→

X by Theorem 18.1. �
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Examples:

4. If μλ denotes the Poisson distribution with parameter λ, then

μλ(j) = e−λ λj

j!
,

and thus if λn → λ, we have μλn (j)→ μλ(j) for each j = 1, 2, 3, . . . and
by Theorem 18.9 we have that μλn converges weakly to μλ.

5. If μp denotes the Binomial B(p, n) distribution and if pk → p, as in
Example 4 and by Theorem 18.9 we have that μpk

converges weakly to
μp.

6. Let μn,p denote the Binomial B(p, n). Consider the sequence μn,pn where
limn→∞ npn = λ > 0. Then as in Exercise 4.1 we have

μn,pn (k) =
λk

k!

(
1− λ

n

)n{
n

n

(
n− 1

n

)
· · ·
(

n− k + 1
n

)}(
1− λ

n

)−k

for 0 ≤ k ≤ n. Therefore for k fixed we have

lim
n→∞ μn,pn (k) =

λk

k!
e−λ,

and hence by Theorem 18.9 we conclude that μn,pn converges weakly to
the Poisson distribution with parameter λ, where λ = limn→∞ npn.



164 18 Weak Convergence

Exercises for Chapter 18

18.1 Show that if Xn
Lp

→ X (p ≥ 1), then Xn
D→ X.

18.2 Let α ∈ Rd. Show by constructing it that there exists a continuous
function f : Rd → R such that 0 ≤ f(x) ≤ 1 for all x ∈ Rd; f(α) = 0; and
f(x) = 1 if |x−α| ≥ ε for a given ε > 0. (Hint: First solve this exercise when
d = 1 and then mimic your construction for d ≥ 2.)

18.3 Let X be a real valued random variable with distribution function F .
Show that F (x−) = F (x) if and only if P (X = x) = 0.

18.4 * Let g : R→ R, 0 ≤ g(α) ≤ 1, g nondecreasing, and suppose g is right
continuous (that is, limy→x,y>x g(y) = g(x) for all x). Show that g has left
limits everywhere (that is, limy→x,y<x g(y) = g(x−) exists for all x) and that
the set Λ = {x : g(x−) �= g(x)} is at most countably infinite. (Hint: First
show there are only a finite number of points x such that g(x)− g(x−) > 1

k ;
then let k tend to ∞).

18.5 * Let F be the distribution function of a real valued random variable.
Let D = {x : F (x−) = F (x)} (notation of Exercise 18.4). Show that D is
dense in R. (Hint: Use Exercise 18.4 to show that the complement of D is at
most countably infinite.)

18.6 Let (Xn)n≥1 be a sequence of real valued random variables with L(Xn)
uniform on [−n, n]. In what sense(s) do Xn converge to a random variable
X? [Answer: None.]

18.7 Let fn(x) be densities on R and suppose limn→∞ fn(x) = e−x1(x>0). If
fn is the density for a random variable Xn, each n, what can be said about
the convergence of Xn as n tends to ∞? [Answer: Xn

D→ X, where X is
exponential with parameter 1.]

18.8 Let (Xn)n≥1 be i.i.d. Cauchy with α = 0 and β = 1. Let Yn =
X1+...+Xn

n . Show that Yn converges in distribution and find the limit. Does
Yn converge in probability as well?

18.9 Let (Xn)n≥1 be a sequence of random variables and suppose
supn E{X2

n} < ∞. Let μn be the distribution measure of Xn. Show that
the sequence μn is tight (Hint: use Chebyshev’s inequality).

18.10 * Let Xn, X and Y be real–valued r.v.’s, all defined on the same space
(Ω,A, P ). Assume that

lim
n→∞ E{f(Xn)g(Y )} = E{f(X)g(Y )}

whenever f and g are bounded, and f is continuous, and g is Borel. Show that
the sequence (Xn, Y ) converges in law to (X, Y ). If furthermore X = h(Y )
for some Borel function h, show that Xn

P→ X.
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18.11 Let μα denote the Pareto (or Zeta) distribution with parameter α. Let
αn → α > 0 and show that μαn tends weakly to μα.

18.12 Let μα denote the Geometric distribution of parameter α. Let αn →
α > 0, and show that μαn tends weakly to μα.

18.13 Let μ(N,b,n) be a Hypergeometric distribution, and let N go to ∞ in
such a way that p = b

N remains constant. The parameter n is held fixed.
Show as N tends to ∞ as described above that μ(N,b,n) converges weakly to
the Binomial distribution B(p, n).

18.14 (Slutsky’s Theorem.) Let Xn converge in distribution to X and let
Yn converge in probability to a constant c. Show that (a) XnYn

D→ cX (in
distribution) and (b) Xn

Yn

D→ X
c (in distribution), (c �= 0).

18.15 Let (Xn)n≥1, (Yn)n≥1 all be defined on the same probability space.

Suppose Xn
D→ X and Yn converges in probability to 0. Show that Xn + Yn

converges in distribution to X.

18.16 Suppose real valued (Xn)n≥1 have distribution functions Fn, and that

Xn
D→ X. Let p > 0 and show that for every positive N ,∫ N

−N

|x|pF (dx) ≤ lim sup
n→∞

∫ N

−N

|x|pFn(dx) <∞.

18.17 * Let real valued (Xn)n≥1 have distribution functions Fn, and X have
distribution function F . Suppose for some r > 0,

lim
n→∞

∫ ∞

−∞
|Fn(x)− F (x)|rdx = 0.

Show that Xn
D→ X. (Hint: Suppose there exists a continuity point y of F

such that limn→∞ Fn(y) �= F (y). Then there exists ε > 0 and a subsequence
(nk)k≥1 such that |Fnk

(y)−F (y)| > ε, all k. Show then |Fnk
(x)−F (x)| > ε

2
for either x ∈ [y1, y) or x ∈ (y, y2] for appropriate y1, y2. Use this to derive a
contradiction.)

18.18 * Suppose a sequence (Fn)n≥1 of distribution functions on R converges
to a continuous distribution function F on R. Show that the convergence is
uniform in x (−∞ < x < ∞). (Hint: Begin by showing there exist points
x1, . . . , xm such that F (x1) < ε, F (xj+1) − F (xj) < ε, and 1 − F (xm) < ε.
Next show there exists N such that for n > N , |Fn(xj) − F (xj)| < ε, 1 ≤
j ≤ m.)

18.19 Let f be uniformly continuous and X, Y two R-valued random vari-
ables. Suppose that |f(x)− f(y)| < ε whenever |x− y| < δ. Show that

|E{f(X)} − E{f(X + Y )}| ≤ ε + 2 sup
x
|f(x)|P{|Y | ≥ δ}.
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18.20 * (Pollard [17]) Let (Xn)n≥1, X, Y by R-valued random variables, all
on the same space, and suppose that Xn + σY converges in distribution to
X + σY for each fixed σ > 0. Show that Xn converges to X in distribution.
(Hint: Use Exercise 18.19.)

18.21 (Pollard [17]) Let X and Y be independent r.v.’s on the same space,
with values in R and assume Y is N(0, 1). Let f be bounded continuous.
Show that

E{f(X + σY )} = E{fσ(X)}
where

fσ(x) =
1√
2πσ

∫ ∞

−∞
f(z)e− 1

2 |z−x|2/σ2
dz.

Show that fσ is bounded and C∞.

18.22 Let (Xn)n≥1, X be R-valued random variables. Show that Xn con-
verges to X in distribution if and only if E{f(Xn)} converges to E{f(X)}
for all bounded C∞ functions f . (Hint: Use Exercises 18.20 and 18.21.)



19 Weak Convergence and Characteristic
Functions

Weak convergence is at the heart of much of probability and statistics. Limit
theorems provide much of the justification of statistics, and they also have a
myriad of other applications. There is an intimate relationship between weak
convergence and characteristic functions, and it is indeed this relationship
(provided by the next theorem) that makes characteristic functions so useful
in the study of probability and statistics.

Theorem 19.1 (Lévy’s Continuity Theorem). Let (μn)n≥1 be a se-
quence of probability measures on Rd, and let (μ̂n)n≥1 denote their Fourier
transforms, or characteristic functions.

a) If μn converges weakly to a probability measure μ, then μ̂n(u)→ μ̂(u) for
all u ∈ Rd;

b) If μ̂n(u) converges to a function f(u) for all u ∈ Rd, and if in addition
f is continuous at 0, then there exists a probability μ on Rd such that
f(u) = μ̂(u), and μn converges weakly to μ.

Proof. (a) Suppose μn converges weakly to μ. Since eiux is continuous and
bounded in modulus,

μ̂n(u) =
∫

eiuxμn(dx)

converges to

μ̂(u) =
∫

eiuxμ(dx)

by weak convergence (the function x �→ eiux is complex-valued, but we
can consider separately the real-valued part cos(ux) and the imaginary part
sin(ux), which are both bounded and continuous).

(b) Although we state the theorem for Rd, we will give the proof only
for d = 1. Suppose that limn→∞ μ̂n(u) = f(u) exists for all u. We begin by
showing tightness (cf Theorem 18.6) of the sequence of probability measures
μn. Using Fubini’s theorem (Theorem 10.3 or more precisely Exercise 10.14)
we have: ∫ α

−α

μ̂n(u)du =
∫ α

−α

{∫ ∞

−∞
eiuxμn(dx)

}
du

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004



168 19 Weak Convergence and Characteristic Functions

=
∫ ∞

−∞

{∫ α

−α

eiuxdu

}
μn(dx);

and using that eiux = cos(ux) + i sin(ux),

=
∫ ∞

−∞

{∫ α

−α

cos(ux) + i sin(ux)du

}
μn(dx).

Since sin(ux) is an odd function, the imaginary integral is zero over the
symmetric interval (−α, α), and thus:

=
∫ ∞

−∞

2
x

sin(αx)μn(dx).

Since
∫ α

−α
1du = 2α, we have

1
α

∫ α

−α

(1− μ̂n(u))du = 2−
∫ ∞

−∞

2
αx

sin(αx)μn(dx)

= 2
∫ ∞

−∞

(
1− sin(αx)

αx

)
μn(dx).

Now since 2(1− sin v
v ) ≥ 1 if |v| ≥ 2 and 2(1− sin v

v ) ≥ 0 always, the above is

≥
∫ ∞

−∞
1[−2,2]c (αx)μn(dx)

=
∫

1[−2/α,2/α]c (x)μn(dx)

= μn

([−2
α

,
2
α

]c)
.

Let β = 2
α and we have the useful estimate:

μn ([−β, β]c) ≤ β

2

∫ 2/β

−2/β

(1− μ̂n(u))du. (19.1)

Let ε > 0. Since by hypothesis f is continuous at 0, there exists α > 0 such
that |1 − f(u)| ≤ ε/4 if |u| ≤ 2/α. (This is because μ̂n(0) = 1 for all n,
whence limn→∞ μ̂n(0) = f(0) = 1 as well.) Therefore,∣∣∣∣∣α2

∫ 2/α

−2/α

(1− f(u))du

∣∣∣∣∣ ≤ α

2

∫ 2/α

−2/α

ε

4
du =

ε

2
. (19.2)

Since μ̂n(u) are characteristic functions, |μ̂n(u)| ≤ 1, so by Lebesgue’s domi-
nated convergence theorem (Theorem 9.1 (f)) we have

lim
n→∞

∫ 2/α

−2/α

(1− μ̂n(u))du =
∫ 2/α

−2/α

(1− f(u))du.



19 Weak Convergence and Characteristic Functions 169

Therefore there exists an N such that n ≥ N implies∣∣∣∣∣
∫ 2/α

−2/α

(1− μ̂n(u))du−
∫ 2/α

−2/α

(1− f(u))du

∣∣∣∣∣ ≤ ε

α
,

whence α
2

∫ 2/α

−2/α
(1 − μ̂n(u))du ≤ ε. We next apply (19.1) to conclude

μn([−α, α]c) ≤ ε, for all n ≥ N .
There are only a finite number of n before N , and for each n < N , there

exists an αn such that μn([−αn, αn]c) ≤ ε. Let a = max(α1, . . . , αn;α). Then
we have

μn([−a, a]c) ≤ ε, for all n. (19.3)

The inequality (19.3) above means that for the sequence (μn)n≥1, for any
ε > 0 there exists an a ∈ R such that supn μn([−a, a]c) ≤ ε. Therefore we
have shown:

lim sup
m→∞

sup
n

μn([−m, m]c) = 0

for any fixed m ∈ R.
We have established tightness for the sequence {μn}n≥1. We can next

apply Theorem 18.6 to obtain a subsequence (nk)k≥1 such that μnk
converges

weakly to μ as k tends to ∞. By part (a) of this theorem,

lim
k→∞

μ̂nk
(u) = μ̂(u)

for all u, hence f(u) = μ̂(u), and f is the Fourier transform of a probability
measure.

It remains to show that the sequence (μn)n≥1 itself (and not just (μnk
)k≥1)

converges weakly to μ. We show this by the method of contradiction. Let
Fn, F be distribution functions of μn and μ. That is,

Fn(x) = μn((−∞, x]); F (x) = μ((−∞, x]).

Let D be the set of continuity points of F : that is,

D = {x : F (x−) = F (x)}.

Suppose that μn does not converge weakly to μ, then by Theorem 18.4 there
must exist at least one point x ∈ D and a subsequence (nk)k≥1 such that
limk→∞ Fnk

(x) exists (by taking a further subsequence if necessary) and
moreover limk→∞ Fnk

(x) = β �= F (x). Next by Theorem 18.6 there also
exists a subsequence of the subsequence (nk) (that is, a sub-subsequence
(nkj

)j≥1), such that (μnkj
)j≥1 converges weakly to a limit ν as j tends to∞.

Exactly as we have argued, however, we get

lim
j→∞

μ̂nkj
(u) = ν̂(u),
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and since lim μ̂n(u) = f(u), we conclude ν̂(u) = f(u). But we have seen that
f(u) = μ̂(u). Therefore by Theorem 14.1 we must have μ = ν. Finally, μnkj

converging to ν = μ implies (by Theorem 18.4) that limj→∞ Fnkj
(x) = F (x),

since x is in D, the continuity set of μ, by hypothesis. But limj→∞ Fnkj
(x) =

β �= F (x), and we have a contradiction. �

Remark 19.1. Actually more is true in Theorem 19.1a than we proved: one
can show that if μn converges weakly to a probability measure μ on Rd, then
μ̂n converges to μ̂ uniformly on compact subsets of Rd.

Example. Let (Xn)n≥1 be a sequence of Poisson random variables with
parameter λn = n. Then if

Zn =
1√
n

(Xn − n), Zn
D→ Z, where L(Z) = N(0, 1).

To see this, we have

E
{
eiuZn

}
= E

{
e

iu
(

1√
n

(Xn −n)
)}

= e−iu
√

nE
{

e
i u√

n
Xn

}
= e−iu

√
nen(eiu /

√
n −1)

by Example 13.3.
Continuing and using a Taylor expansion for ez, we have the above equals

= e−iu
√

ne
n
(
i u√

n
− u2

2n − iu3

6n3/2 +...
)

= e−iu
√

n+iu
√

ne−u2/2e
− h(u ,n )√

n

= e−u2/2e
− h(u ,n )√

n

where h(u, n) stays bounded in n for each u and hence limn→∞
h(u,n)√

n
= 0.

Therefore,
lim

n→∞ ϕZn (u) = e−u2/2,

and since e−u2/2 is the characteristic function of a N(0, 1), (Example 13.5),
we have that Zn converges weakly to Z by Theorem 19.1 b.
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Exercises for Chapter 19

19.1 Let (Xn)n≥1 be N(μn, σ2
n) random variables. Suppose μn → μ ∈ R and

σ2
n → σ2 ≥ 0. Show that Xn

D→ X, where L(X) = N(μ, σ2).

19.2 Let (Xn)n≥1 be N(μn, σ2
n) random variables. Suppose that Xn

D→ X
for some random variable X. Show that the sequences μn and σ2

n have limits
μ ∈ R and σ2 ≥ 0, and that X is N(μ, σ2) (Hint: ϕXn and ϕX being the

characteristic functions of Xn and X, write ϕXn = eiuμn − u2σ2
n

2 , and use
Lévy’s Theorem to obtain that ϕX(u) = eiuμ− u2σ2

2 for some μ ∈ R and
σ2 ≥ 0).

19.3 Let (Xn)n≥1, (Yn)n≥1 be sequences with Xn and Yn defined on the

same space for each n. Suppose Xn
D→ X and Yn

D→ Y , and assume Xn and
Yn are independent for all n and that X and Y are independent. Show that
Xn + Yn

D→ X + Y .



20 The Laws of Large Numbers

One of the fundamental results of Probability Theory is the Strong Law of
Large Numbers. It helps to justify our intuitive notions of what probability
actually is (Example 1), and it has many direct applications, such as (for
example) Monte Carlo estimation theory (see Example 2).

Let (Xn)n≥1 be a sequence of random variables defined on the same prob-
ability space and let Sn =

∑n
j=1 Xj . A theorem that states that 1

nSn con-
verges in some sense is a law of large numbers. There are many such results;
for example L2 ergodic theorems or the Birkhoff ergodic theorem, considered
when the measure space is actually a probability space, are examples of laws
of large numbers. (See Theorem 20.3, for example). The convergence can be
in probability, in Lp, or almost sure. When the convergence is almost sure,
we call it a strong law of large numbers.

Theorem 20.1 (Strong Law of Large Numbers). Let (Xn)n≥1 be inde-
pendent and identically distributed (i.i.d.) and defined on the same space. Let

μ = E{Xj} and σ2 = σ2
Xj

<∞.

Let Sn =
∑n

j=1 Xj. Then

lim
n→∞

Sn

n
= lim

n→∞
1
n

n∑
j=1

Xj = μ a.s. and in L2.

Remark 20.1. We write μ, σ2 instead of μj , σ
2
Xj

, since all the (Xj)j≥1 have
the same distribution and therefore the same mean and variance. Note also
that limn→∞ Sn

n = μ in probability, since L2 and a.s. convergence both imply
convergence in probability. It is easy to prove limn→∞ Sn

n = μ in probability
using Chebyshev’s inequality, and this is often called the Weak Law of Large
Numbers. Since it is a corollary of the Strong Law given here, we do not
include its proof. The proof of Theorem 20.1 is also simpler if we assume only
Xj ∈ L3 (all j), and it is often presented this way in textbooks. A stronger
result, where the Xn’s are integrable but not necessarily square-integrable is
stated in Theorem 20.2 and proved in Chapter 27.

Proof of Theorem 20.1: First let us note that without loss of generality we
can assume μ = E{Xj} = 0. Indeed if μ �= 0, then we can replace Xj with

J. Jacod et al., Probability  Essentials
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Zj = Xj − μ. We obtain limn→∞ 1
n

∑n
j=1 Zj = 0 and therefore

lim
n→∞

1
n

n∑
j=1

(Xj − μ) = lim
n→∞

(
1
n

∑
Xj

)
− μ = 0

from which we deduce the result.
We henceforth assume μ = 0. Recall Sn =

∑n
j=1 Xj and let Yn = Sn

n .
Then E{Yn} = 1

n

∑n
j=1 E{Xj} = 0. Moreover E{Y 2

n } = 1
n2

∑
1≤j,k≤n

E{XjXk}. However if j �= k then

E{XjXk} = E{Xj}E{Xk} = 0

since Xj and Xk are assumed to be independent. Therefore

E{Y 2
n } =

1
n2

n∑
j=1

E{X2
j } (20.1)

=
1
n2

n∑
j=1

σ2 =
1
n2 (nσ2)

=
σ2

n

and hence lim E{Y 2
n } = 0.

Since Yn converges to 0 in L2 we know there is a subsequence converging
to 0 a.s. However we want to conclude the original sequence converges a.s.
To do this we find a subsequence converging a.s., and then treat the terms
in between successive terms of the subsequence.

Since E{Y 2
n } = σ2

n , let us choose the subsequence n2; then

∞∑
n=1

E{Y 2
n2} =

∞∑
n=1

σ2

n2 <∞;

therefore by Theorem 9.2 we know
∑∞

n=1 Y 2
n2 <∞ a.s., and hence the tail of

this convergent series converges to 0; we conclude

lim
n→∞ Yn2 = 0 a.s. (20.2)

Next let n ∈ N. Let p(n) be the integer such that

p(n)2 ≤ n < (p(n) + 1)2.

Then

Yn − p(n)2

n
Yp(n)2 =

1
n

n∑
j=p(n)2+1

Xj ,
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and as we saw in (20.1):

E

{(
Yn − p(n)2

n
Yp(n)2

)2
}

=
n− p(n)2

n2 σ2

≤ 2p(n) + 1
n2 σ2,

≤ 2
√

n + 1
n2 σ2 ≤ 3

n
3
2
σ2

because p(n) ≤ √n.
Now we apply the same argument as before. We have

∞∑
n=1

E

{(
Yn − p(n)2

n
Yp(n)2

)2
}
≤

∞∑
n=1

3σ2

n
3
2

<∞.

Thus by Theorem 9.2 again, we have

∞∑
n=1

(
Yn − p(n)2

n
Yp(n)2

)2

<∞ a.s.

which implies the tail converges to zero a.s. That is,

lim
n→∞

{
Yn − p(n)2

n
Yp(n)2

}
= 0 a.s.

However since limn→∞ Yp(n)2 = 0 a.s. by (20.2) and p(n)2

n → 1, we deduce
limn→∞ Yn = 0 a.s. as well. Recall Yn = Sn

n , so the theorem is proved. �

We give two other versions of Strong Laws of Large Numbers.

Theorem 20.2 (Kolmogorov’s Strong Law of Large Numbers). Let
(Xj) be i.i.d. and μ ∈ R. Let Sn =

∑n
j=1 Xj. Then limn→∞ Sn

n = μ a.s. if
and only if E{Xj} = μ. In this case the convergence also holds in L1.

Remark 20.2. Note that Kolmogorov’s strong law needs the (minimal) as-
sumption that (Xj)j≥1 are in L1. An elegant way to prove Theorem 20.2 is to
use the backwards martingale convergence theorem (see, e.g., Theorem 27.5).

Let (Ω,A, P ) be a probability space, and let T : Ω → Ω be one to one (i.e.,
injective) such that T (A) ⊂ A (i.e., T maps measurable sets to measurable
sets) and if A ∈ A, then P (T (A)) = P (A) (i.e., T is measure preserving). Let
T 2(ω) = T (T (ω)) and define analogously powers of T . A set Λ is invariant
under T if 1Λ(ω) = 1Λ(T (ω)).
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Theorem 20.3 (Ergodic Strong Law of Large Numbers). Let T be a
one-to-one measure preserving transformation of Ω onto itself. Assume the
only T -invariant sets are sets of probability 0 or 1. If X ∈ L1 then

lim
n→∞

1
n

n∑
j=1

X(T j(ω)) = E{X}

a.s. and in L1.

Theorem 20.3 is a consequence of the Birkhoff ergodic theorem; its advan-
tage is that it replaces the hypothesis of independence with one of ergodicity.
It is also called the strong law of large numbers for stationary sequences of
random variables.

Example 1: In Example 17.1 we let (Xj)j≥1 be a sequence of i.i.d. Bernoulli
random variables, with P (Xj = 1) = p and P (Xj = 0) = q = 1 − p (all j).
Then Sn =

∑n
j=1 Xj is the number of “successes” in n trials, and 1

nSn is the
fraction of successes. The Strong Law of Large Numbers (Theorem 20.1) now
tells us that

lim
n→∞

Sn

n
= E{X1} = p a.s. (20.3)

This gives, essentially, a justification to our claim that the probability of
success is p. Thus in some sense this helps to justify the original axioms of
probability we presented in Section 2, since we are finally able to deduce the
intuitively pleasing result (20.3) from our original axioms.

Example 2: This is a simple example of a technique known as Monte Carlo
approximations. (The etymology of the name is from the city of Monte Carlo
of the Principality of Monaco, located in southern France. Gambling has long
been legal there, and the name is a tribute to Monaco’s celebration of the
“laws of chance” through the operation of elegant gambling casinos.) Suppose
f is a measurable function on [0, 1], and

∫ 1
0 |f(x)|dx < ∞. Often we cannot

obtain a closed form expression for α =
∫ 1
0 f(x)dx and we need to estimate

it. If we let (Uj)j≥1 be a sequence of independent uniform random variables
on [0, 1], and we call In = 1

n

∑n
j=1 f(Uj), then by Theorem 20.2 we have

lim
n→∞

1
n

n∑
j=1

f(Uj) = E{f(Uj)} =
∫ 1

0
f(x)dx,

a.s. and in L2. Thus if we were to simulate the sequence (Uj)j≥1 on a computer
(using a random number generator to simulate uniform random variables,
which is standard), we would get an approximation of

∫ 1
0 f(x)dx for large

n. This is just one method to estimate
∫ 1
0 f(x)dx, and it is usually not the

best one except in the case where one wants to estimate a high dimensional
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integral: that is, if one wants to estimate
∫
Rd f(x)dx for d large. The exact

same ideas apply.

Example 3: ([7, p. 120]) Let Ω be a circle of radius r = 1
2π . Let A be the

Borel sets of the circle and let P be the Lebesgue measure on the circle (One
can identify here the circle with the interval [0, 1)). Let α be irrational and T
be rotation of Ω through α radians about the center of the circle. Then one
can verify that T is injective, measure preserving, and that the invariant sets
all have probability zero or one (this is where the irrationality of α comes
in). Therefore by Theorem 20.3 we have

lim
n→∞

1
n

n∑
j=1

X(ω + jα) =
∫ 1

0
X(x)dx

for any X ∈ L1 defined on Ω, for P -almost all x.
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Exercises for Chapter 20

20.1 * (A Weak Law of Large Numbers). Let (Xj) be a sequence of random
variables such that supj E{X2

j } = c < ∞ and E{XjXk} = 0 if j �= k. Let
Sn =

∑n
j=1 Xj .

a) Show that P (| 1nSn| ≥ ε) ≤ c
nε2 for ε > 0;

b) limn→∞ 1
nSn = 0 in L2 and in probability.

(Note: The usual i.i.d. assumptions have been considerably weakened here.)

20.2 Let (Yj)j≥1 be a sequence of independent Binomial random variables,
all defined on the same probability space, and with law B(p, 1). Let Xn =∑n

j=1 Yj . Show that Xj is B(p, j) and that Xj

j converges a.s. to p.

20.3 Let (Xj)j≥1 be i.i.d. with Xj in L1. Let Yj = eXj . Show that⎛⎝ n∏
j=1

Yj

⎞⎠ 1
n

converges to a constant α a.s. [Answer: α = eE{X1}.]

20.4 Let (Xj)j≥1 be i.i.d. with Xj in L1 and E{Xj} = μ. Let (Yj)j≥1 be
also i.i.d. with Yj in L1 and E{Yj} = ν �= 0.Show that

lim
n→∞

1∑n
j=1 Yj

n∑
j=1

Xj =
μ

ν
a.s.

20.5 Let (Xj)j≥1 be i.i.d. with Xj in L1 and suppose 1√
n

∑n
j=1(Xj − ν)

converges in distribution to a random variable Z, Show that

lim
n→∞

1
n

n∑
j=1

Xj = ν a.s.

(Hint: If Zn = 1√
n

∑n
j=1(Xj − ν), prove first that 1√

n
Zn converges in distri-

bution to 0).

20.6 Let (Xj)j≥1 be i.i.d. with Xj in Lp. Show that

lim
n→∞

1
n

n∑
j=1

Xp
j = E{Xp} a.s.

20.7 Let (Xj)j≥1 be i.i.d. N(1, 3) random variables. Show that

lim
n→∞

X1 + X2 + . . . + Xn

X2
1 + X2

2 + . . . + X2
n

=
1
4

a.s.
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20.8 Let (Xj)j≥1 be i.i.d. with mean μ and variance σ2. Show that

lim
n→∞

1
n

n∑
i=1

(Xi − μ)2 = σ2 a.s.

20.9 Let (Xj)j≥1 be i.i.d. integer valued random variables with E{|Xj |} <
∞. Let Sn =

∑n
j=1 Xj . (Sn)n≥1 is called a random walk on the integers. Show

that if E(Xj) > 0 then
lim

n→∞ Sn =∞, a.s.



21 The Central Limit Theorem

The Central Limit Theorem is one of the most impressive achievements of
probability theory. From a simple description requiring minimal hypothe-
ses, we are able to deduce precise results. The Central Limit Theorem thus
serves as the basis for much of Statistical Theory. The idea is simple: let
X1, . . . , Xj , . . . be a sequence of i.i.d. random variables with finite variance.
Let Sn =

∑n
j=1 Xj . Then for n large, L(Sn) ≈ N(nμ, nσ2), where E{Xj} = μ

and σ2 = Var(Xj) (all j). The key observation is that absolutely nothing
(except a finite variance) is assumed about the distribution of the random
variables (Xj)j≥1. Therefore, if one can assume that a random variable in
question is the sum of many i.i.d. random variables with finite variances,
that one can infer that the random variable’s distribution is approximately
Gaussian. Next one can use data and do Statistical Tests to estimate μ and
σ2, and then one knows essentially everything!

Theorem 21.1 (Central Limit Theorem). Let (Xj)j≥1 be i.i.d. with
E{Xj} = μ and Var(Xj) = σ2 (all j) with 0 < σ2 <∞. Let Sn =

∑n
j=1 Xj.

Let Yn = Sn −nμ
σ

√
n

. Then Yn converges in distribution to Y , where L(Y ) =
N(0, 1).

Observe that if σ2 = 0 above, then Xj = μ a.s. for all j, hence Sn

n = μ
a.s.

Proof. Let ϕj be the characteristic function of Xj − μ. Since the (Xj)j≥1 are
i.i.d., ϕj does not depend on j and we write ϕ. Let Yn = Sn −nμ

σ
√

n
. Since the

Xj are independent, by Theorem 15.2

ϕYn (u) = ϕ 1
σ

√
n

∑n

j=1
(Xj −μ)(u) (21.1)

= ϕ∑n

j=1
(Xj −μ)

(
u

σ
√

n

)
=

n∏
j=1

ϕ(Xj −μ)

(
u

σ
√

n

)

=
(

ϕ

(
u

σ
√

n

))n

.
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Next note that E{Xj−μ} = 0 and E{(Xj−μ)2} = σ2, hence by Theorem 13.2
we know that ϕ has two continuous derivatives and moreover

ϕ′(u) = iE
{

(Xj − μ)eiu(Xj −μ)
}

,

ϕ′′(u) = −E
{

(Xj − μ)2eiu(Xj −μ)
}

.

Therefore ϕ′(0) = 0 and ϕ′′(0) = −σ2. If we expand ϕ in a Taylor expansion
about u = 0, we get (see Exercise 14.4)

ϕ(u) = 1 + 0− σ2u2

2
+ u2h(u) (21.2)

where h(u)→ 0 as u→ 0 (because ϕ′′ is continuous). Recall from (21.1):

ϕYn (u) =
(

ϕ

(
u

σ
√

n

))n

= e
n log ϕ( u

σ
√

n
)

= e
n log(1− u2

2n + u2

n σ2 h( u
σ

√
n

))
,

where here “log” denotes the principal value of the complex valued logarithm.
Taking limits as n tends to ∞ and using (for example) L’Hôpital’s rule gives
that

lim
n→∞ ϕYn (u) = e−u2/2;

Lévy’s Continuity Theorem (Theorem 19.1) then implies that Yn converges
in law to Z, where ϕZ(u) = e−u2/2; but then we know that L(Z) = N(0, 1),
using Example 13.5 and the fact that characteristic functions characterize
distributions (Theorem 14.1). �

Let us now discuss the relationship between laws of large numbers and
the central limit theorem. Let (Xj)j≥1 be i.i.d. with finite variances, and let
μ = E{X1}. Then by the Strong Law of Large Numbers,

lim
n→∞

Sn

n
= μ a.s. and in L2, (21.3)

where Sn =
∑n

j=1 Xj . Thus we know the limit is μ, but a natural question
is: How large must n be so that we are sufficiently close to μ? If we rewrite
(21.3) as

lim
n→∞

∣∣∣∣Sn

n
− μ

∣∣∣∣ = 0 a.s. and in L2, (21.4)

then what we wish to know is called a rate of convergence. We could ask, for
example, does there exist an α ∈ R, α �= 0, such that

lim
n→∞ nα

∣∣∣∣Sn

n
− μ

∣∣∣∣ = c a.s. (c �= 0)?
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In fact, no such α exists. Indeed, one cannot have nα(Sn

n − μ) convergent
to a non-zero constant or to a non-zero random variable a.s., or even in
probability. However by the central limit theorem we know that if α = 1

2 ,√
n(Sn

n −μ) converges in distribution to the normal distribution N(0, σ2). In
this sense, the rate of convergence of the strong law of large numbers is

√
n.

One can weaken slightly the hypotheses of Theorem 21.1. Indeed with
essentially the same proof, one can show:

Theorem 21.2 (Central Limit Theorem). Let (Xj)j≥1 be independent
but not necessarily identically distributed. Let E{Xj} = 0 (all j), and let
σ2

j = σ2
Xj

. Assume

sup
j

E{|Xj |2+ε} <∞ , some ε > 0,

∞∑
j=1

σ2
j =∞.

Then
lim

n→∞
Sn√∑n
j=1 σ2

j

= Z

where L(Z) = N(0, 1) and where convergence is in distribution.

While Theorem 21.1 is, in some sense, the “classical” Central Limit The-
orem, Theorem 21.2 shows it is possible to change the hypotheses and get
similar results. As a consequence there are in fact many different central limit
theorems, all similar in that they give sufficient conditions for properly nor-
malized sums of random variables to converge in distribution to a normally
distributed random variable. Indeed, martingale theory allows us to weaken
the hypotheses of Theorem 21.2 substantially. See Theorem 27.7.

We note that one can also weaken the independence assumption to one
of “asymptotic independence” via what is known as mixing conditions, but
this is more difficult.

Finally, we note that Theorem 21.1 has a d-dimensional version which
again has essentially the same proof.

Theorem 21.3 (Central Limit Theorem). Let (Xj)j≥1 be i.i.d. Rd-
valued random variables. Let the (vector) μ = E{Xj}, and let Q denote
the covariance matrix: Q = (qk,�)1≤k,�≤d, where qk,� = Cov (Xk

j , X�
j ), where

Xk
j is the kth component of the Rd-valued random variable Xj. Then

lim
n→∞

Sn − nμ√
n

= Z

where L(Z) = N(0, Q) and where convergence is in distribution.
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It is important to note that there is no requirement for the common
covariance matrix Q to be invertible in Theorem 21.3. In this way we see
that the Central Limit Theorem gives rise to gaussian limits without densities
(since an Rd valued Gaussian r.v. has a density if and only if its covariance
matrix Q is invertible).
Examples:

1. Let (Xj)j≥1 be i.i.d. with P (Xj = 1) = p and P (Xj = 0) = q = 1 −
p. Then Sn =

∑n
j=1 Xj is Binomial (L(Sn) = B(p, n)). We have μ =

E{Xj} = p and σ2 = σ2
Xj

= pq = p(1− p). By the Strong Law of Large
Numbers we have

lim
n→∞

Sn

n
= p a.s.

and by the Central Limit Theorem (Theorem 21.1) we have (with con-
vergence being in distribution);

Sn − np√
np(1− p)

D→ Z

where L(Z) = N(0, 1).
2. Suppose (Xj)j≥1 are i.i.d. random variables, all in L2, and with (common)

distribution function F . We assume F is unknown and we would like to
estimate it. We give here a standard technique to do just that. Let

Yj(x) = 1{Xj ≤x}.

Note that Yj are i.i.d. and in L2. Next define

Fn(x) =
1
n

n∑
j=1

Yj(x), for x fixed.

The function Fn(x) defined on R is called the empirical distribution func-
tion (it should indeed be written as Fn(x, ω), since it depends on ω!). By
the Strong Law of Large numbers we have

lim
n→∞ Fn(x) = lim

n→∞
1
n

n∑
j=1

Yj(x) = E{Y1(x)}.

However,

E{Y1(x)} = E{1{Xj ≤x}} = P (Xj ≤ x) = F (x),

and thus we can conclude

lim
n→∞ Fn(x) = F (x) a.s.
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That is, the empirical distribution function converges to the actual dis-
tribution function a.s. and in L2. With a little more work we can ob-
tain a stronger result: limn→∞ supx |Fn(x) − F (x)| = 0 a.s. . This is
known as the Glivenko–Cantelli Theorem. Using the Central Limit The-
orem we can moreover show that the rate of convergence is

√
n: indeed,

since Fn(x) − F (x) tends to 0, we can hope to find a rate by showing
nα(Fn(x)− F (x)) converges for some α. But

√
n(Fn(x)− F (x)) =

√
n

⎛⎝ 1
n

n∑
j=1

Yj(x)− E{Y1(x)}
⎞⎠

=

∑n
j=1 Yj(x)− nE{Y1(x)}√

n

and hence by Theorem 21.1 it converges to a normal random variable
Z with L(Z) = N(0, σ2(x)), and where σ2(x) = Var(Y1(x)) = F (x)(1 −
F (x)).

Example 2 raises an interesting question: how large must n be before the
empirical distribution function is “close” to the actual distribution function?
In essence this is equivalent to asking for a rate of convergence result for the
Central Limit Theorem. (Recall that we have already seen that the Central
Limit Theorem itself gives a rate of convergence of

√
n for the Strong Law of

Large Numbers.) A classic result is the following:

Theorem 21.4 (Berry-Esseen). Let (Xj)j≥1 be i.i.d. and suppose
E{|Xj |3} < ∞. Let Gn(x) = P (Sn −nμ

σ
√

n
≤ x) where μ = E{Xj} and

σ2 = σ2
Xj

<∞. Let Φ(x) = P (Z ≤ x), where L(Z) = N(0, 1). Then

sup
x
|Gn(x)− Φ(x)| ≤ c

E{|X1|3}
σ3
√

n

for a constant c.

The proof of Theorem 21.4 is too advanced for this book. The interested
reader can consult [8, p.108] where it is proved for c = 3. (The current best
estimates are c = 0.7975, see [24], and I.S. Shiganov has shown c ≤ 0.7655.
Also Esseen established a lower bound. Thus current knowledge is 0.4097 ≤
c ≤ 0.7655.)
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Exercises for Chapter 21

21.1 Let (Xj)j≥1 be i.i.d. with P (Xj = 1) = P (Xj = 0) = 1
2 . Let Sn =∑n

j=1 Xj , and let Zn = 2Sn − n. (Zn is the excess of heads over tails in n

tosses, if Xj = 1 when heads and Xj = 0 when tails on the jth toss.) Show
that

lim
n→∞ P

(
Zn√

n
< x

)
= Φ(x)

where
Φ(x) =

1√
2π

∫ x

−∞
e−u2/2du.

21.2 Let (Xj)j≥1 be independent, double exponential with parameter 1 (that
is, the common density is 1

2e−|x|, −∞ < x <∞). Show that

lim
n→∞

√
n

(∑n
j=1 Xj∑n
j=1 X2

j

)
= Z,

where L(Z) = N(0, 1
2 ), and where convergence is in distribution. (Hint: Use

Slutsky’s theorem (Exercise 18.14).)

21.3 Construct a sequence of random variables (Xj)j≥1, independent, such
that limj→∞ Xj = 1 in probability, and E{X2

j } ≥ j. Let Y be independent
of the sequence (Xj)j≥1, and L(Y ) = N(0, 1). Let Zj = Y Xj , j ≥ 1. Show
that

a) E{Zj} = 0
b) limj→∞ σ2

Zj
=∞

c) limj→∞ Zj = Z in distribution, where L(Z) = N(0, 1).

(Hint: To construct Xj , let (Ωj ,Aj , Pj) be ([0, 1],B[0, 1], m(ds)), where m is
Lebesgue measure on [0, 1]. Let

Xj(ω) = (j + 1)1[0,1/j](ω) + 1(1/j,1](ω),

and take the infinite product as in Theorem 10.4. To prove (c) use Slutsky’s
theorem (Exercise 18.14)). (Note that the hypotheses of the central limit the-
orems presented here are not satisfied; of course, the theorems give sufficient
conditions, not necessary ones.)

21.4 (Durrett, [8]). Let (Xj)j≥1 be i.i.d. nonnegative with E{X1} = 1 and
σ2

X1
= σ2 ∈ (0,∞). Show that

2
σ

(
√

Sn −
√

n) D→ Z,

with L(Z) = N(0, 1).(
Hint:

Sn − n√
n

=
(
√

Sn +
√

n)√
n

(
√

Sn −
√

n).
)
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21.5 Let (Xj) be i.i.d. Poisson random variables with parameter λ = 1. Let
Sn =

∑n
j=1 Xj . Show that limn→∞ Sn −n√

n
= Z, where L(Z) = N(0, 1).

21.6 Let Y λ be a Poisson random variable with parameter λ > 0. Show that

lim
λ→∞

Y λ − λ√
λ

= Z

where L(Z) = N(0, 1) and convergence is in distribution. (Hint: Use Exer-
cise 21.5 and compare Y λ with S[λ] and S[λ]+1, where [λ] denotes the largest
integer less than or equal to λ.)

21.7 Show that

lim
n→∞ e−n

(
n∑

k=0

nk

k!

)
=

1
2
.

(Hint: Use Exercise 21.5.)

21.8 Let (Xj)j≥1 be i.i.d. with E{Xj} = 0 and σ2
Xj

= σ2 < ∞. Let Sn =∑n
i=1 Xi. Show that Sn

σ
√

n
does not converge in probability.

21.9 * Let (Xj)j≥1 be i.i.d. with E{Xj} = 0 and σ2
Xj

= σ2 < ∞. Let
Sn =

∑n
j=1 Xj . Show that

lim
n→∞ E

{ |Sn|√
n

}
=

√
2
π

σ.

(Hint: Let L(Z) = N(0, σ2) and calculate E{|Z|}.)
21.10 (Gut, [11]). Let (Xj)j≥1 be i.i.d. with the uniform distribution on
(−1, 1). Let

Yn =

∑n
j=1 Xj∑n

j=1 X2
j +
∑n

j=1 X3
j

.

Show that
√

nYn converges. (Answer:
√

nYn converges in distribution to Z
where L(Z) = N(0, 3).)

21.11 Let (Xj)j≥1 be independent and let Xj have the uniform distribution
on (−j, j).

a) Show that

lim
n→∞

Sn

n
3
2

= Z

in distribution where L(Z) = N(0, 1
9 ) (Hint: Show that the characteristic

function of Xj is ϕXj
(u) = sin(uj)

uj ; compute ϕSn
(u), then ϕSn /n3/2(u),

and prove that the limit is e−u2/18 by using
∑n

j=1 j2 = n(n+1)(2n+1)
6 ).
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b) Show that

lim
n→∞

Sn√∑n
j=1 σ2

j

= Z

in distribution, where L(Z) = N(0, 1). (Note: This is not a particular
case of Theorem 21.2).

21.12 * Let X ∈ L2 and suppose X has the same distribution as 1√
2
(Y +Z),

where Y, Z are independent and X, Y, Z all have the same distribution. Show
that X is N(0, σ2) with σ2 < ∞. (Hint: Show by iteration that X has the
same law as 1√

n

∑n
i=1 Xi with (Xi) i.i.d., for n = 2m.)



22 L2 and Hilbert Spaces

We suppose given a probability space (Ω,F , P ). Let L2 denote all (equiva-
lence classes for a.s. equality of) random variables X such that E{X2} <∞.
We henceforth identify all random variables X, Y in L2 that are equal a.s.
and consider them to be representatives of the same random variable. This
has the consequence that if E{X2} = 0, we can conclude that X = 0 (and
not only X = 0 a.s.).

We can define an inner product in L2 as follows: for X, Y in L2, define

〈X, Y 〉 = E{XY }.
Note that |E{XY }| ≤ E{X2} 1

2 E{Y 2} 1
2 < ∞ by the Cauchy–Schwarz in-

equality. We have seen in Theorem 9.3 that L2 is a linear space: if X, Y are
both in L2, and α, β are constants, then αX +βY is in L2 as well. We further
note that the inner product is linear in each component: For example

〈αX + βY, Z〉 = α〈X, Z〉+ β〈Y, Z〉.
Finally, observe that

〈X, X〉 ≥ 0, and 〈X, X〉 = 0 if and only if X = 0 a.s.

since X = 0 a.s. implies X = 0 by our convention of identifying almost surely
equal random variables. This leads us to define a norm for L2 as follows:

‖X‖ = 〈X, X〉 12 = (E{X2}) 1
2 .

We then have ‖X‖ = 0 implies X = 0 (recall that in L2, X = 0 is the same
as X = 0 a.s.), and by bilinearity and the Cauchy–Schwarz inequality we get

‖X + Y ‖2 = E{X2}+ 2E{XY }+ E{Y 2}
≤ ‖X‖2 + 2‖X‖ ‖Y ‖+ ‖Y ‖2
= (‖X‖+ ‖Y ‖)2,

and thus we obtain Minkowski’s inequality:

‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖,
so that our norm satisfies the triangle inequality and is a true norm. We have
shown the following:

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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Theorem 22.1. L2 is a normed linear space with an inner product 〈·, ·〉.
Moreover one has ‖ · ‖ = 〈·, ·〉 12 .

We next want to show that L2 is a complete normed linear space; that is,
if Xn is a sequence of random variables that is Cauchy under ‖ · ‖, then there
exists a limit in L2 (recall that Xn is Cauchy if ‖Xn−Xm‖ → 0 when both m
and n tend to infinity; every convergent sequence is Cauchy). Theorem 22.2
is sometimes known as the Riesz–Fischer Theorem.

Theorem 22.2. L2 is complete.

Proof. Let Xn be a Cauchy sequence in L2. That is, for any ε > 0, there
exists N such that n, m ≥ N implies ‖Xn − Xm‖ ≤ ε. Choose a sequence
of epsilons of the form 1

2n . Then we have a subsequence (Xnk
)k≥1 such that

‖Xnk
−Xnk+1‖ ≤ 1

2k .
Define

Yn =
n∑

p=1

|Xnp −Xnp+1 |.

By the triangle inequality we have

E{Y 2
n } ≤

(
n∑

p=1

‖Xnp −Xnp+1‖
)2

≤ 1.

Let Y = limn→∞ Yn which exists because Yn(ω) is a nondecreasing sequence,
for each ω (a.s.). Since E{Y 2

n } ≤ 1 each n, by the Monotone Convergence
Theorem (Theorem 9.1(d)) E{Y 2} ≤ 1 as well. Therefore Y < ∞ a.s., and
hence the sequence Xn1 +

∑∞
p=1(Xnp+1−Xnp ) converges absolutely a.s. Since

it is a telescoping series we conclude Xnp (ω) converges toward a limit X(ω)
as p→∞, and moreover |X(ω)| ≤ |Xn1(ω)|+ Y (ω). Since Xn1 and Y are in
L2, so also X ∈ L2.

Next, note that

X −Xnp = lim
m→∞ Zp

m = lim
m→∞

m∑
q=p

(Xnq+1 −Xnq ).

Since |Zp
m| ≤ Y for each p, m, by Lebesgue’s dominated convergence theorem

(Theorem 9.1(f)) we have

‖X −Xnp ‖ = lim
m→∞ ‖Z

p
m‖ ≤ lim

m

m∑
q=p

‖Xnq+1 −Xnq ‖ ≤
1

2p−1

and we conclude limp→∞ ‖X − Xnp
‖ = 0. Therefore Xnp

converges to X
in L2.
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Finally,
‖Xn −X‖ ≤ ‖Xn −Xnp ‖+ ‖Xnp −X‖.

Hence letting n and p go to infinity, we deduce that Xn tends to X in L2.
�

Definition 22.1. A Hilbert space H is a complete normed linear space with
an inner product satisfying 〈x, x〉 12 = ‖x‖, all x ∈ H.

We now have established:

Theorem 22.3. L2 is a Hilbert space.

Henceforth we will describe results for Hilbert spaces; of course these
results apply as well for L2. From now on H will denote a Hilbert space with
norm ‖ · ‖ and inner product 〈·, ·〉, while α an β below always denote real
numbers.

Definition 22.2. Two vectors x and y in H are orthogonal if 〈x, y〉 = 0. A
vector x is orthogonal to a set of vectors Γ if 〈x, y〉 = 0 for every y ∈ Γ .

Observe that if 〈x, y〉 = 0 then ‖x + y‖2 = ‖x‖2 + ‖y‖2; this is a Hilbert
space version of the Pythagorean theorem.

Theorem 22.4 (Continuity of the inner product). If xn → x and yn →
y in H, then 〈xn, yn〉 → 〈x, y〉 in R (and thus also ‖xn‖ → ‖x‖).
Proof. The Cauchy–Schwarz inequality implies 〈x, y〉 ≤ ‖x‖ ‖y‖, hence

|〈x, y〉 − 〈xn, yn〉| = |〈x− xn, yn〉+ 〈x− xn, y − yn〉+ 〈xn, y − yn〉|
≤ ‖x− xn‖ ‖yn‖+ ‖x− xn‖ ‖y − yn‖+ ‖xn‖ ‖y − yn‖.

Note that supn ‖yn‖ < ∞ and supn ‖xn‖ < ∞, since xn and yn are both
convergent sequences in H (for example, ‖xn‖ ≤ ‖xn−x‖+‖x‖ and ‖x‖ <∞
and ‖xn − x‖ → 0). Thus the right side of the above inequality tends to 0 as
n tends to ∞. �

Definition 22.3. A subset L of H is called a subspace if it is linear (that is,
x, y ∈ L implies αx+βy ∈ L) and if it is closed (that is, if (xn)n≥1 converges
to x in H, then x ∈ L).
Theorem 22.5. Let Γ be a set of vectors. Let Γ⊥ denote all vectors orthog-
onal to all vectors in Γ . Then Γ⊥ is a subspace of H.

Proof. First note that Γ⊥ is a linear space, even if Γ is not. Indeed, if x, y ∈
Γ⊥, then 〈x, z〉 = 0 and 〈y, z〉 = 0, for each z ∈ Γ . Therefore

〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉 = 0,

and αx + βy ∈ Γ⊥ also. It follows from Theorem 22.4 that Γ⊥ is closed. �
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Definition 22.4. For a subspace L of H, let d(x,L) = inf{‖x − y‖; y ∈ L}
denote the distance from x ∈ H to L.

Note that if L is a subspace, then x ∈ L iff d(x,L) = 0 (recall that a
linear subspace of a closed space is always closed).

Theorem 22.6. Let L be a subspace of H; x ∈ H. There is a unique vector
y ∈ L such that ‖x− y‖ = d(x,L).

Proof. If x ∈ L, then y = x. If x is not in L, let yn ∈ L such that limn→∞ ‖x−
yn‖ = d(x,L). We want to show that (yn)n≥1 is Cauchy in H. Note first that

‖yn − ym‖2 = ‖x− ym‖2 + ‖x− yn‖2 − 2〈x− ym, x− yn〉. (22.1)

We use the inequality∥∥∥∥x− ym + yn

2

∥∥∥∥ ≤ ‖x− ym‖
2

+
‖x− yn‖

2

to conclude that

lim
n,m→∞

∥∥∥∥x− ym + yn

2

∥∥∥∥ ≤ d(x,L),

hence

lim
n,m→∞

∥∥∥∥x− ym + yn

2

∥∥∥∥ = d(x,L),

since d(x,L) is an infimum and ym +yn

2 ∈ L because L is a subspace. We now
have

d(x,L)2 = lim
m,n→∞

∥∥∥∥x− ym + yn

2

∥∥∥∥2
= lim

m,n→∞
{‖x− ym‖2 + ‖x− yn‖2 + 2〈x− ym, x− yn〉

}
/4

and therefore
lim

n,m→∞〈x− ym, x− yn〉 = d(x,L)2. (22.2)

If we now combine (22.1) and (22.2) we see that (yn)n≥1 is Cauchy. Therefore
lim yn = y exists and is in L, since L is closed. Moreover d(x,L) = ‖x− y‖,
by the continuity of the distance function.

It remains to show the uniqueness of y. Suppose z were another such
vector in L. Then the sequence

w2n = y,

w2n+1 = z,

is again a Cauchy sequence in L by the previous argument, and hence it
converges to a unique limit; whence y = z. �
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We now consider the important concept of projections. We fix our Hilbert
space H and our (closed, linear) subspace L. The projection of a vector x in
H onto L consists of taking the (unique) y ∈ L which is closest to x. We let
Π denote this projection operator. The next theorem gives useful properties
of Π.

Theorem 22.7. The projection operator Π of H onto a subspace L satisfies
the following three properties:

(i) Π is idempotent: Π2 = Π;
(ii) Πx = x for x ∈ L; Πx = 0 for x ∈ L⊥;
(iii) For every x ∈ H, x−Πx is orthogonal to L.
Proof. (i) follows immediately from the definition of projection.

(ii) If x ∈ L, then d(x,L) = 0, and since x is closest to x (‖x − x‖ = 0),
Πx = x. Moreover if x ∈ L⊥, then ‖x−y‖2 = 〈x−y, x−y〉 = ‖x‖2+‖y‖2
for y ∈ L, and thus y = 0 minimizes d(x,L); hence Πx = 0.

(iii) We first note that, for y ∈ L:

‖x−Πx‖2 ≤ ‖x− (Πx + y)‖2
= ‖x−Πx‖2 + ‖y‖2 − 2〈x−Πx, y〉,

and therefore
2〈x−Πx, y〉 ≤ ‖y‖2.

Since y ∈ L was arbitrary and since L is linear we can replace y with αy,
any α ∈ R+, to obtain

2〈x−Πx,αy〉 ≤ ‖αy‖2,

and dividing by α gives

2〈x−Πx, y〉 ≤ α‖y‖2;

we let α tend to zero to conclude 〈x−Πx, y〉 ≤ 0. Analogously we obtain
〈x − Πx, y〉 ≥ 0 by considering negative α. Thus x − Πx is orthogonal
to L.

�

Corollary 22.1. Let Π be the projection operator of H onto a subspace L.
Then x = Πx + (x − Πx) is a unique representation of x as the sum of a
vector in L and one in L⊥. Such a representation exists. Moreover x −Πx
is the projection of x onto L⊥; and (L⊥)⊥ = L.
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Proof. The existence of such a representation is shown in Theorem 22.7(iii).
As for uniqueness, let x = y+z be another such representation. Then y−Πx =
z − (x−Πx) is a vector simultaneously in L and L⊥; therefore it must be 0
(because it is orthogonal to itself), and we have uniqueness.

Next observe that L ⊂ (L⊥)⊥. Indeed, if x ∈ L and y ∈ L⊥ then 〈x, y〉 =
0, so x ∈ (L⊥)⊥. On the other hand if x ∈ (L⊥)⊥, then x = y + z with y ∈ L
and z ∈ L⊥. But z must be 0, since otherwise we have 〈x, z〉 = 〈y, z〉+ 〈z, z〉,
and 〈y, z〉 = 0 since y ∈ L and z ∈ L⊥; and also 〈x, z〉 = 0 since z ∈ L⊥ and
x ∈ (L⊥)⊥. Thus 〈z, z〉 = 0, hence z = 0. Therefore x = y, with y ∈ L, hence
x ∈ L, and (L⊥)⊥ ⊂ L. �

Corollary 22.2. Let Π be the projection operator H onto a subspace L.
Then

(i) 〈Πx, y〉 = 〈x, Πy〉,
(ii) Π is a linear operator: Π(αx + βy) = αΠx + βΠy.

Proof. (i) By Corollary 22.1 we write uniquely:

x = x1 + x2, x1 ∈ L;x2 ∈ L⊥,

y = y1 + y2, y1 ∈ L; y2 ∈ L⊥.

Then
〈Πx, y〉 = 〈x1, y〉 = 〈x1, y1 + y2〉 = 〈x1, y1〉,

since 〈x1, y2〉 = 0. Continuing in reverse for y, and using 〈x2, y1〉 = 0:

= 〈x1 + x2, y1〉 = 〈x, y1〉 = 〈x, Πy〉.

(ii) Again using the unique decomposition of Corollary 22.1, we have:

αx + βy = (αx1 + βy1) + (αx2 + βy2),

hence
Π(αx + βy) = αx1 + βy1 = αΠx + βΠy.

�
We end this treatment with a converse that says, in essence, that if an

operator behaves like a projection then it is a projection.

Theorem 22.8. Let T map H onto a subspace L. Suppose that x − Tx is
orthogonal to L for all x ∈ H. Then T = Π, the projection operator onto the
subspace L.
Proof. We can write x = Tx+(x−Tx), with Tx ∈ L and (x−Tx) ∈ L⊥. By
Corollary 22.1 to Theorem 22.7, Tx must be the projection of x onto L. �
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Exercises for Chapter 22

22.1 Using that (a− b)2 ≥ 0, prove that (a + b)2 ≤ 2a2 + 2b2.

22.2 Let x, y ∈ H, a Hilbert space, with 〈x, y〉 = 0. Prove the Pythagorean
Theorem: ‖x + y‖2 = ‖x‖2 + ‖y‖2.
22.3 Show that Rn is a Hilbert space with an inner product given by the “dot
product” if

⇀
x= (x1, . . . , xn) and

⇀
y = (y1, . . . , yn), then 〈⇀x,

⇀
y 〉 =

∑n
i=1 xiyi.

22.4 Let L be a linear subspace of H and Π projection onto L. Show that
Πy is the unique element of L such that 〈Πy, z〉 = 〈y, z〉, for all z ∈ L.



23 Conditional Expectation

Let X and Y be two random variables with Y taking values in R with X
taking on only countably many values. It often arises that we know already the
value of X and want to calculate the expected value of Y taking into account
the knowledge of X. That is, suppose we know that the event {X = j}
for some value j has occurred. The expectation of Y may change given this
knowledge. Indeed, if Q(Λ) = P (Λ|X = j), it makes more sense to calculate
EQ{Y } than it does to calculate EP {Y } (ER{·} denotes expectation with
respect to the Probability measure R.)

Definition 23.1. Let X have values {x1, x2, . . . , xn, . . .} and Y be a random
variable. Then if P (X = xj) > 0 the conditional expectation of Y given
{X = xj} is defined to be

E{Y |X = xj} = EQ{Y },
where Q is the probability given by Q(Λ) = P (Λ|X = xj), provided EQ{|Y |} <
∞.

Theorem 23.1. In the previous setting, and if further Y is countably valued
with values {y1, y2, . . . , yn, . . .} and if P (X = xj) > 0, then

E{Y |X = xj} =
∞∑

k=1

ykP (Y = yk|X = xj),

provided the series is absolutely convergent.

Proof.

E{Y |X = xj} = EQ{Y } =
∞∑

k =1

ykQ(Y = yk) =
∞∑

k=1

ykP (Y = yk|X = xj).

�
Next, still with X having at most a countable number of values, we wish to

define the conditional expectation of any real valued r.v. Y given knowledge
of the random variable X, rather than given only the event {X = xj}. To
this effect we consider the function

J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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f(x) =
{

E{Y |X = x} if P (X = x) > 0
any arbitrary value if P (X = x) = 0. (23.1)

Definition 23.2. Let X be countably valued and let Y be a real valued ran-
dom variable. The conditional expectation of Y given X is defined to be

E{Y |X} = f(X),

where f is given by (23.1) provided f is well defined (that is, Y is integrable
with respect to the probability measure Qj defined by by Qj(Λ) = P (Λ|X =
xj), for all j such that P (X = xj) > 0).

Remark 23.1. The above definition does not really define E{Y |X} every-
where, but only almost everywhere since it is arbitrary on each set {X = x}
such that P (X = x) = 0: this will be a distinctive feature of the conditional
expectation for more general r.v. X’s as defined below.

Example: Let X be a Poisson random variable with parameter λ. When
X = n, we have that each one of the n outcomes has a probability of success
p, independently of the others. Let S denote the total number of successes.
Let us find E{S|X} and E{X|S}.

We first compute E{S|X = n}. If X = n, then S is binomial with param-
eters n and p, and E{S|X = n} = pn. Thus E{S|X} = pX.

To compute E{X|S}, we need to compute E{X|S = k}; to do this we
first compute P (X = n|S = k):

P (X = n|S = k) =
P (S = k|X = n)P (X = n)

P (S = k)

=

(
n
k

)
pk(1− p)n−k

(
λn

n!

)
e−λ∑

m≥k

(
m
k

)
pk(1− p)m−k

(
λm

m!

)
e−λ

=
((1− p)λ)n−k

(n− k)!
e−(1−p)λ

for n ≥ k. Thus,

E{X|S = k} =
∑
n≥k

n
((1− p)λ)n−k

(n− k)!
e−(1−p)λ = k + (1− p)λ,

hence,
E{X|S} = S + (1− p)λ.

Finally, one can check directly that E{S} = E{E{S|X}}; also this follows
from Theorem 23.3 below. Therefore, we also have that

E{S} = pE{X} = pλ.
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Next we wish to consider the general case: that is, we wish to treat
E{Y |X} where X is no longer assumed to take only countably many val-
ues. The preceding approach does not work, because the events {X = x} in
general have probability zero. Nevertheless we found in the countable case
that E{Y |X} = f(X) for a function f , and it is this idea that extends to
the general case, with the aid of the next theorem. Let us recall a definition
already given in Chapter 10:

Definition 23.3. Let X: (Ω,A) → (Rn,Bn) be measurable. The σ-algebra
generated by X is σ(X) = X−1(Bn) (it is a σ-algebra: see the proof of
Theorem 8.1), which is also given by

σ(X) =
{
A ⊂ Ω : X−1(B) = A, for some B ∈ Bn

}
.

Theorem 23.2. Let X be an Rn valued random variable and let Y be an
R-valued random variable. Y is measurable with respect to σ(X) if and only
if there exists a Borel measurable function f on Rn such that Y = f(X).

Proof. Suppose such a function f exists. Let B ∈ B. Then Y −1(B) =
X−1(f−1(B)). But Λ = f−1(B) ∈ Bn, whence X−1(Λ) ∈ σ(X) (alterna-
tively, see Theorem 8.2).

Next suppose Y −1(B) ∈ σ(X), for each B ∈ B. Suppose first Y =∑k
i=1 ai1Ai for some k < ∞, with the ai’s all distinct and the Ai’s pair-

wise disjoint. Then Ai ∈ σ(X), hence there exists Bi ∈ Bn such that
Ai = X−1(Bi). Let f(x) =

∑k
i=1 ai1Bi (x), and we have Y = f(X), with

f Borel measurable: so the result is proved for every simple r.v. Y which
is σ(X)-measurable. If Y is next assumed only positive, it can be written
Y = limn→∞ Yn, where Yn are simple and non-decreasing in n. (See for ex-
ample such a construction in Chapter 9.) Each Yn is σ(X) measurable and
also Yn = fn(X) as we have just seen. Set f(x) = lim supn→∞ fn(x). Then

Y = lim
n→∞ Yn = lim

n
fn(X).

But
(lim sup

n→∞
fn)(X) = lim sup

n
(fn(X)).

and since lim supn→∞ fn(x) is Borel measurable, we are done.
For general Y , we can write Y = Y + − Y −, and we are reduced to the

preceding case. �
In what follows, let (Ω,A, P ) be a fixed and given probability space, and

let X : Ω → Rn. The space L2(Ω,A, P ) is the space of all random variables
Y such that E{Y 2} < ∞. If we identify all random variables that are equal
a.s., we get the space L2(Ω,A, P ). We can define an inner product (or “scalar
product”) by

〈Y, Z〉 = E{Y Z}.
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Then L2(Ω,A, P ) is a Hilbert space, as we saw in Chapter 22. Since
σ(X) ⊂ A, the set L2(Ω, σ(X), P ) is also a Hilbert space, and it is a (closed)
Hilbert subspace of L2(Ω,A, P ). (Note that L2(Ω, σ(X), P ) has the same
inner product as does L2(Ω,A, P ).)

Definition 23.4. Let Y ∈ L2(Ω,A, P ). Then the conditional expectation of
Y given X is the unique element Ŷ in L2(Ω, σ(X), P ) such that

E{Ŷ Z} = E{Y Z} for all Z ∈ L2(Ω, σ(X), P ). (23.2)

We write
E{Y |X}

for the conditional expectation of Y given X, namely Ŷ .

Note that Ŷ is simply the Hilbert space projection of Y on the closed lin-
ear subspace L2(Ω, σ(X), P ) of L2(Ω,A, P ): this is a consequence of Corol-
lary 22.1 (or Exercise 23.4), and thus the conditional expectation does exist.

Observe that since E{Y |X} is σ(X) measurable, by Theorem 23.2 there
exists a Borel measurable f such that E{Y |X} = f(X). Therefore (23.2) is
equivalent to

E{f(X)g(X)} = E{Y g(X)} (23.3)

for each Borel g such that g(X) ∈ L2.
Next let us replace σ(X) with simply a σ-algebra G with G ∈ A. Then

L2(Ω,G, P ) is a sub-Hilbert space of L2(Ω,A, P ), and we can make an anal-
ogous definition:

Definition 23.5. Let Y ∈ L2(Ω,A, P ) and let G be a sub σ-algebra of A.
Then the conditional expectation of Y given G is the unique element E{Y |G}
of L2(Ω,G, P ) such that

E{Y Z} = E{E{Y |G}Z} (23.4)

for all Z ∈ L2(Ω,G, P ).

Important Note: The conditional expectation is an element of L2, that
is an “equivalence class” of random variables. Thus any statement like
E{Y |G} ≥ 0 or E{Y |G} = Z, etc... should be understood with an implicit “al-
most surely” qualifier, or equivalently as such: there is a “version” of E{Y |G}
that is positive, or equal to Z, etc...

Theorem 23.3. Let Y ∈ L2(Ω,A, P ) and G be a sub σ-algebra of A.

a) If Y ≥ 0 then E{Y |G} ≥ 0;
b) If G = σ(X) for some random variable X, there exists a Borel measurable

function f such that E{Y |G} = f(X);
c) E{E{Y |G}} = E{Y };
d) The map Y → E{Y |G} is linear.
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Proof. Property (b) we proved immediately preceding the theorem. For (c)
we need only to apply (23.4) with Z = 1. Property (d) follows from (23.4) as
well: if U, V are in L2, then

E{(U + αV )Z} = E{UZ}+ αE{V Z}
= E{E{U |G}Z}+ αE{E{V |G}Z}
= E{(E{U |G}+ αE{V |G})Z},

and thus E{U + αV |G} = E{U |G}+ αE{V |G} by uniqueness (alternatively,
as said before, E{Y |G} is the projection of Y on the subspace L2(Ω,G, P ),
and projections have been shown to be linear in Corollary 22.2).

Finally for (a) we again use (23.4) and take Z to be 1{E{Y |G}<0}, assuming
Y ≥ 0 a.s. Then E{Y Z} ≥ 0 since both Y and Z are nonnegative, but

E{E{Y |G}Z} = E{E{Y |G}1{E{Y |G}<0}} < 0 if P ({E{Y |G} < 0}) > 0.

This violates (23.3), so we conclude P ({E{Y |G} < 0}) = 0. �

Remark 23.2. As one can see from Theorem 23.3, the key property of con-
ditional expectation is the property (23.4); our only use of Hilbert space
projection was to show that the conditional expectation exists.

We now wish to extend the conditional expectation of Definition 23.4 to
random variables in L1, not just random variables in L2. Here the technique
of Hilbert space projection is no longer available to us.

Once again let L1(Ω,A, P ) be the space of all L1 random variables; we
identify all random variables that are equal a.s. and we get the (Banach)
space L1(Ω,A, P ). Analogously, let L+(Ω,A, P ) be all nonnegative random
variables, again identifying all a.s. equal random variables. We allow random
variables to assume the value +∞.

Lemma 23.1. Let Y ∈ L+(Ω,A, P ) and let G be a sub σ-algebra of A. There
exists a unique element E{Y |G} of L+(Ω,G, P ) such that

E{Y X} = E{E{Y |G}X} (23.5)

for all X in L+(Ω,G, P ) and this conditional expectation agrees with the one
in Definition 23.5 if further Y ∈ L2(Ω,A, P ). Moreover, if 0 ≤ Y ≤ Y ′,
then

E{Y |G} ≤ E{Y ′|G}. (23.6)

Proof. If Y is in L2(Ω,A, P ) and positive, we define E{Y |G} as in Defini-
tion 23.5. If X in L+(Ω,G, P ) then Xn = X ∧ n is square-integrable. Hence
the Monotone Convergence Theorem (applied twice) and (23.5) yield

E{Y X} = lim
n

E{Y Xn}
= lim

n
E{E{Y |G}Xn}

= E{E{Y |G}X} (23.7)

and (23.5) holds for all positive X.
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Let now Y be in L+(Ω,A, P ). Each Ym = Y ∧m is bounded and hence
in L2, and by Theorem 23.3, conditional expectation on L2 is a positive
operator, so E{Y ∧ m|G} is increasing; therefore the following limit exists
and we can set

E{Y |G} = lim
m→∞ E{Ym|G}. (23.8)

If X ∈ L+(Ω,G, P ), we apply the Monotone Convergence Theorem several
times as well as (23.8)to deduce that:

E{Y X} = lim
m

E{YmX}

= E
{

lim
m

E{Ym|G}X
}

= E {E{Y |G}X} .

Furthermore if Y ≤ Y ′ we have Y ∧m ≤ Y ′∧m for all m, hence E{Y ∧m|G} ≤
E{Y ′ ∧m|G} as well by Theorem 23.3(a). Therefore (23.6) holds.

It remains to establish the uniqueness of E{Y |G} as defined above. Let U
and V be two versions of E{Y |G} and let Λn = {U < V ≤ n} and suppose
P (Λn) > 0. Note that Λn ∈ G. We then have

E{Y 1Λn } = E{U1Λn } = E{V 1Λn },
since E{Y 1Λ} = E{E{Y |G}1Λ} for all Λ ∈ G by (23.7). Further, 0 ≤ U1Λn ≤
V 1Λn ≤ n, and P (Λn) > 0 implies that the r.v. V 1Λn and U1Λn are not a.s.
equal: we deduce that E{U1Λ} < E{V 1Λ}, whence a contradiction. Therefore
P (Λn) = 0 for all n, and since {U > V } = ∪n≥1Λn we get P{U < V }) = 0;
analogously P ({V > U}) = 0, and we have uniqueness. �

Theorem 23.4. Let Y ∈ L1(Ω,A, P ) and let G be a sub σ-algebra of A.
There exists a unique element E{Y |G} of L1(Ω,G, P ) such that

E{Y X} = E{E{Y |G}X} (23.9)

for all bounded G-measurable X and this conditional expectation agrees with
the one in Definition 23.5 (resp. Lemma 23.1) when further Y ∈ L2(Ω,A, P )
(resp. Y ≥ 0), and satisfies

a) If Y ≥ 0 then E{Y |G} ≥ 0;
b) The map Y → E{Y |G} is linear.

Proof. Since Y is in L1, we can write

Y = Y + − Y −

where Y + = max(Y, 0) and Y − = −min(Y, 0): moreover Y + and Y − are also
in L1(Ω,G, P ). Next set

E{Y |G} = E{Y +|G} − E{Y −|G}.
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This formula makes sense: indeed the r.v. Y + and Y −, hence E{Y +|G} and
E{Y −|G} as well by Theorem 23.3(c), are integrable, hence a.s. finite. That
E{Y |G} satisfies (23.9) follows from Lemma 23.1. For uniqueness, let U, V be
two versions of E{Y |G}, and let Λ = {U < V }. Then Λ ∈ G, so 1Λ is bounded
and G-measurable. Then E{Y 1Λ} = E{E{Y |G}1Λ} = E{U1Λ} = E{V 1Λ}.
But if P (Λ) > 0, then E{U1Λ} < E{V 1Λ}, which is a contradiction. So
P (Λ) = 0 and analogously P ({V < U}) = 0 as well.

The final statements are trivial consequences of the previous definition of
E{Y |G} and of Lemma 23.1 and Theorem 23.3. �
Example: Let (X, Z) be real-valued random variables having a joint density
f(x, z). Let g be a bounded function and let

Y = g(Z).

We wish to compute E{Y |X} = E{g(Z)|X}. Recall that X has density fX

given by

fX(x) =
∫

f(x, z)dz

and we defined in Chapter 12 (see Theorem 12.2) a conditional density for Z
given X = x by:

fX=x(z) =
f(x, z)
fX(x)

,

whenever fX(x) �= 0. Next consider

h(x) =
∫

g(z)fX=x(z)dz.

We then have, for any bounded Borel function k(x):

E{h(X)k(X)} =
∫

h(x)k(x)fX(x)dx

=
∫ ∫

g(z)fX=x(z)dz k(x)fX(x)dx

=
∫ ∫

g(z)
f(x, z)
fX(x)

k(x)fX(x)dz dx

=
∫ ∫

g(z)k(x)f(x, z)dz dx

= E{g(Z)k(X)} = E{Y k(X)}.
Therefore by (23.9) we have that

E{Y |X} = h(X).

This gives us an explicit way to calculate conditional expectations in the case
when we have densities.
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Theorem 23.5. Let Y be a positive or integrable r.v. on (Ω,F , P ). Let G be
a sub σ-algebra. Then E{Y |G} = Y if and only if Y is G-measurable.

Proof. This is trivial from the definition of conditional expectation. �

Theorem 23.6. Let Y ∈ L1(Ω,A, P ) and suppose X and Y are indepen-
dent. Then

E{Y |X} = E{Y }.
Proof. Let g be bounded Borel. Then E{Y g(X)} = E{Y }E{g(X)} by in-
dependence. Thus taking f(x) = E{Y } for all x (the constant function) in
Theorem 23.2, we have the result by (23.9). �

Theorem 23.7. Let X, Y be random variables on (Ω,A, P ), let G be a sub
σ-algebra of A, and suppose that X is G-measurable. In the two following
cases:

a) the variables X, Y and XY are integrable,
b) the variables X and Y are positive,

we have
E{XY |G} = XE{Y |G}.

Proof. Assume first (b). For any G-measurable positive r.v. Z we have

E{XY Z} = E{XZE{Y |G}}

by (23.5). Since XE{Y |G} is also G-measurable, we deduce the result by
another application of the characterization (23.5).

In case (a), we observe that X+Y +, X−Y +, X+Y − and X−Y − are all
integrable and positive. Then E{X+Y +|G} = X+E{Y +|G} by what pre-
cedes, and similarly for the other three products, and all these quantities are
finite. It remains to apply the linearity of the conditional expectation and
the property XY = X+Y + + X−Y − −X+Y − −X−Y +. �

Let us note the important observation that the principal convergence
theorems also hold for conditional expectations (we choose to emphasize be-
low the fact that all statements about conditional expectations are “almost
sure”):

Theorem 23.8. Let (Yn)n≥1 be a sequence of r.v.’s on (Ω,A, P ) and let G
be a sub σ-algebra of A.

a) (Monotone Convergence.) If Yn ≥ 0, n ≥ 1, and Yn increases to Y a.s.,
then

lim
n→∞ E{Yn|G} = E{Y |G} a.s.;
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b) (Fatou’s Lemma.) If Yn ≥ 0, n ≥ 1, then

E{lim inf
n→∞ Yn|G} ≤ lim inf

n→∞ E{Yn|G} a.s.;

c) (Lebesgue’s dominated convergence theorem.) If limn→∞ Yn = Y a.s. and
|Yn| ≤ Z (n ≥ 1) for some Z ∈ L1(Ω,A, P ), then

lim
n→∞ E{Yn|G} = E{Y |G} a.s. .

Proof. a) By (23.6) we have E{Yn+1|G} ≥ E{Yn|G} a.s., each n; hence U =
limn→∞ E{Yn|G} exists a.s. Then for all positive and G-measurable r.v. X
we have:

E{UX} = lim
n→∞ E{E{Yn|G}X}

= lim
n→∞ E{YnX}

by (23.5); and
= lim

n→∞ E{Y X}

by the usual monotone convergence theorem. Thus U = E{Y |G}, again by
(23.5).

The proofs of (b) and (c) are analogous in a similar vein to the proofs of
Fatou’s lemma and the Dominated Convergence Theorem without condition-
ing. �

We end with three useful inequalities.

Theorem 23.9 (Jensen’s Inequality). Let ϕ:R → R be convex, and let
X and ϕ(X) be integrable random variables. For any sub-σ-algebra G,

ϕ ◦ E{X|G} ≤ E{ϕ(X)|G}.

Proof. A result in real analysis is that if ϕ : R → R is convex, then ϕ(x) =
supn(anx + bn) for a countable collection of real numbers (an, bn). Then

E{anX + bn|G} = anE{X|G}+ bn.

But E{anX + bn|G} ≤ E{ϕ(X)|G}, hence anE{X|G}+ bn ≤ E{ϕ(X)|G}, all
n. Taking the supremum in n, we get the result. �

Note that ϕ(x) = x2 is of course convex, and thus as a consequence of
Jensen’s inequality we have

(E{X|G})2 ≤ E{X2|G}.

An important consequence of Jensen’s inequality is Hölder’s inequality
for random variables.



206 23 Conditional Expectation

Theorem 23.10 (Hölder’s Inequality). Let X, Y be random variables
with E{|X|p} < ∞, E{|Y |q} < ∞, where p > 1, and 1

p + 1
q = 1. Then

|E{XY }| ≤ E{|XY |} ≤ E{|X|p} 1
p E{|Y |q} 1

q .

(Hence if X ∈ Lp and Y ∈ Lq with p, q as above, then the product XY belongs
to L1).

Proof. Without loss of generality we can assume X ≥ 0, Y ≥ 0 and E{Xp} >
0, since E{Xp} = 0 implies Xp = 0 a.s., thus X = 0 a.s. and there is nothing
to prove. Let C = E{Xp} <∞. Define a new probability measure Q by

Q(Λ) =
1
C

E{1ΛXp}

(compare with Exercises 9.5 and 9.7). Next define Z = Y
Xp−1 1{X>0}. Since

ϕ(x) = |x|p is convex, Jensen’s inequality (Theorem 23.9) yields

(EQ{Z})q ≤ E{Zq}.
Thus,

1
Cq

E{XY }q =
1

Cq
E

{
Y

Xp−1 Xp

}q

=
(

EQ

{
Y

Xp−1

})q

≤ EQ

{(
Y

Xp−1

)q}
=

1
C

E

{(
Y

Xp−1

)q

Xp

}
=

1
C

E

{
Y q 1

X(p−1)q Xp

}
,

and q = p
p−1 while (p− 1)q = p, hence

=
1
C

E

{
Y q 1

Xp
Xp

}
=

1
C

E{Y q}.

Thus
E{XY }q ≤ Cq−1E{Y q},

and taking qth roots yields

E{XY } ≤ C
q −1

q E{Y q} 1
q .

Since q−1
q = 1

p and C = E{Xp}, we have the result. �
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Corollary 23.1 (Minkowski’s Inequality). Let X, Y be random variables
and 1 ≤ p <∞ with E{|X|p} <∞ and E{|Y |p} <∞. Then

E{|X + Y |p} 1
p ≤ E{Xp} 1

p + E{Y p} 1
p .

Proof. If p = 1 the result is trivial. We therefore asume that p > 1. We use
Hölder’s inequality (Theorem 23.10). We have

E{|X + Y |p} = E
{|X| |X + Y |p−1}+ E

{|Y | |X + Y |p−1}
≤ E{|X|p} 1

p E{|X + Y |(p−1)q} 1
q + E{|Y |p} 1

p E{|X + Y |(p−1)q} 1
q .

But (p− 1)q = p, and 1
q = 1− 1

p , hence

=
(
E{|X|p} 1

p + E{|Y |p} 1
p

)
E{|X + Y |p}1− 1

p

and we have the result. �
Minkowski’s inequality allows one to define a norm (satisfying a triangle

inequality) on the space Lp of equivalence classes (for the relation “equality
a.s.”) of random variables with E{|X|p} <∞.

Definition 23.6. For X in Lp, define a norm by

‖X‖p = E{|Xp|} 1
p .

Note that Minkowski’s inequality shows that Lp is a bonafide normed lin-
ear space. In fact it is even a complete normed linear space (called a “Banach
space”). But for p �= 2 it is not a Hilbert space: the norm is not associated
with an inner product.
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Exercises for Chapter 23

For Exercises 23.1–23.6, let Y be a positive or integrable random variable on
the space (Ω,A, P ) and G be a sub σ-algebra of A.

23.1 Show |E{Y |G}| ≤ E{|Y ||G}.
23.2 Suppose H ⊂ G where H is a sub σ-algebra of G. Show that

E {E{Y |G}|H} = E{Y |H}.
23.3 Show that E{Y |Y } = Y a.s.

23.4 Show that if |Y | ≤ c a.s. then |E{Y |G}| ≤ c a.s. also.

23.5 If Y = α a.s., with α a constant, show that E{Y |G} = α a.s.

23.6 If Y is positive, show that {E{Y |G} = 0} ⊂ {Y = 0} and {Y = +∞} ⊂
{E{Y |G} = +∞} almost surely.

23.7 * Let X, Y be independent and let f be Borel such that f(X, Y ) ∈
L1(Ω,A, P ). Let

g(x) =
{

E{f(x, Y )} if |E{f(x, Y )}| <∞,
0 otherwise.

Show that g is Borel on R and that

E{f(X, Y )|X} = g(X).

23.8 Let Y be in L2(Ω,A, P ) and suppose E{Y 2 | X} = X2 and E{Y |
X} = X. Show Y = X a.s.

23.9 * Let Y be an exponential r.v. such that P ({Y > t}) = e−t for t > 0.
Calculate E{Y | Y ∧ t}, where Y ∧ t = min(t, Y ).

23.10 (Chebyshev’s inequality). Prove that for X ∈ L2 and a > 0, P (|X| ≥
a|G) ≤ E{X2|G}

a2 (by P (A|G) one means the conditional expectation E(1A|G)).

23.11 (Cauchy-Schwarz). For X, Y in L2 show

(E{XY |G})2 ≤ E{X2|G}E{Y 2|G}.
23.12 Let X ∈ L2. Show that

E{(X − E{X|G})2} ≤ E{(X − E{X})2}.
23.13 Let p ≥ 1 and r ≥ p. Show that Lp ⊃ Lr, for expectation with respect
to a probability measure.
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23.14 * Let Z be defined on (Ω,F , P ) with Z ≥ 0 and E{Z} = 1. Define
a new probability Q by Q(Λ) = E{1ΛZ}. Let G be a sub σ-algebra of F ,
and let U = E{Z|G}. Show that EQ{X|G} = E{XZ|G}

U , for any bounded
F-measurable random variable X. (Here EQ{X|G} denotes the conditional
expectation of X relative to the probability measure Q.)

23.15 Show that the normed linear space Lp is complete for each p, 1 ≤ p <
∞. (Hint: See the proof of Theorem 22.2.)

23.16 Let X ∈ L1(Ω,F , P ) and let G,H be sub σ-algebras of F . Moreover
let H be independent of σ(σ(X),G). Show that E{X|σ(G,H)} = E{X|G}.
23.17 Let (Xn)n≥1 be independent and identically distributed and in L1

and let Sn =
∑n

i=1 Xi and Gn = σ(Sn, Sn+1, . . .). Show that E{X1|Gn} =
E{X1 | Sn} and also E{Xj |Gn} = E{Xj | Sn} for 1 ≤ j ≤ n. Also show that
E{Xj |Gn} = E{X1|Sn} for 1 ≤ j ≤ n (Hint: Use Exercise 23.16.)

23.18 Let X1, X2, . . . , Xn be independent and identically distributed and in
L1. Show that for each j, 1 ≤ j ≤ n, we have E{Xj |

∑n
i=1 Xi} = 1

n

∑n
i=1 Xi.

(Hint: Use Theorem 23.2 and the symmetry coming from the i.i.d. hypothe-
sis.)
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We begin by recalling the Strong Law of Large Numbers (Theorem 20.1): if
(Xn)n≥1 are i.i.d. with E{Xn} = μ and σ2

Xn
< ∞, and if Sn =

∑n
j=1 Xj ,

then limn→∞ Sn

n = μ a.s. Note that since the Xn are all independent, the
limit must be constant a.s. as a consequence of the tail event zero–one law
(Theorem 10.6). It is interesting to study sequences converging to limits that
are random variables, not just constant.

Let us rewrite the sequence as

lim
n→∞

Sn − nμ

n
= 0 a.s.

A key property of this sequence is that if Fn = σ{Sk; k ≤ n}, then

E{Sn+1 − (n + 1)μ|Fn} = Sn − nμ, (24.1)

as will be seen in Example 24.1 below. It is property (24.1) that is the key
to the study of more general types of convergence, where we relax the inde-
pendence assumption.

We assume given and fixed both a probability space (Ω,F , P ) and an
increasing sequence of σ-algebras (Fn)n≥0, having the property that Fn ⊂
Fn+1 ⊂ F , all n ≥ 0.

Definition 24.1. A sequence of random variables (Xn)n≥0 is called a mar-
tingale, or an (Fn) martingale, if

(i) E{|Xn|} <∞, each n;
(ii) Xn is Fn measurable, each n;
(iii) E{Xn|Fm} = Xm a.s., each m ≤ n.

Note that (ii) is “almost” implied by (iii), which yields that Xm is a.s.
equal to an Fm measurable random variable.

Example 24.1. Let (Xn)n≥1 be independent with E{|Xn|} <∞ and E{Xn}
= 0, all n. For n ≥ 1 let Fn = σ{Xk; k ≤ n} and Sn =

∑n
k=1 Xk. For n = 0

let F0 = {φ, Ω} be the “trivial” σ-algebra and S0 = 0. Then (Sn)n≥0 is an
(Fn)n≥0 martingale, since

J. Jacod et al., Probability  Essentials
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E{Sn|Fm} = E{Sm + (Sn − Sm)|Fm}
= Sm + E{Sn − Sm|Fm}

= Sm + E

{
n∑

k=m+1

Xk|Fm

}

= Sm +
n∑

k=m+1

E{Xk}

= Sm.

When the variables Xn have μ = E{Xn} �= 0, then using Xn − μ instead of
Xn above we obtain similarly that (Sn − nμ)n≥0 is an (Fn)n≥0 martingale.

Example 24.2. Let Y be F–measurable with E{|Y |} <∞ and define

Xn = E{Y |Fn}.
Then E{|Xn|} ≤ E{|Y |} <∞ and for m ≤ n,

E{Xn|Fm} = E{E{Y |Fn}|Fm}
= E{Y |Fm}
= Xm

(see Exercises 23.1 and 23.2).

Definition 24.2. A martingale X = (Xn)n≥0 is said to be closed by a ran-
dom variable Y if E{|Y |} <∞ and Xn = E{Y |Fn}, each n.

Example 24.2 shows that any r.v. Y ∈ F with E{|Y |} < ∞ gives an
example of a closed martingale by taking Xn = E{Y |Fn}, n ≥ 0.

An important property of martingales is that a martingale has constant
expectation:

Theorem 24.1. If (Xn)n≥0 is a martingale, then n → E{Xn} is constant.
That is, E{Xn} = E{X0}, all n ≥ 0.

Proof. E{Xn} = E{E{Xn|F0}} = E{X0}. �
The converse of Theorem 24.1 is not true, but there is a partial converse

using stopping times (see Theorem 24.7).

Definition 24.3. A random variable T :Ω → N = N ∪ {+∞} is called a
stopping time if {T ≤ n} ∈ Fn, for all n.

Any constant r.v. equal to an integer, or to +∞, is a stopping time.
Stopping times are often more useful than fixed times. They can be thought
of as the time when a given random event happens, with the convention
that it takes the value +∞ if this event never happens. For example suppose
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(Xn)n≥0 is a martingale and we are interested in the first time it is at least
12. Such a time will be random and can be expressed as

T =
{

infn≥0{n : Xn ≥ 12} if Xn ≥ 12 for some n ∈ N
+∞ otherwise.

That is,
T (ω) = inf

n≥0
{n : Xn(ω) ≥ 12}

if Xn(ω) ≥ 12 for some integer n, and T (ω) = +∞ if not. Note that the event
{ω : T (ω) ≤ n} can be expressed as:

{T ≤ n} =
n⋃

k=0

{Xk ≥ 12} ∈ Fn

because {Xk ≥ 12} ∈ Fk ⊂ Fn if k ≤ n. The term “stopping time” comes
from gambling: a gambler can decide to stop playing at a random time (de-
pending for example on previous gains or losses), but when he or she actually
decides to stop, his or her decision is based upon the knowledge of what hap-
pened before and at that time, and obviously not on future outcomes: the
reader can check that this corresponds to Definition 24.3.

Theorem 24.1 extends to bounded stopping times (a stopping time is T is
bounded if there exists a constant c such that P{T ≤ c} = 1). If T is a finite
stopping time, we denote by XT the r.v. XT (ω) = XT (ω)(ω); that is, it takes
the value Xn whenever T = n.

Theorem 24.2. Let T be a stopping time bounded by c and let (Xn)n≥0 be
a martingale. Then E{XT } = E{X0}.
Proof. We have XT (ω) =

∑∞
n=0 Xn(ω)1{T (ω)=n}. Therefore, assuming with-

out loss of generality that c is itself an integer,

E{XT } = E

{ ∞∑
n=0

Xn1{T=n}

}

= E

{
c∑

n=0

Xn1{T=n}

}

=
c∑

n=0

E{Xn1{T=n}}.

Since {T = n} = {T ≤ n}\{T ≤ n−1} we see {T = n} ∈ Fn, and we obtain

=
c∑

n=0

E{E{Xc|Fn}1{T=n}}
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=
c∑

n=0

E{Xc1{T=n}}

= E

{
Xc

c∑
n=0

1{T=n}

}
= E{Xc} = E{X0},

with the last equality by Theorem 24.1. �
The σ-algebra Fn can be thought of as representing observable events up

to and including time n. We wish to create an analogous notion of observable
events up to a stopping time T .

Definition 24.4. Let T be a stopping time. The stopping time σ-algebra FT

is defined to be

FT = {A ∈ F : A ∩ {T ≤ n} ∈ Fn, all n}.
For the above definition to make sense, we need a minor result:

Theorem 24.3. For T a stopping time, FT is a σ-algebra.

Proof. Clearly φ and Ω are in FT . If A ∈ FT , then

Ac ∩ {T ≤ n} = {T ≤ n} \ (A ∩ {T ≤ n}),
and thus Ac ∈ FT . Also if (Ai)i≥1 are in FT , then( ∞⋃

i=1

Ai

)
∩ {T ≤ n} =

∞⋃
i=1

(Ai ∩ {T ≤ n}) ∈ Fn,

hence FT is closed under complements and countable unions; thus it is a
σ-algebra. �

Theorem 24.4. Let S, T be stopping times, with S ≤ T . Then FS ⊂ FT .

Proof. Since S ≤ T we have {T ≤ n} ⊂ {S ≤ n}. Therefore if A ∈ FS , then:

A ∩ {T ≤ n} = A ∩ {S ≤ n} ∩ {T ≤ n};
but A ∩ {S ≤ n} ∈ Fn and {T ≤ n} ∈ Fn, so A ∩ {T ≤ n} ∈ Fn, hence
A ∈ FT . �

Next assume that (Xn)n≥0 is a sequence of random variables with Xn

being Fn measurable, each n. Let T be a stopping time with P (T <∞) = 1.
Then XT =

∑∞
n=0 Xn1{T=n}, and we have:

Theorem 24.5. XT is FT -measurable.
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Proof. Let Λ be Borel and we want to show {XT ∈ Λ} ∈ FT ; that is, we need
{XT ∈ Λ} ∩ {T ≤ n} ∈ Fn. But

{XT ∈ Λ} ∩ {T ≤ n}

=
n⋃

k=0

{XT ∈ Λ} ∩ {T = k}

=
n⋃

k=0

{Xk ∈ Λ} ∩ {T = k},

and {Xk ∈ Λ} ∩ {T = k} ∈ Fk ⊂ Fn for k ≤ n. �
The next two theorems show that the martingale property holds at stop-

ping times as well as fixed times. This is a surprisingly powerful result.

Theorem 24.6 (Doob’s Optional Sampling Theorem). Let X =
(Xn)n≥0 be a martingale and let S, T be stopping times bounded by a constant
c, with S ≤ T a.s. Then

E{XT |FS} = XS a.s.

Proof. First |XT | ≤
∑c

n=0 |Xn| is integrable (without loss of generality we
can assume again that c is an integer), as well as XS , and further XS is FS-
measurable by the previous theorem. So it remains to prove that E{XT Z} =
E{XSZ} for every bounded FS-measurable r.v. Z. By a standard argument
it is even enough to prove that if A ∈ FS then

E{XT 1A} = E{XS1A}

(if this holds, then E{XT Z} = E{XSZ} holds for simple Z by linearity, then
for all FS-measurable and bounded Z by Lebesgue’s Dominated Convergence
Theorem).

So let A ∈ FS . Define a new random time R by

R(ω) = S(ω)1A(ω) + T (ω)1Ac (ω).

Then R is a stopping time also: indeed,

{R ≤ n} = A ∩ {S ≤ n}) ∪ (Ac ∩ {T ≤ n}),

and A ∩ {S ≤ n} ∈ Fn because A ∈ FS . Since A ∈ FS we have Ac ∈ FS

and so Ac ∈ FT by Theorem 24.4. Thus Ac ∩{T ≤ n} ∈ Fn and we conclude
{R ≤ n} ∈ Fn and R is a stopping time. Therefore E{XR} = E{XT } =
E{X0} by Theorem 24.2. But

E{XR} = E{XS1A + XT 1Ac },
E{XT } = E{XT 1A + XT 1Ac }
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and subtracting yields

E{XS1A} − E{XT 1A} = 0.

�
We can now establish a partial converse of Theorem 24.1.

Theorem 24.7. Let (Xn)n≥0 be a sequence of random variables with Xn

being Fn measurable, each n. Suppose E{|Xn|} < ∞ for each n, and
E{XT } = E{X0} for all bounded stopping times T . Then X is a martin-
gale.

Proof. Let 0 ≤ m < n <∞, and let Λ ∈ Fm. Define a random time T by:

T (ω) =

{
m if ω ∈ Λc,

n if ω ∈ Λ

Then T is a stopping time, so

E{X0} = E{XT } = E{Xm1Λc + Xn1Λ}.

However also E{X0} = E{Xm1Λc + Xm1Λ}. Subtraction yields E{Xn1Λ} =
E{Xm1Λ}, or equivalently E{Xn|Fm} = Xm a.s. �
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Exercises for Chapter 24

In Problems 24.1–24.11 let S and T be stopping times for a sequence of
σ–algebras (Fn)n≥0, with Fm ⊂ Fn for m ≤ n.

24.1 If T ≡ n, show that FT = Fn.

24.2 Show that S ∧ T = min(S, T ) is a stopping time.

24.3 Show that S ∨ T = max(S, T ) is a stopping time.

24.4 Show that S + T is a stopping time.

24.5 Show that αT is a stopping time for α ≥ 1, α integer.

24.6 Show that FS∧T ⊂ FT ⊂ FS∨T .

24.7 Show that T is a stopping time if and only if {T = n} ∈ Fn, each n ≥ 0.

24.8 Let Λ ∈ FT and define

TΛ(ω) =

{
T (ω) if ω ∈ Λ,

∞ if ω �∈ Λ.

Show that TΛ is another stopping time.

24.9 Show that T is FT –measurable.

24.10 Show that {S < T}, {S ≤ T}, and {S = T} are all in FS ∩ FT .

24.11 * Show that

E{E{Y |FT }|FS} = E{E{Y |FS}|FT } = E{Y |FS∧T }.
24.12 Let M = (Mn)n≥0 be a martingale with Mn ∈ L2, each n. Let S, T
be bounded stopping times with S ≤ T . Show that MS , MT , are both in L2,
and show that

E{(MT −MS)2|FS} = E{M2
T −M2

S |FS},
and that

E{(MT −MS)2} = E{M2
T } − E{M2

S}.
24.13 Let ϕ be convex and let M = (Mn)n≥0 be a martingale. Show that
n → E{ϕ(Mn)} is a nondecreasing function. (Hint: Use Jensen’s inequality
[Theorem 23.9].)

24.14 Let Xn be a sequence of random variables with E{Xn} < ∞ and
E{Xn | Fn−1} = 0 for each n ≥ 1. Suppose further that Xn is Fn-measurable,
for each n ≥ 0. Let Sn =

∑n
k=0 Xk. Show that (Sn)n≥0 is a martingale for

(Fn)n≥0.
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In Chapter 24 we defined a martingale via an equality for certain conditional
expectations. If we replace that equality with an inequality we obtain super-
martingales and submartingales. Once again (Ω,F , P ) is a probability space
that is assumed given and fixed, and (Fn)n≥1 is an increasing sequence of
σ-algebras.

Definition 25.1. A sequence of random variables (Xn)n≥0 is called a sub-
martingale (respectively a supermartingale) if

(i) E{|Xn|} <∞, each n;
(ii) Xn is Fn-measurable, each n;
(iii) E{Xn|Fm} ≥ Xm a.s. (resp. ≤ Xm a.s.) each m ≤ n.

The sequence (Xn)n≥0 is a martingale if and only if it is a submartingale
and a supermartingale.

Theorem 25.1. If (Mn)n≥0 is a martingale, and if ϕ is convex and ϕ(Mn)
is integrable for each n, then (ϕ(Mn))n≥0 is a submartingale.

Proof. Let m ≤ n. Then E{Mn|Fm} = Mm a.s., so ϕ(E{Mn|Fm}) = ϕ(Mm)
a.s., and since ϕ is convex by Jensen’s inequality (Theorem 23.9) we have

E{ϕ(Mn)|Fm} ≥ ϕ(E{Mn|Fm}) = ϕ(Mm).

�

Corollary 25.1. If (Mn)n≥0 is a martingale then Xn = |Mn|, n ≥ 0, is a
submartingale.

Proof. ϕ(x) = |x| is a convex, so apply Theorem 25.1. �

Theorem 25.2. Let T be a stopping time bounded by C ∈ N and let (Xn)n≥0
be a submartingale. Then E{XT } ≤ E{XC}.
Proof. The proof is analogous to the proof of Theorem 24.2, so we omit it.

�
The next theorem shows a connection between submartingales and mar-

tingales.

J. Jacod et al., Probability  Essentials
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Theorem 25.3 (Doob Decomposition). Let X = (Xn)n≥0 be a sub-
martingale. There exists a martingale M = (Mn)n≥0 and a process A =
(An)n≥0 with An+1 ≥ An a.s. and An+1 being Fn-measurable, each n ≥ 0,
such that

Xn = X0 + Mn + An, with M0 = A0 = 0.

Moreover such a decomposition is a.s. unique.

Proof. Define A0 = 0 and

An =
n∑

k=1

E{Xk −Xk−1|Fk−1} for n ≥ 1.

Since X is a submartingale we have E{Xk −Xk−1|Fk−1} ≥ 0 each k, hence
Ak+1 ≥ Ak a.s., and also Ak+1 being Fk-measurable. Note also that

E{Xn | Fn−1} −Xn−1 = E{Xn −Xn−1 | Fn−1} = An −An−1,

and hence
E{Xn | Fn−1} −An = Xn−1 −An−1;

but An ∈ Fn−1, so

E{Xn −An|Fn−1} = Xn−1 −An−1. (25.1)

Letting Mn = Xn−X0−An we have from (25.1) that M is a martingale and
we have the existence of the decomposition.

As for uniqueness, suppose

Xn = X0 + Mn + An, n ≥ 0,

Xn = X0 + Ln + Cn, n ≥ 0,

are two such decompositions. Subtracting one from the other gives

Ln −Mn = An − Cn. (25.2)

Since An, Cn are Fn−1 measurable, Ln −Mn is Fn−1 measurable as well;
therefore

Ln −Mn = E{Ln −Mn|Fn−1} = Ln−1 −Mn−1 = An−1 − Cn−1 a.s.

Continuing inductively we see that Ln − Mn = L0 − M0 = 0 a.s. since
L0 = M0 = 0. We conclude that Ln = Mn a.s., whence An = Cn a.s. and we
have uniqueness. �

Corollary 25.2. Let X = (Xn)n≥0 be a supermartingale. There exists a
unique decomposition

Xn = X0 + Mn −An, n ≥ 0

with M0 = A0 = 0, (Mn)n≥0 a martingale, and Ak being Fk−1-measurable
with Ak ≥ Ak−1 a.s.
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Proof. Let Yn = −Xn. Then (Yn)n≥0 is a submartingale. Let the Doob de-
composition be

Yn = Y0 + Ln + Cn,

and then Xn = X0 − Ln − Cn; set Mn = −Ln and An = Cn, n ≥ 0. �



222 25 Supermartingales and Submartingales

Exercises for Chapter 25

25.1 Show that X = (Xn)n≥0 is a submartingale if and only if Yn = −Xn,
n ≥ 0, is a supermartingale.

25.2 Show that if X = (Xn)n≥0 is both a submartingale and a supermartin-
gale, then X is a martingale.

25.3 Let X = (Xn)n≥0 be a submartingale with Doob decomposition Xn =
X0 + Mn + An. Show that E{An} <∞, each n <∞.

25.4 Let M = (Mn)n≥0 be a martingale with M0 = 0 and suppose E{M2
n} <

∞, each n. Show that Xn = M2
n, n ≥ 0, is a submartingale, and let Xn =

Ln + An be its Doob decomposition. Show that E{M2
n} = E{An}.

25.5 Let M and A be as in Exercise 25.4. Show that An−An−1 = E{(Mn−
Mn−1)2|Fn−1}.
25.6 Let X = (Xn)n≥0 be a submartingale. Show that if ϕ is convex and
nondecreasing on R and if ϕ(Xn) is integrable for each n, then Yn = ϕ(Xn)
is also a submartingale.

25.7 Let X = (Xn)n≥0 be an increasing sequence of integrable r.v., each Xn

being Fn-measurable. Show that X is a submartingale.
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One of the reasons martingales have become central to probability theory is
that their structure gives rise to some powerful inequalities. Our presentation
follows Bass [1].

Once again (Ω,F , P ) is a probability space that is assumed given and
fixed, and (Fn)n≥0 is an increasing sequence of σ-algebras. Let M = (Mn)n≥0
be a sequence of integrable r.v.’s, each Mn being Fn-measurable, and let
M∗

n = supj≤n |Mj |. Note that M∗
n is an increasing process and a submartin-

gale (see Exercise 25.7), since

E{M∗
n} ≤ E

{ n∑
j=1

|Mj |
}

<∞.

By Markov’s Inequality (Corollary 5.1)

P (M∗
n ≥ α) = E{1{M∗

n ≥α}} ≤ E{M∗
n}

α
.

In the martingale case we can replace M∗
n with only |Mn| on the right side.

Theorem 26.1 (Doob’s First Martingale Inequality). Let M =
(Mn)n≥0 be a martingale or a positive submartingale. Then

P (M∗
n ≥ α) ≤ E{|Mn|}

α
.

Proof. Let T = min{j : |Mj | ≥ α} (recall our convention that the minimum
of an empty subset of N is +∞). Since ϕ(x) = |x| is convex and increasing
on R+, we have that |Mn| is a submartingale (by Corollary 25.1 if M is a
martingale, or by Exercise 25.6 if M is a positive submartingale). The set
{T ≤ n, |MT | ≥ α} and {M∗

n ≥ α} are equal, hence

P (M∗
n ≥ α) = P (T ≤ n, |MT | ≥ α) ≤ E

{ |MT |
α

1{T≤n}

}
,

and since MT = MT∧n on {T ≤ n},

P (M∗
n ≥ α) ≤ 1

α
E{|MT∧n|1{T≤n}} ≤ E{|MT∧n|}

α
≤ E{|Mn|}

α

by Theorem 25.2. �
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Before we prove Doob’s Lp Martingale Inequalities we need a lemma which
is interesting in its own right.

Lemma 26.1. Let X ≥ 0 be a random variable, p > 0, and E{Xp} < ∞.
Then

E{Xp} =
∫ ∞

0
pλp−1P (X > λ)dλ.

Proof. We have∫ ∞

0
pλp−1P (X > λ)dλ =

∫ ∞

0
pλp−1E{1(X>λ)}dλ,

and by Fubini’s Theorem (see Exercise 10.15)

= E

{∫ ∞

0
pλp−11(X>λ)dλ

}
= E

{∫ X

0
pλp−1dλ

}
= E{Xp}.

�

Theorem 26.2 (Doob’s Lp Martingale Inequalities). Let M = (Mn)n≥0
be a martingale or a positive submartingale. Let 1 < p < ∞. There exists a
constant c depending only on p such that

E{(M∗
n)p} ≤ cE{|Mn|p}.

Proof. We give the proof in the martingale case. Since ϕ(x) = |x| is convex
we have |Mn| is a submartingale as in Theorem 26.1. Let Xn = Mn1(|Mn |> α

2 ).
For n fixed define

Zj = E{Xn|Fj}, 0 ≤ j ≤ n.

Note that Zj , 0 ≤ j ≤ n is a martingale. Note further that M∗
n ≤ Z∗

n + α
2 ,

since

|Mj | = |E{Mn | Fj}|
= |E{Mn1(|Mn |> α

2 ) + Mn1(|Mn |≤ α
2 )|Fj}

= |E{Xn + Mn1(|Mn |≤ α
2 ) | Fj}

≤ |E{Xn|Fj}|+ α

2
= |Zj |+ α

2
.

By Doob’s First Inequality (Theorem 26.1) we have

P (M∗
n > α) ≤ P

(
Z∗

n >
α

2

)
≤ 2

α
E{|Zn|} ≤ 2

α
E{|Xn|}

=
2
α

E{|Mn|1{|Mn |> α
2 }}.
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By Lemma 26.1 we have

E{(M∗
n)p} =

∫ ∞

0
pλp−1P (M∗

n > λ)dλ

≤
∫ ∞

0
2pλp−2E{|Mn|1{|Mn |> λ

2 }}dλ

and using Fubini’s theorem (see Exercise 10.15):

= E

{∫ 2|Mn |

0
2pλp−2dλ|Mn|

}

=
2pp

p− 1
E{|Mn|p}.

�
Note that we showed in the proof of Theorem 26.2 that the constant

c ≤ 2p p
p−1 . With more work one can show that c

1
p = p

p−1 . Thus Theorem 26.2
could be restated as:

Theorem 26.3 (Doob’s Lp Martingale Inequalities). Let M =
(Mn)n≥0, be a martingale or a positive submartingale. Let 1 < p <∞. Then

E{(M∗
n)p} 1

p ≤ p

p− 1
E{|Mn|p} 1

p ,

or in the notation of Lp norms:

‖M∗
n‖p ≤

p

p− 1
‖Mn‖p.

Our last inequality of this section is used to prove the Martingale Conver-
gence Theorem of Chapter 27. We introduce Doob’s notion of upcrossings.
Let (Xn)n≥0 be a submartingale, and let a < b. The number of upcrossings
of an interval [a, b] is the number of times a process crosses from below a to
above b at a later time. We can express this idea nicely using stopping times.
Define

T0 = 0,

and inductively for j ≥ 0:

Sj+1 = min{k > Tj : Xk ≤ a}, Tj+1 = min{k > Sj+1 : Xk ≥ b}, (26.1)

with the usual convention that the minimum of the empty set is +∞; with
the dual convention that the maximum of the empty set is 0, we can then
define

Un = max{j : Tj ≤ n} (26.2)

and Un is the number of upcrossings of [a, b] before time n.
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Theorem 26.4 (Doob’s Upcrossing Inequality). Let (Xn)n≥0 be a sub-
martingale, let a < b and let Un be the number of upcrossings of [a, b] before
time n (as defined in (26.2)). Then

E{Un} ≤ 1
b− a

E{(Xn − a)+}

where (Xn − a)+ = max(Xn − a, 0).

Proof. Let Yn = (Xn−a)+. Since the function ϕ(x) = (x−a)+ is convex and
nondecreasing, we have by Exercise 25.6 that (Yn)n≥0 is a submartingale.
Since Sn+1 > n, we obtain:

Yn = YS1∧n +
n∑

i=1

(YTi ∧n − YSi ∧n) +
n∑

i=1

(
YSi+1∧n − YTi ∧n

)
. (26.3)

Each upcrossing of (Xn) between times 0 and n corresponds to an integer
i such that Si < Ti ≤ n, with YSi = 0 and YTi = YTi ∧n ≥ b − a, while
YTi ∧n − YSi ∧n ≥ 0 by construction for all i. Hence

n∑
i=1

(YTi ∧n − YSi ∧n) ≥ (b− a)Un.

By virtue of (26.3) we get

(b− a)Un ≤ Yn − YS1∧n −
n∑

i=1

(
YSi+1∧n − YTi ∧n

)
,

and since YS1∧n ≥ 0, we obtain

(b− a)Un ≤ Yn −
n∑

i=1

(
YSi+1∧n − YTi ∧n

)
.

Take expectations on both sides: since (Yn) is a submartingale and the stop-
ping times Ti ∧n and Si+1 ∧n are bounded (by n) and Ti ∧n ≤ Si+1 ∧n, we
have E{YSi+1∧n − YTi ∧n} ≥ 0 and thus

(b− a)E{Un} ≤ E{Yn}.

�
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Exercises for Chapter 26

26.1 Let Yn ∈ L2 and suppose limn→∞ E(Y 2
n ) = 0. Let (Fk)k≥0 be an

increasing sequence of σ-algebras and let Xn
k = E{Yn|Fk}. Show that

limn→∞ E{supk(Xn
k )2} = 0.

26.2 Let X, Y be nonnegative and satisfy

αP (X ≥ α) ≤ E{Y 1{X≥α}},

for all α > 0. Show that E{Xp} ≤ E{qXp−1Y }, where 1
p + 1

q = 1; p > 1.

26.3 Let X, Y be as in Exercise 26.2 and suppose that ‖X‖p < ∞ and
‖Y ‖p <∞. Show that ‖X‖p ≤ q‖Y ‖p. (Hint: Use Exercise 26.2 and Hölder’s
inequality.)

26.4 Establish Exercise 26.3 without the assumption that ‖X‖p <∞.

26.5 * Use Exercise 26.3 to prove Theorem 26.3.



27 Martingale Convergence Theorems

In Chapter 17 we studied convergence theorems, but they were all of the
type that one form of convergence, plus perhaps an extra condition, implies
another type of convergence. What is unusual about martingale convergence
theorems is that no type of convergence is assumed – only a certain structure
– yet convergence is concluded. This makes martingale convergence theorems
special in analysis; the only similar situation arises in ergodic theory.

Theorem 27.1 (Martingale Convergence Theorem). Let (Xn)n≥1 be
a submartingale such that supn E{X+

n } < ∞. Then limn→∞ Xn = X exists
a.s. (and is finite a.s.). Moreover, X is in L1. [Warning: we do not assert
here that Xn converges to X in L1; this is not true in general.]

Proof. Let Un be the number of upcrossings of [a, b] before time n, as defined
in (26.2). Then Un is non-decreasing hence U(a, b) = limn→∞ Un exists. By
the Monotone Convergence Theorem

E{U(a, b)} = lim
n→∞ E{Un}

≤ 1
b− a

sup
n

E{(Xn − a)+}

≤ 1
b− a

(
sup

n
E{X+

n }+ |a|
)
≤ c

b− a
<∞

for some constant c; c <∞ by our hypotheses, and the first inequality above
comes from Theorem 26.4 and the second one from (x − a)+ ≤ x+ + |a| for
all reals a, x. Since E{U(a, b)} <∞, we have P{U(a, b) <∞} = 1. Then Xn

upcrosses [a, b] only finitely often a.s., and if we let

Λa,b = {lim sup
n→∞

Xn ≥ b; lim inf
n→∞ Xn ≤ a},

then P (Λa,b) = 0. Let Λ = ∪
a<b

a,b∈Q

Λa,b where Q denotes the rationals. Then

P (Λ) = 0 since all rational pairs are countable; but

Λ = {lim sup
n

Xn > lim inf
n

Xn},

and we conclude limn→∞ Xn exists a.s.

J. Jacod et al., Probability  Essentials
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It is still possible that the limit is infinite however. Since Xn is a sub-
martingale, E{Xn} ≥ E{X0}, hence

E{|Xn|} = E{X+
n }+ E{X−

n }
= 2E{X+

n } − E{Xn}
≤ 2E{X+

n } − E{X0}, (27.1)

hence

E{lim
n
|Xn|} ≤ lim inf

n→∞ E{|Xn|} ≤ 2 sup
n

E{X+
n } − E{X0} <∞,

by Fatou’s lemma and (27.1) combined with the hypothesis that supn E{X+
n }

< ∞. Thus Xn converges a.s. to a finite limit X. Note that we have also
showed that E{|X|} = E{limn→∞ |Xn|} <∞, hence X is in L1. �

Corollary 27.1. If Xn is a nonnegative supermartingale, or a martingale
bounded above or bounded below, then limn→∞ Xn = X exists a.s., and X ∈
L1.

Proof. If Xn is a nonnegative supermartingale then (−Xn)n≥1 is a submartin-
gale bounded above by 0 and we can apply Theorem 27.1.

If (Xn)n≥1 is a martingale bounded below, then Xn ≥ −c a.s., all n, for
some constant c, with c > 0. Let Yn = Xn + c, then Yn is a nonnegative
martingale and hence a nonnegative supermartingale, and we need only to
apply the first part of this corollary. If (Xn)n≥1 is a martingale bounded
above, then (−Xn)n≥1 is a martingale bounded below and again we are done.

�

Theorem 27.1 gives the a.s. convergence to a r.v. X, which is in L1.
But it does not give L1 convergence of Xn to X. To obtain that we need a
slightly stronger hypothesis, and we need to introduce the concept of uniform
integrability.

Definition 27.1. A subset H of L1 is said to be a uniformly integrable col-
lection of random variables if

lim
c→∞ sup

X∈H
E{1{|X|≥c}|X|} = 0.

Next we present two sufficient conditions to ensure uniform integrability.

Theorem 27.2. Let H be a class of random variables

a) If supX∈H E{|X|p} <∞ for some p > 1, then H is uniformly integrable.
b) If there exists a r.v. Y such that |X| ≤ Y a.s. for all X ∈ H and E{Y } <
∞, then H is uniformly integrable.
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Proof. (a) Let k be a constant such that supX∈H E{|X|p} < k < ∞. If
x ≥ c > 0, then x1−p ≤ c1−p, and multiplying by xp yields x ≤ c1−pxp.
Therefore we have

E
{|X|1{|X|>c}

} ≤ c1−pE
{|X|p1{|X|>c}

} ≤ k

cp−1 ,

hence limc→∞ supX∈H E{|X|1{|X|>c}} ≤ limc→∞ k
cp−1 = 0.

(b) Since |X| ≤ Y a.s. for all X ∈ H, we have

|X|1{|X|>c} ≤ Y 1{Y >c}.

But limc→∞ Y 1{Y >c} = 0 a.s.; thus by Lebesgue’s dominated convergence
theorem we have

lim
c→∞ sup

X∈H
E{|X|1{|X|>c}} ≤ lim

c→∞ E{Y 1{Y >c}}
= E{ lim

c→∞ Y 1{Y >c}} = 0.

�
For more results on uniform integrability we recommend [15, pp. 16–21].

We next give a strengthening of Theorem 27.1 for the martingale case.

Theorem 27.3 (Martingale Convergence Theorem). a) Let (Mn)n≥1
be a martingale and suppose (Mn)n≥1 is a uniformly integrable collection of
random variables. Then

lim
n→∞ Mn = M∞ exists a.s.,

M∞ is in L1, and Mn converges to M∞ in L1. Moreover Mn = E{M∞ | Fn}.
b) Conversely let Y ∈ L1 and consider the martingale Mn = E{Y |Fn}.

Then (Mn)n≥1 is a uniformly integrable collection of r.v.’s.

In other words, with the terminology of Definition 24.2, the martingale
(Mn) is closed if and only if it is uniformly integrable.
Proof. a) Since (Mn)n≥1 is uniformly integrable, for ε > 0 there exists c such
that supn E{|Mn|1{|Mn |≥c}} ≤ ε. Therefore

E{|Mn|} = E{|Mn|1{|Mn |≥c}}+ E{|Mn|1{|Mn |<c}}
≤ ε + c.

Therefore (Mn)n≥1 is bounded in L1. Therefore supn E{M+
n } < ∞ and by

Theorem 27.1 we have

lim
n→∞ Mn = M∞ exists a.s. and M∞ is in L1.

To show Mn converges to M∞ in L1, define
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fc(x) =

⎧⎨⎩ c if x > c,
x if |x| ≤ c,
−c if x < −c.

Then f is Lipschitz. By the uniform integrability there exists c sufficiently
large that for ε > 0 given:

E {|fc(Mn)−Mn|} <
ε

3
, all n; (27.2)

E {|fc(M∞)−M∞|} <
ε

3
. (27.3)

Since limMn = M∞ a.s. we have limn→∞ fc(Mn) = fc(M∞), and so by
Lebesgue’s Dominated Convergence Theorem (Theorem 9.1(f)) we have for
n ≥ N , N large enough:

E{|fc(Mn)− fc(M∞)|} <
ε

3
. (27.4)

Therefore using (27.2), (27.3), and (27.4) we have

E{|Mn −M∞|} < ε, for n ≥ N.

Hence Mn →M∞ in L1. It remains to show E{M∞ | Fn} = Mn. Let Λ ∈ Fm

and n ≥ m. Then
E{Mn1Λ) = E{Mm1Λ}

by the martingale property. However,

|E{Mn1Λ} − E{M∞1Λ}| ≤ E{|Mn −M∞|1Λ}
≤ E{|Mn −M∞|}

which tends to 0 as n tends to ∞. Thus E{Mm1Λ} = E{M∞1Λ} and hence
E{M∞ | Fn} = Mn a.s.

b) We already know that (Mn)n≥1) is a martingale. If c > 0 we have

Mn1{|Mn |≥c} = E{Y 1{|Mn |≥c} | Fn},

because {|Mn| ≥ c} ∈ Fn. Hence for any d > 0 we get

E{|Mn|1{|Mn |≥c}} ≤ E{|Y |1{|Mn |≥c}}
≤ E{|Y |1{|Y |>d}}+ dP (|Mn| ≥ c)

≤ E{|Y |1{|Y |>d}}+
d

c
E{|Mn|}. (27.5)

Take ε > 0. We choose d such that the first term in (27.5) is smaller than
ε/2, then c such that the second term in (27.5) is smaller than ε/2: thus
E{|Mn|1{|Mn |>c}} ≤ ε for all n, and we are done. �
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Corollary 27.2. Let (Fn)n≥0 be an increasing sequence of σ-algebras. That
is, Fn is a sub-σ-algebra of Fn+1 for each n ≥ 0. Let F∞ = σ(∪n≥0Fn), the σ-
algebra generated by the sequence Fn. If Y ∈ L1(F∞) then limn→∞ E{Y |Fn}
= Y , where the limit is in L1.

Proof. Let Mn = E{Y |Fn}. Then M is a uniformly integrable martingale
by part (b) of Theorem 27.3, and it converges to Y in L1 by part (a) of
Theorem 27.3. �

The martingale property is that E{Xm | Fn} = Xn a.s. for m ≥ n and it
is natural to think of n, m as positive counting numbers (i.e., integers), as we
did above. But we can also consider the index set −N: the negative integers.
In this case if |m| > |n|, but m and n are negative integers, then m < n.
To minimize confusion, we always assume that m and n are nonnegative
integers, and we write X−n. So we start with an increasing family of σ-
algebras (F−n)n∈N, meaning here that F−n−1 ⊂ F−n. Then, a backwards
martingale is a sequence (X−n)n∈N of integrable r.v., with X−n being F−n-
measurable and satisfying

E{X−n|F−m} = X−m a.s., (27.6)

where 0 ≤ n < m.

Theorem 27.4 (Backwards Martingale Convergence Theorem). Let
(X−n,F−n)n∈N be a backwards martingale, and let F−∞ = ∩∞

n=0F−n. Then
the sequence (X−n) converges a.s. and in L1 to a limit X as n → +∞ (in
particular X is a.s. finite and is integrable).

Proof. Let U−n be the number of upcrossings of (−X−n)n≥0 of [a, b] between
time −n and 0. Then U−n is increasing as n increases, and let U(a, b) =
limn→∞ U−n, which exists. By Monotone Convergence

E{U(a, b)} = lim
n→∞ E{U−n}

≤ 1
b− a

E{(−X0 − a)+} <∞,

hence P{U(a, b) < ∞} = 1. The same upcrossing argument as in the proof
of Theorem 27.1 implies X = limn→∞ X−n exists a.s.

Let ϕ(x) = x+ = (x ∨ 0), which is convex and increasing and obviously
ϕ(X−n) is integrable, all n. Then Jensen’s inequality (Theorem 23.9) and
(27.6) imply that X+

−n ≤ E{X+
0 |F−n}, hence E{X+

−n) ≤ E{X+
0 }. Then

Fatou’s lemma and the fact that X+
−n ≥ 0 and X+

−n → X+ a.s. yield

E{X+} ≤ lim inf
n

E{X+
−n} ≤ E{X+

0 } <∞.

Henceforth X+ ∈ L1 and the same argument applied to the martingale
(−X−n) shows X− ∈ L1: thus X ∈ L1.
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It remains to prove that the convergence also takes place in L1. To this
effect, we note first that in the proof of Theorem 27.3 we have shown that if
X−n → X a.s., if X ∈ L1, and if the sequence (X−n) is uniformly integrable,
then X−n → X in L1. Part (b) of the same theorem also shows that the
family of r.v. E{X0|G}, when G ranges through all sub-σ-algebras of F , is
uniformly integrable. Since X−n = E{X0|F−n}, we readily deduce the result.

�
As an application of Theorem 27.4 we prove Kolmogorov’s Strong Law of

Large Numbers.

Theorem 27.5 (Strong Law of Large Numbers). Let (Xn)n≥1 be an
i.i.d. sequence with E{|X1|} <∞. Then

lim
n→∞

X1 + . . . + Xn

n
= E{X1} a.s. .

Proof. Let Sn = X1 + . . . + Xn, and F−n = σ(Sn, Sn+1, Sn+2, . . .). Then
F−n ⊂ F−m if n ≥ m, and the process

M−n = E{X1|F−n}
is a backwards martingale. Note that E{M−n} = E{X1}, each n. Also note
that by symmetry for 1 ≤ j ≤ n:

E{X1|F−n} = E{Xj |F−n} a.s. (27.7)

(see Exercise 23.17). Therefore

M−n = E{X1|F−n) = E{X2|F−n} = . . . = E{Xn|F−n},
hence

M−n =
1
n

n∑
j=1

E{Xj |F−n} = E

{
Sn

n
|F−n

}
=

Sn

n
a.s.

By Theorem 27.4, limn→∞ E{Sn

n | Sn, Sn+1, Sn+1, . . .} = X a.s., with
E{X} = E{X1}. Moreover X is measurable for the tail σ-algebra, hence
by the Kolmogorov zero–one law (Theorem 10.6), we have X is constant
almost surely. Thus it must equal its expectation and we are done. �

Theorem 27.5, which is known as Kolmogorov’s Strong Law of Large
Numbers, was first published in 1933 [14], without the use of martingale
theory that was developed decades later by J. L. Doob.

An application of martingale forward convergence is as follows.

Theorem 27.6 (Kolmogorov). Let (Yn)n≥1 be independent random vari-
ables, E{Yn} = 0, all n, and E{Y 2

n } <∞ all n. Suppose
∑∞

n=1 E{Y 2
n } <∞.

Let Sn =
∑n

j=1 Yj. Then limn→∞ Sn =
∑∞

j=1 Yj exists a.s., and it is finite
a.s.
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Proof. Let Fn = σ(Y1, . . . , Yn), and note that E{Sn+1−Sn | Fn} = E{Yn+1 |
Fn} = E{Yn+1} = 0, hence (Sn)n≥1 is an Fn-martingale. Note further that
supn E{S+

n } ≤ supn(E{S2
n} + 1) ≤ ∑∞

n=1 E{Y 2
n } + 1 < ∞. Thus the result

follows from the Martingale Convergence Theorem (Theorem 27.1). �

The Martingale Convergence Theorems proved so far (Theorems 27.1 and
27.4) are strong convergence theorems: all random variables are defined on
the same space and converge strongly to random variables on the same space,
almost surely and in L1. We now give a theorem for a class of martingales
that do not satisfy the hypotheses of Theorem 27.1 and moreover do not have
a strong convergence result. Nevertheless we can obtain a weak convergence
result, where the martingale converges in distribution as n→∞. The limit is
of course a normal distribution, and such a theorem is known as a martingale
central limit theorem.

The result below is stated in a way similar to the Central Limit Theorem
for i.i.d. variables Xn, with their partial sums Sn: Condition (i) implies that
(Sn) is a martingale, but on the other hand an arbitrary martingale (Sn)
is the sequence of partial sums associated with the random variables Xn =
Sn − Sn−1, and these also satisfy (i).

Theorem 27.7 (Martingale Central Limit Theorem). Let (Xn)n≥1 be
a sequence of random variables satisfying

(i) E{Xn | Fn−1} = 0
(ii) E{X2

n | Fn−1} = 1
(iii) E{|Xn|3 | Fn−1} ≤ K <∞.

Let Sn =
∑n

i=1 Xi and S0 = 0. Then limn→∞ 1√
n
Sn = Z, where Z is N(0, 1),

and where the convergence is in distribution.

Proof. Convergence in distribution is of course weak convergence and we
use characteristic functions to prove the theorem. For u ∈ R, recall that
ϕX(u) = E{eiuX} is the characteristic function of X. Let us define a related
function by

ϕn,j(u) = E
{

e
iu 1√

n
Xj | Fj−1

}
.

By Taylor’s theorem we have

e
iu 1√

n
Xj = 1 + iu

1√
n

Xj − u2

2n
X2

j −
iu3

6n
3
2
X

3
j (27.8)

where Xj is a (random) value in between 0 and Xj . Let us next take condi-
tional expectations on both sides of (27.8) to get:

ϕn,j(u) = 1 + iu
1√
n

E{Xj | Fj−1} − u2

2n
E{X2

j | Fj−1} − iu3

6n
3
2
E{X3

j | Fj−1}

and using hypotheses (i) and (ii) we have:
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ϕn,j(u)− 1− u2

2n
=

u3

6n
3
2
E{X3

j | Fj−1}. (27.9)

Therefore since |Xj | ≤ |Xj |,
Since Sp =

∑p
j=1 Xj , for 1 ≤ p ≤ n we have:

E
{

e
iu 1√

n
Sp

}
= E

{
e
iu 1√

n
Sp−1e

iu 1√
n

Xp

}
(27.10)

= E
{

e
iu 1√

n
Sp−1E

{
e
iu 1√

n
Xp | Fp−1

}}
= E

{
e
iu 1√

n
Sp−1ϕn,p(u)

}
.

Using (27.10) and (27.9) we have

E
{

e
i u√

n
Sp

}
= E

{
e

i u√
n

Sp−1

(
1− u2

2n
− iu3

6n
3
2
X

3
j

)}
and therefore

E

{
e

i u√
n

Sp −
(

1− u2

2n

)
e
i u√

n
Sp−1

}
= E

{
e

i u√
n

Sp−1 iu3

6n
3
2
X

3
j

}
(27.11)

and taking moduli of both sides of (27.11) and using hypothesis (iii) gives:∣∣∣∣E{e
iu 1√

n
Sp −

(
1− u2

2n

)
e
iu 1√

n
Sp−1

} ∣∣∣∣ (27.12)

≤ E

{
|eiu 1√

n
Sp−1 | |u|

3

6n
3
2
E
{|Xj |3 | Fj−1

}}
≤ K

|u|3
6n

3
2
.

Let us fix u ∈ R. Then since n tends to ∞, eventually n ≥ u2

2 , and so for n

large enough we have 0 ≤ 1 − u2

2n ≤ 1. Therefore we reduce the left side of
(27.12) by multiplying by (1− u2

2n )n−p for n large enough, to obtain∣∣∣∣∣
(

1− u2

2n

)n−p

E
{

e
iu 1√

n
Sp

}
−
(

1− u2

2n

)n−p+1

E
{

e
iu 1√

n
Sp−1
}∣∣∣∣∣ ≤ K

|u|3
6n

3
2
.

(27.13)
Finally we use telescoping (finite) sums to observe

E
{

e
iu 1√

n
Sn

}
−
(

1− u2

2n

)n

=
n∑

p=1

(
1− u2

2n

)n−p

E
{

e
iu 1√

n
Sp

}
−
(

1− u2

2n

)n−(p−1)

E
{

e
iu 1√

n
Sp−1
}
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and thus by the triangle inequality and (27.13) we have (always for n ≥ u2

2 ):∣∣∣∣E {e
iu 1√

n
Sn

}
−
(

1− u2

2n

)n∣∣∣∣ ≤ n
K|u|3
6n

3
2

= K
|u|3
6
√

n
. (27.14)

Since the right side of (27.14) tends to 0 and

lim
n→∞

(
1− u2

2n

)n

= e− u2
2

as can be seen using L’Hôpital’s rule (for example), we have that

lim
n→∞ E{eiu Sn√

n } = e− u2
2 .

By Lévy’s Continuity Theorem (Theorem 19.1) we have that Sn√
n

converges

in law to Z, where the characteristic function of Z is e− u2
2 ; but this is the

characteristic function of an N(0, 1) random variable (cf Example 13.5), and
characteristic functions characterize distributions (Theorem 14.1), so we are
done. �

Remark 27.1. If Sn is the martingale of Theorem 27.7, we know that strong
martingale convergence cannot hold: indeed if we had limn→∞ Sn = S a.s.
with S in L1, then we would have limn→∞ Sn√

n
= 0 a.s., and the weak conver-

gence of Sn√
n

to a normal random variable would not be possible. What makes
it not possible to have the strong martingale convergence is the behavior of
the conditional variances of the martingale increments Xn (hypothesis (ii) of
Theorem 27.7). �

We end our treatment of martingales with an example from analysis: this
example illustrates the versatile applicability of martingales; we use the mar-
tingale convergence theorem to prove a convergence result for approximation
of functions.

Example 27.1. ([10]) Let f be a function in Lp[0, 1] for Lebesgue measure re-
stricted to [0, 1]. Martingale theory can provide insights into approximations
of f by orthogonal polynomials.

Let us define the Rademacher functions on [0, 1] as follows. We set
R0(x) = 1, 0 ≤ x ≤ 1. For n ≥ 1, we set for 0 ≤ x ≤ 1:

Rn(x) =

{
1 if 2j−1

2n ≤ x < 2j
2n , some j in {1, . . . , 2n}

−1 otherwise.

We let the probability measure P be Lebesgue measure restricted to [0, 1],
and F is the Borel sets of [0, 1]. Then
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E{Rn} =
∫ 1

0
Rn(x)dx = 0

and

Var (Rn) = E{R2
n} =

∫ 1

0
Rn(x)2dx = 1.

Finally note that Rn and Rm are independent if n �= m. (See Exercise 27.7.)
Next we define the Haar functions as follows:

H0(x) = R0(x),
H1(x) = R1(x).

For n ≥ 2, let n = 1 + 2 + . . . + 2r−2 + λ = 2r−1 − 1 + λ, where r ≥ 2 and
1 ≤ λ ≤ 2r−1. Then

Hn(x) =

{√
2r−1Rn(x) for 2λ−2

2r ≤ x < 2λ
2r ,

0 otherwise.

Next let Fn = σ(H0, H1, . . . , Hn), the smallest σ-algebra making H0, . . . , Hn

all measurable. We can then check that∫
∧

Hn+1(x)dx = 0 if ∧ ∈ Fn; (27.15)

(see Exercise 27.8.) Moreover we have∫ 1

0
Hn(x)dx = 0,∫ 1

0
Hn(x)2dx = 1.

We now have the following:

Theorem 27.8. Let Hn be the Haar system on [0, 1] and let f ∈ Lp[0, 1] for
p ≥ 1. Let

αr =
∫ 1

0
Hr(x)f(x)dx,

Sn(x, f) =
n∑

r=0

αrHr(x). (27.16)

Then limn→∞ Sn(x, f) = f(x) a.e. Moreover if S∗(x, f) = supn |Sn(x, f)|,
then ∫ 1

0
(S∗(x, f))pdx ≤

(
p

p− 1

)p ∫ 1

0
|f(x)|pdx.
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Proof. We first show that Sn(x, f) is a martingale. We have

E{Sn+1(x, f) | Fn} = Sn(x, f) + E{αn+1Hn+1(x) | Fn}
= Sn(x, f) + αn+1E{Hn+1(x) | Fn}
= Sn(x, f)

where we used (27.15). However more is true:

Sn(x, f) = E{f | Fn}, (27.17)

which is the key result. Indeed to prove (27.17) is where we need the coeffi-
cients αr given in (27.16). (See Exercise 27.10.)

Next we show Sn(x, f) satisfies supn E{Sn(x, f)+} < ∞, for p > 1
(the hypothesis for the Martingale Convergence Theorem; Theorem 27.1).
We actually show more thanks to Jensen’s inequality (Theorem 23.9): since
ϕ(u) = |u|p is convex for p > 1, we have that∫ 1

0
|Sn(x, f)|pdx = E{|E{f | Fn}|p}

≤ E{E{|f |p | Fn}}
= E{|f |p}

=
∫ 1

0
|f(x)|pdx <∞,

and thus

sup
n

E{Sn(x, f)+} ≤ sup
n

E{|Sn(x, f)|p}
≤ E{|f |p} <∞.

We now have by Theorem 27.1 that

lim
n→∞ Sn(x, f) = f(x) almost everywhere,

and also by Doob’s Lp martingale inequalities (Theorem 26.2) we have

E{S∗(f)p} ≤
(

p

p− 1

)p

E{|Sn(f)|p}

≤
(

p

p− 1

)p

E{|f |p},

or equivalently ∫ 1

0
(S∗(x, f))pdx ≤

(
p

p− 1

)p ∫ 1

0
|f(x)|pdx.

�
We remark that results similar to Theorem 27.8 above hold for classical

Fourier series, although they are harder to prove.
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Exercises for Chapter 27

27.1 (A martingale proof of Kolmogorov’s zero–one law.) Let Xn be inde-
pendent random variables and let C∞ be the corresponding tail σ–algebra (as
defined in Theorem 10.6). Let C ∈ C∞. Show that E{1C |Fn} = P (C), all n,
where Fn = σ(Xj ; 0 ≤ j ≤ n). Show further limn→∞ E{1C |Fn} = 1C a.s.
and deduce that P (C) = 0 or 1.

27.2 A martingale X = (Xn)n≥0 is bounded in L2 if supn E{X2
n} < ∞. Let

X be a martingale with Xn in L2, each n. Show that X is bounded in L2 if
and only if

∞∑
n=1

E{(Xn −Xn−1)2} <∞.

(Hint: Recall Exercise 24.12.)

27.3 Let X be a martingale that is bounded in L2; show that supn E{|Xn|} <
∞, and conclude that limn→∞ Xn = Y a.s., with E{|Y |} <∞.

27.4 * Let X be a martingale bounded in L2. Show that limn→∞ Xn = X
a.s. and in L2. That is, show that limn→∞ E{(Xn −X)2} = 0.

27.5 (Random Signs) Let (Xn)n≥1 be i.i.d. with P (Xn = 1) = P (Xn =
−1) = 1

2 . Let (αn)n≥1 be a sequence of real numbers. Show that
∑∞

n=1 αnXn

is a.s. convergent if
∑∞

n=1 α2
n <∞.

27.6 Let X1, X2, . . . be i.i.d. nonnegative random variables with E{X1} = 1.
Let Rn =

∏n
i=1 Xi, and show that Rn is a martingale for the σ-algebras

Fn = σ(X1, . . . , Xn).

27.7 Show that if n �= m, then the Rademacher functions Rn and Rm are
independent for P = λ Lebesgue measure restricted to [0, 1].

27.8 Let Hn be the Haar functions, and suppose ∧ ∈ Fn = σ(H0, H1, . . .,
Hn). Show that ∫

∧
Hn+1(x)dx = 0.

27.9 Let f be in Lp[0, 1]. Let Sn(x, f) be as defined in (27.16) and show that
E{f | Fn} = Sn(x, f). (Hint: Show that∫

∧
f(x)dx =

∫
∧

Sn(x, f)dx for ∧ ∈ Fn

by using that the Haar functions are an orthonormal system; that is,∫ 1

0
Hn(x)Hm(x)dx = 0 if n �= m and

∫ 1

0
Hn(x)2dx = 1.)
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27.10 Use Martingale Convergence to prove the following 0−1 law. Let (Fn)
be an increasing sequence of σ-algebras and Gn a decreasing sequence of σ-
algebras, with G1 ⊂ σ(∪∞

n=1Fn). Suppose that Fn and Gn are independent
for each n. Show that if ∧ ∈ ∩∞

n=1Gn, then P (∧) = 0 or 1.

27.11 Let H be a subset of L1. Let G be defined on [0,∞) and suppose G
is positive, increasing, and

lim
t→∞

G(t)
t

=∞.

Suppose further that supX∈H E{G(X)} < ∞. Show that H is uniformly
integrable. (This extends Theorem 27.2(a).)



28 The Radon-Nikodym Theorem

Let (Ω,F , P ) be a probability space. Suppose a random variable X ≥ 0 a.s.
has the property E{X} = 1. Then if we define a set function Q on F by

Q(∧) = E{1∧X} (28.1)

then it is easy to see that Q defines a new probability (see Exercise 9.5).
Indeed

Q(Ω) = E{1ΩX} = E{X} = 1

and if A1, A2, A3, . . . are disjoint in F then

Q

( ∞⋃
i=1

Ai

)
= E{1∪∞

i=1Ai X}

= E

{ ∞∑
i=1

1Ai X

}

=
∞∑

i=1

E {1Ai
X}

=
∞∑

i=1

Q(Ai)

and we have countable additivity. The interchange of the expectation and
the summation is justified by the Monotone Convergence Theorem (Theo-
rem 9.1(d)).

Let us consider two properties enjoyed by Q:

(i) If P (∧) = 0 then Q(∧) = 0. This is true since Q(∧) = E{1∧X}, and then
1∧ is a.s. 0, and hence 1∧X = 0 a.s.

(ii) For every ε > 0 there exists δ > 0 such that if ∧ ∈ F and P (∧) < δ, then
Q(∧) < ε.

Indeed property (ii) follows from Property (i) in general. We state it
formally.

Theorem 28.1. Let P, Q be two probabilities such that P (∧) = 0 implies
Q(∧) = 0 for all ∧ ∈ F . Then for each ε > 0 there exists δ > 0 such that if
∧ ∈ F and P (∧) < δ, then Q(∧) < ε.
J. Jacod et al., Probability  Essentials
© Springer-Verlag Berlin Heidelberg 2004
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Proof. Suppose the result were not true. Then there would be a sequence
∧n ∈ F with P (∧n) < 1

2n (for example) and Q(∧n) ≥ ε, all n, for some
ε > 0. Set ∧ = lim supn→∞ ∧n. By Borel-Cantelli Lemma (Theorem 10.5) we
have P (∧) = 0. Fatou’s lemma has a symmetric version for limsups, which
we established in passing during the proof of Theorem 9.1(f); this gives

Q(∧) ≥ lim sup
n→∞

Q(∧n) ≥ ε,

and we obtain a contradiction. �
It is worth noting that conditions (i) and (ii) are actually equivalent.

Indeed we showed (i) implies (ii) in Theorem 28.1; that (ii) implies (i) is
simple: suppose we have (ii) and P (∧) = 0. Then for any ε > 0, P (∧) < δ
and so P (∧) < ε. Since ε was arbitrary we must have Q(∧) = 0.

Definition 28.1. Let P, Q be two finite measures. We say Q is absolutely
continuous with respect to P if whenever P (∧) = 0 for ∧ ∈ F , then Q(∧) = 0.
We denote this Q� P .

Examples: We have seen that for any r.v. X ≥ 0 with E{X} = 1, we have
Q(∧) = E{1∧X} gives a probability measure with Q� P .

A naturally occurring example is Q(∧) = P (∧ | A), where P (A) > 0. It
is trivial to check that P (∧) = 0 implies Q(∧) = 0. Note that this example
is also of the form Q(∧) = E{1∧X}, where X = 1

P (A)1A.

The Radon–Nikodym theorem characterizes all absolutely continuous
probabilities. Indeed we see that if Q � P , then Q must be of the form
(28.1). Thus our original class of examples is all that there is. We first state
a simplified version of the theorem, for separable σ-fields. Our proof follows
that of P. A. Meyer [15].

Definition 28.2. A sub σ-algebra G of F is separable if G = σ(A1, . . .,
An, . . .), with Ai ∈ F , all i. That is, G is generated by a countable sequence
of events.

Theorem 28.2 (Radon-Nikodym). Let (Ω,F , P ) be a probability space
with a separable σ-algebra F . If Q is a finite measure on F and if P (∧) = 0
implies Q(∧) = 0 for any such ∧ ∈ F , then there exists a unique integrable
positive random variable X such that

Q(∧) = E{1∧X}.

We write X = dQ
dP . Further X is unique almost surely: that is if X ′ satisfies

the same properties, then X ′ = X P -a.s.

Proof. Since the result is obvious when Q = 0, we can indeed assume that
Q(Ω) > 0. Then we can normalize Q by taking Q̃ = 1

Q(Ω)Q, so we assume
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without loss that Q is a probability measure. Let A1, A2, . . . , An be a count-
able enumeration of sets in F such that F = σ(A1, A2, . . . , An, . . .). We define
an increasing family of σ-algebras (Fn)n≥1 by

Fn = σ(A1, . . . , An).

There then exists a finite partition of Ω into Fn-measurable sets An,1, An,2,
. . . , An,kn such that each element of Fn is the (finite) union of some of these
events. Such events are called “atoms”. We define

Xn(ω) =
kn∑
i=1

Q(An,i)
P (An,i)

1An ,i (ω) (28.2)

with the convention that 0
0 = 0 (since Q � P the numerator is 0 whenever

the denominator is 0 above). We wish to show the process (Xn)n≥1 is in fact
a martingale. Observe first that Xn is Fn-measurable. Next, let m ≤ n. Then
exactly as in the proof of Theorem 24.6, in order to get E{Xn|Fm} = Xm it
is enough to prove that for every ∧ ∈ Fm we have∫

∧
XndP =

∫
∧

XmdP. (28.3)

We can write ∫
∧

XndP =
∫

∧

kn∑
i=1

Q(An,i)
P (An,i)

1An ,i dP

=
∫ kn∑

i=1

Q(An,i)
P (An,i)

1An ,i ∩∧dP

=
kn∑
i=1

Q(An,i)
P (An,i)

P (An,i ∩ ∧).

Now, since ∧ ∈ Fn, the set ∧ can be written as the union of some of the (dis-
joint) partition sets An,i, that is ∧ = ∪i∈IAn,i for a subset I ⊂ {1, . . . , kn}.
Therefore ∧ ∩ An,i = An,i if i ∈ I and ∧ ∩ An,i = φ otherwise, and we now
obtain ∫

∧
XndP =

∑
i∈I

Q(An,i)
P (An,i)

P (An,i ∩ ∧)

=
∑
i∈I

Q(An,i) = Q(∧)

where we have used again the fact that Q(An,i) = 0 whenever P (An,i) = 0.
Since ∧ ∈ Fm we get similarly

∫
∧ XmdP = Q(∧). Hence (28.1) holds, and

further if we take ∧ = Ω then we get
∫

XndP = Q(Ω) = 1 < ∞, so Xn is
P -integrable. Therefore (Xn)n≥1 is a martingale.
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We also have that the martingale (Xn) is uniformly integrable. Indeed,
we have ∫

{Xn ≥c}
XndP = Q(Xn > c);

by Markov’s inequality

P (Xn ≥ c) ≤ E{Xn}
c

=
1
c
.

Let ε > 0, and let δ be associated with ε as in Theorem 28.1 (since Q � P
by hypothesis). If c > 1/δ then we have P (Xn ≥ c) < δ, hence Q(Xn ≥
c) ≤ ε, hence

∫
{Xn ≥c} XndP ≤ ε: therefore the sequence (Xn) is uniformly

integrable, and by our second Martingale Convergence Theorem (Theorem
27.3) we have that there exists a r.v. X in L1 such that limn→∞ Xn = X a.s.
and in L1 and moreover

E{X | Fn} = Xn.

Let now ∧ ∈ F , and define R(∧) = E{1∧X}. Then R agrees with Q on each
Fn, since if ∧ ∈ Fn, R(∧) = E{1∧X} = E{1∧Xn} = Q(∧). The Monotone
Class Theorem (6.3) now implies that R = Q, since F = σ(Fn;n ≥ 1). �

Remark 28.1. We can use Theorem 28.2 to prove a more general Radon–
Nikodym theorem, without the separability hypothesis. For a proof of Theo-
rem 28.3 below, see [25, pp.147–149].

Theorem 28.3 (Radon-Nikodym). Let P be a probability on (Ω,F) and
let Q be a finite measure on (Ω,F). If Q� P then there exists a nonnegative
r.v. X such that Q(∧) = E{1∧X} for all ∧ ∈ F . Moreover X is P -unique
a.s. We write X = dQ

dP .

The Radon–Nikodym theorem is directly related to conditional expecta-
tion. Suppose given (Ω,F , P ) and let G be a sub σ-algebra of F . Then for
any nonnegative r.v. X with E{X} <∞, Q(∧) = E{X1∧} for ∧ in G defines
a finite measure on (Ω,G), and P (∧) = 0 implies Q(∧) = 0. Thus dQ

dP exists
on the space (Ω,G), and we define Y = dQ

dP ; then Y is G-measurable. Note
further that if ∧ ∈ G, then

E{Y 1∧} = Q(∧) = E{X1∧}.
Thus Y is a version of E{X | G}. In fact, it is possible to prove the Radon–
Nikodym Theorem with a purely measure-theoretic proof, not using martin-
gales. Then one can define the conditional expectation as above: this is an
alternative way for constructing conditional expectation, which does not use
Hilbert space theory.

Finally note that if P is a probability on R having a density f , and since
P (A) =

∫
A

f(x)dx, then P is absolutely continuous with respect to Lebesgue
measure m on R (here m is a σ-finite measure, but the Radon-Nikodym
Theorem “works” also in this case), and we sometimes write f = dP

dm .
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Exercises for Chapter 28

28.1 Suppose Q and P are finite measures, with Q� P and P � Q. We say
that Q is equivalent to P , and we write Q ∼ P . Show that X = dQ

dP satisfies
X > 0 almost everywhere (dP ). That is, P (X ≤ 0) = 0.

28.2 Suppose Q ∼ P . Let X = dQ
dP . Show that 1

X = dP
dQ (see Exercise 9.8).

28.3 Let μ be a measure such that μ =
∑∞

n=1 αnPn, for Pn probability mea-
sures and αn > 0, all n. Suppose Qn � Pn each n, and that ν =

∑∞
n=1 βnQn

and βn ≥ 0, all n. Show that μ(∧) = 0 implies ν(∧) = 0.

28.4 Let P, Q be two probabilities and let R = P+Q
2 . Show that P � R.

28.5 Suppose Q ∼ P . Give an example of a P martingale which is not a
martingale for Q. Also give an example of a process which is a martingale for
both P and Q simultaneously.
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2Ω Set of all subsets of Ω 3, 7
A� A transpose 92
An → A convergence of the sets An to

A 10
B(r, s) beta function 62
E{X} Expectation of X 27, 51, 52
E{Y |G} Conditional expectation of Y

given G 200
EQ{X | G} Conditional expectation of

X given G under Q 209
Hn nth Haar function 238
Jg Jacobian matrix 92
L1 := L1 modulo a.s. equal 53
Lp as a normed linear space 207
Lp := Lp modulo a.s. equal 53
N(μ, Q) 127
N(μ, σ2) Normal distribution with

mean μ and variance σ2 125
P (A | B) 16
P ⊗ Q 67
P X Distribution measure of X 4, 27
P X ⊗ P Y Product of P X and P Y 69
P (X,Y ) Distribution measure of the

pair (X, Y ) 69
Q � P Q absolutely continuous with

respect to P 244
Rn The nth Rademacher function

237
U(a, b) Upcrossing from a to b 229
X ∨ Y Maximum of X and Y 49
X ∧ Y Minimum of X and Y 49
X+ Maximum of X and 0 52
X− Maximum of −X and 0 52
X−1(F) Inverse image under X of the

σ-algebra F 47

Xn
Lp

→ X Xn converges to X in Lp

142
Xn

P→ X Xn converges to X in
probability 143

Xn
D→ X Xn converges to X in

distribution 152
Xn

L→ X Xn converges to X in
distribution 152

Γ (α) Gamma function 43
Γ ⊥ All vectors orthogonal to Γ 191
Π Projection operator 193
χ2 Chi square distribution 82
χ2

n Chi square distribution with n
degrees of freedom 83

∅ The empty set 7
lim infn An (Liminf of a sequence of

sets An) 10
lim supn An (Limsup of a sequence of

sets An) 10, 71
|| X || norm of X 189
|| X ||p norm in Lp 207
μX � μY Convolution product 117
⊗∞

n=1An smallest σ-algebra generated
by finite Cartesian products of sets
70∏∞
n=1 Ωn Infinite Cartesian product
70

σ-algebra 7
– generated by C 7
– trivial σ-algebra 7
σ-finite measure 74
σ(C) σ-algebra generated by C 7
σ2 Variance 29, 58
σ2

X Variance of X 29, 58
{An i.o.} The events An occur

infinitely often 71
{ω} singleton 21
d(x, L) Distance from x to the subspace

L 192
f � g Convolution product of the

functions f and g 122
m Lebesgue measure on R 77
mn Lebesgue measure on Rn 87
<., .> Inner product 189
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dQ
dP

Radon-Nikodym derivative of Q
with respect to P 244

N Natural numbers 30
Q Rationals in R 8
R Real numbers (R = (−∞, +∞)) 8
Z The integers 161
B Borel sets of R 8, 39
Bn Borel sets of Rn 87
C∞ Functions with an arbitrarily large

number of derivatives 161
C∞ Tail σ-algebra 72
E ⊗ F = σ(E × F) 67
FT Stopping time σ-algebra 214
L1 Random variables with finite

expectation 28, 52
L1(Ω, A, P ) L1 on the space (Ω, A, P )

52
Lp Random variables with finite pth

moment 53
N Null sets 37
Cov(X, Y ) covariance of X and Y

73, 91

a.e. almost everywhere 88
a.s. almost surely 37, 52
additivity 9
– σ-additivity 8, 35
algebra 7, 35
atoms 245

Bayes’ Theorem 17
Bernoulli distribution 30, 119, 176,

184
– characteristic function of 106
Bernoulli, Jacob 125
Berry-Esseen 185
beta function, distribution 62
biased estimator 139
Bienaymé-Chebyshev inequality: see

Chebyshev 29, 58
binomial distribution 23, 26, 30, 119,

163, 184
– characteristic function 106
Bolzano-Weierstrass theorem 158
Bonferroni inequalities 13
Borel (σ-algebra) 8
– on R 8, 39
– on Rn 87
Borel sets 8
Borel-Cantelli Theorem 71
Box-Muller (simulation of) 101

Cauchy distribution 44, 60, 98
– and bivariate normal 138

– characteristic function 114
Cauchy sequence 190
Cauchy’s equation 63
Cauchy-Schwarz inequality 57, 208
Central Limit Theorem 181, 183
Chebyshev inequality 29, 58, 208
chi square distribution 82, 83, 96, 120
closed under differences 36
closed under finite intersections 36
closed under increasing limits 36
closure of a martingale 212
Cobb-Douglas distribution 44
completely convergent 74
conditional density 89, 203
conditional expectation 197, 200
– defined as Hilbert space projection

200
– defined in L1 202
– defined in L2 200
conditional probability 16
continuously differentiable 92
convergence (of random variables)
– almost sure 142
– in Lp 142
– in pth mean 142
– in distribution 152
– in probability 143
– pointwise 141
convolution of functions 122
convolution product (of probability

measures) 117
correlation coefficient 91
countable additivity 8, 35, 77
countable cartesian product 70
covariance 73, 91
– and independence 91
– matrix 91

De Morgan’s laws 12
density function
– on R 42, 78
– on Rn 88
Dirac (mass, measure) 42, 156
discrete uniform distribution 22, 32
distribution function 39, 50
– on Rn 87
distribution of a random variable 4,

27, 50
Doob decomposition 220
Doob’s Lp martingale inequalities

224, 225
Doob’s first martingale inequality 223
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Doob’s optional sampling theorem
215

Doob’s upcrossing inequality 226
double exponential distribution 44
– characteristic function of 115

empirical distribution function 184
equivalence class 53
estimator 117, 132
event 3, 8
expectation 27, 51, 52, 67
– of a simple random variable 51
expectation rule 58, 59, 80
exponential distribution 43, 53, 59, 95
– characteristic function of 108
exponential distribution
– and Gamma distribution 123

Fatou’s lemma 53, 205
finite additivity 9
Fourier transform 103, 111
Fubini’s theorem 67, 75
– (see also Tonelli-Fubini theorem)

67

Galton–McAlister distribution 44
gamma distribution 43, 83, 96, 120
– and sums of exponentials 123
– characteristic function of 109
– relation to χ2 96, 120
gamma function 43
Gauss C.F. 125
Gaussian distribution
– see Normal distribution 44
geometric distribution 23, 31
Glivenko-Cantelli theorem 185
Gosset, W. 97

Hölder inequality 206
Haar system 238
hazard rate 43, 63
Helly’s selection principle 157
hypergeometric distribution 22, 26

i.i.d. (independent identically dis-
tributed) 100, 173

iff (if and only if) 144
image of P by X 50
independent
– σ-algebras 65
– events 15
– infinite sequence of random variables

65, 69
– pairwise 16

– random variables 65
– random variables and their densities

89
indicator function 10, 49
infinitely often (i.o.) 71
inner product 189

Jacobi’s transformation formula 92
Jacobian matrix 92
Jensen’s inequality 205

Lévy’s continuity theorem 167
Lévy, P. 126
Laplace distribution
– see double exponential distribution

44
Laplace, P. 125
law 50
Lebesgue measure
– on R 77
– on Rn 87
Lebesgue’s dominated convergence

theorem 53, 205
lim inf 10
lim sup 10
linear estimator 132
linear regresion 131
logistic distribution 64
lognormal distribution 44

marginal densities 89
Markov’s inequality 29
martingale 211
– backwards martingales 233
– central limit theorem 235
– convergence theorems 229–231, 233
– convergence with uniform integrabil-

ity 231
measurable function 47
– jointly 67
measure preserving map 175
Mellin transform 115
Minkowski’s inequality 189, 207
Moivre, A. de 125
monotone class theorem 36, 37
monotone convergence theorem 52,

204
Monte Carlo approximation 176
multivariate normal 126

natural numbers 30
negative binomial distribution 31
negligible set 37, 142
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normal distribution 44, 59, 82, 93,
95–97, 111, 120, 125, 181

– characteristic function 107, 108,
120, 126

– multivariate 126
– non-degenerate 129
– simulation of 101
– standard 125
normed linear space 189
– complete 190
null set 37, 142

order statistics 100
orthogonal matrix 129
orthogonal vectors 191
orthonormal vectors 129

pairwise disjoint 8
pairwise independent 16
Pareto distribution 31
partition equation 17
Pascal distribution 31
point mass probability 42, 156
Poisson distribution 23, 26, 30, 43,

119, 163
– and conditional expectation 198
– approximation to the binomial 24
– characteristic function 106, 119
– convergence to the normal 170
positive semidefinite matrix 91
predictor variable 131
probability measure 4, 8
projection operator (Hilbert space)

193
projections (Hilbert space) 193
Pythagorean theorem 191

Rademacher functions 237
Radon-Nikodym theorem 244, 246
random signs 240
random variable 4, 27
random walk on the integers 179
Rayleigh distribution 98
regression 131
– residuals 139
– simple linear regression 131
Riemann zeta function 31
Riesz–Fischer theorem 190
right continuous function 40

simple random variable 51
singleton 21
Slutsky’s theorem 161
Stone–Weierstrass theorem 112
stopping time 212
– bounded stopping time 213
strong law of large numbers 173, 175,

234
– ergodic strong law of large numbers

176
– Kolmogorov strong law of large

numbers 175, 234
Student’s t-distribution 97
subadditivity 13
submartingale 219
subspace (Hilbert space) 191
supermartingale 219
symmetric
– density 84, 97
– distribution 114
– random variable 84

tail σ-algebra 72
tail event zero-one law 72
tightness 157
Tonelli–Fubini theorem 67
topological space 48
triangular distribution 48

uncorrelated random variables 131
uniform distribution 43, 80, 176
– characteristic function 106
– on the ball 99
uniform integrability 230
unimodal 45
uniqueness theorem for characteristic

functions 111
upcrossings 225

variance 29, 58

weak convergence (of probability
measures) 151

weak law of large numbers 178
Weibull distribution 43

zero-one law 72, 240
zeta distribution
– see Pareto distribution 31
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